
Detecting Potential Deadlocks with Static
Analysis and Run-Time Monitoring�

Rahul Agarwal, Liqiang Wang, and Scott D. Stoller

Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400
{ragarwal, liqiang, stoller}@cs.sunysb.edu

http://www.cs.sunysb.edu/~{ragarwal, liqiang, stoller}

Abstract. Concurrent programs are notorious for containing errors that
are difficult to reproduce and diagnose. A common kind of concurrency
error is deadlock, which occurs when a set of threads is blocked each
trying to acquire a lock held by another thread in that set. Static and
dynamic (run-time) analysis techniques exist to detect deadlocks.

Havelund’s GoodLock algorithm detects potential deadlocks at run-
time. However, it detects only potential deadlocks involving exactly two
threads. This paper presents a generalized version of the GoodLock algo-
rithm that detects potential deadlocks involving any number of threads.
Run-time checking may miss errors in unexecuted code. On the positive
side, run-time checking generally produces fewer false alarms than static
analysis.

This paper explores the use of static analysis to automatically reduce
the overhead of run-time checking. We extend our type system, Extended
Parameterized Atomic Java (EPAJ), which ensures absence of races and
atomicity violations, with Boyapati et al.’s deadlock types. We give an al-
gorithm that infers deadlock types for a given program and an algorithm
that determines, based on the result of type inference, which run-time
checks can safely be omitted. The new type system, called Deadlock-
Free EPAJ (DEPAJ), has the added benefit of giving stronger atomicity
guarantees than previous atomicity type systems.

1 Introduction

Concurrent programs are notorious for containing errors that are difficult to
reproduce and diagnose at run-time. Some common kind of programming er-
rors include deadlocks, data races and atomicity violations. A deadlock occurs
when each thread is blocked trying to acquire a lock held by another thread. A
data race occurs when two threads concurrently access a shared variable and at
least one of the accesses is a write. Atomicity is a common higher-level correct-
ness requirement that expresses non-interference between concurrently executed
methods. A method is atomic if every execution of the program is equivalent to
an execution in which that method is executed without being interleaved with
other concurrently executed methods. This paper focuses on detecting deadlocks.
� This work was supported in part by NSF under Grant CCR-0205376 and CNS-

0509230 and ONR under Grants N00014-02-1-0363 and N00014-04-1-0722.

S. Ur, E. Bin, and Y. Wolfsthal (Eds.): Haifa Verification Conf. 2005, LNCS 3875, pp. 191–207, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

192 R. Agarwal, L. Wang, and S.D. Stoller

The GoodLock algorithm [Hav00] detects potential deadlocks at run-time.
However, it detects only potential deadlocks involving two threads, i.e., each
of those threads is blocked trying to acquire a lock held by the other thread.
This paper presents a generalized version of GoodLock algorithm, that detects
potential deadlocks involving any number of threads in other executions of the
program.

Static analysis can also detect potential deadlocks. Boyapati, Lee and Rinard
[BLR02] introduce a type system that ensures Java programs are deadlock-free.
That type system extends Boyapati and Rinard’s Parameterized Race Free Java
(PRFJ) type system [BR01], which ensures Java programs are race-free.

Run-time checking and static analysis are both useful. Static analysis can
guarantee that all executions of a program are deadlock-free; run-time checking
cannot. However, due to limitations of the type system, some deadlock-free pro-
grams are not typable; the resulting warnings from the typechecker are called
false alarms, and they may be difficult to diagnose. On the other hand, run-
time checking generally produces fewer false alarms than static analysis; this is
a significant practical advantage, since diagnosing all of the warnings from static
analysis of large codebases may be expensive.

This paper extends our type system, Extended Parameterized Atomic Java
(EPAJ) [SAWS05], which ensures absence of races and atomicity violations, with
the deadlock types described in [BLR02]. The new type system, called Deadlock-
Free EPAJ (DEPAJ), ensures absence of deadlocks due to locks and, as an added
benefit, gives stronger atomicity guarantees than EPAJ and Atomic Java [FQ03],
which do not consider deadlocks and hence may classify a method as atomic even
if it could deadlock in the middle—something that cannot happen if the method
executes without interruption by other threads.

The type systems and run-time analysis algorithms considered in this paper
only attempt to detect potential deadlocks caused by locks. They do not consider
wait/notify or other forms of condition synchronization and hence do not detect
deadlocks due to them.

Manually annotating code with the necessary type annotations can be a signif-
icant burden, especially for legacy code. Type inference reduces the annotation
burden by automatically determining types for some or all parts of the program.
This paper presents a type inference algorithm for [BLR02]’s basic deadlock
types.

Static analysis can be used to decrease the overhead of run-time checking, in
the following way. First, our type inference algorithm infers deadlock types for
the program. Run-time deadlock detection is then focused on fragments of code
which were not typable. The user can inspect the run-time warnings, which are
more likely to indicate real errors and can provide more detailed and specific
diagnostic information; then, if desired, the user can inspect warnings from the
typechecker. The goal is to reduce the overhead of run-time checking to a level
where it can be used unobtrusively throughout the testing process, or even in
deployed systems, instead of only during a limited period of testing focused on
concurrency errors.

Detecting Potential Deadlocks 193

The rest of the paper is organized as follows. Sections 2, 3, 4 and 5 describe
run-time detection of potential deadlocks, deadlock types, type inference for
deadlock types, and our type system DEPAJ respectively. Section 6 presents
our techniques for focused run-time detection of potential deadlocks. Section 7
presents our experiments, Section 8 discusses related work.

2 Run-Time Detection of Potential Deadlocks

The GoodLock algorithm [Hav00] detects potential deadlocks at run-time. It
records a run-time lock tree for each thread. The run-time lock tree for a thread
represents the nested pattern in which locks are acquired by the thread. Each
node of the run-time lock tree is labeled with a lock and represents the thread
acquiring that lock. There is an edge from a node n1 to a node n2 if n1 repre-
sents the most recently acquired lock that the thread holds when it acquires the
lock associated with n2. At each instant, each run-time lock tree has one node
designated as the current node; the path from the root of the tree to that node
represents the nested acquires of locks held by that thread at that instant. If a
thread re-acquires a lock that it already holds, its run-time lock tree does not
contain a node representing the re-acquire. When a thread acquires a lock that it
does not already hold, if there is already a child of the current node labeled with
that lock, that child becomes the current node, otherwise a new child labeled
with that lock is created and becomes the current node. At the end of the execu-
tion of the program, if there exist threads t1 and t2 and locks l1 and l2 such that
t1 acquires l2 while holding l1, and t2 acquires l1 while holding l2, then a warning
of potential deadlock is issued, unless there is a common lock, called a gate lock,
that is held by both threads when they acquire l1 and l2; the gate lock prevents
the acquires of l1 and l2 from being interleaved in a way that leads to deadlock.
The worst-case time complexity of the algorithm is O(|T |3 × |Thread|2), where
|T | is the size of the largest run-time lock tree, and Thread is the set of threads.
However, this algorithm only detects potential deadlocks caused by interleaving
of lock acquires in two threads.

We present a generalized version of the GoodLock algorithm that detects
potential deadlocks involving any number of threads. In particular, it checks
whether there exist distinct threads t0, . . . , tm−1 and locks l0, . . . , lm−1 such that,
for all i = 0..m−1, ti holds lock li while acquiring lock li+1 mod m. Note that we
always ignore a thread re-acquiring a lock it already holds, so a thread acquiring
li+1 mod m while holding li implies li+1 mod m and li are different locks. In the
absence of other constraints on the schedule (e.g., due to gate locks or start-
join synchronization), such acquires can be interleaved in a way that leads to
deadlock. We call this the Potential for Deadlock from Locks Ignoring GateLocks
(PDL-IGL) condition.

The algorithm constructs a run-time lock tree for each thread during execu-
tion, as described above. At the end of the execution, it constructs a run-time
lock graph, which is a directed graph G = (V, E), where V contains all the
nodes of all the run-time lock trees, and the set E of directed edges contains (1)

194 R. Agarwal, L. Wang, and S.D. Stoller

tree edges: the directed (from parent to child) edges in each of the run-time lock
trees, and (2) inter edges: bidirectional edges between nodes that are labeled
with the same lock and that are in different run-time lock trees.

For a run-time lock graph G, a valid path is a path that does not contain
consecutive inter edges and such that nodes from each lock tree appear as at
most one consecutive subsequence in the path. Similarly, a valid cycle is a cycle
that does not contain consecutive inter edges and nodes from each thread appear
as at most one consecutive subsequence in the cycle.

As an example, Figure 1 shows the run-time lock graph for the illustrative
program in Figure 2. The graph in Figure 1 contains several cycles including the
following three, where liTj denotes the node for lock li in the run-time lock tree
for thread j: l3T1 → l3T2 → l3T4 → l3T1, l1T1 → l2T1 → l2T2 → l3T2 →
l3T1 → l4T1 → l4T3 → l1T3 → l1T1, and l3T1 → l4T1 → l4T4 → l3T4

→ l3T1.
The first cycle is not valid because it contains two or more consecutive inter

edges. The second cycle is not valid because nodes from thread T1 appear in more
than one subsequence. The third cycle is valid and hence indicates a potential
deadlock. Specifically, it indicates that the program in Figure 2 can deadlock if
thread 1 acquires lock l3 and waits for lock l4 and thread 4 acquires lock l4
and waits for lock l3.

T4T1

l3

l2

l1

l4

l2

l3

l4

l1

l4

l3

T2 T3

Fig. 1. Run-time lock graph

Now we show that PDL-IGL holds iff the run-time lock graph G contains a valid
cycle. Suppose there exist distinct threads t0, . . . , tm−1 and locks l0, . . . , lm−1
such that for all i = 0..m−1, ti holds lock li while acquiring lock li+1 mod m. Let ni

and n′
i denote the nodes in Ti corresponding to the acquire of li and the acquire of

li+1 mod m nested within it, respectively. Since thread ti acquires lock li and waits
for lock li+1 mod m, there is a path from ni to n′

i in run-time lock tree Ti for ti (be-
cause, n′

i is nested below ni). Note that this path is made of tree edges. The locks li
and li+1 mod m are distinct, so this path contains at least one tree edge. Also, there

Detecting Potential Deadlocks 195

Thread 1:

sync(l1) {

sync(l2) {

}

}

sync(l3) {

sync(l4) {

}

}

Thread 2:

sync(l2) {

sync(l3) {

}

}

Thread 3:

sync(l4) {

sync(l1) {

}

}

Thread 4:

sync(l4) {

sync(l3) {

}

}

Fig. 2. Synchronization behavior of 4 threads. sync abbreviates synchronized.

is an inter edge from n′
i in run-time lock tree Ti to ni+1 mod m in run-time lock tree

Ti+1 mod m in G (by construction). These tree edges and inter edges together form
a valid cycle.

Next, we show that existence of a valid cycle C in G implies that the PDL-
IGL condition holds. The cycle involves nodes from more than one lock tree,
because nodes of a single tree cannot be involved in a cycle. Suppose, C had
nodes ni and n′

i in run-time lock tree Ti for thread ti, i ∈ 0..m − 1 (without loss
of generality, we can just consider the beginning and end nodes in the consecutive
subsequence from the same thread). Also, nodes n′

i and ni+1 mod m are labelled
with the same lock (they are consecutive nodes from different lock trees and
this is only possible through an inter edge which connects two similar labeled
locks). Thus, existence of C implies there exist distinct threads t0, . . . , tm−1
and locks l0, . . . , lm−1 (node ni corresponds to lock li and node n′

i corresponds
to lock li+1 mod m) such that, for all i = 0..m−1, ti holds lock li while acquiring
lock li+1 mod m. Hence, the PDL-IGL condition holds.

Our algorithm to detect existence of a valid cycle traverses all valid paths
starting from the root of each lock tree in G using a modified depth-first search
(DFS) algorithm, called DFS-ValidCycle, which differs from standard DFS in two
ways. First, it traverses only valid paths, because it extends the current path (on
the search stack) only with edges satisfying both criteria for validity. Second, a
node all of whose neighbors have been explored may be explored multiple times
(along incoming inter edges); this is necessary because the set of threads with
some lock-tree nodes on the stack might be different on different visits, so the
set of valid paths that can be explored by continuing the search from that node
is different. The algorithm terminates when a valid cycle is found or all valid
paths have been explored. Pseudo-code for the algorithm appears in [AWS05].

To see that the algorithm traverses every valid path, consider a valid path P
that begins at a node n in a lock tree T . Extending P by prepending the edges
on a path from the root of T to n produces a valid path that is explored by the
algorithm when DFS-ValidCycle is started from the root of T . Note that a cycle
involving P will be detected, because we check in the algorithm whether n′ is
anywhere on the stack (not just on the bottom).

To show the worst-case complexity of the algorithm, we consider the number
of valid paths in the run-time lock graph. Let S(k) be the number of valid

196 R. Agarwal, L. Wang, and S.D. Stoller

paths in k lock trees T1, . . . , Tk, assuming the path visits those lock trees in
that order. Then S(k) = S(k − 1) + Nk × Nk−1, where Nk and Nk−1 are the
number of nodes in lock trees Tk and Tk−1 respectively, because for each node
n in Tk−1, the valid paths ending at n can be extended in Nk different ways.
Thus, the total number of valid paths is O(|V ||Thread|), where |V | is the total
number of nodes in the graph, and |Thread| is the total number of threads.
There are |Thread|! permutations of T1, . . . , Tk, and each step of extension or
backtracking takes constant time, so the overall worst-case complexity of this
algorithm is O(|V ||Thread| × |Thread|!).

The algorithm can be optimized by observing that many valid paths share a
common suffix. Define an ordering on edge types: tree-edge ≥ inter-edge. This
reflects the fact that in the definition of validity, a tree edge implies fewer re-
strictions on the next edge in the path. For each node n, n.visits is a set
of pairs <ts, et>, where ts is a set of threads, and et is an edge type. The
meaning of <ts, et> ∈ n.visits is that n has been visited along an edge with
type et with a stack containing nodes from the lock trees of the threads in
ts. If we start the modified DFS at every node n, we do not need to ex-
plore a node n′ if n′.visits contains a pair <ts1, et> such that the current
stack contains all nodes from the lock trees of the threads in ts1 and n′ is
being visited along an edge with type less than or equal to et. If those con-
ditions hold, then no valid cycles are reachable by continuing the search from
n′. This is because there is no valid path from n′ back to n that avoids the
lock trees on the stack, because if there were, the search would have detected
the cycle (containing n and n′) and terminated during the visit that added
that tuple to n′.visits. Pseudo-code for the optimized algorithm appears in
[AWS05].

The worst-case complexity of the optimized algorithm is O(2|Thread| × |V |3),
It is easy to see that each node can have O(2|Thread|) items in its visits set.
Hence, each node can be explored O(2|Thread|) times and during each visit it
may need to visit its out-edges. There are at most |V | out-edges from each node.
Since we repeat the algorithm for each node, the overall worst-case complexity
of the algorithm is O(2|Thread| × |V |3).

If the number of threads is a constant, then the algorithm is polynomial in
the number of nodes in the run-time lock graph.

However, the algorithm does not consider gate locks and therefore produces
false alarms whenever some common lock acquired by at least two threads pre-
vents deadlocks. To eliminate these false alarms, we extend the algorithm to
check whether there exist distinct t0 . . . tm−1 and locks l0 . . . , lm−1 such that for
all i = 0..m− 1, ti holds lock li while acquiring lock li+1 mod m and there do not
exist ti, tj , and l such that ti and tj hold l when acquiring li and lj , respectively.
(Such a lock l is called a gate lock for the cycle). We call this the Potential for
Deadlocks from Locks (PDL) condition.

To check the PDL condition, we modify the algorithm to backtrack (instead
of halting) when a valid cycle is encountered, so the algorithm explores all valid
cycles, and we check for every valid cycle generated whether there is a gate lock,

Detecting Potential Deadlocks 197

i.e., whether no two nodes in different run-time lock trees have ancestors labeled
with the same lock. This can be done in O(|V |2 × |Lock|) time for each valid
cycle , where |Lock| is the number of locks. If a valid cycle without a gate lock
is found, potential for deadlock is reported.

3 Deadlock Types

Boyapati, Lee and Rinard [BLR02] introduce a static type system that ensures
Java programs are deadlock-free. The deadlock types express a partial order
among the locks. The typing rules ensure that whenever a thread holds multiple
locks, the thread acquires the locks in descending order. This ensures absence of
cyclic waiting and therefore implies absence of deadlocks.

The rest of this section briefly describes Parameterized Race Free Java (PRFJ)
[BR01], and [BLR02]’s deadlock types. In PRFJ, as in its predecessor Race Free
Java [FF00], types indicate the synchronization discipline (also called “protection
mechanism” or “owner”) used to co-ordinate accesses to each object. To allow
different instances of a class to use different protection mechanisms, each class
is parameterized by formal owner parameters, which may be instantiated with
other formal owner parameters, final expressions (i.e., expressions whose value
does not change) representing locks, or special owners (described below).

A final expression used as an owner specifies a lock that must be held when the
object is accessed. There are four special owners: thisThread, self, readonly
and unique. readonly indicates that the object is readonly and cannot be up-
dated. unique means that there is a unique reference to the object. thisThread
means that the object is thread-local (i.e., unshared). selfmeans that the object
is protected by its own lock. The owner of an object is said to guard all of its fields.

Method declarations may have a accesses clause that contains a set of final
expressions; the owners of these expressions are locks, those locks must be held
when the method is invoked.1

Deadlock types associate a lock level with each lock. The typing rules ensure
that if a thread acquires a lock l2 (which the thread does not already hold)
while holding a lock l1, then l2’s level is less than l1’s level; in other words, locks
are acquired in descending order. Lock levels and the partial order on them are
defined by statements of the form LockLevel l1 = new; l2 < l1. In PRFJ,
only locks on objects with owner self can be acquired (acquiring locks on other
objects is not useful for showing race-freedom), so lock levels are associated only
with objects with owner self.

In this paper, we focus on [BLR02]’s basic deadlock types, in which all in-
stances of a class are associated with the same lock level. An extension that
supports polymorphism in lock levels, i.e., that allows classes to be parame-
terized with formal lock level parameters, is presented in [BLR02], but in our
experience, this extra flexibility is rarely useful, and it makes type inference
much more difficult.
1 For simplicity, we ignore the distinction between owners and root owners in this

overview.

198 R. Agarwal, L. Wang, and S.D. Stoller

class Account<self:l1> {
int balance;
Vector<self:l2> v = new Vector<self:l2>();
Locklevel l2 < l1;

int deposit(int x, int tid) locks l1, l2 {
synchronized(this) {
this.balance = this.balance + x;
v.addElement(new Integer<readonly>(tid));

}
}

}

class Vector<self:l2> {

....

synchronized void ensureCapacity(int minCapacity) locks l2, this {...}
synchronized void addElement(Object<f> obj) locks l2 {

if (elementCount == elementData.length)
ensureCapacity(elementCount + 1);

modCount++;
elementData[elementCount++] = obj;

}
}

Account<self:l1> a1 = new Account<self:l1>;
fork(a1){a1.deposit(100,1);}
fork(a1) {a1.deposit(100,2);}

Fig. 3. An example program with race-free types and deadlock types

In the deadlock type system, each method m is annotated with a locks clause
that contains a set of lock levels. These lock levels are the maxima amongst
the levels of locks that may be acquired when m is executed. To ensure that
a program is free of deadlocks, the typing rule for method calls ensures that
the caller only holds locks that are of a higher level than the levels in the called
method’s locks clause. A locks clause may also contain a lock l, which indicates
that the thread invoking the method may hold a lock on object l. The typing
rule for synchronized expression checks that the lock being acquired is l or has
a lower level than l. This allows typing of programs in which, for example, a
synchronized method of a class calls a synchronized method of the same class
on the same object.

The program in Figure 3 illustrates race-free types and deadlock types. It
shows a class Account whose owner is self with lock level l1. It has an instance
field v of class type Vector with owner self and lock level l2. The main thread
spawns two threads, each of which invoke the deposit method on account a1.
The deposit method acquires a lock on this followed by a lock on its field

Detecting Potential Deadlocks 199

v when the addElement method of v is invoked. This is consistent with the
declared lock level ordering l2 < l1, since the lock on v is acquired after the lock
on a1. The lock levels specified in the locks clause of deposit method satisfy
the method invoke rule as it is called with no locks held (corresponding to lock
level infinity which is greater than both l1 and l2). The addElement method of
v is called with current lock level (the lock level of the most recently acquired
lock but not yet released) l1 which is greater than l2 specified in the locks
clause. Hence, the call to addElement also typechecks. When the addElement
method calls the ensureCapacity method of v, the current lock level l2 is not
greater than l2, rather it is the same. However, the ensureCapacity method
also contains a lock, viz., this (which has lock level l2), in the locks clause
which is held at the call site. The program typechecks because the typing rule for
method calls allows the current lock level to be the same as the level of the lock
l in the locks clause if the thread invoking the method already holds the lock
on l. Reacquiring the lock on this in ensureCapacity method also typechecks,
because the typing rule for synchronized expressions checks whether the newly
acquired lock is the same as specified in the locks clause.

4 Static Type Inference for Deadlock Types

The following section presents a type inference algorithm for [BLR02]’s basic
deadlock type system. The algorithm assumes that race-free types are already
known. Type inference for race-free types is NP-hard, but in practice, race-
free types can often be obtained using a SAT solver [FF04] or type discovery
[AS04, ASS04].

The algorithm works as follows:

1. Each field, method parameter and local variable with owner self is initially
assigned a distinct lock level. The levels are initially unordered. For each
method, equality constraints among lock levels are generated based on as-
signment statements and method invocations. This is necessary for programs
to typecheck as left and right hand side of an assignment must have the same
type (modulo subtyping), and the type now includes the lock level when
the owner is self. Similarly, for each call site, each argument to the called
method must have the same lock level as the corresponding parameter. The
constraints can then be solved using the standard Union-Find algorithm.

2. A static lock graph GL is constructed that captures the locking pattern of
the program. A synchronized statement is redundant if the final expression
corresponding to the lock acquire appears nested below a lock acquire of the
same final expression by a synchronized statement in the same method or
if the final expression is the same as the rootowner of an expression in the
accesses clause of the method containing this synchronized statement.
For each synchronized statement in the program that is not redundant
(including the implicit synchronized statement enclosing the body of each
synchronized method), the graph contains a corresponding node, called a

200 R. Agarwal, L. Wang, and S.D. Stoller

lock node . For each method m in the program, the graph contains a corre-
sponding node nm, called a method node. There is an edge from a lock node
n1 to a lock node n2 if the synchronized block corresponding to node n2 is
syntactically directly nested within the synchronized block corresponding to
n1 or the other synchronized statements between n1 and n2 are redundant.
There is an edge from each method node nm to the lock node for each outer-
most synchronized block in m. For each method call within the scope of a
synchronized block except calls to Thread.start, there is an edge from the
lock node corresponding to the inner most synchronized block that encloses
the method call to the method node for the called method.

3. The method node nm for method m is associated with a set Lm of lock
levels. Linit

m contains the lock levels of the lock nodes that are children of
nm. Recall that each lock node is associated with a unique lock level in step
1. If nm has no lock node children, Linit

m is empty. Let called(m) denote the
set of methods directly called by method m such that the corresponding call
sites are not in the scope of a synchronized block in m. The set Lm for each
method is computed using a fixed point computation. It is the least fixed
point solution to the following set of constraints: for each method m, Lm =
Linit

m ∪
⋃

m′∈called(m) Lm′ . The right side is monotonic in Lm′ , so the least
solution can be computed by a standard fixed-point computation. For each
method node nm, the lock levels in Lm are added to the locks clause of m.

4. For each lock node n with lock level l, and for each lock node n′ with lock
level l′, such that there is an edge from n to n′, add the declaration l > l′ to
the inferred typing. If there is an edge from n to a method node nm, then
for each lock level l′ in Lm other than l, add the declaration l > l′ to the
inferred typing.

5. For each lock node n with lock level l in method m, if n is reachable from a
lock node ancestor of n with the same lock level and in a different method,
then add to the locks clause of m the final expression denoting the lock
acquired by the synchronized statement corresponding to n. (Leaving lock
level l in m’s locks clause is sometimes unnecessary but harmless).

The complexity of the algorithm is O((|Vm|3) + ((|Vm| + |Vl|) × |E|)), where
|Vm| is the number of method nodes (equal to the number of methods in the
program), |Vl| is the number of lock nodes (equal to number of synchronized
statements in the program), and |E| is the number of edges in GL. Our type
inference algorithm is correct in the sense that it produces correct typings for
all typable programs, as shown in the appendix. For untypable programs, our
inference algorithm does not simply halt and report failure; rather, it produces
the best type annotations it can for the given program. This is useful for fo-
cused run-time checking, as described in Section 6. Our type inference algo-
rithm does not attempt to determine whether the given program is typable;
instead, we simply run the type checker on the program with the inferred type
annotations.

Figure 4 shows a static lock graph GL for program in Figure 3. It contains
method nodes for deposit, addElement and ensureCapacity. It contains a

Detecting Potential Deadlocks 201

lock node for each synchronized statement. Each lock node is labeled with the
acquired lock and its lock level. For example, n1 corresponds to the synchronized
statement in method deposit, which acquires the lock on this, which has lock
level l1 (from step 1 of the type inference algorithm). Each method node nm is
labeled with the set L(m) computed in step 3 of the type inference algorithm.

After computing GL and L, the type inference algorithm infers the deadlock
types for the program in Figure 3 as follows. First the elements of L(m) are
used in the locks clause of method m. For example, the locks clause of method
deposit contains lock level l1, since L(deposit) = {l1}. Edges from lock nodes
to method nodes introduce lock level orderings. For example, the edge from n1
to naddElement introduces the declaration l1 > l2 by step 4. n2 is an ancestor of
n3 with the same lock level m and in a different method. Therefore, step 5 adds
this to the locks clause for method ensureCapacity.

lock = this

naddElement nensureCapacity

L = {l2}

lock = thislock = this
level = l2level = l2

n3n2
n1

ndeposit

L = {l2}

level = l1

L = {l1}

Fig. 4. Static lock graph GL for program in Figure 3

Theorem 1. The algorithm above produces a correct typing for a program if the
program is typable in the basic deadlock type system of [BLR02].

The proof for the theorem above is available in the companion technical report
[AWS05].

5 Deadlock-Free Extended Parameterized Atomic Java

This section describes how to add basic deadlock types [BLR02], discussed in
Section 3, to Extended Parameterized Atomic Java (EPAJ) [SAWS05], our type
system that ensures absence of races and atomicity violations. The resulting
type system, Deadlock-Free Extended Parameterized Atomic Java (DEPAJ),
ensures absence of deadlocks due to locks and hence provides stronger atomicity
guarantees. Atomicity types in EPAJ are adopted from Atomic Java [FQ03] and
are based on Lipton’s theory of reduction [Lip75], which requires that the code
to be reduced (i.e., shown to be atomic) cannot be involved in a deadlock. EPAJ
and Atomic Java do not consider whether the code can be involved in deadlocks.
By adding deadlock types [BLR02] to EPAJ, the resulting type system provides

202 R. Agarwal, L. Wang, and S.D. Stoller

stronger atomicity guarantees. Adding the deadlock types proposed in [BLR02]
to EPAJ is straightforward. For brevity, we do not describe atomicity types here,
since they are not changed by the addition of deadlock types, although they get
a stronger semantics.

EPAJ extends PRFJ to allow each field to have a different guard. Because
ownership in EPAJ is per field, not per object (as in PRFJ), PRFJ’s notion
of rootowner is not well-defined, so we discard it and compensate by allowing
formal owner parameters in accesses clauses, which are called requires clauses
in RFJ [FF00] and EPAJ. To make this work, every formal owner parameter f
is qualified with a final expression e that indicates the object that f refers to
when f is instantiated with self. A guarded by clause on a field contains a lock
expression, which is either a final expression or f$e where e is a final expression
and f is the first formal owner parameter in the type of e. A guarded by clause
cannot contain a special owner (explained in Section 3) explicitly, but the formal
owner parameter in it may be instantiated with a special owner, providing the
same effect. PRFJ allows synchronization only on objects with owner self,
because only those objects can be roots of ownership trees. In contrast, EPAJ
eliminates the concept of root owner and consequently allows synchronization
on objects with any owner. Therefore, in DEPAJ, a lock level is associated with
each final expression used in a synchronized statement. This has the side-effect
of allowing different lock levels for different instances of a class in some cases,
even in the basic (non-polymorphic) deadlock type system.

The type inference algorithm in Section 4 easily carries over to infer deadlock
types in DEPAJ.

6 Focusing Run-Time Checks for Deadlock Detection

Deadlock types enforce a conservative strategy for preventing deadlocks. There-
fore, there are deadlock-free programs not typable in this type system. For ex-
ample, programs which have cycles in the static lock level ordering are untypable
even though they may be deadlock-free. An example appears below. The type
system also requires all elements of a Collection class to have the same lock level.
This may be too restrictive and can lead to untypable programs even though
the programs are deadlock-free. For such programs, information gathered from
the type system can be used to focus run-time checking, i.e., run-time checking
can safely be omitted for parts of the program guaranteed to be deadlock-free
by the type system.

To focus the generalized version of the GoodLock algorithm that does not
handle gate locks, we find all the cycles of the form l1 > l2... > l1 among lock level
orderings produced by the deadlock type inference algorithm. We instrument
only lock acquires and releases of expressions whose lock level is part of a cycle.
Other synchronized expressions do not need to be instrumented. This leads to
fewer intercepted events and smaller lock trees that need to be analyzed. It is easy
to determine which lock levels are part of cycles. Construct a graph G = (V, E),
where each lock level is a node in V and there is an edge from l to l′ if the

Detecting Potential Deadlocks 203

inferred typing declares l > l′. A simple depth first search can find all nodes
that are part of some cycle.

As an example, we consider a modified version of the elevator program, devel-
oped at ETH Zürich and used as a benchmark in [vPG01]. elevator is a simple
discrete-event simulation of people going up and down in elevators; we extended
it to model the people explicitly as objects. The instances of Person are initially
stored in a static Vector field people in the main Elevator class. When some of
them make a request to go up or down they are moved from Elevator.people
to the upPeople or downPeople vector of the appropriate instance of Floor. An
instance of Lift services the request by acquiring the lock on the instance of
Floor where the requester(s) are waiting, updating the status flags of the floor,
and then moving people from the upPeople or downPeople field of the floor to
the appropriate peopleFor vector in the Lift instance based on their destina-
tion floor. On reaching the destination floor, the lift moves the people in the
corresponding peopleFor vector back to the Elevator.people vector. All the
moves between vectors are done using the addAll method of the Vector class.
v1.addAll(v2) adds each object in v2 to v1. v1.addAll(v2) acquires the lock
on v2 while holding the lock on v1. The modified elevator program is deadlock-
free, but not typable with [BLR02]’s basic deadlock types. This is because every
Vector class is self-synchronized with some lock level, say l. However, the lock
level orderings required by the typing rules as a result of the calls to addAll
together create a cycle in the lock ordering. The program is not typable even in
the full polymorphic version of the type system, for essentially the same reason.
If the vectors in Elevator.people, Lift.peopleFor, and Floor.upPeople are
assigned different lock levels l1, l2 and l3 in the polymorphic type system, then
the orderings l1 > l2 > l3 > l1 are required. This cycle makes the program unty-
pable. Different instances of Lift are started in a loop, so it is not possible even
in the polymorphic type system to assign different lock levels to the peopleFor
field of different instances of Lift.

Our type inference algorithm infers orderings of the form l > l, where l is the
lock level assigned to the self synchronized Vector class. Other locks, including
locks on instances of Floor and Lift, are not involved in the cycle. So, we focus
run-time checks by intercepting lock acquires and releases only on instances of
Vector.

To focus the generalized version of the GoodLock algorithm that handles
gate locks, we find all the cycles among lock level orderings produced by the type
inference algorithm as discussed above. All lock levels that are comparable to lock
levels involved in a cycle in the ordering of lock levels need to be instrumented
(not just the lock levels involved in a cycle).

7 Experience

To evaluate our technique, we manually ran the inference algorithm on the five
multi-threaded server programs used in [BR01]. The programs are small, ranging
from about 100 to 600 lines of code, and totaling approximately 1600 LOC.

204 R. Agarwal, L. Wang, and S.D. Stoller

Our type inference algorithm successfully inferred complete and correct typ-
ings for all five server programs. We compared the inferred typings to Boyapati’s
manually inserted type annotations. In his code, ChatServer contains 12 dead-
lock annotations, GameServer contains 8 deadlock annotations, HTTPServer
contains 2 deadlock annotations, and QuoteServer and PhoneServer contain
none. Thus, approximately 1600 LOC required 22 deadlock annotations; that’s
approximately 15 annots/KLOC. Our type inference algorithm eliminates the
need for the user to write all of those annotations.

Since these programs are guaranteed deadlock free using the types, the need
for run-time checking for potential deadlocks is completely eliminated for these
programs.

Table 1. The run times of dynamic deadlock detection for modified elevator example

3 threads 7 threads 15 threads 30 threads 60 threads
Base time 0.23s 0.30s 0.52s 2.60s 6.60s

Full Size 621 1037 1848 3359 5734
Unopt 0.76s 0.94s 14.93s 1m23.08s 3m42.9s
Opt 1.10s 1.66s 17.32s 1m28.05s 4m3.0s

Focused Size 433 646 1063 1824 2947
Unopt 0.40s 0.53s 11.71s 34.91s 1m22.66s
Opt 0.51s 0.72s 12.40s 36.35s 1m28.28s

We implemented the unoptimized and optimized generalized Goodlock algo-
rithms without gate locks described in Section 2 and used them to analyze the
modified elevator program described in Section 6. The experiments were per-
formed on a Sun Blade 1500 with a 1GHz UltraSPARC III CPU, 2GB RAM,
and JDK 5.0. Table 1 shows the running times for the elevator program with
3,7,15, 30 and 60 Lift threads. The “Base time” row gives the execution time
of the original program without any instrumentation. The “Full” and “Focused”
rows give the execution results of the program augmented with full and focused
run-time checking, respectively. For “Full” and “Focused” rows, sub rows “Size”,
“Unopt” and “Opt” give the the number of nodes in all runtime lock trees, execu-
tion times of the unoptimized algorithm, and optimized algorithm respectively.
As discussed in Section 6, focused run-time checking in this example intercepts
lock acquires and releases only on instances of Vector. The results demonstrate
that the focused analysis significantly decreases the run-time overhead of dead-
lock checking and the size of runtime lock trees. Let Ofull = Full − Base denote
the overhead of full checking, and Ofoc = Focused−Base denote the overhead of
focused checking. The average speedup (i.e., fractional reduction in overhead) is
(Ofull − Ofoc)/Ofull, which is 55.8% for the unoptimized algorithm, and 58.4%
for the optimized algorithm. The average size of the runtime lock trees is reduced
by 41%. Surprisingly, the optimized algorithm runs slower than the unoptimized
algorithm, although its asymptotic worst-case time complexity is better. The
main reason is that the optimized algorithm uses more complicated data struc-
tures, and for elevator example, where the the run-time lock graph is relatively

Detecting Potential Deadlocks 205

simple, the benefit of caching explored paths falls short of the overhead of data
structure maintenance.

8 Related Work

Techniques for run-time detection of deadlocks include the GoodLock algorithm
[Hav00], a run-time analysis implemented in Compaq’s Visual Threads [Har00]
and ConTest [EFG+03]. As discussed in Section 2, the GoodLock algorithm de-
tects only potential deadlocks involving two threads. We generalize it to detect
deadlocks involving any number of threads. Bensalem and Havelund indepen-
dently generalized the GoodLock algorithm to detect such deadlocks [BH05].
They do not consider combining it with static analysis; we do. However, their
algorithm eliminates false alarms arising from cycles that contain lock acquires
and releases that cannot happen in parallel. Visual Threads can detect poten-
tial for deadlocks [Har00], but it is not clear what algorithm is used. ConTest
[EFG+03] detects actual deadlocks, not potential deadlocks, and therefore may
miss some potential deadlocks; on the other hand, ConTest’s scheduling per-
turbation heuristics make potential deadlocks of all kinds (including deadlocks
due to condition synchronization) more likely to manifest themselves as actual
deadlocks during testing with ConTest, compared to testing without ConTest. A
recent extension to ConTest implements a run-time deadlock checking algorithm
that combines information obtained from multiple executions of the program
[FNBU]. That technique is compatible with our work, and it would be useful
to combine them. ConTest does not use static analysis to optimize run-time
checking.

Hatcliff et al. [HRD04] verify atomicity specifications using model checking.
Their approach is more accurate than type-based analysis of atomicity: it does
not produce false alarms, and it fully enforces the condition that deadlock must
not occur within an atomic block. Hatcliff et al. point out that previous type sys-
tems for atomicity do not enforce this condition. DEPAJ takes a step towards
addressing this, by ensuring that lock-induced deadlocks do not occur within
atomic blocks. Since their approach is based on model checking, it is computa-
tionally expensive and hence practical only for relatively small programs.

Engler et al. [EA03], von Praun [vP04], and Williams et al. [WTE05]
developed inter-procedural static analyses that detect potential deadlocks in
programs. These static analyses are also based on checking whether locks are
acquired in a consistent order by all threads. These static analyses are more
sophisticated and more accurate than basic deadlock types but still produce
numerous false alarms (Engler et al. and Williams et al. partially address this
problem by using heuristics to rank or suppress warnings that seem more likely
to be false alarms), so it would be useful to use them in conjunction with
run-time checking, which generally produces fewer false alarms. Specifically,
although these papers do not consider run-time checking, the results of their
analyses could be used instead of deadlock types in our technique for focused
run-time detection of potential deadlocks.

206 R. Agarwal, L. Wang, and S.D. Stoller

The idea of using static analysis to optimize run-time checking has been ap-
plied to detection of races [vPG01, CLL+02, ASWS05] and atomicity violations
[SAWS05, ASWS05] but not to detection of potential deadlocks, to the best of
our knowledge.

References

[AS04] Rahul Agarwal and Scott D. Stoller. Type inference for parameterized
race-free Java. In Proceedings of the Fifth International Conference on
Verification, Model Checking and Abstract Interpretation, volume 2937 of
Lecture Notes in Computer Science, pages 149–160. Springer-Verlag, Jan-
uary 2004.

[ASS04] Rahul Agarwal, Amit Sasturkar, and Scott D. Stoller. Type discovery
for parameterized race-free Java. Technical Report DAR-04-16, Computer
Science Department, SUNY at Stony Brook, September 2004.

[ASWS05] Rahul Agarwal, Amit Sasturkar, Liqiang Wang, and Scott D. Stoller.
Optimized run-time race detection and atomicity checking using partial
discovered types. In Proc. 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM Press, November 2005.

[AWS05] Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. Detecting
potential deadlocks with static analysis and runtime monitoring.
Technical Report DAR-05-25, Computer Science Department,
SUNY at Stony Brook, September 2005. Available at http://
www.cs.sunysb.edu/˜ragarwal/deadlock/.

[BH05] Saddek Bensalem and Klaus Havelund. Scalable deadlock analysis of multi-
threaded programs. In Proceedings of the Parallel and Distributed Systems:
Testing and Debugging (PADTAD) Track of the 2005 IBM Verification
Conference. Springer-Verlag, November 2005.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In Proc.
17th ACM Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 211–230, November 2002.

[BR01] Chandrasekar Boyapati and Martin C. Rinard. A parameterized type sys-
tem for race-free Java programs. In Proc. 16th ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA),
volume 36(11) of SIGPLAN Notices, pages 56–69. ACM Press, 2001.

[CLL+02] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek
Sarkar, and Manu Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Proc. ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), pages
258–269. ACM Press, 2002.

[EA03] Dawson R. Engler and Ken Ashcraft. RacerX: Effective, static detection of
race conditions and deadlocks. In Proc. 24th ACM Symposium on Operating
System Principles, pages 237–252. ACM Press, October 2003.

[EFG+03] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby,
and Shmuel Ur. Framework for testing multi-threaded Java programs.
Concurrency and Computation: Practice and Experience, 15(3-5):485–499,
2003.

Detecting Potential Deadlocks 207

[FF00] Cormac Flanagan and Stephen Freund. Type-based race detection for Java.
In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 219–232. ACM Press, 2000.

[FF04] Cormac Flanagan and Stephen Freund. Type inference against races. In
Proc. 11th International Static Analysis Symposium (SAS), volume 3148
of Lecture Notes in Computer Science. Springer-Verlag, August 2004.

[FNBU] Eitan Farchi, Yarden Nir-Buchbinder, and Shmuel Ur. Cross-run lock dis-
cipline checker for java. Tool proposal for IBM Verification Conference
2005.

[FQ03] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity.
In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 338–349. ACM Press, 2003.

[Har00] Jerry J. Harrow. Runtime checking of multithreaded applications with
Visual Threads. In Proc. 7th Int’l. SPIN Workshop on Model Checking of
Software, volume 1885 of Lecture Notes in Computer Science, pages 331–
342. Springer-Verlag, August 2000.

[Hav00] Klaus Havelund. Using runtime analysis to guide model checking of java
programs. In Proc. 7th Int’l. SPIN Workshop on Model Checking of Soft-
ware, volume 1885 of Lecture Notes in Computer Science, pages 245–264.
Springer-Verlag, August 2000.

[HRD04] John Hatcliff, Robby, and Matthew B. Dwyer. Verifying atomicity speci-
fications for concurrent object-oriented software using model checking. In
Proceedings of the Fifth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI 2004), Lecture Notes in
Computer Science. Springer-Verlag, 2004.

[Lip75] Richard J. Lipton. Reduction: A method of proving properties of parallel
programs. Communications of the ACM, 18(12):717–721, 1975.

[SAWS05] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. Au-
tomated type-based analysis of data races and atomicity. In Proc. ACM
SIGPLAN 2005 Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP). ACM Press, June 2005.

[vP04] Christoph von Praun. Detecting Synchronization Defects in Multi-Threaded
Object-Oriented Programs. PhD thesis, ETH Zürich, 2004.

[vPG01] Christoph von Praun and Thomas R. Gross. Object race detection. In
Proc. 16th ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), volume 36(11) of SIGPLAN No-
tices, pages 70–82. ACM Press, October 2001.

[WTE05] Amy Williams, William Thies, and Michael D. Ernst. Static deadlock
detection for Java libraries. In Proc. 2005 European Conference on Object-
Oriented Programming (ECOOP), Lecture Notes in Computer Science.
Springer-Verlag, July 2005.

	Introduction
	Run-Time Detection of Potential Deadlocks
	Deadlock Types
	Static Type Inference for Deadlock Types
	Deadlock-Free Extended Parameterized Atomic Java
	Focusing Run-Time Checks for Deadlock Detection
	Experience
	Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

