
RV’03 Preliminary Version

Run-Time Analysis for Atomicity 1

Liqiang Wang Scott D. Stoller

Computer Science Dept., State University of New York at Stony Brook, USA

Abstract

Writing and debugging concurrent (shared-variable) programs is notoriously diffi-
cult. This motivated the development of numerous static analysis and run-time anal-
ysis techniques designed to (help) ensure that concurrent programs satisfy common
correctness requirements for concurrent programs, such as absence of race condi-
tions and absence of deadlocks. This paper focuses on another common correctness
requirement for concurrent programs, namely, atomicity, which requires that any
set of concurrent invocations of designated procedures is equivalent to performing
those invocations serially in some order. Run-time analysis algorithms for detecting
violations of atomicity are presented. The algorithms vary in cost and precision.

1 Introduction

Writing and debugging concurrent (shared-variable) programs is notoriously
difficult. Indeed, one could argue that shared variables are an undesirably low-
level interaction mechanism, and that concurrent programs should be written
using higher-level communication mechanisms. However, many existing con-
current programs use shared variables, and many more programs that use
shared variables will surely be written before a paradigm shift occurs. There-
fore, research that facilitates the development of correct concurrent (shared-
variable) programs will remain valuable for the foreseeable future.

Two properties that many concurrent programs are expected to satisfy are
race-freedom (i.e., absence of race conditions) and absence of deadlocks. A
race condition occurs when two threads concurrently access a shared variable
and at least one of the accesses is a write. A deadlock occurs when all threads
are blocked, each waiting for some action by one of the other threads. Type
systems provide an effective way to ensure absence of such errors. For example,
the type systems in [FF00,BR01,Gro03] ensure absence of race conditions,
and the type system in [BLR02] ensures absence of both race conditions and

1 This work is supported in part by NSF under Grant CCR-9876058 and by ONR under
Grants N00014-01-1-0109 and N00014-02-1-0363. Email: {liqiang,stoller}@cs.sunysb.edu
Web: http://www.cs.sunysb.edu/˜{liqiang,stoller}

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Wang

deadlocks. However, these type systems require manual annotation of the
program and, like all type systems, are sometimes undesirably restrictive (i.e.,
the type checker rejects some well-behaved programs as well as all badly-
behaved program).

Run-time analysis provides an automatic way to check race condition
and deadlock. Run-time analysis can determine whether a given trace (of
a concurrent program) satisfies a given property expressed in temporal logic
[HR01,HR02]. A trace is a sequence of events, usually recorded during execu-
tion of a program. Race-freedom and absence of deadlocks are safety proper-
ties that can be checked using general-purpose run-time analysis algorithms.
Nevertheless, specialized techniques for checking these properties have been
developed. For example, the lockset [SBN+97] and goodlock [Hav00] algo-
rithms are specialized run-time analysis algorithms for detecting race con-
ditions and deadlocks, respectively. Run-time analysis is less powerful than
type-based approaches, because it cannot ensure correctness of the system in
traces other than the observed ones. But it is automatic, which is a significant
practical advantage.

The benefit of these specialized algorithms is that they indicate not only
whether the given trace violates the property, but also whether the trace con-
tains suspicious behavior which suggests that other traces of the same program
might violate the property. For example, the lockset algorithm reports suspi-
cious behavior if some shared variable is not protected consistently by some
lock throughout the entire trace. The goodlock algorithm reports suspicious
behavior if the order in which locks are acquired and released is not consistent
with some partial order on the set of locks; adhering to such a partial order
is a well-known technique for deadlock prevention. Thus, these specialized
techniques can provide useful feedback (reports of suspicious behavior) even
if an actual violation of the property is not encountered. This is a great ad-
vantage, because occurrence of a violation is typically much rarer and more
schedule-dependent than occurrence of suspicious behavior.

We propose specialized run-time analysis algorithms for checking atomicity.
Atomicity is well known in the context of transaction processing, where it is
sometimes called isolation (the “I” in ACID). 2 Informally, atomicity is the
property that every concurrent execution of a set of transactions is equivalent
to some serial execution of the same set of transactions. Two executions are
equivalent if each read operation has the same predecessor write, and the final
write to each shared variable is the same in the two executions. For example,
consider transactions t1 and t2, where R(x) and W(x) denote a read and write
of variable x, respectively.

t1 : R(x) W(x) t2 : R(x)(1)

2 ACID is the abbreviation of Atomicity, Consistency, Isolation and Durability. There is
an unfortunate clash in terminology: atomicity in ACID means either all operations of the
transaction are reflected properly, or none are. It is quite different from atomicity of this
paper.

2

Wang

All feasible traces are

tr1 : t1.R(x) t1.W(x) t2.R(x)
tr2 : t1.R(x) t2.R(x) t1.W(x)
tr3 : t2.R(x) t1.R(x) t1.W(x)

(2)

tr1 and tr3 are already serial. tr2 is equivalent to tr3 because t1.R(x) and
t2.R(x) read the same initial value of x in both traces. Thus, t1 and t2 are
atomic.

Concurrent programs, like transactions, are often intended to satisfy atom-
icity properties. For example, consider an implementation of an abstract data
type (ADT), whose interface comprises several methods, the execution trace
of each method can be regarded as a transaction. If the ADT is designed
to support concurrency, the correctness requirements typically include some
form of atomicity, i.e., that every set of concurrent invocations of the interface
methods is equivalent to performing the invocations serially in some order. For
example, linearizability [HW90] is a special case of strict serializability. We
do not consider nested transactions: if the implementation of a method m1 in
the API calls a method m2 in the API, events in such an invocation of m2 are
considered part of the transaction corresponding to the enclosing invocation of
m1. Transactions typically correspond to method invocations, but this is not
a requirement: transactions may begin and end at arbitrary points indicated
by the user.

Flanagan and Qadeer developed a type system for expressing and ensuring
atomicity [FQ03b,FQ03a]. The trade-offs between type systems and run-time
analysis for atomicity are the same as for race conditions. 3 Our run-time
analysis algorithms do not merely look for violations of atomicity in a given
trace. They also attempt to determine whether a violation is possible in other
traces.

Our first algorithm is inspired by Flanagan and Qadeer’s type system
[FQ03b], which in turn is inspired by Lipton’s reduction theorem [Lip75].
Our algorithm first determines how locks are used to protect shared variables,
uses this information to infer commutativity properties of events, and then
checks whether the commutativity properties ensure atomicity.

Our second algorithm is based on the idea of checking whether a violation
of atomicity is possible in traces obtained from a given trace by permuting
the order of events. Of course, arbitrary permutations of a trace might not
be feasible behaviors of the program. Our algorithm considers only the per-
mutations that are consistent with the synchronization events in the trace.
For example, if a thread holds a lock m when it executes an event e, then
permutations that put e between an acquire and release of m by a different
thread are infeasible and are not considered by our algorithm.

3 Their type system for atomicity does not by itself impose a significant annotation burden
on the user, but it must be used together with a type system for preventing race conditions,
which does impose a non-negligible annotation burden.

3

Wang

The fact that one rather than another feasible permutation was actually
observed reflects vagaries of scheduling and has little significance. Therefore,
given a trace, we split it into sub-traces that correspond to “transactions”
and then check whether there exists a non-serializable interleaving of these
transactions that is consistent with the synchronization. Continuing the ADT
example, given a trace containing multiple (possibly concurrent) top-level in-
vocations of methods of the ADT by a client, we extract a set of sub-traces,
which we call transactions, each comprising the sequence of events that oc-
curred during execution of one such invocation. This set of transactions is the
input to our run-time analysis algorithm. Currently, our algorithms take into
account only synchronization implemented with locks, but extending them to
consider other synchronization mechanisms should not be difficult.

2 Related Properties

Race-freedom and atomicity are incomparable properties, i.e., neither im-
plies the other. For an example that is race-free but not atomic, consider
a graphics package with a Rectangle class that offers synchronized methods
setX(int x) and setY(int y) and an unsynchronized method setXY(int

x, int y) whose body is simply setX(x); setY(y). When thread θ1 calls
setXY(100,100), thread θ2 calls setXY(200,200), they can interleave in the
following way:

θ1 : setX(100) setY(100)
θ2 : setX(200) setY(200)

(3)

The result is x=200, y=100. This is different from the result of any serial ex-
ecution. Thus, concurrent invocations of setXY are not atomic, even though
this class is race-free. For an example that is atomic despite having a race con-
dition, consider an unsynchronized method getX(). When getX() executes
concurrently with setX(int x), a race condition occurs, but the invocations
are atomic.

Artho et al. developed a run-time analysis algorithm for detecting high-
level data races [AHB03]. Informally, absence of high-level data races seems
similar to atomicity. They introduce a concept of view consistency which is
utilized to detect high-level data races. A view is the entire set of shared
variables accessed in a synchronized block (i.e., the sequence of events from
an acquire to the corresponding release). The generated views set V(t) of a
thread t is the set of all views generated by t. Thread t1 and thread t2 are
view consistent if the intersections of all views of V(t1) with the maximal view
of V(t2) form a chain (with respect to the subset ordering ⊆), and vice versa.
View consistency and atomicity are incomparable (i.e., neither implies the
other). We demonstrate this with examples. When determining atomicity in
these examples, we regard each execution of a thread as a transaction. Let
acq(`) and rel(`) denote an acquire and release of lock `, respectively. Consider
the following sequences of events executed by threads θ1 and θ2. Any feasible

4

Wang

trace obtained by interleaving these sequences of events is atomic but not view
consistent, because V(θ1)={{x, y}}, V(θ2)={{x}, {y}}, {x, y} ∩ {x} = {x},
{x, y} ∩ {y} = {y}, {x} and {y} do not form a chain.

θ1 : acq(`) R(x) R(y) rel(`) θ2 : acq(`) R(x) rel(`) acq(`) R(y) rel(`)(4)

The following example is view consistent but not atomic.

θ1 : acq(`) W(x) rel(`) θ2 : acq(`) R(x) rel(`) acq(`) W(x) rel(`)(5)

3 Background

We review the standard notion of serializability [BHG87] and then introduce
our notion of atomicity.

A transaction is a sequence of events executed by a single indicated thread.
A trace is a sequence of events, each labeled to indicate which transaction it
is part of.

Two traces are equivalent (more precisely, view equivalent) iff (i) they are
merges of the same set of transactions, (ii) each read operation has the same
predecessor write event in both traces (thus, it reads the same value in both
traces), and (iii) each data item has the same final write event in both traces.

A trace is serial if, for each transaction, the operations of that transaction
form a contiguous subsequence of the trace.

A trace is serializable (more precisely, view serializable) if there exists a
serial trace that is equivalent to it.

Given a set T of transactions, a trace for T is an interleaving of the events
in transactions in T such that (i) different transactions of the same thread are
not interleaved with each other, and (ii) the interleaving is consistent with
the synchronization events in the trace. The details of (ii) depend on which
synchronization mechanisms are considered. Currently, we consider only locks,
as described in Section 1.

A set T of transactions is atomic if every trace for T is serializable.

4 Reduction-Based Algorithm

This algorithm is inspired by [FQ03b], which is inspired by [Lip75].

An event is a left-mover if, whenever it appears immediately after an event
of a different thread, the two events can be swapped without changing the
resulting state. Right-mover is defined similarly. An event is a both-mover if it
is a left-mover and a right-mover. Events not known to be left or right movers
are non-movers.

Given an arbitrary interleaving of events in a set T of transactions, if we
can move all events of each transaction together (by repeatedly swapping ad-
jacent events in the trace) without changing the results of reads and without
changing the final writes, then T is atomic, because the resulting trace is serial
and equivalent to the original trace. If some transactions contain two or more

5

Wang

non-movers, the non-movers could interleave with non-movers in other trans-
actions, preventing us from moving the events of each transaction together. If
each transaction t in T has at most one non-mover e, and each event in t that
precedes e can be moved to the right (towards e), and each event in t that
follows e can be moved to the left (towards e), then we can move all events of
each transaction together. This motivates the following theorem.

Theorem 4.1 Given a set T of transactions, T is atomic if each transaction
has the form (R + B)∗N ?(L + B)∗, 4 where L, R, B, and N denote the sets
of left-movers, right-movers, both-movers, and non-movers, respectively.

Proof. This is a simple variant of Lipton’s reduction theorem [Lip75]. 2

Note that the converse does not hold. Thus, this theorem provides an
approximate and conservative test for atomicity.

A conservative approximation of the commutativity properties of events
can conveniently be obtained based on synchronization. An access to a vari-
able is race-free if it is not involved in any race condition, as defined in Section
1.

Theorem 4.2 Acquire events are right-movers. Release events are left-movers.
Race-free reads and race-free writes are both-movers.

Proof. A proof sketch follows; for details, see [FQ03b]. An acquire event e
right-commutes with any immediately following event e′ of a different thread;
note that e′ may be an access to a shared variable or an operation on a different
lock but cannot be a successful operation on the same lock (because an acquire
would block, and a release would be unsuccessful). For similar reasons, release
events are left-movers. Race-free reads and race-free writes are both-movers,
because race-freedom implies that an immediately following or immediately
preceding event by another thread cannot be an access to the same variable.2

For a simple conservative test of whether an access is race-free, we consider
how locks are used. (Other synchronization mechanisms could also be consid-
ered.) Let held(e) be the set of locks held by thread θ when it executes event
e. The test relies on a notion of “initialization” of a variable. This notion must
have the property that concurrent accesses to a variable be impossible dur-
ing initialization of it. 5 For example, initialization of a heap-allocated object
may be defined to end when the object escapes from the thread that allocated
it; run-time analysis or static analysis can be used to determine when that
occurs.

Theorem 4.3 A read eR of variable x is race-free if it is part of initialization
of x or, for all writes eW to x by other threads, held(eR) ∩ held(eW) 6= ∅. A

4 This form is a regular expression, N? means zero or one N, R+B means R or B, (R+B)∗

means any number of (R+B).
5 The notion of initialization used in Eraser [SBN+97] does not satisfy this requirement.

6

Wang

write eW of x is race-free if it is part of initialization of x or, for all events e
that are accesses to x by other threads, held(eW) ∩ held(e) 6= ∅.

Proof. Straightforward. 2

The following theorem embodies a less precise and less expensive test based
on a common locking discipline [SBN+97].

Theorem 4.4 Let E be the set of events that access a variable x, excluding
accesses during initialization of x. If

⋂
e∈E held(e) is non-empty, then all

accesses to x are race-free.

Proof. Straightforward. 2

To see that this test is less precise, consider the set of transactions

t1 : acq(`) W(x) rel(`) R(x) t2 : acq(`) R(x) rel(`)(6)

Using Theorem 4.3, we can conclude that all of these accesses are race-free
and that this set of transactions is atomic. Theorem 4.4 is unable to support
this conclusion, because t1 reads x without holding any locks.

Our reduction-based algorithm for conservatively detecting violations of
atomicity is as follows: First, determine which variable accesses are race-free
(based on Theorem 4.3 or 4.4). Second, classify all events based on Theorem
4.2 (non-race-free reads and non-race-free writes are conservatively classified as
non-movers). Third, check whether each transaction has the form in Theorem
3.

Let E be the total number of events in the transactions, and let L be the
number of locks. With a simple implementation of sets of locks, the worst-
case running time is O(E2L) if the test embodied in Theorem 4.3 is used, and
O(EL) if the test embodied in Theorem 4.4 is used.

5 Block-Based Algorithm

This section presents a more complicated and more expensive but significantly
more precise algorithm. It decomposes the problem of checking atomicity of a
set of transactions into many smaller problems, each of which requires checking
atomicity of two blocks; a block is, roughly, a pair of operations. Simple
transactions have the form (R + B)∗N ?(L + B)∗ required by Theorem 3, but
many serializable transactions do not have this form, causing the reduction-
based algorithm to report false alarms. The smallest example of this is

t1 : W(x) W(x) t2 : W(x)(7)

All three events are involved in race conditions. Transaction t1 has the form
NN , so the reduction-based algorithm reports a possible violation of atomicity.
The block-based algorithm shows that this set of transactions is atomic.

Two more examples for which the reduction-based algorithm reports a
possible violation of atomicity, while the block-based algorithm correctly de-

7

Wang

termines that the set of transactions is atomic, are

t1 : acq(`) R(x) rel(`) W(y) t2 : acq(`) R(x) rel(`) W(y)(8)

(note that both transactions have the form RBLN) and

t1 : acq(`) W(x) R(x) rel(`)acq(`) W(x) rel(`)
t2 : acq(`) W(x) R(x) rel(`)acq(`) W(x) rel(`)

(9)

(note that both transactions have the form RBBLRBL).

A simple way to combine the two algorithms is to first run the reduction-
based algorithm on a given set of transactions. If it indicates possible viola-
tions of atomicity, then run the more expensive and more precise block-based
algorithm on the same set of transactions. If it also indicates possible viola-
tions, then report the possible violations to the user.

We build up to the general block-based algorithm in four steps. First, we
present a subroutine to determine feasible interleavings of events. Second, we
present a block-based algorithm to determine atomicity of sets of transactions
that access a single variable. Third, we present a block-based algorithm for
sets containing exactly two transactions, which may access multiple variables.
Finally, we present the general block-based algorithm.

5.1 Determining Feasible Interleavings of Events

The block-based algorithms require a subroutine that determines feasible in-
terleavings of events, i.e., interleavings consistent with the recorded synchro-
nization operations. Specifically, a subroutine is needed for the problem: given
two events e1 and e2 from a transaction t and an event e3 from another trans-
action t′, determine whether e3 can occur between e1 and e2.

To simplify the problem, we assume that locking is properly nested, i.e., no
transaction contains a subsequence of the form like acq(`1) acq(`2) rel(`1) rel(`2)
(`1 and `2 are not necessarily contiguous). Java, and other languages with
monitor-based synchronization, statically enforce properly nested synchroniza-
tion. Even in other languages, properly nested synchronization is recognized
as good style and is widely used. This assumption is used only to simplify the
test for feasibility of interleavings; no other aspect of our algorithms depend
on this assumption.

Clearly, a necessary condition is h12 ∩ held(e3) = ∅, where h12 is the set
of locks held continuously from before e1 until after e2. An interesting ob-
servation is that, if t and t′ have no potential deadlocks, then the condition
h12 ∩ held(e3) = ∅ is both necessary and sufficient. Transactions t and t′ have
a potential for deadlock [Hav00] if they acquire two locks `1 and `2 in differ-
ent orders without first acquiring some other lock that would prevent their
attempts to acquire `1 and `2 from being interleaved in a way that causes
deadlocks. Note that “potential for deadlock” really means that deadlock
appears possible based on the information captured in the trace; aspects of
the program behavior not captured in the trace (e.g., synchronization using

8

Wang

constructs other than locks) might actually prevent the deadlock.

Theorem 5.1 Let e1 and e2 be events in a transaction t. Let e3 be an event
in a transaction t′. Suppose t and t′ do not have a potential for deadlock. A
schedule in which e3 occurs between e1 and e2 is feasible iff h12∩held(e3) = ∅,
where h12 is the set of locks held continuously from before e1 until after e2.

Proof. See [WS03]. 2

Thus, for systems required to be free of potential for deadlocks, we may use
the goodlock algorithm [Hav00] to check this condition and, if a potential for
deadlock is found, report it to the user and wait for it to be eliminated before
checking atomicity. When no potential for deadlock remains, the block-based
algorithms for checking atomicity can use the simple and inexpensive test in
Theorem 5.1 to determine feasibility of interleavings.

For systems that may contain potential for deadlock, the condition h12 ∩
held(e3) = ∅ is not sufficient to ensure feasibility of the interleaving, as the
following example demonstrates.

t : acq(`1) acq(`2) rel(`2) e1 e2 rel(`1)
t′ : acq(`2) acq(`1) rel(`1) e3 rel(`2)

(10)

Note that h12 = {`1} and held(e3) = {`2}, so h12∩held(e3) = ∅. Nevertheless,
e3 cannot occur between e1 and e2. To see this, consider two cases. If t′

acquires and releases `1 before t does, then t′ must also acquire and release `2

before t does, so e3 occurs before e1. If t′ acquires and releases `1 after t does,
then e3 occurs after e2.

Intuitively, the situation is that an acquire event e′ in t′ gets pushed to
the side (i.e., away from e1 and e2) by a conflict with an acquire event in t,
and e3 gets pulled away together with e, because e′ and e3 they are “bound
together” by some lock (in this example, `1) that is held continuously from e′

until e3 and that conflicts with some other acquire events in t.

Interleaving of e3 between e1 and e2 is feasible iff (i) h12 ∩ held(e3) = ∅
and (ii) the kind of situation just described cannot arise. Formulating the
exact condition in which this kind of situation cannot arise is conceptually
straightforward, but the details are complicated and are left for future work.
As a first step, we worked out the details of the condition for a restricted case,
namely, when at most two locks are held concurrently by a single thread (i.e.,
for all events e, |held(e)| ≤ 2) [WS03]. The experience in [BLR02, Section 12]
suggests that this case is fairly common.

The block-based atomicity algorithms in the following subsections use the
subroutine for checking feasibility of interleavings mostly as a black box, ex-
cept that blocks must be defined so that they contain the synchronization
information needed by the selected subroutine. For example, the test in The-
orem 5.1 requires that h12 be included in the block containing e1 and e2, and
that held(e3) be included in blocks containing e3. Subroutines embodying
more general tests (i.e., tests that do not assume the absence of potential for

9

Wang

deadlock) require that additional sets and sequences of locks be included in
blocks.

5.2 Algorithm for Transactions that Access One Variable

Unserializable Patterns.

Given a set T of transactions, the algorithm looks for small patterns of events
in transactions in T that can be interleaved in an unserializable way. T is
atomic iff such a pattern is not found. Specifically, the algorithm checks
whether:

UP1. a read from one transaction can occur between two writes in another
transaction.

UP2. a write in one transaction can occur between two reads in another trans-
action.

UP3. a write in one transaction can occur between a write and a subsequent
read in another transaction.

UP4. the final write in one transaction can occur between a read and a subse-
quent write in another transaction.

A trace containing an instance of any of these patterns is not serializable,
so T is not atomic. This can be checked by considering both possible serial
schedules (a pattern contains events from two transactions t and t′, so there
are only two possible serial schedules, differing in which transaction occurs
first) and verifying that they are not equivalent to the pattern.

The algorithm looks for these unserializable patterns by considering pairs
of “blocks”. Informally, a block is a pair of read or write events from a single
transaction, together with the synchronization information needed to deter-
mine possible interleavings involving those events. As mentioned in Section
5.1, the choice of synchronization information depends on which test for feas-
bility of interleavings will be used. For concreteness, we assume here that the
test in Theorem 5.1 is used.

For a read or write event e on variable v, let var(e) = v, and let op(e) =
R(v) or op(e) = W(v), respectively. An uninitialized read of a transaction t is
a read event e that is not preceded in t by a write event for var(e).

A block for a transaction t is a tuple 〈op1, op2, fw1, fw2, h1, h2, h12〉 such
that t contains read or write events e1 and e2 such that

B1. (a) If t contains a write to var(e2) that precedes e2, then e1 is the last
write to var(e2) that precedes e2 in t; otherwise, if t contains a read of
var(e2) that precedes e2, then e1 is the last read of var(e2) that precedes
e2 in t. Or, (b) if e2 is the final write to var(e2) in t, then e1 is an
uninitialized read of var(e1) in t.

B2. for i ∈ {1, 2}, opi = op(ei) and hi = held(ei). also, h12 = held(e1, e2).

B3. for i ∈ {1, 2}, boolean fwi equals true iff ei is the final write to var(ei)

10

Wang

in t.

As a special case, if t contains only one event, then we allow a block in which
e1 is that event, e2 is a dummy event, and h2 and h12 are empty.

For example, the transaction

t : acq(`1) R(x) acq(`2) W(x) R(x) rel(`2) rel(`1)(11)

has two blocks namely,

〈R(x), W (x), false, true, {`1}, {`1, `2}, {`1}〉
〈W (x), R(x), true, false, {`1, `2}, {`1, `2}, {`1, `2}〉.

(12)

The first block follows from both B1(a) and B1(b); the second block follows
only from B1(a).

To explain condition B1(a), we consider cases based on whether the oper-
ations are reads or writes. Let x = var(e2). Suppose e2 is a read. We take e1

to be the last write to x that precedes e2 in t, if any; this lets the algorithm
determine whether a write from another transaction t′ can affect the data-flow
in t (in the unserializable pattern UP3), by causing e2 to read a value written
by t′ instead of the value written by e1. If t does not contain a write to x
that precedes e2, then we take e1 to be the last read of x that precedes e2

in t, if any; this lets the algorithm determine whether a write from another
transaction t′ can affect the data-flow in t (in the unserializable pattern UP2),
by causing consecutive reads in t to return different values.

Suppose e2 is a write. We take e1 to be the last write to x that precedes e2

in t, if any; this lets the algorithm determine whether a read e′ from another
transaction t′ can be affected (in the unserializable pattern UP1) by being
interleaved between e1 and e2. If t does not contain a write to x that precedes
e2, then we take e1 to be the last read of x that precedes e2 in t, if any; this lets
the algorithm determine whether a write e′W from another transaction t′ can
be interleaved between those two events in the unserializable pattern UP4. As
indicated in the definition of UP4, the pattern e1 · · · e′W · · · e2 is unserializable
only if e′W is the final write to var(e2) in t′, because this implies that a trace
σ containing this pattern is not equivalent to a serial schedule σ′ in which t
occurs before t′, because the final write to var(e2) is from t in σ and from t′ in
σ′; also, σ is not equivalent to a serial schedule σ′ in which t′ occurs before t,
because e1 reads the value written by e′W in σ′ and reads an older value in σ.

The intuition behind condition B1(b) is that blocks formed from uninitial-
ized reads and final writes represent end-to-end behavior of the transaction
that must be preserved when constructing an equivalent serial schedule. As an
example of why B1(b) is necessary, consider the following set of transactions.

t : acq(`)R(x)W1(x)rel(`)W2(x) t′ : acq(`)W′(x)rel(`)(13)

Primes and subscripts merely distinguish different events. {t, t′} is not seri-
alizable, because the trace in which W′(x) occurs between W1(x) and W2(x)
is not equivalent to the serial schedule tt′ (because the final write to x is dif-

11

Wang

ferent) or the serial schedule tt′ (because the value seen by R(x) is different).
Our algorithm (given below) detects this unserializability when it observes
that UP4 can occur in the interleavings of a block containing W′(x) (and a
dummy event) and the block built (based on condition B1(b)) from the unini-
tialized read R(x) and the final write W2(x). If condition B1(b) were omitted,
the algorithm would incorrectly report that {t, t′} is atomic.

Two blocks b and b′ for transactions of different threads are atomic, de-
noted isAtomicBlk(b, b′), if the synchronization indicated by the locksets in
the blocks prevent the unserializable patterns described above, i.e., no three
out of the four events in the two blocks can form one of those patterns. The
selected test for feasibility of interleavings is used to determine this.

Putting these ideas together, we obtain the following algorithm.

isAtomic-1Var(T) {
for all transactions t and t′ in T with thread(t) 6= thread(t′)

for each block b for t
for each block b′ for t′

if ¬isAtomicBlk(b, b′) then return false
return true

}
Correctness of the algorithm is established by the following theorems.

Theorem 5.2 Let t and t′ be transactions with thread(t) 6= thread(t′) and
that access only one common variable. {t, t′} is atomic iff, for all blocks b for
t and all blocks b′ for t′, isAtomicBlk(b, b′).

Proof. A proof sketch follows; details appear in [WS03]. For the forward
implication (⇒), we prove the contrapositive, i.e., if isAtomicBlk(b, b′) is false
for some pair of blocks b and b′, then t and t′ are not atomic. This follows
easily from the definition of isAtomicBlk. For the reverse implication (⇐),
suppose isAtomicBlk(b, b′) holds for all pairs of blocks b and b′. Let S be
a non-serial trace for {t, t′}. If neither transaction performs a write (to the
common variable), then S is obviously equivalent to a serial trace. Suppose,
without loss of generality, that t performs the final write eFW (to the common
variable) in S. If t′ does not read the value written by eFW , then all reads and
writes in t′ precede eFW in S, and we can show that S is equivalent to the
serial trace in which t′ precedes t; the main point is that there is no read event
e′R in t′ that reads the value written by a write eW of t in S, because if there
were, then eW and eFW would form a block b that can be interleaved in an
unserializable way with e′R, so isAtomicBlk(b, b′) would be false for some block
b′ containing e′R, a contradiction. If t′ reads, the value written by eFW , then
we can show that all reads and writes in t′ appear after eFW in S (because,
if one of those events preceded eFW , an unserializable pattern and hence a
non-atomic pair of blocks would exist), and that S is equivalent to the serial
trace in which t precedes t′. 2

12

Wang

Theorem 5.3 A set T of transactions that access only one common variable
is atomic iff every subset of T with cardinality two is atomic.

Proof. A proof sketch follows; details appear in [WS03]. For the forward
implication (⇒), the proof is straightforward, except for details relating to
final writes. We prove the reverse implication (⇐) by induction on the number
of transactions in T . Let S be a non-serial trace S for T . Let t be the
transaction that performs the final write eFW (to the common variable) in
S. S is equivalent to a trace S ′ in which t and the transactions T ′ that read
eFW appear as a serial suffix S2 of S ′, after some possibly non-serial prefix
S1. By the induction hypothesis applied to T \ ({t} ∪ T ′), S1 is equivalent
to some serial trace S ′

1. Thus, S is equivalent to the serial trace S ′
1S2, where

juxtaposition denotes concatenation. 2

The worst-case running time of the algorithm is O(EL+B2), where E and
B are the total numbers of events and blocks, respectively, in all transactions,
and L is the maximum number of locks in a single transaction. The summands
correspond to the time needed to construct the blocks and the time consumed
by the nested loops in the algorithm, respectively.

The number of blocks is at most linear in the number of events (because
condition B1 ensures that each event e2 is combined with at most one preceding
event e1 to form a block). The number of locks is also O(E). Thus, the worst-
case running-time of the algorithm is also O(E2). The bound O(EL + B2) is
more precise, because the numbers of locks and blocks do not necessarily grow
linearly with E. For example, the transaction

t : acq(`1) R(x) R(x) R(x) R(x) R(x) R(x) rel(`1)(14)

has only one block: 〈R(x), R(x), false, false, {`1}, {`1}, {`1}〉.
The rest of this subsection contains additional remarks about condition B1

and about why the algorithm compares two blocks, instead of a block and an
event.

In the case where e2 is a read of x and t does not contain a write to x that
precedes e2, combining e2 with all preceding reads of x would also be correct,
but it is unnecessary. For example, suppose t has the form R1(x) R2(x) R3(x) · · ·
(the subscripts merely distinguish different events). Our algorithm constructs
a block from R1(x) and R2(x), and another from R2(x) and R3(x), but not
from R1(x) and R3(x), because if a write from another transaction can inter-
vene between R1(x) and R3(x), then it occurs either between R1(x) and R2(x)
(and hence is detected through analysis of that block) or between R2(x) and
R3(x) (and hence is detected through analysis of that block).

In the case where e2 is a read of x and e1 is the last write to x that precedes
e2 in t, if there are reads eR of x between e1 and e2, forming blocks from eR and
e2 would cause the algorithm to produce false alarms. To see this, consider
the atomic set of two transactions

t : acq(`)W(x)R(x)R(x)rel(`) t′ : acq(`)W(x)rel(`)acq(`)W(x)rel(`)(15)

13

Wang

If condition B1 were weakened to allow t to have a block b formed from t’s
two reads, then when comparing that block with the block b′ formed from the
two writes in t′, the unserializable event pattern UP1 would be encountered,
causing the algorithm to say that t and t′ are not atomic. In short, the
fact that t’s read of x gets its value from a write in the same transaction is
essential and would be obscured if B1 were weakened. The same problem
arises in algorithms based on comparisons of a block and an event, instead of
comparisons of two blocks: pattern UP1 arises when a read from t is compared
with block b′.

5.3 Algorithm for Two Transactions

In this section, we consider atomicity of sets containing exactly two trans-
actions. In contrast to Section 5.2, each transaction may access multiple
variables. As a result, we need to consider blocks that contain operations on
two different variables. We call these 2-blocks (short for “2-variable blocks”).

For a transaction t, the set of final writes in t, denoted FW (t), is the set
of writes e in t such that there is no subsequent write to var(e) in t. The set
of uninitialized reads in t, denoted UR(t), is the set of reads e in t such that
there is no preceding write to var(e) in t. (As an optimization, it suffices to
include in UR(x) only the first uninitialized read, if any, for each variable.)

A 2-block for a transaction t is a tuple 〈op1, op2, h1, h2, h12〉 formed from
two events e1 and e2, both in FW (t) ∪ UR(t), such that

2B1. e1 precedes e2 in t, and var(e1) 6= var(e2).

2B2. same as B2.

Two 2-blocks b and b′ are atomic, denoted isAtomic2Blk(b, b′), if the syn-
chronization indicated by the locksets in the blocks prevent unserializable
patterns. All four events in the pair of blocks must be considered when defin-
ing unserializable patterns. This significantly increases the number of cases
compared to the unserializable patterns for one variable in Section 5.3, which
involve only three events. Many cases fall into a few general categories. Two
events conflict if they access the same variable and at least one of them is a
write. Consider 2-blocks b and b′. If they contain no conflicting events, then
they are atomic, i.e., isAtomic2Blk(b, b′) holds. If they contain exactly one
pair of conflicting events (i.e., the other two events do not conflict with those
two events or with each other), then isAtomic2Blk(b, b′) holds. Suppose they
contain two pairs of conflicting events. 6 There are a few dozen specific cases in
which the two blocks are not atomic. These cases are enumerated in [WS03].
Here we list a few illustrative cases. The layout of each case shows an unse-
rializable interleaving. b and b′ are not atomic if they contain the indicated
events and the locksets in b and b′ permit that unserializable interleaving. The

6 The restriction var(e1) 6= var(e2) in 2B1 ensures that they do not contain three or four
pairwise conflicting events.

14

Wang

cases are sorted by the number of reads.

0 reads b : W(x) W(y)
b′ : W(x) W(y)

b : W(x) W(y)
b′ : W(y) W(x)

1 read b : R(x) W(y)
b′ : W(y) W(x)

b : R(x) W(y)
b′ : W(y) W(x)

2 reads b : R(x) W(y)
b′ : W(x) R(y)

b : R(x) R(y)
b′ : W(y) W(x)

Symmetric variants obtained by swapping b and b′ have the same atomicity.

We obtain the following algorithm. Let πx(t) denote the projection of
transaction t on variable x, i.e., keep synchronization events and accesses to
x, and discard accesses to other variables.

isAtomic-2Trans(t, t′) {
if thread(t) = thread(t′) return true;
for each variable x accessed in t and t′

if ¬isAtomic-1Var({πx(t), πx(t
′)}) then return false;

for each 2-block b for t
for each 2-block b′ for t′

if ¬isAtomic2Blk(b, b′) then return false;
return true

}

Theorem 5.4 Let t and t′ be transactions with thread(t) 6= thread(t′). {t, t′}
is atomic iff (i) for all blocks b for t and all blocks b′ for t′, isAtomicBlk(b, b′)
and (ii) for all 2-blocks b for t and all 2-blocks b′ for t′, isAtomic2Blk(b, b′).

Proof. A proof sketch follows; details appear in [WS03]. For the forward
implication (⇒), we prove the contrapositive, which follows easily from the
definitions of isAtomicBlk and isAtomic2Blk. For the reverse implication (⇐),
suppose all pairs of blocks and 2-blocks are atomic. Let S be a non-serial trace
for {t, t′}. We show that S is equivalent to some serial trace. Suppose there
exists a variable x written by t and t′. Suppose, without loss of generality,
that t′ performs the final write e′W (x) to x in S. Let eW (x) denote a write
to x in t. We can prove that S is equivalent to the serial trace S ′ in which
t precedes t′. The most interesting part is the proof that no read eR(y) of
t sees a value written by a write e′W (y) in t′; if it did, then e′W (x), e′W (y),

eW (x), and eR(y) would form 2-blocks b and b′ for which isAtomic2Blk(b, b′) is
false, a contradiction. Suppose no variable is written by both transactions,
and at least one transaction contains a write. Without loss of generality,
suppose t contains a write eW . If some read in t′ reads the value written by
eW , then we can show that S is equivalent to the serial schedule in which t
precedes t′; otherwise, we can show that S is equivalent to the serial schedule
in which t′ precedes t. If neither transaction contains a write, then S is trivially
serializable. 2

15

Wang

5.4 General Algorithm

In the presence of multiple variables, a set T of transactions is not necessarily
atomic even if all subsets of T with cardinality two are atomic. This is due
to cyclic dependencies. For example, consider the set T containing the three
transactions

t1 : W(x) W(y)
t2 : R(x) W(z)
t3 : R(z) R(y)

(16)

All three subsets of T with cardinality two are atomic, but T is not atomic,
as witnessed by the unserializable trace indicated by the layout in (16). To
see that this trace is unserializable, note that an equivalent serial trace would
need to satisfy the following unsatisfiable set of constraints: t1 precedes t2 (so
t2’s R(x) still sees t1’s W(x)), t2 precedes t3 (so t3’s R(z) still sees t2’s W(z)),
and t3 precedes t1 (so t3’s R(y) still sees the initial value of y).

A simple algorithm to check atomicity of a set T of transactions in the
general case is as follows. Let UR-FW(T) denote the set of transactions ob-
tained from T by discarding all events other than synchronization events and
uninitialized reads and final writes on shared variables.

isAtomicTrans(T) {
for all transactions t and t′ in T with thread(t) 6= thread(t′)

if ¬isAtomic-2Trans(t, t′) then return false;
if (every feasible interleaving of transactions in UR-FW(T) is serializable) then

return true;
else return false;

}
This algorithm is expensive, because the number of possible interleavings

may be large. On the positive side, this algorithm considers only interleavings
from uninitialized reads and final writes, and hence may be significantly faster
than the naive algorithm that considers all interleavings of all events in T . As
an optimization, if the set T of transactions can be partitioned into subsets
that access disjoint sets of variables, then each subset of T can be analyzed
separately.

6 Example and Future Work

As an example of the kind of software defects that this analysis is designed
to find, consider java.util.Hashtable. The Hashtable API supports the
creation of Collection views of the contents of a hashtable. For example,
Hashtable.keySet() returns a Set view of the keys in a hashtable. According
to the Java 2 Standard Edition (J2SE) API Specification 1.3.1,

The Iterators returned by the iterator and listIterator methods of the Collec-
tions returned by all of Hashtable’s “collection view methods” are fail-fast:

16

Wang

if the Hashtable is structurally modified at any time after the Iterator is cre-
ated, in any way except through the Iterator’s own remove or add methods,
the Iterator will throw a ConcurrentModificationException.

However, in the implementation of Hashtable in Sun JDK 1.3.1 and 1.4.0, if
a context switch occurs at an inopportune moment, a concurrent update to
a Hashtable h using h.remove may cause the next() method of an iterator
obtained from h.keySet().iterator() to return null (even though null is
not a key in h) instead of throwing a ConcurrentModificationException. In
a sense, violation of the J2SE API Specification 1.3.1 is due to a race condition
on the field h.entry. But even if the race condition is eliminated by using
a lock to protect accesses to h.entry, if critical sections (i.e., synchronized
blocks) of the wrong granularity are used, the resulting race-free program still
violates the specification. This suggests that the underlying problem is not
merely the race condition but also a violation of atomicity. Note that the
iterator behaves correctly if updates to the hashtable are not interleaved with
the call to next(). With our run-time analysis, the potential violation of
atomicity can be detected even in executions (of the original program or a
race-free variant) in which inopportune context switches do not occur and the
iterator behaves correctly.

Apparently the Java developers became aware of this problem after the
release of JDK 1.3.1. Their solution was to include the following paragraph
in the J2SE API Specification 1.4.0:

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is,
generally speaking, impossible to make any hard guarantees in the presence
of unsynchronized concurrent modification. Fail-fast iterators throw Con-
currentModificationException on a best-effort basis. Therefore, it would
be wrong to write a program that depended on this exception for its cor-
rectness: the fail-fast behavior of iterators should be used only to detect
bugs.

We have implemented all of the above run-time analysis algorithms. We
plan to use these algorithms to check atomicity of methods in Java programs,
by implementing a transformation that instruments programs so they produce
traces (logs) showing synchronization operations and accesses to shared vari-
ables. We will then experiment with the algorithms to explore the trade-off
between cost and precision.

Another topic for future work is to develop more efficient algorithms. We
have started to investigate optimizations to the general block-based algorithm.
The general idea is to recognize common subproblems and avoid re-computing
the results for them, defining and recognizing common sub-problems in this
context involves significant complications. It is unclear whether an efficient
and precise algorithm exists for the general case, considering that the classic
problem of determining serializability of a given trace is NP-complete [Pap79].

17

Wang

Acknowledgment

The authors thank the anonymous reviewers for helpful feedback.

References

[AHB03] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races.
In Proc. First International Workshop on Verification and Validation of
Enterprise Information Systems (VVEIS), April 2003.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.
Concurrency control and recovery in database systems. Addison Wesley,
1987.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In
Proc. 17th ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 211–230, November 2002.

[BR01] Chandrasekar Boyapati and Martin C. Rinard. A parameterized type
system for race-free Java programs. In Proc. 16th ACM Conference
on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), volume 36(11) of SIGPLAN Notices, pages 56–69. ACM
Press, November 2001.

[FF00] Cormac Flanagan and Stephen Freund. Type-based race detection for
Java. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 219–232. ACM Press, 2000.

[FQ03a] Cormac Flanagan and Shaz Qadeer. A type and effect system for
atomicity. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM Press, 2003.

[FQ03b] Cormac Flanagan and Shaz Qadeer. Types for atomicity. In Proc. ACM
SIGPLAN International Workshop on Types in Languages Design and
Implementation (TLDI), pages 1–12. ACM Press, 2003.

[Gro03] Dan Grossman. Type-safe multithreading in Cyclone. In Proc. ACM
SIGPLAN International Workshop on Types in Languages Design and
Implementation (TLDI), pages 13–25. ACM Press, 2003.

[Hav00] Klaus Havelund. Using runtime analysis to guide model checking of java
programs. In Proc. 7th Int’l. SPIN Workshop on Model Checking of
Software, volume 1885 of Lecture Notes in Computer Science. Springer-
Verlag, August 2000.

[HR01] Klaus Havelund and Grigore Rosu. Monitoring Java programs with
Java PathExplorer. In Proc. First Workshop on Runtime Verification
(RV’01), volume 55(2) of Electronic Notes in Theoretical Computer
Science. Elsevier, 2001.

18

Wang

[HR02] Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety
properties. In Proc. International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), volume 2280, pages
342–356, April 2002.

[HW90] Maurice P. Herlihy and Jeanette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, July 1990.

[Lip75] Richard J. Lipton. Reduction: A method of proving properties of parallel
programs. Communications of the ACM, 18(12):717–721, 1975.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database
updates. Journal of the ACM, 26(4):631–653, October 1979.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas E. Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems, 15(4):391–
411, November 1997.

[WS03] Liqiang Wang and Scott D. Stoller. Run-time analysis for atomicity, May
2003. Available at http://www.cs.sunysb.edu/˜liqiang/atomicity.html.

19

	Introduction
	Related Properties
	Background
	Reduction-Based Algorithm
	Block-Based Algorithm
	Determining Feasible Interleavings of Events
	Algorithm for Transactions that Access One Variable
	Algorithm for Two Transactions
	General Algorithm

	Example and Future Work
	References

