
Static Analysis of Atomicity for Programs
with Non-Blocking Synchronization∗

Liqiang Wang
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794, USA

liqiang@cs.sunysb.edu

Scott D. Stoller
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794, USA

stoller@cs.sunysb.edu

ABSTRACT
In concurrent programming, non-blocking synchronization
is very efficient but difficult to design correctly. This pa-
per presents a static analysis to show that code blocks are
atomic, i.e., that every execution of the program is equiva-
lent to one in which those code blocks execute without inter-
ruption by other threads. Our analysis determines commu-
tativity of operations based primarily on how synchroniza-
tion primitives (including locks, load-linked, store-conditional,
and compare-and-swap) are used. A reduction theorem states
that certain patterns of commutativity imply atomicity. Atom-
icity is itself an important correctness requirement for many
concurrent programs. Furthermore, an atomic code block
can be treated as a single transition during subsequent anal-
ysis of the program; this can greatly improve the efficiency of
the subsequent analysis. We demonstrate the effectiveness of
our approach on several concurrent non-blocking programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.1.3 [Programming Techniques]: Concurrent
Programming

General Terms
Verification, Algorithms, Design

Keywords
Atomicity, Non-Blocking, Lock-Free, Synchronization, Static
Analysis, Verification, Linearizability.

1. INTRODUCTION
Many concurrent programs use blocking synchronization

primitives, such as locks and condition variables. Non-blocking

∗This work was supported in part by NSF under Grant
CCR-0205376 and ONR under Grant N00014-02-1-0363.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

synchronization primitives, such as Compare-and-Swap, and
Load-Linked / Store-Conditional, never block (suspend ex-
ecution of) a thread. Non-blocking (also called “lock-free”)
synchronization is becoming increasingly popular, because
it offers several advantages, including better performance,
immunity to deadlock, and tolerance to priority inversion
and pre-emption [12, 13].

An important use of non-blocking synchronization is in
the implementation of non-blocking objects. A concurrent
implementation of an object is non-blocking if it guarantees
that some process can complete its operation on the object
after a finite number of steps of the system, regardless of the
activities and speeds of other processes [7]. Non-blocking
synchronization is also used to implement blocking objects,
such as spin locks.

Algorithms that use non-blocking synchronization are of-
ten subtle and difficult to design and verify. This paper
presents a static analysis to show that code blocks are atomic.
Informally, a code block is atomic if every execution is equiv-
alent to one in which the code block is executed serially, i.e.,
without interruption by other threads. Atomicity is well
known in the context of transaction processing, where it is
sometimes called serializability.

Atomicity is an important correctness requirement for many
concurrent programs. Furthermore, each atomic code block
can be treated as a single transition during subsequent static
or dynamic analysis of the program; this can greatly improve
the efficiency of the subsequent analysis.

This paper presents a conservative intra-procedural static
analysis to infer atomicity. We build on Flanagan et al.’s
work on atomicity types [3, 4] and purity [2] in order to
develop an analysis that is much more effective for programs
that use non-blocking synchronization primitives.

Our analysis first classifies all actions (i.e., operations) in
the program into different types based on their commutativ-
ity and atomicity, which are determined based primarily on
how locks and non-blocking synchronization is used in the
program. The analysis then combines those atomicity types
to determine the atomicity types of larger code blocks. We
formalize the analysis for a language that allows declaration
of top-level procedures (as in an API) that implicitly get
concurrently called by the environment. The language does
not allow explicit procedure calls; internal procedures are
inlined, and we do not handle recursion. The analysis can
be extended to be inter-procedural.

The analysis is incomplete (i.e., sometimes fails to show
atomicity), but is effective for common patterns of non-

blocking synchronization, as demonstrated by the applica-
tions in Section 6.

It applies equally to non-blocking objects and blocking
objects. We did not implement our analysis algorithm into
an automated tool, but we applied it manually to four in-
teresting non-trivial non-blocking programs, as described in
Section 6. Although in two cases we must modify the algo-
rithm before applying our analysis, we consider the results
encouraging, since we do not know of any other algorithmic
(i.e., automatable) analysis that can show atomicity of the
same (or larger) code blocks in the modified or original ver-
sions. We believe our analysis provides a useful method for
manual verification of atomicity, as well as being suitable for
automation.

The rest of the paper is organized as follows. Section
2 discussed related work. Section 3 describes background.
Section 4 defines pure loops, and gives algorithm for iden-
tifying pure loops. Section 5 presents the approach to infer
atomic code blocks based on locks and non-blocking synchro-
nization. Section 6 shows the application of our approach
on four non-blocking algorithms.

2. RELATED WORK
Linearizability [8] is a correctness condition for objects

shared by concurrent processes. Informally, a concurrent ob-
ject o is linearizable if and only if each concurrent operation
history h for o is equivalent to some legal sequential history
s, and s preserves the real-time partial order of operations
in h. The equivalence is based on comparing the arguments
and return values of procedure calls. Legality is defined in
terms of a specification of the correct behavior of the object.
We focus on proving atomicity rather than linearizability,
because atomicity does not require a correctness specifica-
tion. Atomicity can help establish linearizability: first show
that the concurrent implementation executed sequentially
(i.e., single-threaded) satisfies the sequential specification,
and then apply our analysis to show the procedures of the
implementation are atomic.

Gao and Hesselink [5] used simulation relations to prove
that a non-blocking (called lock-free in [5]) algorithm refines
a higher-level (coarse-grained) specification. Using the PVS
theorem prover, they proved correctness of algorithms sim-
ilar to the ones in Sections 6.2 6.3. The proofs took a few
man-months and are not easily re-usable for new algorithms.

Flanagan et al. developed type systems [3, 4] based on
Lipton’s reduction theorem [10] to verify atomicity. Wang
and Stoller [17] and Flanagan et al. [1] developed runtime
algorithms to check atomicity. All of this work focuses on
locks and is not effective for programs that use non-blocking
synchronization.

Flanagan et al. extended their atomicity type system with
a notion of purity [2]. A code block is pure if, when it termi-
nates normally, it does not change the program state. Non-
blocking programs often contain code blocks that abort an
attempted update to a shared variable if the variable was up-
dated concurrently by other threads; these code blocks are
often pure according to our definition of purity, which gen-
eralizes the definition in [2] by taking into account liveness
of variables and use of unique references. The type system
in [2] can show atomicity of simple non-blocking algorithms
but not of any of the algorithms in Section 6, because it
does not accurately analyze usage of non-blocking synchro-
nization primitives; for example, it has no analogue of the

notions of “matching read” or “matching LL” in Section
5.2, and does not analyze exceptional variants (also defined
in Section 5.2) of a procedure separately.

Atomicity used to optimize model checking can be re-
garded as a partial-order reduction [14], i.e., a method for
exploiting commutativity to reduce the number of states
explored by a verification algorithm. For non-blocking al-
gorithms, traditional partial-order reductions are less effec-
tive than our analysis, because they do not distinguish left-
movers and right-movers, and they focus on exploiting com-
mutativity of operations with little regard for the context
in which the operations are used, while our analysis consid-
ers in detail the context (surrounding synchronization and
conditions) of each operation.

The model-checking (i.e., state-space exploration) algo-
rithm in [15] dynamically identifies transactions, which cor-
respond roughly to executions of atomic blocks. Their algo-
rithm relies on a separate analysis to determine commutativ-
ity of actions. An inter-procedural extension of our analysis
could be used for this. This would allow their algorithm to
be applied effectively to non-blocking programs.

3. BACKGROUND

3.1 Non-Blocking Synchronization Primitives
Non-blocking synchronization primitives include Load-Linked

(LL) and Store-Conditional (SC), supported by PowerPC,
MIPS, and Alpha, and Compare-and-Swap (CAS), supported
by IBM System 370, Intel (IA-32 and IA-64), Sun SPARC
and the JVM in Sun JDK 1.5.

LL(addr) returns the content of the given memory ad-
dress. SC(addr, val) checks whether any other thread has
written to the address addr (by executing a successful SC
on it) after the most recent LL(addr) by the current thread;
if not, the new value val is written into addr, and the op-
eration returns true to indicate success; otherwise, the new
value is not written, and false is returned to indicate fail-
ure. Another primitive VL (validate) is often supported.
VL(addr) returns true iff no other thread has written to
addr after the most recent LL(addr) by the current thread.

For a run of a program, the matching LL (if any) for
a SC(v, val) or VL(v) action is the last LL(v) before that
action in the same thread. If there is no matching LL for a
SC, the SC must fail.

CAS(addr, expval, newval) compares the content of ad-
dress addr to the expected value expval; if the two values
are equal, then the new value newval is written to addr,
and the operation returns true to indicate success; other-
wise, the new value is not written, and the operation returns
false to indicate failure.

CAS is also supported in the JVM of Sun JDK 1.5. There
are almost no synchronized blocks or methods in the java.

util.concurrent package. A Lock class implemented using
CAS, which offers higher performance, is used instead.

Non-blocking synchronization primitives talked here, i.e.,
LL, SC and CAS, are wait-free.

3.2 A Language: SYNL
We formalize our analysis for a language SYNL (Synchro-

nization Language). The syntax of SYNL is shown in Table
1. There is no explicit procedure call, as discussed in Section
1.

In SYNL, thread-local and procedure-local variables are
together called local variables. Global and local variables are
distinguished syntactically, as described below. An unshared
object is an object accessed by only one thread. An unshared
variable is a local variable or a field of an unshared object.
A shared variable is a global variable or a field of a shared
object. A simple escape analysis is used to determine when
objects becomes shared.

A program consists of global variable declarations, thread-
local variable declarations and procedure definitions. The
values of thread-local variables persist between procedure
calls.

An execution of a SYNL program consists of an arbitrary
number of invocations (by the environment) of its proce-
dures with arbitrary type-correct arguments (for brevity,
we leave the type system implicit), and with an arbitrary
amount of concurrency. Therefore, SYNL does not need
constructs to create threads.

Expressions in SYNL include constant values, variables,
field accesses, array accesses, non-blocking synchronization,
new operation to allocate objects, and calls to primitive op-
erations. Variables may have primitive types and reference
types. A local variable may contain a reference a shared
object. For example, a field access x.fd may access both
a local variable x and a shared variable (i.e., a field of a
shared object). Primitive operations have no side effect,
such as arithmetic operations, etc.

The statements include assignments, lock synchroniza-
tion primitives, sequential composition, conditionals, local
blocks, loops, return, break and skip. A local state-
ment introduces a scoped procedure-local variable. The loop
statement defines an unconditional loop: “loop s” is equiv-
alent to “while (true) s”. Any program with while loops
can be re-written using loop, if, and break. All loops talked
in the paper are unconditional.

As syntactic sugar, we allow non-blocking primitives to be
used as statements when their return values are not needed;
for example, SC(x,e) used as a statement is a syntactic sugar
for: local dummy = SC(x, e) in skip.

Program ::= global var∗ ; thread-local var∗ ;
procedure proc∗

Procedure ::= pn(var∗) stmt∗

Statement ::= loc := e | synchronized(e) s | s; s
| if e s s | local x := e in s | loop s

| return | return e | break | skip
Expr ::= val | loc | CAS(loc, e, e)

| LL(loc) | VL(loc) | SC(loc, e)
| new C | prim(e, ...)

Location ::= x | x.fd | x[e]
proc ∈ Procedure

s ∈ Statement
e ∈ Expr

loc ∈ Location
pn ∈ ProcedureName

val ∈ V al
x ∈ V ariable

fd ∈ Field

prim ∈ Primitive

Table 1: Syntax of SYNL

An execution is an initial state and a sequence of transi-
tions. A program state is a tuple which consists of a global
store G, a heap H, each thread’s local store L and state-
ments. Each transition corresponds to one step of evalua-
tion of an expression or statement in a standard way. The
formal descriptions are in [16]. For each transition, we con-
sider the action performed by it. These actions capture the
relevant behavior of the transition for our analysis and are
described in Section 3.3. Note that all constructs in SYNL
are deterministic, so the intermediate states during an exe-
cution are uniquely determined by the initial state and the
sequence of transitions, and we will sometimes talk about
executions as if those states were present in it.

Code blocks in a program P are atomic if: for all reach-
able states s of P , if all threads are executing outside those
code blocks in s, then s is also reachable in an execution of P

in which those blocks are executed atomically, i.e., without
interruption by other threads (note that the reverse impli-
cation trivially holds).

3.3 Commutativity and Atomicity Types
A local action is an access to an unshared variable or a field

access performed by dereferencing a unique pointer stored in
a local variable. Both of these kinds of accesses are always
both-movers (define below) and are treated the same way in
our analysis, so it is convenient to refer to both of them as
local actions. Any static uniqueness analysis may be used to
identify unique pointers. [16] presents a specialized unique-
ness analysis for non-blocking algorithms that use working
copies of a shared object; no other uniqueness analysis is
needed for the examples in this paper. Other variable ac-
cesses are global actions. Acquire and release on shared locks
are also global actions. Thus, there are four kinds of global
actions: read, write, acquire lock and release lock. Let R(v),
W (v), acq(v) and rel(v) denote these global actions, respec-
tively, where v denotes the accessed variable or lock. LL and
VL are global reads. SC and CAS are global writes to their
first argument and, if their second or third argument are
shared variables, also global reads of those variables. Note
that arithmetic operations, etc., do not affect our analysis
and hence are not treated as actions.

Following [10], actions are classified according to their
commutativity. An action is a right-mover/left-mover if,
whenever it appears immediately before/after an action from
a different thread, the two actions can be swapped without
changing the resulting state. An action is a both-mover if
it is both a left-mover and a right-mover. An action not
known to be a left-mover or right-mover is atomic (since a
single action is executed in a single step of execution).

Theorem 3.1. Local actions are both-movers.

Proof. Accesses to unshared variables are obviously both-
movers. For a field access performed by dereferencing a
unique reference stored in a local variable, suppose that the
field is f , and thread t executes an action a that accesses
o.f by dereferencing some local variable l (i.e., l contains
a unique reference to o). Before another thread can access
o.f , t must transfer the unique reference in l into a global
variable. This implies that a is a right-mover (because any
action of another thread that occurs immediately after a
cannot access o.f). Symmetrically, a is a left-mover be-
cause, between a and the closest preceding access to o.f by

another thread, t must transfer the unique reference from a
global variable into l.

We assume that acquire and release have the same seman-
tics as in Java (actually, Java bytecode).

Theorem 3.2. Lock acquires are right-movers. Lock re-
leases are left-movers.

Proof. See [4], from which this theorem is taken. Here is
a proof sketch. For acq(v), its immediate successor global
action a from another thread can not be a successful acq(v)
or rel(v), because acq(v) would block, and rel(v) would fail
(in Java, it would throw an exception). Hence acq(v) and a
can be swapped without affecting the result, so lock acquire
is a right-mover. For similar reasons, lock release is a left-
mover.

Theorem 3.3. (1) For a global read R(v), if no global
write W (v) from other threads can happen immediately be-
fore/after R(v), R(v) is a left/right mover. (2) For a global
write W (v), if no global read R(v) or write W (v) from other
threads can happen immediately before/after W (v), W (v) is
a left/right mover.

Proof sketch. The main observations are that two reads
commute, and accesses to different variables commute.

We briefly review atomicity types which were introduced
by Flanagan and Qadeer [4]. An atomicity type is associated
with an expression or statement. The atomicity types are:
right-mover (R), left-mover (L), both-mover (B), atomic
(A), and non-atomic (N , called compound in [4]). The first
three mean that all actions executed by the expression or
statement have the specified commutativity. Atomic has the
same meaning as in Section 3.2. Non-atomic is used when
none of the other atomicity types applies. Atomicity types
are partially ordered such that smaller ones give stronger
guarantees. The ordering is: B < t < A < N for t ∈ {L,R}.
The atomicity type of an expression or statement can be
computed from the atomicity types of its parts using the
following operations on atomicity types. The join opera-
tion induced by this ordering is denoted by t. The iterative
closure t∗ of an atomicity type t denotes the atomicity of
a statement that repeatedly executed a sub-statement with
atomicity type t. It is defined by: B∗ = B, R∗ = R, L∗ = L,
A∗ = N , N∗ = N . The sequential composition a; b is defined
by the following table (the first argument is on the left; the
second argument is on the top):

; B R L A N
B B R L A N
R R R A A N
L L N L N N
A A N A A N
N N N N N N

4. PURE LOOPS
For a loop (recall that all loops in SYNL are uncondi-

tional, i.e., while (true) s), if the loop body terminates
exceptionally, via a break or return statement, it is called
exceptional termination; otherwise, it is called normal ter-
mination. We define pure loops based on the notion of pure
statements introduced in [2] 1. Informally, a loop is pure if

1In our framework, unlike [2], purity is a property (of loops)
that has no effect on the operational semantics.

its body (not the whole loop) has no side effect under normal
termination. Intuitively, a pure loop body that terminates
normally checks some state conditions (which are not sat-
isfied) and has no side effects. When these conditions are
satisfied, the loop body terminates exceptionally and may
have side effects. Therefore, following the idea proposed
in [2], to determine the atomicity of a pure loop, we may
ignore its normal termination and focus on its exceptional
termination.

Note that pure is not the same as side-effect free, because
a pure loop may have side effects under exceptional termi-
nation.

A simple example of a pure loop appears in the following
implementation of the Down operation on a semaphore. It-
erations that end at return are exceptionally terminating.
Iterations that end at line 4 (i.e., when tmp > 0 is false) or
line 5 (i.e., when SC returns false) are normally terminat-
ing and have no side effects.

1 Down(sem) {
2 loop
3 local tmp = LL(sem) in
4 if (tmp > 0)
5 if (SC(sem, tmp-1))
6 return;
7 }

A loop is pure if all actions that can occur in a normally
terminating iteration of the loop body (not the whole loop)
are pure actions with respect to that loop. An action is
pure with respect to a loop if any update performed by the
action is “invisible” after the normally termination of iter-
ation. Formally, a pure action should satisfy the following
conditions: (i) it is a global action that does not perform an
update, or (ii) it is a local action that either does not per-
form an update or performs an update to a variable v such
that (ii.a) for all paths in the control flow graph from the
end of loop body (i.e., the program point at the end of the
loop body from which control flows back to the beginning
of the loop body) to procedure exit points, the next access
to v, if any, is a write, and (ii.b) if v is not accessed on some
such path, then v is procedure-local. Note that v can be
a field of an object, i.e., p.fd. If p is a unique reference
stored in a local variable, (ii.a) implies that p.fd is rewrit-
ten before p is assigned to a global variable (i.e., p escapes).
Informally, for a local action that performs an update, (ii)
means that v is dead at the end of the loop body, and the
written value is not visible outside the procedure. For LL
actions, another condition is required for the action to be
pure: (iii) for each LL(v) that can be executed under nor-
mal terminations of the loop, each SC(v,-) that can match
it is also in the loop and there is a LL(v) on every path from
loop entry to the SC. This ensures that, in every execution,
the matching LL for that SC occurs in the same iteration
as the SC. This special condition for LL is needed because
LL implicitly performs an update that can affect subsequent
SCs by the same thread.

To check whether each loop is pure, we construct a control
flow graph (CFG), analyze it to identify actions that can
occur in normally terminating iterations of the loop body,
and then check whether those actions are pure with respect
to the loop according to the above definition. There is a
special case for SC and CAS. When a SC is used as the test
condition of an if statement (e.g., the last SC in Deq in
Figure 1), if only the false branch of the if statement can

be executed under normal termination of the loop body, the
SC is treated as a read (not an update). CAS is handled
similarly.

Deleting a transition from an execution means removing
it and adjusting the subsequent states. Details are described
in [16].

Theorem 4.1. Let σ be an execution of a program P . Let
σ′ be an execution obtained from σ by deleting all transitions
in a normally terminating iteration of a pure loop in a pro-
cedure p0. Then σ′ is also an execution of P , and σ and σ′

contain the same states in which all threads are executing
outside p0.

Proof sketch. When the body of a loop terminates normally,
the thread begins another iteration of the same loop body
(recall that loops in SYNL are equivalent to while (true)

s). According to the definition of pure loop, under normal
termination its body performs no live residual update in
local actions, and no update in global actions, even if its
execution is interleaved with actions of other threads. Note
that an update performed by a local action of thread t that
dereferences a unique reference o stored in a local variable
is not visible to other threads, because (1) the update is not
live at the end of the iteration, and (2) during the itera-
tion, o is accessible only to t, since the iteration does not
contain global updates and hence cannot make o accessible
to other threads. The syntax of SYNL ensures that acquire
and release actions occur in matching pairs in an execution
of a loop body, so deleting them does not affect the result-
ing state or operations on the lock by other threads that
could have occurred while this thread held the lock. A more
detailed proof appears in [16].

5. CHECKING ATOMICITY
The main issue in applying Theorem 3.3 is determining

whether a global action can happen immediately before or
after another global action. Our analysis determines this
based on how synchronization primitives are used.

5.1 Lock Synchronization
Lock synchronization is well studied. We sketch a simple

treatment of lock synchronization, to illustrate how analysis
of locks fits into our overall analysis algorithm.

Theorem 5.1. If expressions e1 and e2 both appear in
the bodies of different synchronized statements that syn-
chronize on the same lock, then e1 cannot be executed im-
mediately before or after e2.

Proof sketch. At least one acquire and release must occur
between e1 and e2.

Alias analysis may be used to determine whether two
synchronized statements synchronize on the same lock when
actions in them may access the same variable.

5.2 Non-Blocking Synchronization
Based on Theorem 4.1, for pure loops, it suffices to analyze

atomicity of the loop body under exceptional termination.
For each break or return statement in a loop, the backward
slice of the loop body starting at that break or return and
ending at the loop’s entry point is called an exceptional slice
of the loop.

To increase the precision of the analysis, we split each pro-
cedure into exceptional variants. Each exceptional variant
is a specialized version of the procedure, and corresponds to
a selection of exceptional slices of its pure loops, with each
pure loop replaced by its selected exceptional slice. An ex-
ample appears in Section 6.1. If the selected exceptional slice
includes only the true branch of an “if e S1 S2” statement,
then we replace the if statement with “TRUE(e); S1” in the
corresponding exceptional variants of the procedure; if the
slice includes only the false branch, we replace the if state-
ment with “TRUE(!e);S2”. A SC action in TRUE(SC(v,val))
must be successful. Note that non-pure loops appear un-
changed in the exceptional variants.

Theorem 5.2. If all exceptional variants of a procedure
p are atomic, then p is atomic.

Proof Sketch. Let P denote the original program which con-
tains p. Let P ′ denote the program obtained by replacing
procedure p with its exceptional variants. Let σ be an exe-
cution of P . Let ϕ be a state in σ in which all threads are
executing outside p.

According to Theorem 4.1, an execution σ′ of P can be
obtained from σ by deleting all transitions in a normally
terminating iteration of a pure loop in procedure p, and ϕ
is reachable in σ′. By the definition of exceptional variant,
σ′ is also an execution of P ′.

By hypothesis, all exceptional variants of p are atomic. By
the definition of atomicity, there exists an execution σ′′ of
P ′ in which all of the exceptional variants of p are executed
atomically and in which ϕ is reachable.

By the definition of exceptional variants of a procedure,
every invocation of an exceptional variant of p is also an
invocation of p. Therefore, σ′′ is also an execution of P , and
all invocations of p in σ′′ are executed atomically, and ϕ is
reachable in σ′′. Thus, by the definition of atomicity, p is
atomic.

In an execution, there is a unique matching LL action for
each successful SC action in an execution. In program code,
there might be multiple LL expressions or statements that
can produce the matching LL action for an occurrence of
SC. We call these the matching LL expressions of the SC
expression. For example, if there is an if statement before
a SC, and both branches of the if statement contain LL,
either of the LL expressions can possibly match the SC.

For a SC(v, val) in a program, to find its matching LL
expressions, we do a backward DFS on the control flow graph
starting from the SC, and not going past edges labeled with
LL(v). All of the visited occurrences of LL(v) match the
SC. For a VL(v), its matching LLs can be found in the same
way.

We implicitly assume hereafter that each SC has a unique
matching LL expression. This assumption is not essential,
but it simplifies the analysis and is satisfied by the non-
blocking algorithms we have seen. We also implicitly assume
that a variable updated by a SC is updated only by SC, not
by regular assignment or CAS.

Theorem 5.3. For a successful SC(v, val) or VL(v) ex-
pression and its matching LL(v), a successful SC expression
on v executed by another thread cannot be executed between
them, so the successful SC or VL is a left-mover, and the
matching LL is a right-mover.

Proof. This follows from the semantics of LL, SC and VL.

Theorem 5.4. For a successful SC(v, val) expression and
its matching LL(v), and for a successful SC(v,val′) expres-
sion executed by another thread t′, the SC by t′, its matching
LL, and all transitions of t′ between them cannot be executed
between the SC(v, val) and its matching LL(v).

Proof sketch. Let SC ′ and LL′ denote the SC and LL, re-
spectively, executed by t′. According to Theorem 5.3, SC ′

cannot happen between LL(v) and SC(v). Thus, there are
two cases: SC ′ happens before LL(v), or SC ′ happens af-
ter SC(v, val). For the first case, the theorem obviously
holds. For the second case, if LL′ happens between LL(v)
and SC(v, val), SC(v, val) will happen between LL′ and
SC ′, which is impossible according to Theorem 5.3. If LL′

happens after SC(v, val), the theorem obviously holds.
CAS is often used in a similar way as LL/SC. CAS re-

quires an expected value as a parameter. There is often an
assignment before CAS to save the old value into a tempo-
rary variable that is used as the expected value. For a CAS,
its matching read, if any, is the action which reads the old
value and saves it as the expected value. Note that a CAS
can succeed even without a matching read; a SC cannot. We
use a backward search on the control flow graph to find the
matching reads for a CAS expression. We implicitly assume
hereafter that there is a unique matching read for each CAS.

CAS-based programs may suffer from the ABA problem:
if a thread reads a value A of a shared variable v, computes
a new value A′, and then executes CAS(v,A,A′), the CAS
may succeed when it should not, if the shared variable’s
value was changed from A to B and then back to A by
CASs of other threads. The common solution is to associate
a modification counter with each variable accessed by CAS
[12]. The counter is read together with the data value, and
each CAS checks whether the counter still has the previously
read value. A successful CAS increments the counter. With
this mechanism, variants of Theorem 5.3 and 5.4 hold for
CAS: just replace “matching LL” with “matching read”, and
replace “SC” with “CAS”.

5.3 Condition-based Non-Blocking
Synchronization

A predicate p(lvar) is called a local condition of a code
block local lvar = e in stmt (which is called a local block
on lvar), if it satisfies the following two conditions: (i) lvar
is not updated in stmt, and (ii) p(lvar) holds throughout
execution of stmt.

Condition (i) is easy to check, because there is no alias-
ing of local variables in SYNL. When condition (i) holds,
the local condition can easily be obtained from the TRUE
statements in stmt that depend only on lvar. For exam-
ple, in Figure 3, a local condition for the code block a5-a8
is next == null, and a local condition for the code block
b2-b5 is next ! = null. If condition (i) does not hold, or no
appropriate TRUE statements appear in the local block, its
local condition is true.

A local block of the form local lvar = LL(svar) in {stmt;
TRUE(SC(svar,val));} is called a LL-SC block on svar.

Theorem 5.5. Suppose a shared variable svar is updated
only by SC expressions in LL-SC blocks, and every LL-SC
block local lvar = LL(svar) in {stmt;TRUE(SC(svar,val));}

in the program has the same local condition p(lvar). Sup-
pose a local block local lvar′ = svar in stmt′ has a local
condition !p(lvar′). No transition in that local block can be
executed inside any LL-SC block on svar, and no transition
in any LL-SC block on svar can be executed inside that local
block.

Proof sketch. The conclusion follows from the fact that
svar is not updated by other threads during execution of
the LL-SC block (because that would cause its SC to fail),
so p(svar) (note svar is equal to lvar) holds during exe-
cution of the LL-SC block, and the fact that svar is not
updated during execution of stmt′, because !p(svar) would
still hold when the first successful SC interleaved in stmt′

happens, contradicting the SC’s local condition, so !p(svar)
holds throughout execution of stmt′. For details, see Ap-
pendix A.

The definition of LL-SC block and the above theorem can
be generalized, so that the LL does not need to occur at
the beginning of a local block, and the SC does not need to
occur at the end of a local block. A similar theorem exists
for CAS.

5.4 Atomicity Inference
To analyze atomicity of each procedure in a SYNL pro-

gram, we identify pure loops, then replace each procedure
with its exceptional variants. We compute atomicity types
for all expressions and statements in the resulting program
as follows:

• Step 1: Identify all local actions and lock actions. Ac-
cording to Theorem 3.1, all local actions have atomic-
ity type B. According to Theorem 3.2, all lock acquires
and releases have atomicity type R and L, respectively.
A simple escape analysis is used to identify accesses
to objects that have not escaped from the creating
threads; those accesses are like accesses to unshared
variables and have atomicity type B.

• Step 2: According to Theorem 5.3, if all updates on a
variable v are done through SC, all successful SC(v, val)
and VL(v) have atomicity type L, and their matching
LL(v) have atomicity type R. The analogous theorem
for CAS is used for successful CAS and their matching
reads.

• Step 3: Infer local conditions for local blocks, as de-
scribed in Section 5.3.

• Step 4: Using Theorems 5.1, 5.3, 5.4 and 5.5, for each
read, check whether there is a write on the same vari-
able that can happen immediately before/after it; for
each write, check whether there is a read or write on
the same variable can happen immediately before/after
it. For access to variables on the heap, the analysis
does a case split on whether two field accesses refer
to the same location; we consider both cases, unless
alias analysis shows one is impossible. Our current
alias analysis just checks whether the references have
the same type and whether the same field is being ac-
cessed. Assign atomicity types to the reads and writes
based on Theorem 3.3. If some reads and writes were
given atomicity types in previous steps, use the mini-
mum of the atomicities based on the partial order dis-
cussed in Section 3.3.

• Step 5: For actions not given an atomicity type in
previous steps, conservatively assign them atomicity
type A.

• Step 6: Propagate atomicity types from the actions
up through the abstract syntax trees of the procedures
using the atomicity calculus in [4]. The atomicity type
of a compound program construct is computed from
the atomicity types of its parts using join, sequential
composition, and iterative closure as appropriate.

• Step 7: For each procedure p in the original program,
if every exceptional variant of p has a procedure body
with atomicity type A, then by Theorem 5.2, p has
atomicity type A.

6. APPLICATIONS
This section demonstrates the applicability of our analysis

to four non-trivial non-blocking algorithms from the litera-
ture. Although in two cases we must modify the algorithm
before applying our analysis, we consider the results encour-
aging, since we do not know of any other algorithmic (i.e.,
automatic) analysis that can show atomicity of the same (or
larger) code blocks in the modified or original versions.

6.1 Michael and Scott’s Non-Blocking FIFO
Queue Using LL/SC/VL

Figure 1 contains code for a non-blocking FIFO queue
(NFQ) that uses LL/SC/VL [11]. It is similar to the well-
known CAS-based algorithm in [13]. It uses a singly-linked
list whose head and tail are pointed to by global variables
Head and Tail. Enqueue consists of three main steps: create
a node, add it to the end of the list, and update Tail. A
blocking implementation would use a lock around the second
and third steps to achieve atomicity. In the non-blocking al-
gorithm, if a thread gets delayed (or killed) after the second
step, other threads may update Tail on its behalf; in that
case, if the delayed thread later tries to update Tail, its SC
will harmlessly fail. To avoid blocking, the dequeue opera-
tion also updates Tail. A dummy node is used as the head
of the queue to avoid degenerate cases. The code for Deq in
[11, 13] stores the value of LL(Tail) in a local variable; the
code in Figure 1 does not. This does not affect the correct-
ness or performance of the algorithm but makes it easier to
analyze.

We would like to show that NFQ is linearizable, using
the two-step approach described in Section 1. An obstacle
is that the loops in Enq and Deq are not pure, because of
the updates to Tail. Therefore, we modify the program to
make the loops pure before applying our analysis algorithm;
specifically, we consider the modified program NFQ′ in Fig-
ure 2 and argue that the modification preserves lineariz-
ability (the proof is relatively easy). In NFQ′, all updates
to Tail are performed in a separate procedure UpdateTail.
UpdateTail may be invoked (by the environment) at any
time, so NFQ′ is effectively more non-deterministic than
NFQ.

In other words, NFQ′ can simulate all behaviors of NFQ.
It is not difficult to show that linearizability of NFQ with re-
spect to any specification (of the kind defined in [8]) follows
from linearizability of NFQ′ with respect to that specifica-
tion augmented freely with calls to UpdateTail. A more
precise statement of this theorem and a proof appear in

void Enq(int value) int Deq()
node = new Node(); loop
node.value = value; local h = LL(Head) in
node.next = null; local next = h.Next in
loop if !VL(Head) continue;
local t = LL(Tail) in if (next == null)
local next = LL(t.Next) in return EMPTY;
if (!VL(Tail)) continue; if (h == LL(Tail))
if (next != null) SC(Tail,next);

SC(Tail,next); continue;
continue; local value = next.Value in

if (SC(t.Next,node)) if (SC(Head,next))
// optional return value;
[SC(Tail,node);]
return;

Figure 1: Non-Blocking FIFO Queue (NFQ). Names

of global variables start with an uppercase letter. The

declarations of global variables Tail and Head are not

shown.

[16]. Our analysis algorithm can show that the procedures
in NFQ′ are atomic. To conclude NFQ′, and hence NFQ,
are linearizable with respect to a sequential specification of
FIFO queues, we also need to show that NFQ′ executed se-
quentially satisfies that specification. One approach is to
use a powerful verification tool such as TVLA [18] which
is a model checker based on static analysis. With our ap-
proach, TVLA only needs to consider sequential executions
of NFQ′, so the verification will be much faster and use much
less memory than the verification in [18], where TVLA was
used to show directly that NFQ satisfies some complicated
temporal logic formulas.

To evaluate the speedup that our atomicity analysis can
provide for subsequent verification, we used TVLA to verify
several correctness properties of NFQ′, similar to the prop-
erties in [18, Table 2]. We analyzed the correct program with
two different environments: in the first one, the number of
threads that concurrently call AddNode is unbounded (there
is only one thread performs dequeues, and there is only
one UpdateTail thread, since it contains a non-terminating
loop); in the second one, the number of threads that concur-
rently perform dequeues is unbounded (the threads that per-
form AddNode and UpdateTail are single). We also checked
the properties for an incorrect version of NFQ′; specifically,
we deleted the statement if (next.ref != null) continue

in the AddNode procedure; TVLA catches this error. We
performed all experiments twice: once with each procedure
body declared as atomic, as inferred by our analysis algo-
rithm, and once without those declarations. The atomicity
declarations had little effect on the time needed for TVLA
to find an error in the incorrect program, but it reduced the
time and space needed to verify the correct versions by a
factor of 100 or more. The experimental results appear in
Table 2.

All exceptional variants for the procedures of NFQ′ are
listed in Figure 3. The left side column shows line num-
bers and the atomicity type of the code on each line. A
line may contain multiple actions; we refer to the sequential
composition of their atomicity types as the atomicity type
of the line. We show how the atomicity analysis algorithm
in Section 5.4 works on these procedures.

In step 1, a1, a2, a3, a7, a9, b4, b6, c4, c5, d4 and d8 are
classified as both-movers because they access local variables.

program without atomic with atomic
states time states time

unbounded AddNode 4500 > 19hrs 13 3.0s
threads
unbounded Deq’ 1285 88 min 10 1.7s
threads
incorrect 13 5 sec 13 3.0s
AddNode

Table 2: Experimental results for verification of
NFQ′ with TVLA.

void AddNode(int value) void UpdateTail()
local node = new Node() in loop
node.Value = value; local t = LL(Tail) in
node.Next = null; local next = t.Next in
loop if !VL(Tail)
local t = LL(Tail) in continue;
local next = LL(t.Next) in if (next != NULL)
if !VL(Tail) SC(Tail,next);

continue; return;
if (next != null)

continue;
if SC(t.Next,node)

return;

int Deq’()
loop
local h = LL(Head) in
local next = h.Next in

if (!VL(Head))
continue;

if (next == null)
return EMPTY;

if (h == LL(Tail))
continue;

local value = next.Value in
if (SC(Head,next))
return value;

Figure 2: NFQ′, a modified version of NFQ

In step 2, a4, a5, b1, c1 are d1 are classified as right-
movers, because they are matching LLs for successful SCs
or VLs; a6 (which is reclassified as a both-mover in step
4), a8, b5, c3, and d7 are classified as left-movers because
they are successful SCs or VLs; b3 and d3 are classified as
right-movers, and then reclassified in step 4 as both-movers
because they are between matching LLs and successful SCs.

In step 3, the local condition for a5-a8 and c2-c4 is next ==
null. The local condition for b2-b5 and d2-d8 is next ! =
null.

Now consider step 4. Let ta and tu denote the local vari-
able t in AddNode and UpdateTail, respectively. If ta.Next
of the LL-SC block in AddNode is aliased with tu.Next of the
local block in UpdateTail, then according to Theorem 5.5,
the update on Tail (i.e., b5) cannot happen between a6 and
a7, so a6 is a both-mover. a8 cannot happen between b2 and
b3, so b2 is a right-mover. Suppose ta.Next is not aliased
with tu.Next; this implies ta is not aliased with tu, i.e.,
ta 6= tu, so even if a8 happens between b2 and b3, b2 is a
right-mover by Theorem 3.3. ta 6= tu implies that the Tail

in AddNode is not equal to Tail in UpdateTail. Thus, even
if b5 happens between a6 and a7, a6 is still a both mover
by Theorem 3.3. For d2, if h.Next is aliased with t.Next of

void AddNode(int value)
a1:B local node = new Node() in
a2:B node.Value = value;
a3:B node.Next = null;
a4:R local t = LL(Tail) in
a5:R local next = LL(t.Next) in
a6:B TRUE(VL(Tail));
a7:B TRUE(next == null);
a8:L TRUE(SC(t.Next,node));
a9:B return;

void UpdateTail()
b1:R local t = LL(Tail) in
b2:R local next = t.Next in
b3:B TRUE(VL(Tail));
b4:B TRUE(next != NULL);
b5:L TRUE(SC(Tail,next));
b6:B return;

int Deq’1()
c1:R local h = LL(Head) in
c2:A local next = h.Next in
c3:L TRUE(VL(Head));
c4:B TRUE(next == null);
c5:B return EMPTY;

int Deq’2()
d1:R local h = LL(Head) in
d2:R local next = h.Next in
d3:B TRUE(VL(Head));
d4:B TRUE(next != null);
d5:A TRUE(h != LL(Tail));
d6:B local value = next.Value in
d7:L TRUE(SC(Head,next));
d8:B return value;

Figure 3: Exceptional variants for procedures of
NFQ′.

AddNode, a8 cannot happen between d2 and d3 according to
Theorem 5.5, hence d2 is a right-mover by Theorem 3.3; if
h.Next is not aliased with t.Next, d2 is again a right-mover.
Also in step 4, d6 is inferred to be a both-mover, because
there is no write on the Value field of any shared object; the
only write a2 on Value is on an object that has not escaped.

In step 5, the unclassified c2 and d5 are given atomicity
type A. Step 6 infers that each procedure in Figure 3 has
atomicity type A. Step 7 infers that all procedures in NFQ′

are atomic.

6.2 Herlihy’s Non-Blocking Algorithm for
Small Objects

Figure 4 shows Herlihy’s algorithm for non-blocking con-
current implementation of small objects [7]. Suppose a small
object (i.e., small enough to be copied efficiently) is shared
by a set of threads. The main steps on each thread in the al-
gorithm are: (1) read the shared object reference using LL;
(2) copy the data from the shared object into a private (i.e.,
currently unshared) working copy of the object; (3) perform
the requested computation on the private object; (4) switch
the references between the shared object and the private
object using SC and an assignment statement. Note that,
the formerly shared object becomes a private copy, and the
formerly private object becomes the current shared copy.

Before a thread t1 switches the reference of the shared
copy o with the private copy of t1, another thread t2 may
read the reference to o using LL(Q). Even though o becomes

void proc(Node Q) loop
local m = LL(Q) in a1:R local m = LL(Q) in

copy(prv.data,m.data); a2:B copy(prv.data,m.data);
if (!VL(Q)) continue; a3:B TRUE(VL(Q));
computation(prv.data); a4:B computation(prv.data);
if (SC(Q,prv)) a5:L TRUE(SC(Q,prv))
prv = m; a6:B prv = m;
break; a7:B break;

Figure 4: Herlihy’s non-blocking algorithm for small
objects. Left column: original code. Right column:
the exceptional variant. prv is a thread-local vari-
able, Q is a shared variable.

the private copy of t1, t2 may still hold the reference to o,
though the SC of t2 will fail later, causing t2 to loop and read
the current reference from Q. Thus, t1 may write to o while
t2 copies data from o. If t2 tried to perform a computation
on a copy of the data that reflects only part of some update,
it might suffer a fatal error, such as divide by zero. Line a3
prevents this: if o.data (accessed as m.data) is modified by
another thread during the copy in line a2, the VL will fail.

Applying the uniqueness analysis in [16] to this algorithm
shows that accesses to fields of prvObj are local actions, be-
cause prvObj effectively contains a unique reference. It is
easy to check that the update to prv.data is a pure action
with respect with the loop, and hence the loop is pure. The
procedure has only one exceptional variant shown in Fig-
ure 4. According to Theorem 5.4, the LL-SC block a1-a5
is atomic. Both variables in a6 are local, so a6 is a both-
mover. Combining these atomicities shows that the excep-
tional variant is atomic, and hence the original procedure is
atomic.

6.3 Gao and Hesselink’s Non-Blocking
Algorithm for Large Objects

For large objects, copying is the major performance bot-
tleneck. Gao and Hesselink [5] proposed an algorithm to
avoid copying the whole object. The fields of each object
are divided into disjoint groups such that each operation
changes only fields in one group. When copying data be-
tween the shared and private copies of an object, only the
modified groups are copied. To efficiently detect modifica-
tions, a version number is associated with each group of
fields of each copy of the object. The algorithm works as
follows: (1) read the shared object reference using LL; (2)
copy data and version numbers in all modified groups of
fields of the currently shared copy of the object into the cor-
responding groups of fields of the current thread’s private
copy; (3) do the computation on the private copy, updating
fields in some group and incrementing the corresponding ver-
sion number; (4) switch the references between the shared
object and the private object using SC. The algorithm is
more complicated than the algorithm for small objects in
Section 6.2 mainly because of the loops over groups of fields,
the conditional behavior depending on which groups of fields
changed, and the use of version numbers to efficiently detect
changes.

Our analysis cannot directly show that the algorithm is
atomic, due to the use of version numbers. Our analysis
algorithm is able to show that a version of the algorithm
does not use version numbers is atomic. We then show that
the transformations that optimize the algorithm by intro-

void proc(Object SharedObj, int g)
a1 loop
a2 local m = LL(SharedObj) in
a3 local i = 1 in
a4 loop
a5 if (i>W) break;
a6 copy(prvObj.data[i],m.data[i]);
a7 if (!VL(SharedObj))
a8 continue a2;
a9 i++;
a10 if (!VL(SharedObj)) continue a2;
a11 compute(prvObj,g);
a12 if (SC(SharedObj,prvObj))
a13 prvObj = m;
a14 return;

Figure 5: Gao and Hesselink’s Non-Blocking Algo-
rithm for Large Objects: Simplified Program 1

ducing and using version numbers preserve atomicity; this
is relatively easy.

We show that the non-blocking algorithm for large ob-
jects in Figure 7 is atomic. We use continue in the pseudo-
code, even though SYNL does not have continue. It is easy
to eliminate the continue, with no significant effect on the
atomicity analysis. The procedure call copy(prvObj.data[i],
m.data[i])copies the data in m.data[i] to prvObj.data[i].
The procedure compute(prvObj,g) does computation based
on the data in prvObj and writes the result into prvObj.data[g].

The algorithm in Figure 7 differs in some minor ways from
the original algorithm in [5]. The program in Figure 7 sim-
plifies the algorithm in [5] by removing redundant array old.
Our version, like the program in Section 6.2, uses VL (line
a13) to prevent errors due to inconsistent states of prvObj
that may result from updates during copying (line a8). [5]
simply assumed that such errors do not occur. Also, we omit
the guard predicate used in [5] to optimize cases where com-
pute is applied in a state in which it performs no updates.

Figure 5 shows a simplified version of the algorithm in
which all data of the shared object (i.e., m) are copied into
the working object (i.e., prvObj) of the current thread in
every iteration of the outer loop. Applying the unique-
ness analysis in [16] shows that all field accesses through
prvObj are local actions, because prvObj effectively contains
a unique reference. Moreover, prvObj.data[i] is dead at
the end of the outer loop’s body under all normal termina-
tions. Therefore, the outer loop is pure. By the same rea-
soning as for the non-blocking algorithm for small objects
in Section 6.2, the procedure in Figure 5 is atomic.

Figure 6 shows an improved version of the code in Figure 5
in which the copy is omitted from m.data[i] to prvObj.data[i]

when those two locations already contain the same value.
The program in Figure 6 clearly has the same behavior as
the program in Figure 5. Therefore, the procedure in Figure
6 is atomic.

Figure 7 shows an improved version of the code in Figure 6
in which version numbers are used to efficiently and conser-
vatively check whether m.data[i] and prvObj.data[i] are
equal. “Conservatively” here means that the check might
return false when they contain the same value (e.g., because
the values stored in m.data[i] and prvObj.data[i] hap-
pen to be equal), but this merely causes the code in Figure
7 to do an unnecessary copy (i.e., the copy does not actu-
ally change the value of prvObj.data[i]). The last state-

void proc(Object SharedObj, int g)
a1 loop
a2 local m = LL(SharedObj) in
a3 local i = 1 in
a4 loop
a5 if (i>W) break;
a6 if (prvObj.data[i] != m.data[i])
a7 copy(prvObj.data[i],m.data[i]);
a8 if (!VL(SharedObj))
a9 continue a2;
a10 i++;
a11 if (!VL(SharedObj)) continue a2;
a12 compute(prvObj,g);
a13 if (SC(SharedObj,prvObj))
a14 prvObj = m;
a15 return;
a16 //else continue a2;

Figure 6: Gao and Hesselink’s Non-Blocking Algo-
rithm for Large Objects: Simplified Program 2

void proc(Object SharedObj, int g)
a1 loop
a2 local m = LL(SharedObj) in
a3 local i = 1 in
a4 loop
a5 if (i>W) break;
a6 local newVersion[i] = m.version[i] in
a7 if (newVersion[i] != prvObj.version[i])
a8 copy(prvObj.data[i],m.data[i]);
a9 if (!VL(SharedObj))
a10 continue a2;
a11 prvObj.version[i] = newVersion[i];
a12 i++;
a13 if (!VL(SharedObj)) continue a2;
a14 compute(prvObj,g);
a15 prvObj.version[g]++;
a16 if (SC(SharedObj,prvObj))
a17 prvObj = m;
a18 return;
a19 else
a20 prvObj.version[g] = 0;

Figure 7: Gao and Hesselink’s Non-Blocking Algo-
rithm for Large Objects: Full Program with Modi-
fication

ment prvObj.version[g] = 0 is needed so that the update
to prvObj.version[g] from line a15 will be discarded if the
SC fails. The program in Figure 7 clearly has the same be-
haviors as the program in Figure 6. Therefore, the procedure
in Figure 7 is atomic.

To evaluate the benefit of our atomicity analysis com-
pared to a traditional partial-order reduction, we imple-
mented the algorithm for large objects in the model checker
SPIN [9]. We wrote a driver with 3 threads that concurrently
invoke arithmetic operations on a shared object with 3 inte-
ger fields, each in its own group. The input files are available
at the URL in [16]. The numbers of reachable states are:
4,069,080 with no optimization; 452,043 with SPIN’s built-
in partial-order reduction; 69,215 with the procedure body
declared as atomic, as inferred by our analysis algorithm;
and 4619 with both optimizations.

6.4 Michael’s Lock-Free Memory Allocator
Michael designed an efficient and robust lock-free (i.e.,

non-blocking) memory allocator that uses CAS [12]. We
applied our analysis algorithm to the pseudo-code for malloc
in Figure 4 of [12]. We assume that the auxiliary procedures
for which code is not given in [12] are atomic. We inline
all calls to other procedures. All the loops are pure, and
all their exceptional slices are atomic. Moreover, all CAS-
blocks (from each successful CAS back to the matching read)
are atomic, because all actions in the CAS-blocks are either
accesses to local variables, or accesses to read-only shared
variables. Some CAS actions do not have matching reads;
each one by itself is an atomic code block. The remaining
actions are local actions; they can be combined with the
previous or following atomic block. More details appear in
[16]. In summary, the allocation routines contain 74 lines
of pseudo-code (actual C code may be significantly longer),
and our analysis classifies it into 15 atomic blocks.

7. CONCLUSIONS
This paper presents a static analysis to infer atomicity of

code blocks in programs with non-blocking synchronization.
Although we need to modify the program before applying
our analysis in two out of the four examples in Section 6, we
consider the results encouraging, since we do not know of
any other algorithmic (i.e., automatable) analysis that can
show atomicity of the same (or larger) code blocks in the
modified or original versions. Theorem-proving approaches,
such as [5], can verify atomicity of the original programs but
require much more manual effort than our approach, even
if our analysis algorithm is applied manually. In programs
where entire procedures are not atomic, such as the memory
allocator example in Section 6.4, our analysis shows that
many code blocks are atomic; this can significantly reduce
the number of states considered during subsequent analysis
and verification.

Acknowledgment
We thank Cormac Flanagan for helpful comments and Eran
Yahav for help with TVLA.

8. REFERENCES
[1] C. Flanagan and S. N. Freund. Atomizer: A dynamic

atomicity checker for multithreaded programs. In
Proc. of ACM Symposium on Principles of
Programming Languages (POPL). ACM Press, 2004.

[2] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting
purity for atomicity. In Proc. ACM International
Symposium on Software Testing and Analysis
(ISSTA), pages 221–231. ACM Press, 2004. An
extended version appeared as Technical Report 04-02,
Williams College, 2004.

[3] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI). ACM Press, 2003.

[4] C. Flanagan and S. Qadeer. Types for atomicity. In
Proc. ACM SIGPLAN International Workshop on
Types in Languages Design and Implementation
(TLDI), pages 1–12. ACM Press, 2003.

[5] H. Gao and W. H. Hesselink. A formal reduction for
lock-free parallel algorithms. In Proceedings of the

16th International Conference on Computer-Aided
Verification (CAV), Lecture Notes in Computer
Science, pages 44–56, 2004.

[6] M. P. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124–149, January 1991.

[7] M. P. Herlihy. A methodology for implementing highly
concurrent data objects. ACM Transactions on
Programming Languages and Systems, 15(5):745–770,
Nov. 1993.

[8] M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems, 12(3):463–492, July 1990.

[9] G. J. Holzmann. The SPIN Model Checker.
Addison-Wesley, 2003.

[10] R. J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of
the ACM, 18(12):717–721, 1975.

[11] M. M. Michael. Private communication, 2004.

[12] M. M. Michael. Scalable lock-free dynamic memory
allocation. In Conference on Programming Language
Design and Implementation (PLDI). ACM Press, June
2004.

[13] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In the 15th Annual ACM Symposium on
Principles of Distributed Computing (PODC ’96),
pages 267–275. ACM Press, 1996.

[14] D. Peled. Ten years of partial order reduction. In A. J.
Hu and M. Y. Vardi, editors, Proc. 10th Int’l.
Conference on Computer-Aided Verification (CAV),
volume 1427 of Lecture Notes in Computer Science,
pages 17–28. Springer-Verlag, 1998.

[15] S. Qadeer, S. K. Rajamani, and J. Rehof.
Summarizing procedures in concurrent programs. In
Proc. 31st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 245–255. ACM Press, 2004.

[16] L. Wang and S. D. Stoller. Static analysis of atomicity
for programs with non-blocking synchronization.
Technical Report DAR-04-17, SUNY at Stony Brook,
Computer Science Dept., Oct. 2004 (revised Jan.
2005). Available at
http://www.cs.sunysb.edu/˜liqiang/nonblocking.html.

[17] L. Wang and S. D. Stoller. Run-time analysis for
atomicity. In Third Workshop on Runtime Verification
(RV03), volume 89(2) of Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

[18] E. Yahav and M. Sagiv. Automatically verifying
concurrent queue algorithms. In Proc. Workshop on
Software Model Checking (SoftMC’03), volume 89(3)
of Electronic Notes in Theoretical Computer Science.
Elsevier, 2003.

APPENDIX

A. PROOF OF THEOREM 5.5

Lemma A.1. Suppose a shared variable svar is updated
only by SC expressions in LL-SC blocks, and every LL-SC
block local lvar = LL(svar) in {stmt;TRUE(SC(svar,val));}
in the program has the same local condition p(lvar). Sup-
pose a local block S local lvar′ = svar in stmt′ has a local
condition !p(lvar′). Any successful SC(svar) in the LL-SC
blocks cannot happen inside S.

Proof. We prove the lemma by showing a contradiction.
Suppose a successful SC(svar) in a LL-SC block executed
by another thread happens inside S. Without loss of gen-
erality, we consider the first such SC(svar). According to
the assumption, !p(lvar) holds during stmt′. Because svar

is updated only by SC actions from LL-SC blocks, lvar′ ==
svar and hence !p(svar) holds from the start of stmt′ until
SC(svar) happens. This implies that !p(svar) holds when
SC(svar) happens. The LL-SC block has local condition
p(lvar), and lvar == svar holds until the SC, because lvar

is not updated in the LL-SC block, and svar is not updated
before the first successful SC on it, so p(svar) holds when
SC(svar) happens. This contradicts the previous conclu-
sion. This concludes the proof of the lemma.

Proof of Theorem 5.5. According to Lemma A.1, no suc-
cessful SC(svar) can happen inside S. Consider an execu-
tion of a LL-SC block on svar. There are two cases:

case 1: the successful SC happens before S. Thus, the
whole LL-SC block happens before S. Obviously, the theo-
rem holds in this case.

case 2: the successful SC happens after S. If the matching
LL also happens after S, the whole LL-SC block happens
after S. Hence the theorem holds. Suppose the matching
LL happens inside S or before S. Similar to the proof of
Lemma A.1, because svar is updated only by SC actions
from LL-SC blocks, and no successful SCs happen inside S

or between the matching LL and the SC, lvar′ == svar
and hence !p(svar) holds from the start of stmt′ until the
SC(svar) happens. Thus, !p(svar) holds when SC(svar)
happens. By the same reason of the proof of Lemma A.1,
p(svar) holds when SC(svar) happens. This contradicts the
previous conclusion. Therefore, when SC happens after S,
the matching LL cannot happen inside S or before S.

