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This dissertation describes runtime, static, and hybrid analyses to detect synchronization

errors in multi-threaded programs. Three kinds of synchronization errors are considered:

deadlocks, data races, and atomicity violations. Deadlocks and data races are well-known

and have been studied for a long time. Atomicity violation is not as well-known and deeply

studied. This dissertation focuses on detecting atomicity violations.

Atomicity is a correctness condition for concurrent systems. Informally, atomicity is the

property that every concurrent execution of a set of transactions is equivalent to some serial

execution of the same transactions. In multi-threaded programs, executions of procedures

(or methods) can be regarded as transactions. Correctness in the presence of concurrency

typically requires atomicity of these transactions. Tools that automatically detect atomicity

violations can uncover subtle errors that are hard to find with traditional debugging and

testing techniques. Furthermore, an atomic code block can be treated as a single transition

during subsequent analysis of the program; this can greatly improve the efficiency of the

subsequent analysis.

This dissertation describes three algorithms for runtime detection of atomicity viola-

tions and compares their cost and effectiveness. The reduction-based algorithm checks

atomicity based on commutativity properties of events in a trace. The block-based algo-

rithm efficiently represents the relevant information about a trace as a set of blocks (i.e.,

iii



pairs of events plus associated synchronization), and checks atomicity by comparing each

block with other blocks. The commit-node algorithm organizes the events in each transac-

tion into a tree, then detects atomicity violations by analyzing relationships between nodes

in different trees.

We evaluated the algorithms on several benchmarks totaling 36 KLOC. Many synchro-

nization errors were revealed, including some previously unknown errors in Sun’s imple-

mentation of the Java standard library. The block-based algorithm is most accurate; the

reduction-based algorithm is the least accurate; the commit-node algorithm is less accu-

rate than the block-based algorithm in theory, but they have the same accuracy in practice.

In practice, the commit-node algorithm is as fast as the reduction-based algorithm, and

significantly faster than the block-based algorithm.

This dissertation also presents an automated static analysis of atomicity for programs

that use non-blocking synchronization. The analysis determines commutativity of oper-

ations based primarily on how synchronization primitives (including locks, load-linked,

store-conditional, and compare-and-swap) are used. A reduction theorem states that cer-

tain patterns of commutativity imply atomicity. We successfully applied the analysis to

several well-known non-blocking algorithms that cannot be automatically analyzed using

previous approaches.

We also developed more accurate and efficient runtime algorithms for detecting dead-

locks and data races in multi-threaded programs.

We explored the use of static analysis to significantly decrease the overhead of runtime

checking for synchronization errors. The analysis results of the type systems are used to

identify parts of the program from which runtime checking can safely be omitted.
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Chapter 1

Introduction

Multi-threading is an increasingly common programming technique. At the hardware
level, multi-core processors (also called chip-level multi-threading) are increasingly used
to improve performance. At the system level, most operating systems and middlewares are
multi-threaded and support multi-threaded applications for efficient and convenient shar-
ing of resources. At the application level, more and more programs (e.g., web servers and
browsers) are multi-threaded for the same reasons. However, developing multi-threaded
programs is difficult. Concurrency introduces the possibility of errors that do not exist in
sequential programs. Furthermore, multi-threaded programs may behave differently from
one run to another, because threads are scheduled indeterminately. For most systems, the
number of possible schedules is enormous, and testing the system’s behavior for each possi-
ble schedule is infeasible. Specialized techniques are needed to ensure that multi-threaded
programs do not have concurrency-related errors.

1.1 Synchronization Errors

In concurrent or parallel programming,synchronizationmeans the coordination of si-
multaneous threads (or processes) in order to get correct runtime order of events and avoid
unexpected concurrency-related errors.

This dissertation mainly considers Java synchronization mechanism [22]. Java synchro-
nization is implemented using monitors. Each object in Java is associated with a monitor.
A synchronized method or synchronized block automatically performs a lock action before
its body executes and an unlock action after its body has completed. Java offers two proce-
dureswait andnotify that may be called in synchronized methods or blocks. Since this
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dissertation focuses on analyzing atomicity violations,wait andnotify are not consid-
ered, because we believe thatwait andnotify are rarely used to achieve atomicity. This
dissertation assumes sequential consistency as the memory model.

We consider three common synchronization errors: deadlocks, data races and atomicity
violations. Deadlocks and data races are well-known and have been studied for a long
time. Numerous static and runtime (dynamic) analysis techniques are designed to ensure
that concurrent programs are free of deadlocks and data races [14, 7, 6, 44, 9]. Atomicity
violation is not as well-known and deeply studied. This dissertation focuses on detecting
atomicity violations, but also considers the other two.

1.1.1 Deadlock

A deadlockoccurs when all threads are blocked, each waiting for some action by one of
the other threads. Dependences among threads and resources can be modeled by a resource
allocation graph, where nodes denote threads and exclusive resources, and edges denote
allocation or wait-for relations between threads and resources. A common approach to
detect deadlock is to check whether the resource allocation graph contains a cycle [46].

A program haspotential for deadlockif some executions of the program ends in dead-
lock, but deadlock does not necessarily occur in every execution. We describe and evaluate
a dynamic technique and a static technique to detect potential for deadlocks in Chapter 9.

1.1.2 Data Race

Two accesses to shared variablesconflict if they access the same variable and at least
one of them is a write. Following [44], adata raceoccurs when multiple concurrent threads
perform conflicting accesses and the threads use no explicit mechanism to prevent the ac-
cesses from being simultaneous. Similar to potential for deadlock, a program haspotential
for data raceif data race occurs in some executions of the program.

There are two common approaches to detect potential for data races. One approach is
lockset-based detection, where a potential data race is reported when two or more threads
access the same shared variable without holding a common lock [44]. The other approach is
based on happen-before analysis, where a potential for data race is deemed to have occurred
when two or more threads access the same shared variable, and the accesses are causally
unordered [45]. We describe a new lock-based algorithm that also considers some happen-
before relations in Section 4.5.

1.1.3 Violation of Atomicity

Even if a program does not have any potential for deadlock or data races, it may still
contain synchronization errors. Consider the implementation ofVector in Sun JDK 1.4.2,
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public class Vector extends ... implements ... {
public Vector(Collection c) {
// c is v1, elementCount is the field of v2.

1 elementCount = c.size();
2 elementData = new Object[(int)Math.min((elementCount * 110L)/100

Integer.MAX_VALUE)];
3 c.toArray(elementData);

}
public synchronized int size() { return elementCount; }
public synchronized Object[] toArray(Object a[]) {

if (a.length < elementCount)
/ * i.e. v2.length < v1.elementCount,

this branch will be taken if v1.add is executed. * /
a=(Object[])java.lang.reflect.Array.newInstance(

a.getClass().getComponentType(), elementCount);
System.arraycopy(elementData,0,a,0,elementCount);
if (a.length > elementCount)

a[elementCount] = null;
return a;

}
public synchronized void removeAllElements() {...}
public synchronized boolean add(Object o) {...}

}

thread_1 Vector v2 = new Vector(v1);
thread_2 v1.removeAllElements(); or v1.add(o);

Figure 1.1: An example showing that the constructor ofjava.util.Vector in Sun
JDK 1.4.2 violates atomicity.

part of which appears in Figure 1.1. Consider the following execution of the program at
the bottom of Figure 1.1:thread 1 constructs a new vectorv2 from another vector
v1 with k elements by calling the constructor forVector . But before the constructor
completes,thread 1 yields execution tothread 2 immediately after statement 1 in
the Vector constructor. thread 2 removes all elements ofv1 , and thenthread 1
resumes execution at statement 2. The incorrect outcome is thatv2 hask elements, all
of which arenull because theelementData array of v2 is allocated according to
the previous size ofv1 . A more subtle error occurs ifthread 2 executesv1.add(o)
instead ofv1.removeAllElements() . Then, ifk < 10, the length ofelementData
is smaller than the new size ofv1 . Although a larger array is allocated intoArray to
store the elements ofv1 , the array is not returned to the constructor ofv2 , thusv2 will
incorrectly be full ofnull elements. No exception is thrown in these scenarios. Methods
size(), toArray(Object[]), removeAllElements() andadd(Object)
are synchronized, hence there is no data race in these examples.

The incorrect behavior reflects a higher-level synchronization error, namely, lack of
atomicity. Atomicity is well known in the context of transaction processing, where it is
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sometimes calledserializability. The methods of concurrent programs are often intended
to be atomic. A set of methods isatomic if concurrent invocations of the methods are al-
ways equivalent to performing the invocations serially (i.e., without interleaving) in some
order. The first scenario of the example in Figure 1.1 contains two invocations, one of
Vector(Collection) and one ofremoveAllElements() , which obviously do
not have an equivalent serial execution. Therefore, these methods violate atomicity. Simi-
larly, the second scenario also shows a violation of atomicity.

We designed, implemented, and evaluated several runtime, static, and hybrid ap-
proaches for detecting atomicity violations. They are described in Chapters 4, 5 6, 7, 8,
and 9.

1.2 Contributions

The main contributions of this dissertation are thorough analyses for detecting potential
atomicity violations, data races and deadlocks. This dissertation focuses on analysis of Java
programs, but the techniques can be applied to other languages, too.

• Conflict-atomicity and view-atomicity.

We define two notions of atomicity. They correspond to the classic database no-
tions of conflict-serializability and view-serializability. The idea is to consider all
permutations of the observed execution that are consistent with the synchronization
events, and to check whether every such permutation is conflict-equivalent or view-
equivalent, respectively, to a serial execution.

We explore the theory of this problem by considering its time complexity. It is well-
known that checking conflict-serializability and view-serializability of a history for
database transactions are in polynomial time [5] and NP-complete [38] problems,
respectively. Surprisingly, we show that the situation is different for atomicity: the
problems of checking conflict-atomicity and view-atomicity for the transactions in
an execution of a program are polynomially reducible to each other. The proof is
presented in Appendix A. We speculate that both problems are NP-complete; proving
this is an open problem.

• Runtime algorithms for detecting potential atomicity violations.

Runtime analysis reasons over program executions. It is less powerful than static
analysis which reasons over programs without actually executing them, because the
runtime analysis cannot ensure correctness of all unexplored behaviors of the sys-
tem, but may be more precise (i.e., give fewer false alarms) for the explored behav-
iors. Furthermore, runtime analysis does not require annotations of the code that are
often required by static analysis (e.g., type systems); this is a significant practical
advantage.
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Figure 1.2: The architecture of our runtime analysis.

The architecture of our runtime analysis is shown in Figure 1.2. For a program to
be checked, at first, it is instrumented by a modified compiler; then the transformed
program is executed and a trace of observed events is preserved, some support anal-
yses, such as dynamic escaped and happen-before analyses discussed in Chapter 3,
are used to reduce the number of events to be saved and determine occurrence orders
between events, respectively; at last, the observed trace is analyzed and a result is
reported.

We designed three main algorithms for runtime detecting potential atomicity viola-
tions. They are discussed in Chapters 4, 5, and 6, respectively. The reduction-based
algorithm is based on Lipton’s reduction theorem [31]. It determines whether there
is a data race on each variable and uses this information to determine commutativity
of events, then checks whether the pattern of commutativity matches a pattern that
implies atomicity. The block-based algorithm constructs blocks (i.e., pairs of events
plus associated synchronization) from an observed execution, and then compares all
pairs of blocks with atomicity violations patterns. The commit-node algorithm orga-
nizes the events in each transaction into a tree, then detects atomicity violations by
analyzing relationships between nodes in different trees.

Our algorithms do not merely look for violations of atomicity in the observed execu-
tion, but also attempt to determine whether the non-determinism of thread scheduling
could allow violations in other executions. We implemented the three algorithms.
Experiments of Chapter 7 show that they can successfully find subtle errors.

Our algorithms rely on defaults or information from the user to determine which
execution fragments should be considered as transactions. Such user input would
typically be provided by annotating some code blocks as expected to be atomic, and
considering executions of those code blocks as transactions. In either case, our algo-
rithms can automatically check atomicity of the indicated transactions. In contrast,
atomicity type systems may require additional help (in the form of type annotations)
from the user to determine whether specified code blocks are atomic. Of course, the
defaults, whatever they are, will sometimes not capture the user’s intentions accu-
rately, so input from the user is desirable but not always available in practice.
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• Static analysis of atomicity for non-blocking algorithms.

Non-blocking (sometimes called lock-free) synchronization is becoming increas-
ingly popular because it offers better performance, immunity to deadlock, and other
advantages. Non-blocking synchronization primitives, such as Compare-and-Swap
and Load-Linked/Store-Conditional, are supported by common processor architec-
tures, such as Intel, Sun SPARC, PowerPC, and MIPS. Lock-based algorithms rely
on mutual exclusion, while non-blocking algorithms instead adopt an optimistic ap-
proach that detects conflicts and redoes the computation when conflicts occur. Con-
current programming with locks is already difficult; non-blocking synchronization is
significantly more difficult to use correctly.

Chapter 8 presents a static analysis to determine atomicity of code blocks in programs
that use non-blocking synchronization. Static analysis reasons over programs’ source
code without actually executing programs. Static analysis is often considered as a
fundamental tool for analyzing and verifying programs and systems. There are many
techniques for static analysis, such as data flow analysis, type and effect systems
[36], and abstract interpretation [10]. Our static analysis is based on a type system
for atomicity. We successfully applied the static analysis to several well-known non-
blocking algorithms. This is the first automated and effective atomicity analysis for
those algorithms.

• Runtime approaches for detecting potential data races and potential deadlocks.

Runtime detection of data races is a classic problem. It is needed for some of our
atomicity checking algorithms. Chapter 4 presents a new race detection algorithm,
called themulti-lockset algorithm, that imposes slightly more overhead than the well-
known lockset algorithm [44] and is more accurate (fewer false alarms and fewer
missed races).

Chapter 9 describes an algorithm that analyzes the synchronization in a monitored
execution to detectpotentialdeadlocks, even if deadlocks do not occur in the ob-
served executions.

• Hybrid analysis.

Dynamic analysis often incurs significant overhead. We investigated the use of static
analysis to automatically and significantly reduce the overhead of runtime checking.
The integration of static and dynamic analyses is calledhybrid analysis. We success-
fully applied this strategy to runtime detection of atomicity violations, data races,
and deadlocks. For example, for the reduction-based atomicity checking algorithm,
static analysis reduced the overhead by a factor of 10-20 in our experiments. Our
work on hybrid analysis is described in Chapter 9.



1. INTRODUCTION 7

Chapter 9

Algorithm

Chapter 5

Block−based

Algorithm
Commit−Node

Chapter 6

Algorithm

Chapter 4

Reduction−based

Chapter 7
Experiments

Chapter 3

Supporting
Analysis

Hybrid Analysis

Static Analysis

Terminology

Chapter 2

Introduction

Chapter 1

Chapter 8

Figure 1.3: Chapter dependences.

1.3 Organization

This dissertation is organized as follows. Chapter 2 defines essential terms. Chapter 3
presents a dynamic escape analysis and a happen-before analysis that support the following
runtime analyses for atomicity violations, data races, and deadlocks. Chapters 4, 5, and 6
describe the reduction-based, block-based, and commit-node runtime algorithms, respec-
tively, for detecting atomicity violations. Chapter 7 summarizes the experiments with these
three algorithms and related work. Chapter 8 presents a static analysis of atomicity for
non-blocking algorithms.

The dependences between chapters are outlined in Figure 1.3.
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Chapter 2

Terminology

This chapter defines the essential terms used in this dissertation. Figure 2.1 shows a
class for bank account, which is used to illustrate some of the definitions.

Event. Informally, aneventis one step in an execution of a program. This dissertation
considers the following operations as events: read and write escaped (i.e., accessible to
multiple threads) variables; acquire and release locks∗; start and join threads; start and
exit invocations of methods; and the barrier synchronization operation discussed in Section
3.2. For example,synchronized (l) {body} in Java indicates two events (in addition
to the events performed by the body): acquiring lockl at the entry point and releasing
it at the exit point. Two distinct accesses (even using the same operation) to a variable
are different events. Letheld(e) denote the locks held by the thread executing evente

∗This dissertation considers only the structured locking usingsynchronized ; the unstructured locking
introduced in JDK 5 is ignored.

class Account{
private int bal;

private synchronized int getBalance() {return bal;}
private synchronized void setBalance(int value) {bal = value;}
public void deposit(int value){

int tmpBal = getBalance();
tmpBal += value;
setBalance(tmpBal);

}
}

Figure 2.1: An example of bank account.
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whene is executed. Letvar(e) denote the variable on which evente operates. Here, a
variable means a storage location,e.g., a field of an object. Two read or write operations
conflict if they act on the same variable and at least one operation is a write. For the ex-
ample in Figure 2.1, letl denote the lock acquired and released by methodsgetBalance
andsetBalance . The execution of methoddeposit contains the following events:
acq(l); R(bal); rel(l); acq(l); W (bal); rel(l). Here,held(R(bal)) andheld(W (bal)) equal
to {l}.

Unit and Transaction. A unit is a sequence of consecutive events executed by a single
thread. Atransactionis a unit expected to behave atomically. Executions of the following
code fragments are considered as transactions by default in this dissertation: non-private
methods, synchronized private methods, and synchronized blocks inside non-synchronized
private methods; as exceptions, executions of themain() method in which the program
starts and executions ofrun() methods of classes that implementRunnable are not con-
sidered as transactions, because these executions represent the entire executions of threads
and are often not expected to be atomic. Note that for nested transactions, we check atom-
icity of only the outermost transactions, since they contain the inner transactions. For
the example in Figure 2.1, the executions of methodsgetBalance , setBalance , and
deposit are treated as transactions. But when checking atomicity, only the executions
of methodsgetBalance are checked because they contain the executions of the other
two methods. Moreover, start, join and barrier operations are treated as unit boundaries,
i.e., they separate the preceding events and following events into different units, and are not
contained in any unit. We adopt this heuristic because execution fragments containing these
operations are typically not atomic and hence are not expected to be transactions. Events
(other than start, join, and barrier operations) not in transactions form non-transactional
units.

Trace. A tracetr is a sequence of events. Given〈T, E〉, whereT is a set of transactions,
andE is a set of non-transactional units,a trace of〈T,E〉 is an interleaving of events from
units inT ∪E that is consistent with the original order of events from each thread and with
the synchronization events (e.g., no lock is held by multiple threads at the same time). A
trace of〈T, E〉must contain all events from units inT∪E unless the trace ends in deadlock.
We assume thatE contains no synchronization; this assumption is satisfied if synchronized
blocks are considered to be transactions.

Initial Read and Final Write. Let er
x andew

x denote a read event and a write event to
variablex, respectively.ew

x is thewrite-predecessorof er
x in a tracetr if ew

x is the last write
to x that precedeser

x in tr. er
x is called aunit-initial read if er

x does not have any write-
predecessor in its own unit in all traces.er

x is called atrace-initial readin tracetr if er
x is

not preceded by a write tox in tr. Its write-predecessor is defined to be an imaginary write
eventeinit

x at the beginning of the trace. A write eventew
x is called aunit-final write if it is
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the last write tox in its unit; a write eventew
x is called atrace-final writein a trace if it is

the last write tox in the trace.

Conflict-Equivalence. Two tracestr1 and tr2 for 〈T, E〉 are conflict-equivalentiff ( i)
they contain the same events, and (ii ) for each pair of conflicting events, the two events
appear in the same order in both traces. This corresponds to conflict equivalence in trans-
action processing in database systems [5]. SupposeT consists of two executions of method
deposit by two different threadst1 andt2, i.e.,

T = {〈acqt1(l); Rt1(bal); relt1(l); acqt1(l); Wt1(bal); relt1(l)〉,
〈acqt2(l); Rt2(bal); relt2(l); acqt2(l); Wt2(bal); relt2(l)〉} (2.1)

tr1 andtr2 are shown below.tr1 andtr2 are not conflict-equivalent because the order
of Wt1(bal) andRt2(bal) is different intr1 andtr2.

tr1 : acqt1(l); Rt1(bal); relt1(l);
acqt1(l); Wt1(bal); relt1(l);
acqt2(l); Rt2(bal); relt2(l);
acqt2(l); Wt2(bal); relt2(l);

tr2 : acqt1(l); Rt1(bal); relt1(l);
acqt2(l); Rt2(bal); relt2(l);
acqt2(l); Wt2(bal); relt2(l);
acqt1(l); Wt1(bal); relt1(l)

(2.2)

View-Equivalence. Two tracestr1 andtr2 for 〈T,E〉 areview-equivalentiff ( i) they con-
tain the same events, (ii ) each read event has the same write-predecessor in both traces, and
(iii ) each variable has the same trace-final write event in both traces. This corresponds to
view equivalence in transaction processing [5]. It is easy to show that conflict-equivalence
implies view-equivalence [5], and that the converse does not hold. For tracestr1 and
tr2 shown above,tr1 and tr2 are not view-equivalent because the write-predecessor for
Rt2(bal) is Wt1(bal) and the initial value intr1 andtr2, respectively.

Conflict-Serializability and View-Serializability. A trace of 〈T, E〉 is serial if the
events of each transaction inT form a contiguous subsequence of the trace. Note that
the events in non-transactional units inE are not required to be contiguous. A trace of
〈T, E〉 is conflict-serializableif it is conflict-equivalent to some serial trace of〈T,E〉. A
trace of〈T, E〉 is view-serializableif it is view-equivalent to some serial trace of〈T, E〉.
Conflict-serializability of a tracetr for 〈T, E〉 can be decided in polynomial time [5]. Let
g be theserialization graphfor tr, which is a directed graph whose nodes are the units of
T ∪ E, and which contains an edge from nodeti to nodetj if i 6= j and some event ofti
precedes a conflicting event oftj in tr. tr is conflict-serializable iffg does not contain any
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cycle containing two or more transactions. In contrast, checking view serializability of a
trace is NP-complete [38].

Conflict-Atomicity and View-Atomicity. 〈T, E〉 is conflict-atomic if every trace of
〈T, E〉 is conflict-serializable. 〈T, E〉 is view-atomicif every trace of〈T, E〉 is view-
serializable. It is easy to show that conflict-atomicity implies view-atomicity, but the con-
verse does not hold. As an example, consider〈{t1, t2}, ∅〉, wheret1 is 〈W1(x); W2(x)〉, and
t2 is 〈W (x)〉. Whent2.W (x) happens betweent1.W1(x) andt1.W2(x), the trace does not
have any conflict-equivalent serial trace, hence〈{t1, t2}, ∅〉 is not conflict-atomic; but the
trace is view-equivalent to a serial trace〈t2.W (x); t1.W1(x); t1.W2(x)〉, and all the other
possible traces are serial, hence〈{t1, t2}, ∅〉 is view-atomic.

Potential for Deadlock. 〈T,E〉 haspotential for deadlockif some trace of〈T, E〉 ends in
deadlock. A trace that ends in deadlock with some thread in the middle of a transaction is
not equivalent to any serial trace. Therefore, our atomicity checking algorithms assume that
〈T, E〉 has no potential for deadlock. We detect potential for deadlock using an extension
of the goodlock algorithm [24]. Our algorithm reports a warning (of potential deadlock) if
two threads acquire two locks̀1 and`2 in different orders in concurrent thread periods (as
defined in Section 3.2) without first acquiring some other lock that prevents their attempts
to acquirè 1 and`2 from being interleaved. This algorithm is unsound because it can miss
potential for deadlocks involving three or more threads and locks, and it can miss deadlocks
due to synchronization other than locks (e.g.,wait andnotify ). The algorithm can be
extended to detect potential for deadlock involving any number of threads, as described
in Section 9.4, but this is more expensive and, we believe, generally not worthwhile in
practice.



12

Chapter 3

Supporting Analyses

This chapter summarizes runtime analyses that support the atomicity checking algo-
rithms presented in Chapters 4 - 6. Dynamic escape analysis determines when an object
escapes from its creating thread,i.e., when it becomes accessible to other threads. It pro-
vides two benefits for the atomicity checking algorithms: it improves their efficiency by
eliminating processing of accesses to unescaped variables, and improves their accuracy by
reducing false alarms. Happen-before analysis determines whether two events of different
threads are concurrent. It improves the accuracy of the atomicity checking algorithms by
eliminating some false alarms.

3.1 Dynamic Escape Analysis

This section describes how to determine when an object escapes from its creating
thread. Before an object escapes, all operations on it can be ignored when checking atom-
icity.

We say that an objecto′ refers toan objecto if o′.f == o for some fieldf of o′, or if
o′ is an array ando′[i] == o for some indexi. An objecto may escape from its creating
thread when:

• o is stored in a static field or a field of an escaped object.

• o is an instance ofThread (including its subclasses) ando.start is called. Note
that, if o was created by a constructor with aRunnable argumentr, theno refers to
r, so (by the next rule)r escapes wheno starts.

• If o′ refers too, ando′ escapes, theno escapes. This leads to cascading escape.

• o is passed as an argument to a native method that may cause it to escape.
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We implemented a dynamic escape analysis according to the above cases. To indicate
whether an object has escaped, a boolean instance fieldescaped is added to every instru-
mented class, its initial value isfalse . To detect when an object escapes, we instrument
all method calls, and all stores to static fields, instance fields, and arrays. When an object
escapes, it is marked as escaped by setting itsescaped field to true , and all objects to
which it refers are marked as escaped (and so on, recursively). The reflection mechanism
in Java is used to dynamically find all objects to which a given object refers. When an array
escapes, all of its elements are marked as escaped. Since fields cannot be added to Java’s
built-in array classes, we use a hash table that maps from an array reference to a “shadow”
object containing anescaped field for the array.

For methods whose bodies are not instrumented, specifically, all native methods and
methods of uninstrumented library classes, escape information is maintained conservatively
by marking all arguments to those methods as escaped. For some frequently used library
classes (in particular, collections and maps), we instead use hand-written wrappers that
track escape information more accurately without instrumenting the source code of the
library classes. For example, our wrapper for the native methodVector.add marks the
argument as escaped only if the target object (i.e., the vector) is escaped. Instrumenting
library code is sometimes complicated by dependencies between classes, so we instrument
library classes only when specifically testing their own atomicity in the experiments of
Chapter 7. More details about instrumentation also appear in Chapter 7.

Compared with this escape analysis, the technique in [11] is more expensive and more
precise, since our escape analysis does not consider ownership transfer. Our atomicity
checking algorithms could easily use a static escape analysis, such as [42], instead of a
dynamic one, which is generally more expensive and more precise [11].

3.2 Happen-Before Analysis

The execution of a thread is separated into differentperiodsby occurrences of synchro-
nization events. A thread periodhappens beforeanother thread period if it must end before
the other thread period starts.

Our happen-before analysis tracks only happen-before relationships induced bystart
and join on threads and by barrier synchronization. A barrier is a rendezvous point for
a specified numbern of threads. Once alln threads reach the barrier, these threads may
continue executing. Happen-before analysis can tell whether two events of different threads
are concurrent, which is essential for detecting data races and atomicity violations. More
details about its usage are described in Chapters 4.5 and 5.1. Happen-before relationships
induced bywait and notify could also be analyzed; we do not do this because we
believe thatwait andnotify are rarely used to achieve atomicity.

An identification number (ID) is assigned to each period of each thread. For an event
e, let tpID(e) denote the ID of the thread period in whiche was executed. A directed
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Figure 3.1: The happen-before graph for threadt1 andt2.

acyclic graph, calledhappen-before graph, with an edge for each ID is used to store the
temporal ordering relations between thread periods.pid1 happens beforepid2 if the edge
labeled withpid2 is reachable from the edge labeled withpid1. If two thread periodspid1

andpid2 are not related to each other by happen-before relations, then we say that they are
concurrent, denotedpid1 ‖ pid2. An event in thread periodpid1 can be concurrent with
an event from thread periodpid2 only if pid1 is concurrent withpid2. Each node of the
graph is labeled withstart , join , barrier,exit (which denotes the end of a thread or
the program), orenter (which denotes the starting point of the program). All events in
one unit (defined in Chapter 2) have the same thread period id.

When a threadt1 in periodpid1 callst2.start() to start another threadt2, we intro-
duce an IDpid′1 for the new period oft1, and an IDpid2 for the first period oft2, and we
add astart node, as shown in Figure 3.1. Note thatpid1 happens beforepid2.

When threadt1 in periodpid′1 calls t2.join() to wait for threadt2 in periodpid2 to
terminate, the ID oft1 is changed frompid′1 to pid′′1, as shown in Figure 3.1. Note thatpid1,
pid′1 andpid2 happen beforepid′′1, andpid′1 is concurrent withpid2.

When a thread reaches a barrier, the thread changes its period ID. In the happen-before
graph, we add a node for that barrier. For each participating thread, that node has an
incoming edge labeled with the old period ID of the thread, and an outgoing edge labeled
with the new period ID of the thread. For a barrier node, the thread periods on the incoming
edges happen before the thread periods on the outgoing edges.

Examining paths in the graph to determine concurrency can be slow when the graph is
large, so we cache the results of concurrency queries.

A more efficient but more complicated alternative is to use vector clocks [32], as in
[37].
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Chapter 4

Runtime Reduction-based Algorithm

4.1 Introduction

This chapter presents the reduction-based algorithm for checking conflict-atomicity
[51, 54], defined in Chapter 2. For convenience, “atomicity” is short for “conflict-
atomicity” in this chapter.

The reduction-based algorithm is an extension of our original reduction-based algo-
rithm [51] and Flanagan and Freund’s Atomizer algorithm [15]. It determines whether
there is a data race on each variable and uses this information to classify events. If the
sequence of events in each transaction matches a given pattern, then the transactions are
atomic.

The reduction-based algorithm can appliedon-line (i.e., the analysis is applied during
execution of the program, and warnings are issued based on the information observed so
far) or off-line (i.e., the analysis is applied after the program terminates, and warnings are
issued based on the entire execution).

The reduction-based algorithm is based on Lipton’s reduction theorem [31]. The idea
is to infer atomicity from commutativity properties of events.

4.2 Commutativity Properties

Following [31, 20], events are classified according to their commutativity properties.
An event is aright-moverif, whenever it appears immediately before an event of a different
thread, the two events can be swapped (i.e., they can be executed in the opposite order
without blocking) without changing the resulting state. Aleft-moveris defined similarly.
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For example, if an evente1 of threadt1 is a lock acquire, its immediate successive event
e2 from another thread can not be a successful acquire or release of the same lock, because
an acquire would block, and a release would fail (in Java, it would throw an exception).
Hencee1 ande2 can be swapped without affecting the result, soe1 is a right-mover. Lock
release events are left-movers for similar reasons.

An event is aboth-moverif it is both a left-mover and a right-mover. For example, if
there are only read events (no write) on a given variable, the read events commute in both
directions with all events, so these read events are both-movers.

Events not known to be left or right movers arenon-movers.
For Java programs, a classification of events can conveniently be obtained based on

synchronization operations. Lock acquire events are right-movers. Lock release events are
left-movers. Race-free reads and race-free writes are both-movers [20]. The thread start
and join, method enter and exit, and barrier synchronization events are used as transaction
boundaries, and are not contained in any transaction.

4.3 Basic Reduction-Based Algorithm

Given an arbitrary interleaving of all events inT , if all events of each transaction can be
moved together by repeatedly swapping left-movers with the preceding events, and right-
movers with the subsequent events, and if no trace forT ends in deadlock, thenT is atomic,
because the resulting trace is serial and equivalent to the original trace. If some transaction
t contains two or more non-movers, the non-movers could interleave with non-movers in
other transactions, preventing the events of transactiont from being moved together. If
each transactiont in T has at most one non-movere, and each event int that precedese can
be moved to the right (towardse), and each event int that followse can be moved to the left
(towardse), then all events of each transaction can be moved together. These observations
motivate the following theorem, whereR, L, andN denote right-mover, left-mover, and
non-mover, respectively.

Theorem 4.3.1.A setT of transactions is atomic ifT has no potential for deadlock, and

each transaction inT has the formR∗N ?L∗.

Proof. This is a simple variant of Lipton’s reduction theorem [31].

This theorem, together with a technique for runtime detection of data races ( such the
lockset algorithm in [44]), leads directly to an efficient runtime algorithm for checking
atomicity. But this algorithm reports false alarms in several cases. The following sections
show how to improve it.

This algorithm for runtime checking atomicity was first proposed in [51] and then [15],
and is regarded as a runtime analogue of Flanagan and Qadeer’s atomicity type system [19].
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4.4 Improvement 1: Read-only and Thread-local Vari-

ables

A variable isthread-localif it is accessed by a single thread. A variable isread-onlyif
it is never written, except for the initialization when it is allocated. Accesses to thread-local
and read-only variables are race-free and hence are both-movers [15, 23].∗ The following
theorem treats an entire synchronization block that contains only read-only or thread-local
accesses as a both-mover. This is similar but not identical to ideas in [15] and [23], which
treat thread-local and protected locks specially, as described below in Section 4.6. The
improvement expressed in the following lemma and theorem makes no assumption about
the lock being acquired and released, except that acquiring lock does not lead to potential
for deadlock.

Let AcqRel denote an acquire of some lock immediately followed by a release of the
same lock. LetAcqA∗Rel denote an acquire of some lock, then followed by accesses to
read-only or thread-local variables, finally followed by release of the same lock.

Lemma 4.4.1.Given a set T of transactions,T is atomic if T has no potential for deadlock
and each transaction in T has the form(R|AcqRel)∗N ?(L|AcqRel)∗.

Proof. Based on Theorem 4.3.1, it suffices to argue thatAcqRel can be ignored when
determining atomicity. The only effect thatAcqRel could have is to cause a deadlock.
This is avoided by the requirement thatT has no potential for deadlock. Thus,AcqRel has
no effect on the state of the program and the commutativity properties of other operations
(e.g., it does not affect whether any accesses to variables are race-free).

Theorem 4.4.2.A setT of transactions is atomic if T has no potential for deadlock and
each transaction inT has the form(R|AcqA∗Rel)∗N ?(L|AcqA∗Rel)∗.

Proof. This follows from Lemma 4.4.1 and the fact that events inA commute with all
events from other threads, so they have no effect on atomicity.

On-line (i.e., during execution of the program) classification of variables as read-only
or thread-local is based on whether the variable has been read-only or thread-local so far;
thus, the classification of a variable may change afterwards. Off-line (i.e., after the program
terminates) classification is based on the entire execution and is therefore more accurate.

This improvement can be viewed as synchronization elimination, since the idea is to ig-
nore synchronization operations that do not affect the behavior of the program. Prior work
on synchronization elimination, such as [42], is generally based on static analysis and in-
tended for optimization, while we use this idea in a runtime analysis to reduce false alarms
in program checking. Also, the particular case of synchronization elimination described
here has not been considered in the static context, to the best of our knowledge.

∗Although the Java Memory Model allows the initializing write to be involved in a data race [40], we do
not consider this or other issues raised by Java’s controversial weak memory model.
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4.5 Improvement 2: Multi-Lockset Algorithm for Run-
time Race Detection

To classify read and write events as both-movers or non-movers, we need to determine
whether there is a data race involving these events. This section briefly reviews related
work on runtime race detection and then proposes a more precise (and more expensive)
algorithm. Naturally, more precise race detection allows more precise reduction-based
atomicity checking.

The Eraser algorithm [44], also called the lockset algorithm, is a classic runtime race
detection algorithm based on the policy that each shared variable should be protected by
a lock that is held whenever the variable is accessed. The algorithm works as follows.
For each variablex, a setlockset(x) of locks is maintained. A lockl is in lockset(x) if
every thread that has accessedx was holdingl at the moment of access.lockset(x) is
initialized to contain all locks. LetlocksHeld(t) denote the set of locks currently held by
threadt. When a threadt accessesx, the lockset is refined (updated) bylockset(x) :=
lockset(x) ∩ locksHeld(t), except during the initialization period whenx is assumed to
be accessible only by the thread that allocated it and the lockset retains its initial value.
[44] supposes that the initialization period ends when the variable is accessed by a second
thread; this is a heuristic that may cause the the algorithm to miss some races, but it is easy
to implement. Whenlockset(x) becomes empty, it means that no lock protectsx. At that
time, if there have been writes tox after the initialization period forx (hencex is not read-
only), a warning is issued, indicating a potential data race. To see why this treatment of
initialization may miss races, consider four consecutive events by two concurrent threadst1
andt2: x is allocated int1, then escapes to be accessible tot2 (note thatt2 does not actually
accessx yet), and then is accessed byt1 and thent2 without holding any locks; a data race
occurs, but this algorithm does not report it.

von Praun and Gross [49] modify the lockset algorithm by introducing a more sophis-
ticated condition for determining when initialization ends. [49] supposes that when a vari-
able is accessed by a second thread, its ownership is also transferred. Thus,lockset(x) is
not refined until a “third” thread (possibly the same as the first thread) accessesx. This
algorithm may miss even more races than the original lockset algorithm. On the positive
side, it may produce fewer false alarms. For efficiency, [49] treats an entire object (instead
of a field of an object) as a single variable. This reduces the number of maintained locksets
but increases the number of false alarms.

[15] improves the lockset algorithm to avoid false alarms in multiple-reader, single-
writer scenarios. For each variable, a pair of locksets is used instead of one lockset: the
access-protectinglockset contains locks held on every access (read or write) to the variable,
and thewrite-protectinglockset contains locks held on every write to the variable. The two
locksets for a variable are updated based on their definitions at each access to that variable.
A read event on a variablex is race-free if the current thread holds at least one of the
write-protecting locks forx, otherwise a potential data race is reported. A write event
on a variablex is race-free if the access-protecting lockset ofx is not empty, otherwise a
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potential data race is reported.
We propose themulti-lockset algorithm, which is more accurate than the preceding al-

gorithms,i.e., it misses fewer races and reports fewer false alarms. It incurs higher overhead
but is still practical, according to the experiments in Chapter 7. The three main improve-
ments are: (1) The algorithm uses a dynamic escape (from thread) analysis, described in
Section 3.1, to determine when “initialization” of a variable ends,i.e., when to start refining
the variable’s lockset. This improves accuracy because only the accesses before the variable
escapes are ignored. (2) The happen-before relation based onstart andjoin operations
on threads and barrier operations is considered. (3) The analysis maintains multiple read-
protecting locksets besides a write-protecting lockset. The access-protecting lockset used
in [15] is equivalent to maintaining only one read-protecting lockset, and this can cause
some false alarms, as illustrated below.

For each variablex, we maintain:

• ReadSets(x), which contains⊆-minimal sets of held locks for read events onx. In
other words, for each read ofx, we insertlocksHeld(t) in ReadSets(x) and then, if
ReadSets(x) containsS1 andS2 such thatS1 ⊆ S2, we removeS2.

• WriteSet(x), which is the set of locks held on all writes tox, i.e., for the first write,
WriteSet(x) := locksHeld(t), and for each subsequent write tox, WriteSet(x) :=
WriteSet(x) ∩ locksHeld(t).

• ReadThreadSet(x), which contains the IDs of thread periods involving read events on
x.

• WriteThreadSet(x), which contains the IDs of thread periods involving write events
onx.

ReadSets(x), WriteSet(x), ReadThreadSet(x) and WriteThreadSet(x) are not
updated by accesses tox before x escapes. The happen-before analysis described in
Section 3.2 determines whether two thread periods can happen concurrently. If there
are not concurrent thread periods insideWriteThreadSet or betweenReadThreadSet
andWriteThreadSet, i.e., there are not concurrent conflicting accesses according to the
happen-before analysis, the variable must be free of data race. For setsP1 andP2 of thread
period IDs,isConcurrentWith(P1, P2) returns true if some thread period inP1 is concur-
rent with some thread period inP2. WhenP1 or P2 is empty,isConcurrentWith(P1, P2)
returns false. isConcurrent(P1) returns true ifP1 contains concurrent thread periods.
WhenP1 is empty,isConcurrent(P1) returns false. The pseudo code for the multi-lockset
algorithm is shown in Figure 4.1. The first case (i.e., WriteSet(x) is uninitialized) implies
that there is no write tox so far, hence no data race. The second case (i.e., WriteSet(x)
is empty) uses a conservative test: a potential data race is reported if there is no common
lock held on all writes tox, and a write and another access tox occur in concurrent thread
periods. The third case (i.e., WriteSet(x) is non-empty) also uses a conservative test: a
potential data race is reported if some common locks are held at all writes, and none of
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if (x is not escaped)
return no-race-so-far;

/*update protecting locksets and thread period sets for each escaped variable access*/
if (e is read){

/* All locksets in ReadSets(x) are not subset of the lockset held by the current thread.*/
if (@ls ∈ ReadSets(x). ls ⊆ locksHeld(t)){

/* Remove each lockset in ReadSets(x) that is a superset of locksHeld(t),
then put locksHeld(t) into ReadSets(x).*/

ReadSets(x) := (ReadSets(x)− {ls|ls ∈ ReadSets(x)∧ ls ⊇ locksHeld(t)}) ∪ {locksHeld(t)}
}
ReadThreadSet(x) := ReadThreadSet(x) ∪ {t}

} else{ /* e is write*/
WriteSet(x) := WriteSet(x) ∩ locksHeld(t)
WriteThreadSet(x) := WriteThreadSet(x) ∪ {t}

}
/* check whether data race occurs*/
switch (WriteSet(x)) {

case uninitialized: /*no write tox so far.*/
return no-race-so-far;

case empty:
/* there is no common lock held on all writes tox*/
if (IsConcurrent(WriteThreadSet(x)) or

IsConcurrentWith(WriteThreadSet(x),ReadThreadSet(x)))
return potential-race;

else return no-race-so-far;
case non-empty:

if ∃ls ∈ ReadSets(x).
((ls ∩WriteSet(x) == ∅) andIsConcurrentWith(WriteThreadSet(x),ReadThreadSet(x)))

/* A potential data race is reported if some common locks are held at all writes, and
none of those locks are held at some read, and there are at least two concurrent thread
periods such that one performs a write tox and another performs a read tox. */

return potential-race;
else return no-race-so-far;

}

Figure 4.1: The pseudo code of multi-lockset algorithm.

those locks are held at some read, and there are at least two concurrent thread periods such
that one performs a write tox and another performs a read tox.

According to the experiments in Chapter 7, this algorithm is practical because its stor-
age requirement is reasonable compared with that of the Eraser algorithm, and their runtime
overheads are similar.

This algorithm is more accurate than previous lockset-based algorithms. For example,
supposex has escaped from its creating thread, and the threads in Figure 4.2 execute in the
ordert3, t2, t1 (ignoret4 for now). According to the definition of data race, there is no data
race onx. The algorithms in [44, 49, 15, 9] all report a false alarm (potential data race on
x). The multi-lockset algorithm does not.

A similar scenario appears in an actual programhedc in our experiments described
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t1: t2: t3: t4:
sync(o1){ sync(o2){ syn(o1){ read(x);

sync(o2){ read(x); read(x); sync(o1){
write(x); } } sync(o2){
write(x); write(x);

} }
} }

Figure 4.2: An example to illustrate the accuracy of the multi-lockset algorithm.

Chapter 7. The specific scenario is: After the object ofMetaSearchResult escapes,
there is a thread, sayt1, reads the fieldrequest without lock, then another thread, sayt2,
writes the fieldrequest with a lockL. For Eraser or similar algorithms ([44, 49, 15, 9]),
whent1 reads, we do not carry on lockset intersection; whent2 writes, lockset intersection
is performed and the result is the lockL. Therefore, a data race appears but cannot be
detected by these algorithms. But the multilockset algorithm caches all lockset for read
and write operations, hence, this data race is detected.

Even the multi-lockset algorithm produces some false alarms. For example, consider
the threadst2, t3 andt4 in Figure 4.2 (ignoret1 now). If the execution order ist3, t2, t4,
sinceReadSets(x) = {∅}, WriteSet(x) = {o1, o2}, ReadThreadSet = {t2, t3, t4}, and
WriteThreadSet = {t4}, the third case “non-empty” in Figure 4.1 is matched, a potential
data race is reported, but this is a false alarm, and it causes a false alarm in atomicity
checking. In Chapter 5, we will see that the block-based algorithm does not produce such
a false alarm for this example.

4.6 Other Improvements

We can refine the classification of all lock acquires and releases as right-movers and
left-movers, respectively, in Section 4.2. In the following cases, they are classified as both-
movers [15, 23]. (1)Re-entrant locks, if the thread already holds the lock, an acquire and
the corresponding release on the same lock are both-movers, because they have no effect on
the execution of the program. (2)Thread-local locks, if a lock is used by only one thread,
acquire and release on it are both-movers. (3)Protected locks. Lock l2 is protected by lock
l1 if, whenever a thread holdsl2, it also holdsl1. Acquire and release by a threadt on a
protected lockl2 are both-movers, because adjacent operations of other threads cannot be
operations onl2 (becauset holdsl1).

Off-line algorithms can classify thread-local locks and protected locks more accurately
than on-line algorithms. For example, if a lock is protected for a while, but is unprotected
later, acquire and release operations on the lock that precede this change will be wrongly
classified as both-movers by on-line algorithms. This may cause atomicity violations to be
missed.
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The above improvements can be viewed as synchronization elimination, and static anal-
yses that recognize these situations have been used for program optimization [42]. We
follow the approach in [15] to recognize them using runtime analysis.

4.7 Implementation of Reduction-based Algorithm

In practice, many of the sets of locks manipulated by the lockset algorithm have size
0 or 1. To save space and time, each lockset is represented by a structure that contains
null (if the lockset is empty), a direct reference to the element (if the lockset has size
1), or a collection (if the lockset has size greater than 1). Intersection operations could be
optimized by maintaining the contents of each set in sorted order, but we did not implement
this because most locksets are small.

Our on-line reduction-based algorithm is implemented following the design in [15]
which does not use the transaction tree structure described below. Our implementation of
the off-line reduction-based algorithm is described next.

We instrument the program by a source-to-source transformation. The instrumented
program constructs a tree structure for each transaction during execution. The root corre-
sponds to the entire transaction. Each node other than the root corresponds to a synchro-
nized block (i.e., an execution of a synchronized statement or synchronized method), and
is labeled with the acquired lock. The tree structure reflects the nesting of synchronized
blocks. In other words, if an executionσ′ of a synchronized block is nested inside the ex-
ecutionσ of a synchronized block, the node forσ′ is a descendant of the node forσ in the
tree structure. Each node is also labeled with the set of variables accessed only once (de-
notedvarsOne) and with the set of variables accessed multiple times (denotedvarsMul)
in the corresponding synchronized block ignoring accesses in sub-blocks, because we need
to distinguish the two cases for non-movers,i.e., at most one non-mover or multiple non-
movers, if some accesses in the current blocks have data races. Obviously,varsOne and
varsMul are disjoint.

For example, Figure 4.3 shows the tree structure for theVector example in Figure
1.1. The four fields of each node contain the acquired lock (none in the root node), pointers
to child nodes, the set of variables accessed only once (i.e., varsOne), and the set of
variables accessed multiple times (i.e., varsMul), respectively. In this example, there is
no access outside the three synchronization blocks, hence, the last two fields of both root
nodes contain empty sets.

The atomicity of a transaction is determined as follows. (1) Determine the commutativ-
ity type of accesses to each variable invarsOne andvarsMul at each node of the tree; the
accesses are both-mover if accesses to the variable are race-free, otherwise they are non-
mover. (2) For each node, construct the pattern (of commutativities of events represented
by that node) by concatenating, in any order, the commutativity types of the variables in
the node’svarsOne andvarsMul sets, and, if the node represents a synchronization oper-
ation, adding aR (right-mover) at the beginning of the pattern and adding aL (left-mover)
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NIL

NIL

NIL {v1.elementCount}

{v1.elementData}v1.this {v1.elementCount}

{v1.elementData}v1.this {v1.elementCount}

∅ ∅

∅ ∅
v1.removeAllElements()

new Vector(v1)

v1.this ∅

Figure 4.3: Tree structure for theVector example of Figure 1.1.

at the end of the pattern. For each variable invarsOne, its commutativity type appears
once in the pattern; for each variable invarsMul, its commutativity type appears twice.
(3) Construct the pattern of commutativities for the transaction by concatenating the pattern
for each node during a traversal of the tree (e.g., in-order traversal), except that theR and
L representing acquire and release at a node are positioned before and after, respectively,
the rest of the pattern constructed from the accesses represented by that node and its de-
scendants. (4) Check whether the pattern of commutativities for the transaction matches
the regular expression in Theorem 4.4.2. Note that the tree structure does not indicate the
relative order of the accesses represented by a node and its descendants, and the result of
matching against the regular expression in Theorem 4.4.2 is insensitive to that order, so any
traversal order (in-order, pre-order, or post-order) may be used in step 3.

In Figure 4.3, the transaction fornew Vector(v1) has the patternRBLRBBBL
which does not match the atomicity in Theorem 4.4.2; the transaction for
v1.removeAllElements() has the pattern RBBBL. Note that
v1.elementCount is saved invarsMul, hence it is represented by two both-movers
in the patterns constructed for each transaction.

Although the reduction-based algorithm is efficient for checking atomicity, it produces
numerous false alarms in the experiments Chapter 7. This motivates us to design a novel
and more accurate approach discussed in the next chapters.
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Chapter 5

Runtime Block-based Algorithm

This chapter presents the block-based algorithm for checking view-atomicity [51, 54],
defined in Chapter 2. For convenience, “atomicity” is short for “view-atomicity” in this
chapter. The block-based algorithm first constructs blocks (i.e., pairs of events plus associ-
ated synchronization) from an observed trace, and then compares each block with all blocks
in other transactions. If two blocks are found that match any one of a set of unserializable
patterns, the transactions containing them are not atomic.

The block-based algorithm is somewhat more expensive than the reduction-based al-
gorithm but is more accurate,i.e., reports fewer false alarms. This is demonstrated by the
experiments in Chapter 7.

We first present an algorithm that works for the case of multiple transactions that share
exactly one variable (note that locks and barriers are not counted as shared variables), then
extend the ideas in it to handle the case of two transactions that share multiple variables.
Finally, we extend that algorithm to handle the case of multiple transactions that share
multiple variables.

5.1 Multiple Transactions That Share Exactly One Vari-
able

Given a setT of transactions, the algorithm looks for unserializable patterns of oper-
ations ofT . An unserializable patternis a sequence in which operations from different
transactions are interleaved in an unserializable way. If the transactions ofT share exactly
one variable, the following unserializable patterns are checked.

• a read in one transaction occurs between two writes in another transaction.

• a write in one transaction occurs between two reads in another transaction.

• a write in one transaction occurs between a write and a subsequent read in another
transaction.
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R(x)
W (x) W (x)

W (x)
R(x) R(x)

W (x)
W (x) R(x)

FW (x)
R(x) W (x)

Table 5.1: Part of unserializable interleaving patterns for operations on a single variable.

• the final write in one transaction occurs between a read and a subsequent write in
another transaction.

Note that all of the operations in the patterns are on the same variable (the single shared
variable). The above patterns are exhaust for detecting all atomicity violations based on
exactly one variable. These patterns can be drawn as Table 5.1, where each line corresponds
to a transaction, and time advances from left to right.

Informally, T is atomic if no trace forT contains a subsequence that matches any of
these patterns; this idea is formalized in Theorem 5.1.2 below.

The block-based algorithm looks for these unserializable patterns by considering pairs
of “blocks” from different transactions. Intuitively, a block captures the information about
two events of the same transaction that is relevant to atomicity checking. Many pairs of
events in a transaction may generate the same block. Our algorithm recognizes this, and
stores only one copy of it. This can eliminate a significant amount of redundant storage
and processing during atomicity checking. If the two events operate on the same variable,
the block is called1v-block; if the two events operate on the different variables, the block is
called2v-block. This section discusses only 1v-blocks; 2v-blocks are discussed in Section
5.2. An access to a variable that has not yet escaped is not used to form blocks.

All 1v-blocks for transactiont are generated by the algorithm shown in Figure 5.1. A
transaction-initial readto a variablev for a transactiont is a read tov that is not preceded
by a write tov in t. Similarly, A transaction-final writeto a variablev for a transaction
t is the final write tov in t. If there is only one event in a transaction, a dummy event is
added. This dummy event is used only for constructing blocks, not for matching part of an
unserializable pattern.

A 1v-block for e1 and e2 is a tuple 〈v, op(e1), op(e2), isFW (e1), isFW (e2), pid,
held(e1), held(e2), held(e1, e2)〉. The notations used for each element are explained next.
The first elementv is the variable on whiche1 and e2 operate (recall thatvar(e1) =
var(e2)). The second and third elementsop(e) is the operation type, namely,R (for “read”),
W (for “write”), or dummy. The fourth and fifth elementsisFW (e) is a boolean value in-
dicating whethere is the final write onv in t. The sixth elementpid identifies the thread
period in whiche1 ande2 were executed,i.e., pid = tpID(e1) = tpID(e2); recall from
Section 3.2 that each transaction occurs within a single thread period.∗ The seventh and
eighth elementsheld(e) is the set of locks held by the thread when executing evente. The
last elementheld(e1, e2) is the set of locks held continuously frome1 to e2.

∗For efficiency, in our implementation, multiple 1v-blocks that differ only in the thread period IDs are
represented by a single 1v-block that contains a set of thread period IDs.
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1vBlockSet = ∅;
for each evente in t {

if (e is not a read or write operation) continue;
v = var(e);
if (v is not escaped whene occurs) continue;
if (there is a write tov beforee in t) {

ew = the last write tov in t that precedese;
b = new1vBlock(ew,e);

} else
if (there is a read tov beforee in t) {

er = the last read tov in t that precedese;
b = new1vBlock(er,e);

}
1vBlockSet = 1vBlockSet ∪ {b};
if ((e is the transaction-final write tov in t) and

(there is transaction-initial read tov in t)) {
for each transaction-initial reader to v in t {

b = new1vBlock(er,e);
1vBlockSet = 1vBlockSet ∪ {b};

}
}

}
Figure 5.1: The algorithm of constructing 1v-blocks for transactiont.

For example, the transaction

t : acq(`1) R(v) acq(`2) W (v) R(v) rel(`2) rel(`1) (5.1)

has two 1v-blocks, wherepid is the thread period ID oft.

b1 : 〈v,R,W , false, true, pid, {`1}, {`1, `2}, {`1}〉
b2 : 〈v,W ,R, true, false, pid, {`1, `2}, {`1, `2}, {`1, `2}〉. (5.2)

To determine whether the operations in two blocks can form an unserializable pat-
tern, we need to determine whether an operation of one block can occur between
the two operations of another block. This is determined by locking and happen-
before analysis. For 1v-blocksb = 〈v, op1, op2, fw1, fw2, pid, h1, h2, h12〉, and b′ =
〈v, op′1, op

′
2, fw′

1, fw′
2, pid

′, h′1, h
′
2, h

′
12〉, an operationopi (i ∈ {1, 2}) of b can oc-

cur between operationsop′1 and op′2 of b′, denotedcan-occur-between( 〈opi, hi, pid〉,
〈op′1, op′2, h′12, pid

′〉), if the condition (hi ∩ h′12 = ∅) ∧ (pid ‖ pid′) is satisfied.
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This simple test is accurate provided there is no potential for deadlock in the set of
transactions. So we check potential for deadlock, as described in Section 4.7, as part of
the block-based algorithm. To see that this test may be inaccurate if there is potential for
deadlock, note thatop(e) cannot occur betweenop(e1) andop(e2) in the following example,
even though the can-occur-between condition defined above is satisfied. This indicates that
ignoring deadlock would lead to more false alarms.

t : acq(l1) acq(l2) rel(l2) e rel(l1)
t′ : acq(l2) acq(l1) rel(l1) e1 e2 rel(l2)

(5.3)

As mentioned above, many pairs of events may produce the same 1v-block. For exam-
ple, only one 1v-block is generated for the following transaction.

W (v) R(v) R(v) R(v) (5.4)

Two 1v-blocks b and b′ are atomic with respect to each other, denoted
isAtomic1vBlk(b, b′), if the synchronization prevents the unserializable patterns described
above,i.e., the two operations from one block together with an operation from the other
block cannot form one of those unserializable patterns. Formally,isAtomic1vBlk(b, b′)
holds iff for all combinations of three operationsop1, op2 and op3, whereop1 and op2

are from one block,op3 is from the other block, eitherop3 cannot occur betweenop1

and op2 or the sequenceop1 op3 op2 does not match any of the unserializable patterns.
Obviously, isAtomic1vBlk(b, b′) is symmetric. For example, consider a 1v-blockb′ =
〈v,W , dummy, true, false, pid′, ∅, ∅, ∅〉 in a different transactiont′ than transactiont in
(5.1); if pid ‖ pid′, thenisAtomic1vBlk(b1, b

′) andisAtomic1vBlk(b2, b
′) do not hold be-

cause the unserializable patterns can be formed. For another example, consider a 1v-block
b′′ = 〈v,R, dummy, false, false, pid′′, ∅, ∅, ∅〉; if pid′′ ‖ pid, thenisAtomic1vBlk(b1, b

′′)
andisAtomic1vBlk(b2, b

′′) hold.
Let 1v-blocks(t) denote the set of 1v-blocks for a transaction t. Lemma 5.1.1 describes

how to check atomicity of two transactions that share exactly one variable. Theorem 5.1.2
describes how to check atomicity of multiple transactions that share exactly one variable.

Lemma 5.1.1.Lett andt′ be transactions that share exactly one variable withthread(t) 6=
thread(t′), and suppose they do not have potential for deadlock.{t, t′} is atomic iff∀b ∈
1v-blocks(t). ∀b′ ∈ 1v-blocks(t′). isAtomic1vBlk(b, b′).

Proof. For the forward implication (⇒), we prove the contrapositive,i.e., if
isAtomic1vBlk(b, b′) is false for some pair of 1v-blocksb and b′, then t and t′ are not
atomic. This follows easily from the definition ofisAtomic1vBlk .

For the reverse implication (⇐), supposeisAtomic1vBlk(b, b′) holds for all pairs of
1v-blocksb andb′. Let S be a non-serial trace for{t, t′}. If neither transaction performs a
write, thenS is obviously equivalent to a serial trace. Suppose, without loss of generality,
thatt performs the final writeet

FW in S. There are two cases:
(1). If t′ does not read the value written byet

FW , then all reads and writes int′ precede
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et
FW in S, and we can show thatS is equivalent to the serial traceS ′ in which t′ precedes

t. The main point is that there is no read eventet′
R that reads the value written by any

write et
W in S, because if there were, thenet

W andet
FW would form a blockb that can be

interleaved in an unserializable way withet′
R, so isAtomic1vBlk(b, b′) would be false for

some blockb′ containinget′
R, a contradiction. Similarly, we can show that each read event

of t reads the value written by the same write event inS ′ andS. According to the definition
for equivalence of traces in Chapter 2,S is equivalent toS ′.

(2). If t′ reads the value written byet
FW , then we can show that all reads and writes in

t′ appear afteret
FW in S (because, if one of those events precedeset

FW , an unserializable
pattern and hence a non-atomic pair of 1v-blocks would exist), and thatS is equivalent to
the serial trace in whicht precedest′.

Theorem 5.1.2.Let T be a set of transactions that share exactly one variable. Suppose
T does not have potential for deadlock.T is atomic iff for all t, t′ in T with thread(t) 6=
thread(t′), ∀ b ∈ 1v-blocks(t). ∀ b′ ∈ 1v-blocks(t′). isAtomic1vBlk(b, b′).

Proof. For the forward implication (⇒), the proof is straightforward, except for details
related to final writes.

We prove the reverse implication (⇐) by induction on the number of transactions in
T . Let S be a non-serial trace forT . For T ′ ⊆ T , let S|T ′ denote the subsequence of
S containing only events from transactions inT ′. Let t be the transaction that performs
the final writeet

FW in S. Let T2 be the set of transactions inT other thant that read
the value written byet

FW . No read or write fromT2 can precedeet
FW in S (otherwise an

unserializable pattern would be formed). This implies thatT2 contains no writes (otherwise
et

FW would not be the final write). Thus,S|T2 is equivalent to some serial traceS2. Let
T1 beT − T2 − {t}. For all t1 ∈ T1 with thread(t) 6= thread(t1), the hypothesis of the
contrapositive case and Lemma 5.1.1 imply that{t, t1} is atomic; sincet1 does not readt’s
write, andt performs the final write inS, t1 must precedet in every serial trace equivalent
to S|{t, t1}. Sincet can be serialized after every transactions inT1, S is equivalent to
(S|T1) · t · S2, where the dot denotes concatenation. By the induction hypothesis,S|T1 is
equivalent to some serial traceS1. Thus,S is equivalent to the serial traceS1 · t · S2.

Let E be the total number of events in all transactions ofT . Let P denote the number
of thread periods;P is generally very small except when there are many calls to barrier
operations. The algorithm shown in Figure 5.1 for constructing 1v-blocks generates at
mostO(E) 1v-blocks because each event except for the final writes is combined with at
most one preceding event, the number of these 1v-blocks isO(E). All final writes generate
at mostO(E) 1v-blocks because there is only one final write for each variable in each
transaction. Hence, the number of all 1v-blocks isO(E). The cost of checking can-occur-
between for a pair of 1v-blocks isO(P ). Assuming|locksHeld(t)| is always bounded by
a constant for all threadst, the worst-case running time of the algorithm based on Theorem
5.1.2 isO(PE2).
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0 read W (x) W (y)
W (x) W (y)

W (x) W (y)
W (y) W (x)

1 read R(x) W (y)
W (y) W (x)

R(x) W (y)
W (y) W (x)

2 reads R(x) W (y)
W (x) R(y)

R(x) R(y)
W (y) W (x)

Table 5.2: Part of unserializable interleaving patterns for operations on two variables.

5.2 Two Transactions That Share Multiple Variables

To check atomicity of two transactions that share multiple variables, the test embodied
in Theorem 5.1.2 needs to be strengthened.

Consider two events from transactiont, and two events from transactiont′. If they
operate on four or three different variables, they cannot cause a violation of atomicity. If
they all operate on the same variable, the analysis in Section 5.1 applies. Suppose they
operate on two variables. If they contain no conflicting operations, or exactly one pair of
conflicting operations, they do not cause a violation of atomicity. Suppose they contain
two pairs of conflicting operations. We can check based on the definition of atomicity
in Chapter 2 whether every feasible interleaving of the operations from the four events is
serializable; if so, the two blocks are atomic. A few illustrative cases of unserializable
interleavings are listed in Table 5.2.

Let IR(t) andFW (t) be the sets of initial reads and final writes, respectively, on shared
variables int. For eventse1 ande2 of the same thread, letheldmid(e1, e2) be the set of
locks acquired by that thread aftere1 and released by it beforee2 and not contained in
held(e1) ∪ held(e2); furthermore, re-acquires of held locks are ignored when computing
heldmid.

A 2v-blockfor a transactiont is a tuple〈var(e1), var(e2), op(e1), op(e2), pid, held(e1),
held(e2), held(e1, e2), heldmid(e1, e2)〉 formed from two (read or write) eventse1 ande2

of t such thate1 precedese2 in t, var(e1) 6= var(e2), ande1 ande2 are inIR(t) ∪ FW (t),
wherepid = tpID(e1) = tpID(e2). Let 2v-blocks(t)denote the set of2v-blocksfor
transactiont. For example, for the following transactiont,

R1(x) W2(y) W3(x) W4(y) R5(x) (5.5)

IR(t) = {R1(x)}, FW (t) = {W3(x),W4(y)}, and 2v-blocks(t)
contains〈x, y,R,W , pid, ∅, ∅, ∅, ∅〉 and 〈x, y,W ,W , pid, ∅, ∅, ∅, ∅〉, assumingpid is the
thread period ID oft. W2(y) andR5(x) do not participate in generating 2v-blocks because
W2(y) /∈ FW (t) andR5(x) /∈ IR(t).

For
2v-blocksb = 〈v1, v2, op1, op2, pid, h1, h2, h12, hmid12〉 and b′ = 〈v′1, v′2, op′1, op′2, pid′,
h′1, h

′
2, h

′
12, hmid′12〉, where (v1 = v′1 ∧ v2 = v′2) ∨ (v1 = v′2 ∧ v2 = v′1), the op-

erationsop′1 and op′2 of b′ can occur between the operationsop1 and op2 of b if (h12
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∩ hmid′12 = ∅) ∧ can-occur-between(〈op′1, h′1, pid′〉, 〈op1, op2, h12, pid〉) ∧ can-occur-
between(〈op′2, h′2, pid′〉, 〈op1, op2, h12, pid〉).

Two 2v-blocksb andb′ areatomicwith respect to each other, denotedisAtomic2vBlk(b,
b′), iff the four operations cannot be interleaved to any of the unserializable patterns de-
scribed above, according to the can-occur-between conditions described in the previous
paragraph and Section 5.1.

To check atomicity of two transactions that share multiple variables, we have the fol-
lowing theorem, which extends Theorem 5.1.2.

Theorem 5.2.1.Let t and t′ be transactions withthread(t) 6= thread(t′). SupposeT
does not have potential for deadlock.{t, t′} is atomic iff (i) ∀ b ∈ 1v-blocks(t). ∀ b′

∈ 1v-blocks(t′). isAtomic1vBlk(b, b′); and (ii) ∀ b ∈ 2v-blocks(t).∀ b′ ∈ 2v-blocks(t′).
isAtomic2vBlk(b, b′).

Proof. For the forward implication (⇒), we prove the contrapositive, which follows easily
from the definitions ofisAtomic1vBlk andisAtomic2vBlk .

For the reverse implication (⇐), suppose all pairs of 1v-blocks and 2v-blocks are
atomic. LetS be a non-serial trace for{t, t′}. We show thatS is equivalent to some
serial trace by the following three cases:

Case 1: Suppose there exists a variablex written byt andt′. Without loss of generality,
we assume thatt′ performs the final writeet′

FW (x) to x in S. Let et
W (x) denote a write

to x in t. We can show thatS is equivalent to the serial traceS ′ in which t precedest′,
based on the following intermediate results, which can be proved based on the definitions
of isAtomic1vBlk and isAtomic2vBlk : (i) t cannot read any write oft′ to any variable;
(ii) if t′ reads some write oft in S, t′ reads the same write inS ′; (iii) for each variabley
accessed in botht andt′, if there are writes toy in both t andt′, et′

FW (y) must occur after
et

FW (y) in S.
Case 2: Suppose no variable is written by both transactions, and at least one transaction

contains a write. Without loss of generality, supposet contains a writeet
W . If some read in

t′ reads the value written byet
W , then we can show thatS is equivalent to the serial schedule

in which t precedest′; otherwise, we can show thatS is equivalent to the serial schedule in
which t′ precedest.

Case 3: If neither transaction contains a write, thenS is trivially serializable.

Let E andP be defined as in Section 5.1. The total number of 2v-blocks isO(E2).
The algorithm based on Theorem 5.2.1 considers all pairs of 2v-blocks, so, assuming
|locksHeld(t)| is always bounded by a constant for all threadst, its worst-case running
time isO(PE4).
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5.3 Multiple Transactions That Share Multiple Variables

In the presence of multiple shared variables, a setT of transactions is not necessarily
atomic even if all subsets ofT with cardinality two are atomic. This is due to cyclic de-
pendencies. For example, consider the following trace containing three transactions (time
increases from left to right):

t1 : W (x) W (y)
t2 : R(x) W (z)
t3 : R(z) R(y)

(5.6)

In any potential serial trace equivalent to this one,t1 must precedet2, t2 must precedet3,
andt3 must precedet1 becauset2.R(x) reads the written value byt1.W (x), t3.R(z) reads
the written value byt2.W (z), andt3.R(y) is an initial read. Due to the cyclic dependency,
no equivalent serial trace exists. Therefore,{t1, t2, t3} is not atomic, even though all three
subsets ofT with cardinality two are atomic.

Cyclic dependencies between transactions that are pairwise atomic arise from depen-
dencies involving initial reads and final writes. This observation motivates the following
extension of Theorem 5.2.1. LetIR-FW(T ) denote the set of transactions obtained fromT
by discarding all events other than synchronization events and initial reads and final writes
on shared variables.

Theorem 5.3.1.LetT be a set of transactions. SupposeT does not have potential for dead-
lock.T is atomic iff for allt andt′ ∈ T with thread(t) 6= thread(t′), (i) ∀ b∈ 1v-blocks(t). ∀
b′ ∈ 1v-blocks(t′). isAtomic1vBlk(b, b′); and (ii) ∀ tr ∈ traces(IR-FW(T )). tr is serial-
izable.

Proof. For the forward implication (⇒), the proof is straightforward. For the reverse impli-
cation (⇐), we need to prove that there is an equivalent serial traceS ′ for each traceS of all
events inT . Condition (ii) of this theorem implies Condition (ii) of Theorem 5.2.1. Hence,
for all t, t′ ∈ T , {t, t′} is atomic according to Theorem 5.2.1. Thus, only the sequence of
initial reads and final writes oft andt′ in S affects their possible order inS ′. Condition (ii )
implies there is a serial traceS ′′ equivalent toIR-FW(S). Therefore,S ′ can be obtained by
concatenating the transactions inT in the same order that they appear inS ′′.

This algorithm is relatively expensive, because the number of possible traces may be
large. On the positive side, this algorithm considers only traces forIR-FW(T ), and hence
may be significantly faster than the naive algorithm that considers all traces forT .

The worst-case time complexity of the algorithm based on Theorem 5.3.1 is exponen-
tial in the number of events. This is not surprising, because similar problems, such as
determining serializability of a given trace, are NP-complete [38].
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5.4 Usage and Comparison of The Three Block-Based Al-
gorithms

The algorithms based on Theorems 5.1.2 and 5.2.1 can be applied to arbitrary execu-
tions. For Theorem 5.1.2, this simply means considering one shared variable at a time,
i.e., applying the algorithm independently to each shared variable. For Theorem 5.2.1,
this means considering the transactions pairwise, and not checking atomicity of larger sets
of transactions. Taking this perspective, we have three block-based algorithms that range
from a relatively cheap one that detects limited but common kinds of atomicity violations
to a relatively expensive one that also detects complex but rare kinds of atomicity viola-
tions. Based on the experiments in Chapter 7, we believe that in practice, the algorithms
based on Theorems 5.1.2 and 5.2.1 reflect better trade-offs between cost and defect-finding
effectiveness. Indeed, in those experiments, there is no atomicity violation that would be
reported based on Theorem 5.3.1 and not reported based on Theorem 5.2.1, because the
cyclic dependencies between three or more transactions that could cause such warnings
never appear in those experiments.

5.5 Comparison of Reduction-based Algorithm and
Block-based Algorithm

The block-based algorithm is more expensive than the reduction-based algorithm, but
more accurate, according to the experimental results in Chapter 7. For a small example
of this, consider the threadst2, t3 and t4 in Figure 4.2. Onlyx is shared, so the algo-
rithm in Section 5.1 suffices. The 1v-blocks are〈x,R, dummy, false, false, pid2, {o2},
{}, {}〉, 〈x,R, dummy, false, false, pid3, {o1}, {}, {}〉, and〈x,R,W , false, true, pid4,
{}, {o1, o2}, {}〉, wherepidi is the ID of the thread period containing the events of trans-
actionti. The block-based algorithm shows that{t2, t3, t4} is atomic. Recall from Section
4.5 that the reduction-based algorithm reports a false alarm for this example.

5.6 Dynamic Construction of Blocks

We construct 1v-blocks incrementally during execution of a transaction; this avoids
storing all events in the transaction until its end.

2v-blocks are constructed when the transaction finishes; this requires storing only initial
reads and final writes until the end of the transaction. As an optimization, if two initial
readse1 ande2 in a transaction operate on the same variable, andheld(e1) = held(e2), and
heldmid(e1, e2) = ∅, then one of them can be discarded without affecting the result.

To avoid constructing redundant blocks, the most recent several event patterns are
cached. When an event pattern in the cache appears again, we do not construct block
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for it again. This optimization saves times, because constructing blocks is more expensive
than a cache lookup.

The same block could appear in many transactions. We save space by sharing blocks
among multiple transactions.
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Chapter 6

Runtime Commit-Node Algorithm

The commit-node algorithm [53] has two versions: one is for checking conflict-
atomicity; the other is for checking view-atomicity. Conflict-atomicity and view-atomicity
are defined in Chapter 2. The algorithm is off-line,i.e., when the program terminates, it
is applied to recorded information about the execution. The execution is partitioned into
units. Recall from Chapter 2 that aunit is a sequence of consecutive events executed by
a single thread, and atransactionis a unit expected to behave atomically. The commit-
node algorithm checks whether every trace (i.e., every feasible interleaving) of these units
is equivalent to a serial trace,i.e., a trace in which each transaction is a contiguous subse-
quence. If so, we say that the transactions areatomic; if not, a potential atomicity violation
is reported.

When a program runs, the events for each of its units (including transactions) is saved
in a tree structure, called anaccess tree. Each node in an access tree denotes an access to
an escaped variable (i.e., a variable accessible to multiple threads), or a synchronization
operation (e.g., lock acquire and release). After the program terminates, the relationships
between nodes in different trees are analyzed, andinter-edgesare added between them to
generate aforest. A node with an incident inter-edge is called acommunication node. A
communication node is called acommit nodeif none of its descendants are communication
nodes. In a forest, if the access tree for each transaction has only one commit node, then
the transactions are atomic. Intuitively, the commit-node is like a commit point [26]. By
considering the synchronization, the commit-node algorithm does not merely look for vio-
lations of atomicity in the observed execution, but also attempts to determine whether the
non-determinism of thread scheduling could allow violations in other executions.

Experiments show that the commit-node algorithm is more efficient in most experi-
ments and more accurate than previous algorithms with comparable asymptotic complex-
ity.
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u

R(x)

R(y)
Rel(l)

W (y)

R(x)
W (x)
Acq(l)
R(y)

W (x) Acq(l)Rel(l)

R(y) R(y)W (y)

Figure 6.1: The access tree for a unitu. All events are shown on the left; the order of
sequence is from top to bottom.

6.1 Data Structures

6.1.1 Access Tree

During execution of the instrumented program, all events for each unit is recorded into
an access tree. In such a tree, each leaf node is called anaccess nodeand denotes an access
to an escaped variable. Each non-leaf node except for the root is called asynchronization
nodeand denotes a synchronization block. The root node denotes the whole unit. The
local orders of events within a unit are denoted by the order of branches in the tree. An
example appears in Figure 6.1, whereR(v) andW (v) (v is x or y) denote a read event and
a write event tov, respectively;acq(l) andrel(l) denote an acquire and a release of lockl,
respectively. Since each node in an access tree denotes a set of events, a node and the set
of events it denotes are used interchangeably in our description.

6.1.2 Access Forest

An access forestconsists of a set of access trees and edges calledinter-edgesbetween
access trees from concurrent units. Section 3.2 describes a happen-before analysis to de-
termine whether two units are concurrent. The edges inside each tree are calledtree-
edges. Nodes with an incident inter-edge are calledcommunication nodes; they denote
a potential interactions between the corresponding units. Checking conflict-atomicity and
view-atomicity require different inter-edges. The access forest used for checking conflict-
atomicity is calledconflict-forest; the access forest used for checking view-atomicity is
calledview-forest.

6.1.3 Conflict-Forest

In the conflict-forest, there are two kinds of relationships denoted by inter-edges be-
tween two concurrent units. The first kind of relationship is between a node associated
with a write in one of the units and a concurrent node associated with a read to the same
variable in the other unit, if the read can read the written value by the write in some trace.
The second kind of relationship connects two concurrent nodes associated with two writes
to the same variable in the two.
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FOR each read eventer
x

FOR each write eventew
x in a concurrent unit

addInterEdge(er
x, ew

x );

FOR each write eventew
x

FOR each write eventew′
x in a concurrent unit

addInterEdge(ew
x , ew′

x );

/* add appropriate inter-edges between nodes of the units containinge ande′.
e ande′ access the same variable.*/
PROCEDURE addInterEdge(e, e′){
IF (held(e) ∩ held(e′) = ∅) {
add an inter-edge between the access node fore and the access node fore′;
} ELSE{
/* there must be a common lock inheld(e) andheld(e′),
so the next statement finds a suitable noden.*/
starting at the root node of the unit that containse, go down the tree along the path toe,
until reaching a noden corresponding to a synchronization block for a lockl in held(e′);
IF ((e is a write)∨ (e is read and not preceded by a write

to the same variable in the subtree rooted atn)) {
/* otherwise,e is a read and there is a write to the same variable in the subtree
rooted atn, soe cannot read the write ofe′ because of lockl.*/

n′ = the outermost ancestor ofe′ corresponding to a synchronization block for lockl;
add an inter-edge betweenn andn′;

}}}
Figure 6.2: The algorithm to add inter-edges for an arbitrary escaped variablex in the
conflict-forest.

We say “associated with” above because the inter-edge is not necessarily added directly
between the access nodes representing those two accesses. Instead, for each pair of ac-
cesses satisfying the above conditions, if there is at least one lock that is held when both
operations are performed, then we find the outermost of those common locks, and add
an inter-edge between the corresponding synchronization nodes, because this is the gran-
ularity at which the parts of the units containing those accesses can be interleaved; if no
such lock exists, then an inter-edge is added directly between the access nodes representing
those two accesses. By assumption, the set of units does not have potential for deadlock, so
the notion of outermost common lock for two accesses is well defined; if there is potential
for deadlock, the threads that execute the two accesses could acquire two locks in different
orders without first acquiring a common lock.

Recall the definitions in Chapter 2,T is a set of transactions, andE is a set of non-
transactional units. Intuitively,〈T,E〉 is conflict-atomic, if in all traces of〈T, E〉, the
events of each transaction ofT can be repeatedly swapped with adjacent events without
affecting the rest of the trace, until the trace is serial,i.e., the events of each transaction are
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W (x)

Acq(l)Rel(l)

t3

Acq(l)Rel(l)

t1

R(x) W (x)

W (x)

t2

W (x)

Figure 6.3: A conflict-forest. The inter-edges are shown as dotted lines.

contiguous. If two nodes are connected by an inter-edge, they cannot be swapped. Thus, a
node with incident inter-edges is like a non-mover in Lipton’s reduction [31, 15, 51, 54].

Figure 6.2 shows the algorithm to add inter-edges. Figure 6.3 shows the conflict forest
for a set of three units. Note that an inter-edge can denote multiple relationships of the
kinds described above. For example, the inter-edge betweent1 andt3 in Figure 6.3 denotes
two relationships: one is thatt3.R(x) can read the value written byt1.W (x), and the other
is betweent1.W (x) andt3.W (x).

Besides checking atomicity, the conflict-forest can also be used for detecting data races,
since each access node with incident inter-edges indicates a data race.

6.1.4 View-Forest

The view-forest has three kinds of relationships between two concurrent unitsu1 andu2

denoted by inter-edges. (1) The first kind of relationship is between a node ofu1 associated
with a write and a node ofu2 associated with a read, if the read can read the written
value by the write in some trace. (2) The second kind of relationship connects two nodes
associated with two writes to the same variable, respectively, if both writes can be the write-
predecessor of the same read in some traces. (3) The third kind of relationship connects
two nodes associated with unit-final writes to the same variable.

The algorithm of adding inter-edges for view-forest is shown in Figure 6.4. It is similar
to the algorithm in Figure 6.2. When adding an inter-edge between a read and its poten-
tial write-predecessor, we also add inter-edges between its all potential write-predecessors.
S(e) caches all potential write-predecessors for the reade so far. Besides connecting this
kind of writes, we also add inter-edges between the unit-final writes to the same variables,
instead of adding inter-edges between every two writes to the same variables in conflict
forest.

Figure 6.5 shows the view forest after applying the algorithm to the same three units in
Figure 6.3.
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FOR each read eventer
x

S(er
x) = ∅;

FOR each write eventew
x in a concurrent unit

addInterEdge(er
x, ew

x );

FOR each unit-final write eventew
x

FOR each unit-final write eventew′
x in a concurrent unit

addInterEdge(ew
x , ew′

x );

/* Note thate ande′ access the same variable. */
PROCEDURE addInterEdge(e, e′){
IF (held(e) ∩ held(e′) = ∅){
add an inter-edge between the access node fore and the access node fore′;
} ELSE{
starting at the root node of the unit that containse, go down the tree along the path toe,
until reaching a noden corresponding to a synchronization block for a lockl in held(e′);
IF ((e is a write)∨ (e is read and not preceded by a write

to the same variable in the subtree rooted atn)) {
n′ = the outermost ancestor ofe′ corresponding to a synchronization block for lockl;
add an inter-edge betweenn andn′;
} ELSE return;
}
IF (e is read){
ew = the preceding write to the same variable and in the same unit ase, if any, otherwise null;
IF (ew 6= null)
S(e) = S(e) ∪ {ew};

FOR eache′′ in S(e)
addInterEdge(e′,e′′);

S(e) = S(e) ∪ {e′};
}}
Figure 6.4: The algorithm to add inter-edges for an arbitrary escaped variablex in the
view-forest.

W (x)

Acq(l)Rel(l)

t3

Acq(l)Rel(l)

t1

R(x) W (x)

W (x)

t2

W (x)

Figure 6.5: A view-forest. The inter-edges are shown as dotted lines.



6. RUNTIME COMMIT-NODE ALGORITHM 39

... ... ...

......

...

... ...

nc

t

n1

nk

Figure 6.6: A transaction which contains a single commit nodenc.

6.2 Commit-Node Reduction

When a communication noden is an ancestor of another communication noden′, we
call thatn containsn′. A communication node is called acommit nodeif it is not contained
in any other communication nodes. For example, in Figure 6.5, the communication node
“Acq(l)Rel(l)” in t1 contains the communication node “W (x)” ( i.e., the second write)
which is a commit node since it does not contain any other communication nodes.

The intuition for commit-node is as follows. Suppose there is a transactiont as shown in
Figure 6.6, where the only one commit isnc. nc may be an access node or synchronization
node. All synchronization nodes except for the nodes on the path from the root nodet to
nc are not communication nodes. Thus, similar to the reduction-based algorithm, we may
find a commit point insidenc, all events innc can be moved to the commit point position
through swapping without affecting the other units in all traces. All other events int can
be done in the same way. Hence, a transaction with at most one commit node is atomic,
but a transaction with two or more commit nodes might be non-atomic. This is described
formally in Section 6.3.

6.3 The Commit-Node Algorithm for Checking Atomicity

This section presents the commit-node algorithm for checking conflict-atomicity and
view-atomicity.

6.3.1 Conflict-Atomicity

Theorem 6.3.1.Suppose〈T,E〉 has no potential for deadlock, andE does not contain any
synchronization operations. If each transaction ofT has at most one commit node in the
conflict-forest, then〈T, E〉 is conflict-atomic.

Proof. To prove that〈T, E〉 is conflict-atomic, we need to show that there is a conflict-
equivalent serial tracetr′ for an arbitrary tracetr of 〈T, E〉. The general idea is to find a lo-
cation of some event inside the commit node for each transaction, such that when all events
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t3t2 t1

R(x) W (x) R(y)W (y)

Figure 6.7: 〈{t1, t2, t3}, ∅〉 is both conflict-atomic and view-atomic, butt1 contains two
commit nodes.

of each transaction are moved to that location, the resulting trace is conflict-equivalent to
the original trace. That location is called acommit point.

For a commit noden, if n is an access node, its commit point is the location of the
access event attr; if n is a synchronization node, its commit point is any arbitrary location
inside the commit node attr. According to the assumption in the theorem, each commu-
nication node contains only one commit node.tr′ is constructed fromtr as follows: all
events of the communication nodes that contain the commit node are moved to the commit
point; all events of each transaction not in any communication node are also moved to the
commit point of the transaction; all other events are not moved.tr′ is serial because every
transaction has only one commit node. In the following, we prove thattr′ is a legal trace
and is conflict-equivalent totr.

First, we observe thattr′ is consistent with the synchronization events. This holds
becausetr′ is serial, andE does not contain any synchronization. Sotr′ is a trace for
〈T, E〉.

Next, we show thattr′ is conflict-equivalent totr. Consider conflicting eventse1 ande2,
wheree1 ande2 occur in unitsu1 andu2 in T ∪E, respectively. Without loss of generality,
supposee1 precedese2 in tr. Becausee1 ande2 conflict,u1 must contain a communication
noden1 containinge1, andu2 must contain a communication noden2 containinge2, andn1

precedesn2 in tr. After movinge1 ande2 to the commit points ofu1 andu2, respectively,
e1 ande2 appear at the same order intr and tr′. Therefore,tr is conflict-equivalent to
tr′.

The condition in Theorem 6.3.1 for conflict-atomicity is sufficient but not necessary.
In Figure 6.7, the set of transactions is conflict-atomic, even thought1 contains multiple
commit nodes. The following theorem shows that the condition in Theorem 6.3.1 is an
exact test for conflict-atomicity of two transactions.

Let held-outside(n) denote the locks held by the executing thread just before the thread
executes the first event of noden. Letheld-outside(n1, n2) denote the locks acquired before
the first event noden1 and released after the last event of noden2 by the executing thread.
Let held-mid(n1, n2) denote the locks acquired and released between the last event ofn1

and the first event ofn2 by the executing thread.

Theorem 6.3.2.Suppose〈T, ∅〉 has no potential for deadlock, andT contains only two
transactions. 〈T, ∅〉 is conflict-atomic iff each transaction inT has at most one commit
node in the conflict-forest.
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Proof. “⇐”: it follows from Theorem 6.3.1.
“⇒”: SupposeT = {t, t′}. We show that〈T, ∅〉 is not conflict-atomic if at least one

transaction inT has two or more commit nodes. Without loss of generality, supposet
has at least two commit nodes. Letn1 andn2 denote two commit nodes oft. Thus,t′

has at least one commit node. Otherwise,t cannot have any commit node. There must
be a pair of conflicting events, denotede1 ande′1, e1 ∈ n1 ande′1 ∈ n′1, wheren′1 is a
communication node int′, and there is an inter-edge betweenn1 andn′1. Similarly, there
must be another pair of conflicting events, denotede2 ande′2, e2 ∈ n2 ande′2 ∈ n′2, where
n′2 is a communication node int′, and there is an inter-edge betweenn2 andn′2.

Suppose one ofn′1 andn′2 contains the other orn′1 = n′2. Then there is a tracetr where
n′1 andn′2 happen betweenn1 andn2, becauseheld-outside(ni) ∩ held-outside(n′) = ∅ for
i = 1, 2, wheren′ is the outer ofn′1 andn′2, or n′ = n′1 if n′1 = n′2. Thus,tr does not have
any conflict-equivalent serial trace.

Supposen′1 does not containn′2 and vice versa. According to the definition of conflict-
forest, we knowheld-outside(n1) ∩ held-outside(n′1) = ∅ and held-outside(n2) ∩ held-
outside(n′2) = ∅. Furthermore, because there is no potential for deadlock,held-mid(n′1, n

′
2)

∩ held-outside(n1, n2) = ∅ or held-mid(n1, n2) ∩ held-outside(n′1, n
′
2) = ∅. Otherwise,

if there exists a lockl1 ∈ held-mid(n′1, n
′
2) ∩ held-outside(n1, n2) and a lockl2 ∈ held-

mid(n1, n2) ∩ held-outside(n′1, n
′
2), thent acquiresl2 while holding l1, andt′ acquiresl1

while holdingl2, and there is no outer lock to prevent those acquires from being interleaved,
so these would be potential for deadlocks. Thus, there is a tracetr where bothn′1 andn′2
happen betweenn1 andn2, or n1 andn2 happen betweenn′1 andn′2. As in the previous
case,tr does not have any conflict-equivalent serial trace.

For example, in Figure 6.3,〈{t1, t2}, ∅〉 is not conflict-atomic according to Theorem
6.3.2 becauset1 contains two commit nodes when ignoringt3. Similarly,〈{t2, t3}, ∅〉 is not
conflict-atomic, either.

The following theorem gives a more accurate and expensive (compared to Theorem
6.3.1) condition to decide conflict-atomicity (for any number of transactions). This theorem
(unlike Theorem 6.3.1) is accurate enough to show that the set of transactions in Figure 6.7
is conflict-atomic. Note that, when considering cycles in the conflict-forest, tree edges are
treated as undirected edges.

Theorem 6.3.3.Suppose〈T, E〉 has no potential for deadlock, andE does not contain
any synchronization operations. If all pairs (if they exist) of communication nodes from
the same transaction that do not contain each other are not involved in any cycle of the
conflict-forest, then〈T, E〉 is conflict-atomic.

Proof. We prove the contrapositive. Suppose〈T, E〉 is not conflict-atomic. Thus, there is
a tracetr for 〈T, ∅〉 that does not have any conflict-equivalent serial trace, and there is a
directed cyclec in the serialization graph fortr. Suppose thatc consists of〈t1, t2, ..., tn〉 in
order, wheret1, t2, ..., tn ∈ T . c implies that there must be an evente1 of t1 that happens
before an evente2 of t2, an evente′2 of t2 that happens before an evente3 of t3, ..., and



6. RUNTIME COMMIT-NODE ALGORITHM 42

Instrument the source code of program to be tested as discussed in Section 7.2;
Execute the instrumented program, and dynamically construct the conflict-trees;
After the program terminates, construct conflict-forest by adding inter-edges
between conflict-trees.
If (there is potential for deadlocks)

Return “cannot decide”;
/* Applying Theorem 6.3.1*/
If (every transaction has at most one commit node)

return “conflict atomic”;
/* Applying Theorem 6.3.3*/
if (for every transaction, all pairs of communication nodes from the transaction that

do not contain each other are not involved in any cycle of the conflict-forest)
return “conflict atomic”;

else /*a conservative condition*/
Return “not conflict-atomic”;

Figure 6.8: The commit-node algorithm for checking conflict-atomicity.

an evente′n of tn that happens beforee′1 of t1 in tr, wheree1 and e2 access the same
variable,e′2 ande3 access the same variable, ...., ande′n ande′1 access the same variable.
This implies that there is a cyclec′ in the conflict-forest. Ifei ande′i of ti for i = 1..n are
in the same communication node, then bothei ande′i happen beforeei+1 ande′i+1 in tr, for
i = 1..n− 1. This contradicts the assumption thate′n happens beforee′1. Hence, there must
be a transaction in{t1, t2, ..., tn} that has at least two communication nodes onc′ that do
not contain each other.

Thecommit-node algorithmfor checking conflict-atomicity is shown in Figure 6.8.
Although this algorithm may report false alarms since the conditions in Theorem 6.3.1

and Theorem 6.3.3 are sufficient but not necessary. But we believe that this happens very
rarely. In the experiments of Section 7.4, all the warnings for non-conflict-atomicity re-
ported by the algorithm are confirmed to be true by Theorem 6.3.2.

Let |T |, nt, andne denote the number of transactions, the maximum number of events in
a transaction, and the number of events in the whole execution (including non-transactional
units), respectively. Theorem 6.3.3 requires checking, for each pair of communication
nodes of the same transaction, whether they are involved in a cycle,i.e., whether each
of them is reachable from the other. There areO(|T | × n2

t ) such pairs, and checking
whether two nodes are reachable from each other takes timeO(n2

e), so the worst-case time
complexity of the algorithm isO(|T | × n2

t × n2
e).

6.3.2 View-Atomicity

Theorem 6.3.4.Suppose〈T,E〉 has no potential for deadlock, andE does not contain any
synchronization operations. If each transaction ofT has at most one commit node in the
view-forest, then〈T, E〉 is view-atomic.
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Proof. For any tracetr of 〈T, E〉, we prove that it has a view-equivalent serial tracetr′,
which is constructed in the same way as in Theorem 6.3.1. The definition for the commit
point of each transaction is the same as in Theorem 6.3.1. By the same reasoning as in the
proof of Theorem 6.3.1,tr′ is serial and consistent with the synchronization operations, so
tr′ is a trace for〈T, E〉.

1. We prove that each read has the same write-predecessor intr andtr′. Consider an
arbitrary reader

x of a unitu ∈ T ∪ E. If er
x does not have potential write-predecessors in

units other thanu, theer
x has the same write-predecessor intr andtr′ becausetr′ preserves

the internal order of events for each unit inT ∪ E.
Supposeer

x has potential write-predecessors in units other thanu, consider two potential
write-predecessorsew1

x andew2
x , and suppose without loss of generality thatew1

x is the write-
predecessor ofer

x in tr. Note thatew1
x , ew2

x ander
x cannot all be in the same unit. We consider

four cases.
(1) If ew1

x , ew2
x ander

x belong to different units, then there are communication nodes
such thater

x ∈ nw1
r , er

x ∈ nw2
r , ew1

x ∈ nr
w1

, ew1
x ∈ nw2

w1
, ew2

x ∈ nr
w2

, ew2
x ∈ nw1

w2
, and such that

inter-edges exist betweennw1
r andnr

w1
, betweennw2

r andnr
w2

, and betweennw2
w1

andnw1
w2

.
The inter-edge implies thatnw2

w1
andnw1

w2
cannot interleave, sonw1

w2
happens either before

nw2
w1

or afternw2
r in tr (if nw1

w2
happened betweennw2

w1
andnw2

r , it would contradict the fact
thatew1

x is the write-predecessor ofer
x in tr). Thus, the commit point ofnw1

w2
is either before

the commit point ofnw2
w1

or after the commit point ofnw2
r in tr. Therefore,ew2

x happens
either beforeew1

x or afterer
x in tr′, soer

x has the same write-predecessorew1
x in bothtr and

tr′.
(2). If ew1

x andew2
x belong to the same unit, thenew2

x must happen either beforeew1
x or

after er
x in tr. For the first case,ew2

x also happens beforeew1
x in tr′. For the second case,

there must be communication nodesnr
w2

andnw2
r that containew2

x ander
x, respectively, and

nr
w2

happens afternw2
r in tr. Thus,ew2

x also happens afterer
x in tr. Therefore,er

x has the
same write-predecessorew1

x in tr andtr′.
(3). If ew1

x ander
x belong to the same unit, thenew2

x must happen either beforeew1
x or

after er
x in tr. For the first case, there must be communication nodesnw1

w2
andnw2

w1
that

containew2
x andew1

x , respectively, andnw1
w2

happens beforenw2
w1

in tr, soew2
x also happens

beforeew1
x in tr′. For the second case,ew2

x happens afterer
x in tr′ by the same reason.

Therefore,er
x has the same write-predecessorew1

x in tr andtr′.
(4). If ew2

x ander
x belong to the same unit, thenew2

x must happen beforeew1
x in tr, and

there must be communication nodesnw1
w2

andnw2
w1

that containew2
x andew1

x , respectively, and
nw1

w2
happens beforenw2

w1
in tr. This impliesew2

x also happens beforeew1
x in tr′. Therefore,

er
x has the same write-predecessorew1

x in bothtr andtr′.
2. Now, we prove thattr and tr′ have the same trace-final write to each variable.

Suppose that the trace-final write to a variablex in tr is efw
x , and another writeew

x to x
happens beforeefw

x in tr. We prove thatew
x also happens beforeefw

x in tr. Let ew′
x denote

the last write tox in the same unit asew
x . Becauseefw

x is the trace-final write oftr, ew′
x

happens beforeefw
x in tr. According to the algorithm in Figure 6.4, there must be two

communication nodesn andn′ such thatefw
x ∈ n andew′

x ∈ n′. Thus,n′ must happen
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beforen. Hence,ew′
x happens beforeefw

x in tr′. Sinceew
x can either beew′

x or happen before
ew′

x , ew
x must happen beforeefw

x .

For example, in Figure 6.5,〈{t1, t2}, ∅〉 is view-atomic because each oft1 andt2 con-
tains only one commit node in the view-forest. Note that〈{t1, t2}, ∅〉 is not conflict-atomic
sincet1 has two commit nodes in the conflict-forest.

The condition in Theorem 6.3.4 for view-atomicity is sufficient but not necessary. In
the example of Figure 6.7,〈{t1, t2, t3}, ∅〉 is view-atomic butt1 contains multiple commit
nodes. The following theorem shows that the condition in Theorem 6.3.4 is an exact test
for view-atomicity of two transactions.

Theorem 6.3.5.SupposeT has no potential for deadlock, andT contains only two trans-
actions.〈T, ∅〉 is view-atomic iff each transaction inT has at most one commit node in the
view-forest.

Proof. “⇐”: This implication is justified directly based on Theorem 6.3.4.
“⇒”: We prove the contrapositive,i.e., if at least one of the transactions has at least two

commit nodes, then〈T, ∅〉 is not view-atomic. According to the definition of view-forest,
there are three kinds of inter-edge. (1) The first kind of inter-edge denotes the relationship
between a reader in a transactiont and its potential write-predecessorew in the other
transaction. If the read has a preceding writeew

pre in its own transaction, then a violation
of view-atomicity is possible (becauseew can occur betweenew

pre ander by the definition
of potential write-predecessor), so the desired implication holds. If the read does not have
any preceding write in its own transaction, the read and its potential write-predecessor in
the other transaction act like a pair of conflicting events, in the sense that their order in a
trace determines that the two transactions must follow the order in all serial traces view-
equivalent to the trace (this is true with two transactions, although it is not true with more
transactions). This is the same property of inter-edges in the conflict-forest that is used
in the proof of Theorem 6.3.2. (2) The second kind of inter-edge denotes the relationship
between two writes that are potential write-predecessor for the same read; this indicates
a violation of view-atomicity (because either there is a write to some variablex in t′ that
can occur between a write tox and a read tox in t, or there is a read tox in t′ that can
occur between two writes tox in t), so the desired implication holds. (3) The third kind of
inter-edge denotes the relationship between unit-final writes of each transaction. With two
transactions, these final writes also act like conflicting events, in the sense described above,
so these edges have the same property as inter-edges in the conflict-forest.

Thus, depending on the kind of edges present, either we immediately conclude that the
desired implication holds, or all of the edges have the property of inter-edges in the conflict-
forest used in the proof of (⇒) in Theorem 6.3.2, and the rest of this proof is similar to that
proof.

For example, in Figure 6.5,〈{t2, t3}, ∅〉 is not view-atomic becauset3 contains two
commit nodes in the view-forest fort2 andt3. The following theorem gives a more sophis-
ticated condition to check view-atomicity.
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Theorem 6.3.6.Suppose〈T,E〉 has no potential for deadlock, andE does not contain any
synchronization operations. If all pairs of communication nodes from the same transaction
that do not contain each other are not involved in any cycle of the view-forest, then〈T, E〉
is view-atomic.

Proof. The proof is similar to the proof of Theorem 6.3.3.

The commit-node algorithm for checking view-atomicity is similar to the algorithm for
checking conflict-atomicity shown in Figure 6.8, except that the view-forest is constructed
and checked based on Theorems 6.3.4 and 6.3.6. Similarly as before, the worst-case time
complexity of the algorithm isO(|T | × n2

t × n2
e).

6.4 Comparison with Other Atomicity Checking Algo-
rithms

6.4.1 Reduction-Based Algorithm

In comparison with the reduction-based algorithm presented in Section 4.4, the follow-
ing theorem and example together show that Theorem 6.3.1 is more accurate than Theorem
4.4.2 for conflict-atomicity.

Theorem 6.4.1.If a transactiont has the form
(R|AcqA∗Rel)∗N ?(L|AcqA∗Rel)∗, then t has at most one commit node in the conflict-
forest.

Proof. According to the algorithm in Figure 6.2, the block denoted byAcqA∗Rel does
not contain any communication node. All synchronization blocks denoted byR∗N ?L∗

must be nested. Thus, for any two communication nodes int that are also synchronization
nodes, one is a descendant of the other.t contains at most one non-mover, and it occurs
in the inner-most synchronization block. Thus, there is at most one access node int that
is also a communication node, and that communication node is a descendant of all other
communication nodes int. Thus, for any two communication nodes of transactiont, one is
a descendant of the other. Hence,t has at most one commit node.

Now we give an example that is conflict-atomic according to Theorem 6.3.1 but is
wrongly reported to be non-atomic by the reduction theorem. LetT = {t1, t2}, wheret1
consists ofer1

x followed byew1
x , andt2 consists of onlyer2

x . t1 has the formNN which does
not match(R|AcqA∗Rel)∗N ?(L|AcqA∗Rel)∗, but t1 and t2 each have only one commit
node.

The commit-node algorithm of Section 6.3.1 contains the benefits of all the improve-
ments to the reduction-based algorithm described in [54], which include the improvements
proposed in [15]. For example, for re-entrant locks, thread-local locks, and protected locks,
there is no inter-edge connected to the corresponding synchronization nodes.
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Therefore, the reduction-based algorithm is less accurate than the commit-node algo-
rithm of Section 6.3.1.

6.4.2 The Block-Based Algorithm

The commit-node algorithm and the block-based algorithm discussed in Section 5.3 are
both exact tests for view-atomicity for two transactions, but the former runs much faster
in most programs in the experiments in Chapter 7. For three or more transactions, the
commit-node algorithm is an efficient conservative test that is very accurate in practice
based on the experiments in Chapter 7; the block-based algorithm can provide an exact test
but is significantly more expensive.

6.5 Implementation

We implemented the commit-node algorithm for checking conflict-atomicity and view-
atomicity in Java. The implementation consists of three parts: instrumentation, monitoring
and off-line analysis. Instrumentation is discussed in Section 7.2. The monitor intercepts
all events described in Chapter 2 and constructs access trees. Each access tree is optimized
to discard the redundant accesses, as discussed in Section 6.5.1. If there are more than two
identical access trees, we save only two copies, since the rest are redundant for checking
atomicity. A dynamic escape analysis introduced in Section 3.1 is used to determine when
a variable escapes. A happen-before analysis introduced in Section 3.2 is used to determine
whether two units are concurrent. When the program terminates, the algorithm adds inter-
edges between access trees, and then checks conflict-atomicity and view-atomicity using
the algorithms in Sections 6.3.1 and 6.3.2, respectively.

6.5.1 Optimization: Trimming the Access Tree

It is not necessary to save all accesses to escaped variables. For access nodes with
the same parent node, we preserve only the first two read accesses and the first two write
accesses (if they exist) to each escaped variable, because the first two reads and writes tox
can represent all discarded accesses for checking (conflict or view) atomicity. The resulting
trees and forests are said to betrimmed.

Theorem 6.5.1.For every〈T,E〉, and every hypothesisH about the conflict-forest and
view-forest in the theorems of Section 6.3,H holds for the trimmed forest iff it holds for the
untrimmed forest.

Proof. 1. Consider reads. LetR be a set of three or more reads to the same variable that
share the same parent node. It is easy to see that in both conflict forest and view forest,
either all of them are connected to a given write in another unit by inter-edges, or none of
them are connected to it. Suppose we evaluateH considering only the first two reads in
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R. It is easy to show that considering additional reads inR either does not generate any
additional inter-edges, or the generated edges do not affectH.

2. Consider writes in the conflict-forest. LetW be a set of three or more writes to
the same variable that share the same parent node. In the conflict forest, either all of
them are connected to a given read or write of another unit by inter-edges, or none of
them are connected to it. Similarly as for reads, we can show that considering the third and
subsequent writes inW either does not generate any additional inter-edges, or the generated
edges do not affectH. For the view forest, ifW does not contain a unit-final write, then the
reasoning is similar to the previous cases; ifW contains a unit-final write, it gets removed
and the second write inW becomes the unit-final to that variable; it is easy to verify (for
each hypothesisH) that this does not affectH.
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Chapter 7

Experiments and Related Work

7.1 Introduction

We implemented the reduction-based, block-based, commit-node algorithms in Java.
To facilitate comparison with [15], we use the same on-line reduction-based algorithm

as in [15]; specifically, it uses the lockset algorithm from [49], ignores arrays, uses Theorem
4.3.1 instead of Theorem 4.4.2, and uses the improvements of Section 4.6. It does not use
dynamic escape analysis or happen-before analysis.

The off-line reduction-based algorithm is based on Theorem 4.4.2, and incorporates the
multi-lockset algorithm (which uses dynamic escape analysis and happen-before analysis)
for checking data races, and the improvements of Section 4.6. Note that all these improve-
ments could also be applied to the on-line reduction-based algorithm, but we did not do
that, in order to compare our algorithms with [15].

The block-based algorithm in these experiments is based on Theorem 5.2.1. Theorem
5.3.1 is more precise but more expensive than Theorem 5.2.1. In addition, we implemented
a check for the presence of cyclic dependencies between three or more transactions, and
cyclic dependencies do not appear in these experiments. This implies that we did not miss
any atomicity violations by using Theorem 5.2.1 instead of Theorem 5.3.1. We believe that
Theorem 5.2.1 is sufficient for most programs.

The commit-node algorithm for conflict-atomicity is shown in Figure 6.8. It first checks
the conditions of Theorem 6.3.1; if they are satisfied, reports that conflict-atomicity holds;
otherwise, checks the conditions of Theorem 6.3.3, then reports conflict-atomicity holds
or not according to whether the conditions are satisfied. The commit-node algorithm for
view-atomicity is similar to the algorithm for checking conflict-atomicity, except that the
view-forest is constructed and checked based on Theorems 6.3.4 and 6.3.6.

To evaluate the three runtime algorithms, we apply them to 12 programs. The 12 pro-
grams areelevator , tsp , sor , andhedc from [49]; moldyn , montecarlo , and
raytracer from [28]; StringBuffer , Vector , Hashtable , andStack from Sun
JDK 1.4.2; andjigsaw [29]. elevator simulates the actions of two elevators.tsp
solves the travelling salesman problem; we run it on the accompanying data filesmap4
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andmap14. sor is a scientific computing program which uses barriers rather than locks
for synchronization.hedc is a Web crawler that searches astrophysics data on the Web.
moldyn , montecarlo , andraytracer are computation-intensive parallel programs
that compute molecular dynamics, Monte Carlo simulation, and ray tracing, respectively.
jigsaw is a Web server implemented in Java. We instrument only its packages that are
related with HTTP service. Table 7.4 shows the number of lines of code that are instru-
mented,i.e., it excludes code in uninstrumented libraries. For all programs that accept the
number of threads as an argument, we use three threads. All experiments are done on a Sun
Blade 1500 with a 1GHz UltraSPARC III CPU, 2GB RAM, SunOS 5.8, and JDK 1.4.2∗.

We modified tsp and moldyn slightly. Specifically, for tsp , we set
Tsp.MAX NUMTOURSto 100 instead of 5000, and used instances ofObject() as
lock objects instead of instances ofInteger(0) , since our system identifies locks by
their identity hash code. Formoldyn , we setmd.ITERS to 1, moved some fields of
mdRunner into its run() method so they became local variables, and marked instances
of particle as unshared (i.e., accessed by only one thread) and hence did not record
accesses to them; this annotation makes the analysis faster and does not affect the result.

We designed test drivers for the classesStringBuffer , Vector , Hashtable , and
Stack . The pseudo-code is shown in Figure 7.1, whereC denotes one of these classes.
The driver creates two instanceso1 ando2 of C. For a pair〈m1,m2〉 of methods ofC, the
driver creates two threadst1 andt2, wheret1 executeso1.m1 andt2 executeso2.m2. Each
execution ofTestTwoMethods is analyzed separately for the atomicity checking. When
a method requires an instance ofC as argument, the other instance is used. For example,
if C is Vector , andm1 is addAll , then threadt1 executeso1.addAll (o2). The driver
tests all pairs of methods such thatm1 andm2 that do not both take an argument of type
C; these excluded pairs would lead to potential for deadlock. For example, executing
〈o1.addAll(o2), o2.removeAll(o1)〉may lead to deadlock becauseo1.addAll(o2) lockso1

theno2, ando2.removeAll(o1) lockso2 theno1. The driver does not test scenarios in which
t1 executeso1.m1 andt2 executeso1.m2, because they would not produce any additional
information, since these methods are synchronized.

In these experiments, we check atomicity of transactions defined by the defaults in
Section 7.2. For arrays, every element is monitored, except that we use a cutoff of 3 at the
beginning of arrays formoldyn , montecarlo andraytracer , and we use a cutoff of
10 in the middle of arrays forsor to catch more violations.

7.2 Instrumentation

This section describes the instrumentation of the source code.
We modify the pretty-printer in the Kopi [30] compiler to insert instrumentation as it

pretty-prints the source code. The instrumentation intercepts the following events:

• reads and writes to all monitored fields (see below).
∗All experiments of this dissertation are done in the same environment.
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TestCollections()
for (i=0;i<numMethods;i++)

for (j=0;j<numMethods;j++)
if (methods i and j of C do not both take args of type C)

TestTwoMethods(i,j);

TestTwoMethods(int i, int j)
C o1 = new C(), o2 = new C();
start a new thread that executes the ith method of o1

with o2 as a parameter if needed;
start a new thread that executes the jth method of o2

with o1 as a parameter if needed;

Figure 7.1: Pseudo code for test driver.C is StringBuffer , Vector , Hashtable , or
Stack .

• entering and exiting synchronized blocks, including synchronized methods.

• entering and exiting methods that are considered as transactions (see below).

• calls to threadstart andjoin .

• barrier synchronization.

The user specifies the classes to instrument as a list of expressions likejava. * (de-
noting all classes in sub-packages ofjava ), java.util. * , or java.util.Vector .

As introduced in Chapter 2, by default, executions of the following code fragments in
the instrumented classes are considered to be transactions: non-private methods, synchro-
nized private methods, and synchronized blocks inside non-synchronized private methods;
as exceptions, the executions of themain() method in which the program starts and the
executions ofrun() methods of classes that implementRunnable are not considered
as transactions. These defaults are taken from [15]. We include synchronized blocks here
because locks are often used to achieve atomicity. We include non-private methods here
because they are abstractions often expected by clients of the class to behave as atomic op-
erations. The defaults can be overridden using a configuration file,e.g., therun() method
of thread can be defined for atomicity checking. We did not override these defaults in any
of the experiments. In addition, start, join and barrier operations are treated as transaction
boundaries, as discussed in Section 3.2.

All non-final fields (with primitive type or reference type) of the specified classes are
monitored. Accesses to these fields in all methods of all classes are instrumented, because
even methods not considered as transactions by themselves might be invoked during a
transaction. Local variables are not monitored, because they are necessarily thread-local.
The defaults for monitoring non-final fields can also be overridden by a configuration file,
e.g., some fields can be defined for non-monitoring because they never escape.
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In the reduction-based algorithm, for each monitored field, one or more locksets are
maintained. In the block-based algorithm, for each monitored field, a previous event is
cached to construct a block with the current event. We originally implemented these maps
between monitored fields and their associated information as hash tables, with an object
identifier combined with a field name as the key. This is relatively easy to implement but
inefficient, since each access requires a look up in the hash table. Our current implementa-
tion inserts in each monitored class a new field (call itshadow f ) corresponding to each
monitored fieldf of the class.shadow f points directly to the information associated
with f .

There is no way to insert fields into array classes in Java, so we use the less efficient
approach described above to associate shadow information with arrays,i.e., we maintain a
hash table that maps each array referencea to shadow informationas. Each array element
has its own the shadow information. Soas is an array with the same dimension and size
asa. When an array is created, its associated shadow array is created. As an optimization,
parts of the array can be allocated dynamically when needed.

Monitoring every array element causes large slowdown in some programs, so our sys-
tem allows the user to specify a cutoff; for example, if the array is[0..99]× [0..99] and the
cutoff is 3, then only the subarray[0..2] × [0..2] is monitored. Dynamic escape analysis is
still carried out on the array and every element, regardless of the cutoff.

7.3 Usability

The block-based algorithm provides more detailed diagnostic information than the
reduction-based algorithms (on-line and off-line). For example, Figure 7.2 shows part of
the output of these algorithms for theVector example in Figure 1.1. The reduction-based
algorithms report an atomicity violation because of two consecutive synchronized blocks
(e.g., R...L...R...L, which does not match the patterns in Theorems 4.3.1 and 4.4.2, see
Figure 4.3). The block-based algorithm reports an atomicity violation because it finds the
second unserializable pattern described in Section 5.1,i.e., for the fieldelementCount
of some instance ofVector , a write to that field by some thread (denotedThread 2)
executing line 631 ofVector.java can occur between two reads of the same field
by another thread (denotedThread 1) executing lines 267 and 690 ofVector.java .
The reduction-based algorithms have inherent limitation in reporting diagnostic informa-
tion, because they cannot indicate which variables are involved in the atomicity violation
(variables involved in data races can be identified, but there is no data race in this exam-
ple), while the block-based algorithm indicates the specific fields and accesses that violate
atomicity. The commit-node algorithm reports an atomicity violation because it finds that
the transaction contains two commit nodes which correspond to the two synchronization
blocks. The diagnostic information reported by the commit-node algorithm is similar to
the reduction-based algorithm.
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The reduction-based algorithms report:
transaction Vector(Collection) is NOT atomic because :

synchronized block @ Vector.java:689
synchronized block @ Vector.java:266

The block-based algorithm reports:
transaction Vector(Collection) is NOT atomic because :
the unserializable pattern is

VarName = Vector.elementCount
Thread_1: R @ Vector.java:267
Thread_2: W @ Vector.java:631
Thread_1: R @ Vector.java:690

The commit-node algorithm report:
transaction Vector(Collection) is NOT atomic because :
there are two commit nodes

commit-node 1 @ Vector.java:689
commit-node 2 @ Vector.java:266

Figure 7.2: Excerpts of diagnostic information for theVector example.

7.4 Accuracy and Performance

Table 7.1 shows the running times and results of the three algorithms: on-line reduction-
based algorithm and off-line reduction-based algorithm for conflict-atomicity, block-based
algorithm and commit-node algorithm for view-atomicity. “Base time” is the running time
of the uninstrumented program. “Intrcpt time” is the running time when all events relevant
to atomicity checking are intercepted but not processed (an empty method is called). For
each algorithm, “time” includes the running time of the instrumented program and the
analysis. We classify warnings issued by each algorithm into three categories:

• Bug: the warning reflects a violation of atomicity that might cause a violation of an
application-specific correctness requirement.

• Benign: the warning reflects a violation of atomicity that does not affect the correct-
ness of the application.

• False alarm: the warning does not reflect a violation of atomicity.

Table 7.1 shows, for each category, the number of methods is issued such that a warning
in that category for a transaction that is an execution of that method or part code of that
method. If a transaction is correctly reported as not atomic, the corresponding method is
counted only under bug or benign even if other warnings (which we do not need to clas-
sify) are also reported for that method. For a warning issued by the block-based algorithm,
only the methods whose executions contribute two events in the unserializable patterns are
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Program Base Intrcpt On-line reduction Off-line reduction Block-based Commit-node
time time time report time report time report time report

elevator 0.2s 0.34s 0.2s 0-2-0-0 0.5s 0-2-0 0.6s 0-2-0 0.4s 0-2-0
tsp(map4) 0.24s 0.4s 0.5s 0-0-1-0 0.5s 0-0-1 0.5s 0-0-0 0.5s 0-0-0
tsp(map14) 0.24s 0.4s 31.7s 0-1-0-1 32.5s 0-2-0 8m59s 0-2-0 40.0s 0-2-0
sor 0.47s 47.1s 2.2s 0-0-2-0 53.3s 0-0-0 1m4.1s 0-0-0 52.4s 0-0-0
hedc 0.6s 0.82s 0.7s 0-0-2-0 1.0s 0-0-1 2.1s 0-0-0 1.0s 0-0-0
moldyn 44.03s 24m34s 9m49s 0-0-0-2 38m22.1s 0-0-0 28m54.6s 0-0-0 34m26s 0-0-0
montecarlo 15.85s 7m37s 1m43.3s 0-0-0-0 8m10.1s 0-0-0 8m11.4s 0-0-0 7m43s 0-0-0
raytracer 14.34s 10m8s 35m13.6s 1-0-0-1 11m58.9s 2-0-0 36m17.6s 2-0-0 10m50s 2-0-0
jigsaw 1.60s 2.2s 1.88s 1-2-1-1 2.74s 1-3-1 8m25.4s 1-3-0 3.4s 1-3-0
StringBuffer - - - 0-1-0-0 - 0-1-0 - 0-1-0 - 0-1-0
Vector - - - 4-2-0-12 - 4-4-10 - 4-4-0 - 4-4-0
Hashtable - - - 0-2-3-0 - 0-2-3 - 0-2-0 - 0-2-0
Stack - - - 3-2-0-14 - 3-4-12 - 3-4-0 - 3-4-0

Table 7.1:Performance and Accuracy. The four categories of “report” for the on-line reduction
algorithm are bug - benign - false alarm - missed violation. The three categories of “report” for the
other two algorithms are bug - benign - false alarm. A dash for “time” means that the running time
is negligible.

counted. We aggregate the warnings in this way (instead of simply counting the number of
warnings) to facilitate a fair comparison between the reduction-based and block-based al-
gorithms. Note that the reduction-based algorithms and the commit-node algorithm always
produce at most one warning per transaction (indicating that the patterns in Theorems 4.3.1
and 4.4.2 are not matched), while the block-based algorithm may produce multiple warn-
ings per transaction, since multiple parts of the transaction may match the unserializable
patterns in Chapters 5.1 and 5.2.

Table 7.1 also shows the number of missed errors for the on-line reduction algorithm,
i.e., the number of atomicity violations that are reported by the off-line reduction-based
algorithm, but missed by the on-line reduction-based algorithm.

We conclude from Table 7.1 that:
(1) The on-line reduction-based algorithm actually misses some atomicity violations

in practice, for the reasons mentioned in Chapters 4.5 and 4.6, and because it does
not analyze arrays; this occurs fortsp(map14) , moldyn , raytracer , jigsaw ,
Vector and Stack . For example, inraytracer , the on-line reduction-based al-
gorithm misses an atomicity violation because it mis-classifies some accesses to field
JGFRayTracerBench. checksum1 as race-free based on the information observed
so far, whereas the off-line algorithm classifies them as races based on the entire execution.
Another example is inmoldyn , the algorithms that analyze arrays (off-line reduction-
based and block-based) report atomicity violations involving arrays (these violations can
be seen in Table 7.3), although these warnings are removed because of happen-before anal-
ysis (and hence are not evident in Table 7.1).

(2) The block-based algorithm is more accurate than the on-line and off-line reduction-
based algorithms, in the sense that it reports fewer false alarms. The commit-node algo-
rithm has the same accuracy on these benchmarks as the pairwise block-based algorithm.
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The reduction-based algorithms issue false alarms because their analyses are imprecise, not
because they are checking conflict-atomicity while the other algorithms used for Table 7.1
check view-atomicity.

(3) For most programs, the off-line reduction-based algorithm is slower than the on-
line reduction-based algorithm, because the latter is on-line (this avoids storage overhead),
uses less accurate and faster data race analysis, and ignores array accesses. The median
slowdown of the off-line reduction-based algorithm compared to the on-line reduction-
based algorithm is 46%. Inraytracer , the off-line reduction-based algorithm is faster
because it uses escape analysis (this point is explained Section 7.6).

(4) The block-based algorithm is slower than the off-line reduction-based algorithm;
the median slowdown is 20%. The block-based algorithm is relatively much slower for
tsp(map14) and jigsaw , because they execute a lot of code once (or a few times),
producing many distinct blocks (see Table 7.4), while the other programs iterate more,
producing more duplicate blocks.

(5) The commit-node algorithm is as fast as the reduction-based algorithm (even 0.4%
faster on average), and significantly faster than the block-based algorithm (56% faster on
average).

(6) Different input data affects the runtime analysis result for some programs, such
as tsp(map4) and tsp(map14) , where tsp(map14) exercises more code than
tsp(map4) .

We also check these programs for conflict-atomicity using the commit-node algorithm
presented in Section 6.3.1. It issues exactly the same warnings (including bugs, benign and
false alarms) as the commit-node algorithm for checking view-atomicity. The commit-node
algorithm for conflict-atomicity is slightly faster (5.9% faster on average) than the commit-
node algorithm for view-atomicity, because the former needs less time to construct inter-
edges. We also test the programs by comparing pair of transactions each time according to
Theorems 6.3.2 and 6.3.5. Checking pairs of transaction for conflict-atomicity and view-
atomicity produces the same result as checking the whole set of transactions.

Please note that the performance is closely related to the implementation. If the instru-
mentation is done on byte code like [37], the performance can be improved significantly.

7.5 Report of Bugs

The bugs inraytracer come from atomicity violations involving the field
JGFRayTracerBench.checksum1 , which could get an incorrect value, causing
the program to report failure. The bug injigsaw is due to atomicity violations
involving the fieldw3c.tools.resources.store.ResourceStoreManager.
loadedStore due to statementsloadedStore++ and loadedStore-- without
synchronization; as a result,loadedStore may contain an incorrect value. The error
in jigsaw described in [50] does not appear in our experiments, because the relevant
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code was modified in the newer version ofjigsaw that we tested. The above atomic-
ity violations involve data races. The errors inVector andStack are from atomicity
violations on the fieldelementCount (as discussed in Chapter 1).

The off-line reduction-based algorithm produces more false alarms than the block-
based algorithm. For example, someCollection classes usemodCount to count
modifications. Thus, when an update methodm1 executesmodCount++ (which is
a read followed by a write), and another methodm2 checks for recent modifications
by readingmodCount , there is a serializable sequence of eventsm1:read(modCount)
m2:read(modCount)
m1:write(modCount). The block-based algorithm does not produce a warn-
ing. But the benign data race onmodCount may cause the reduction-based al-
gorithms (on-line and off-line) to produce an atomicity warning (a false alarm).
Similar scenarios exist injigsaw (e.g., on the field alive in the method
w3c.util.CachedThread.waitForRunner() ) and other programs.

For Vector andStack , the on-line reduction-based algorithm produces fewer false
alarms than the off-line reduction-based algorithm, because it misses some data races. By
luck, the data races are benign and do not cause atomicity violations, but produce false
alarms in the off-line algorithm. The on-line algorithm uses [49]’s race detection algo-
rithm which assumes that the ownership of a variable is transferred when a second thread
accesses the variable, but the ownership of aCollection class in our driver is not re-
ally transferred at that time. On the other hand, missed data races may cause the on-line
reduction-based algorithm to miss some atomicity violations, as inraytracer , discussed
above.

7.6 The Benefits of Different Techniques

Table 7.2 shows the benefits of different improvements to the off-line reduction-based
algorithm. For each program, three groups of experimental data are shown: atomicity vio-
lations, data races, and execution time. The results for atomicity violations are aggregated
as in Table 7.1,i.e., based on the method executed by the transaction. The results for data
races are the numbers of fields for which warnings are issued. A field of a class is counted
only once, even if warnings are issued for multiple instances of the class. The columns
show cumulative improvements. For example, the column labeled with “happen-before”
also uses escape analysis, and the last column uses all four improvements.

In Table 7.2, “none” means that the lockset algorithm of [49] is used to detect data
races. When “escape” or “happen-before” is used as an option, a revised Eraser lockset
algorithm is used: when an object escapes, all its fields are regarded as in “exclusive”
state; this corresponds to the state “exclusive2” in the lockset algorithm of [49]. With the
option “happen-before”, thread period IDs are used to track happen-before relations based
on start-join and barriers. With the option “multi-lockset”, the multi-lockset algorithm of
Section 4.5 is used to detect data races. With the option “AcqA∗Rel”, Theorem 4.4.2 is
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Program none escape happen-before multi-lockset AcqA∗Rel
elevator atmcty vlts 0-2-0 0-2-0 0-2-0 0-2-0 0-2-0

data races 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0
time 0.4s 0.5s 0.5s 0.5s 0.5s

tsp(map4) atmcty vlts 0-0-1 0-0-1 0-0-1 0-0-1 0-0-1
data races 0-0-8-0 0-0-8-0 0-0-0-0 0-0-0-0 0-0-0

time 0.5s 0.5s 0.5s 0.5s 0.5s
tsp(map14) atmcty vlts 0-2-2 0-2-2 0-2-0 0-2-0 0-2-0

data races 0-7-3-1 0-7-3-1 0-7-0-1 0-8-0-0 0-8-0
time 1m1.3s 25.7s 32.6s 34.1s 34.0s

sor atmcty vlts 0-0-2 0-0-2 0-0-2 0-0-0 0-0-0
data races 0-0-2-0 0-0-2-0 0-0-2-0 0-0-0-0 0-0-0

time 51.3s 51.0s 52.0s 53.4s 53.3s
hedc atmcty vlts 0-0-3 0-0-3 0-0-3 0-0-3 0-0-1

data races 0-1-0-1 0-1-0-1 0-1-0-1 0-2-0-0 0-2-0-0
time 0.8s 1.0s 0.8s 1.0s 1.0s

moldyn atmcty vlts 0-0-2 0-0-2 0-0-0 0-0-0 0-0-0
data races 0-0-2-0 0-0-2-0 0-0-0-0 0-0-0-0 0-0-0

time 42m30s 28m23.1s 34m11.7s 35m15.3s 38m22.1s
montecarlo atmcty vlts 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0

data races 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0
time 12m40.5s 8m8.5s 8m16.5s 8m22.2s 8m10.1s

raytracer atmcty vlts out of 2-0-0 2-0-0 2-0-0 2-0-0
data races memory 1-0-0-0 1-0-0-0 1-0-0-0 1-0-0

time after 2 hours 12m1.2s 11m54.5s 11m50.8s 12m8.7s
jigsaw atmcty vlts 1-3-3 1-3-2 1-3-2 1-3-2 1-3-1

data races 2-8-28-0 2-12-0-0 2-12-0-0 2-12-0-0 2-12-0
time 2.73s 2.69s 2.64s 2.80s 2.74s

StringBuffer atmcty vlts 0-1-0 0-1-0 0-1-0 0-1-0 0-1-0
data races 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0

Vector atmcty vlts 4-4-10 4-4-10 4-4-10 4-4-10 4-4-10
data races 0-1-0-0 0-1-0-0 0-1-0-0 0-1-0-0 0-1-0

Hashtable atmcty vlts 0-2-4 0-2-4 0-2-4 0-2-4 0-2-3
data races 0-2-1-0 0-2-0-0 0-2-0-0 0-2-0-0 0-2-0

Stack atmcty vlts 3-4-12 3-4-12 3-4-12 3-4-12 3-4-12
data races 0-1-0-0 0-1-0-0 0-1-0-0 0-1-0-0 0-1-0

Table 7.2:The benefits of different improvements to the off-line reduction-based algorithms. The
three categories for atomicity violations are bug - benign - false alarm. The four categories for data
races are bug - benign - false alarm - missed warning.

used instead of Theorem 4.3.1.
Table 7.3 compares the benefits of different improvements to the block-based algorithm.

The columns show cumulative improvements. The “none” column means that only locks,
not escape and happen-before information, are considered when determining whether an
event can occur between two other events. For each improvement, the column “methods”
reports the number of methods such that an atomicity warning is issued for a transaction
which is an execution of that method or part code of that method, and the column “fields”
reports the number of fields such that an atomicity warning is issued involving accesses
to that field. The three categories for “methods” are bug - benign - false alarm. The first
category of “fields” is the numbers of fields such that an atomicity warning is issued for a
1v-block involving an access to that field; the second category of “fields” is the number of
pair of fields such that an atomicity warning is issued for a 2v-block involving accesses to
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Program None Escape happen-before
methods fields time methods fields time methods fields time

elevator 0-2-3 6-6 11.0s 0-2-0 2-0 0.6s 0-2-0 2-0 0.6s
tsp(map4) 0-0-1 1-0 0.5s 0-0-1 1-0 0.5s 0-0-0 0-0 0.5s
tsp(map14) 0-2-1 5-8 10m44.1s 0-2-1 5-8 9m24.3s 0-2-0 3-7 9m16.2s
sor 0-0-2 36-144 1m3.6s 0-0-2 36-144 1m3.7s 0-0-0 0-0 1m4.1s
hedc 0-0-5 5-2 9.8s 0-0-3 1-0 1.9s 0-0-0 0-0 2.1s
moldyn >13hrs 0-0-2 6-12 29m8.4s 0-0-0 0-0 28m54.6s
montecarlo >20hrs 0-0-0 0-0 8m18.9s 0-0-0 0-0 8m11.4s
raytracer >20hrs 2-0-0 1-0 37m7.6s 2-0-0 1-0 37m44.1s
jigsaw >20hrs 1-3-1 13-112 7m42.4s 1-3-0 13-102 8m25.4s
StringBuffer 0-1-0 1-2 - 0-1-0 1-0 - 0-1-0 1-0 -
Vector 4-4-0 3-0 - 4-4-0 3-0 - 4-4-0 3-0 -
Hashtable 0-2-1 2-0 - 0-2-0 2-0 - 0-2-0 1-0 -
Stack 3-4-0 4-0 - 3-4-0 4-0 - 3-4-0 4-0 -

Table 7.3:The benefits of different improvements to the block-based algorithm. A dash for “time”
means that the running time is negligible. A blank for “methods” or “fields” means that the datum
is unavailable.

these two fields.
We can see from Table 7.3 that dynamic escape analysis speeds up the block-based

algorithm on several programs, because it eliminates processing of accesses to unescaped
variables (just checking whether they are escaped is fast). It also speeds up the off-line
reduction-based algorithms in several cases; this can be seen by comparing the first two
columns in Table 7.2. Table 7.4 shows the ratio of unescaped events to total events on all
variables. Besides improving efficiency, dynamic escape analysis can also eliminate some
false alarms. For example, Table 7.2 shows that dynamic escape analysis removes many
false alarms for data race and atomicity onjigsaw ; Table 7.3 shows that several false
alarms for atomicity are eliminated by dynamic escape analysis onelevator , hedc and
Hashtable .

Happen-before analysis can also eliminate some false alarms. For example, the happen-
before analysis based on start and join removes false alarms ontsp(map14) in Table 7.2
and ontsp(map4,map14) andhedc in Table 7.3. The happen-before analysis based
on barrier removes false alarms onmoldyn in Tables 7.2 and 7.3.

The multi-lockset algorithm eliminates some false alarms onsor ; these false alarms
remained even after escape and happen-before analysis were applied. The multi-lockset al-
gorithm reveals data races missed by the revised Eraser lockset algorithm intsp(map14)
andhedc . This can be seen in Table 7.2.

Special treatment ofAcqA∗Rel (i.e., using Theorem 4.4.2 instead of Theorem 4.3.1)
reduces the number of false alarms for some programs. For example, we can see in Table
7.2 that it eliminates some false alarms for atomicity inhedc , jigsaw , andHashtable .

The results for “fields” in the column “happen-before” of Table 7.3 shows that for most
programs, all of warnings are for 1v-blocks. This suggests that the algorithm in Section 5.1
is sufficient to find most atomicity violations. The algorithm in Section 5.2 is slower and the
additional warnings it produces are typically more difficult to diagnose as bug or benign,
because they involve two variables, and diagnosis requires understanding how updates to
the two variables should be related.
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Program lines total fraction off-line # of commit-node multi- Eraser
of events unescaped reduction blocks algorithm lockset lockset

code events storage storage size size
elevator 528 26K 43% 184 108 342 86 20
tsp(map4) 706 1.3K 40% 60 155 330 80 1
tsp(map14) 706 14M 68% 543 13474 3015 532 40
sor 251 16M 97% 64 3056 90 49 0
hedc 2197 2.9K 21% 350 1085 892 386 31
moldyn 1265 1.6G 86% 978 132 3819 2429 0
montecarlo 3619 477M 99% 79 159 148 92 0
raytracer 1832 3.5G 99% 31 39 106 29 1
jigsaw 25012 8.4K 51% 2011 12508 4031 2169 110

Table 7.4: Comparison of storages, and the ratio between unescaped events and escaped
events.

7.6.1 Storage

Table 7.4 characterizes the storage used. Results forCollection classes are omit-
ted, because the storage used is small and depends mainly on the driver. “total events” is
the total number of monitored events, including accesses to unescaped variables. “frac-
tion unescaped events” is the ratio between the number of accesses to unescaped variables
and the total number of events. “off-line reduction storage” shows the storage of the off-
line reduction algorithm by the total size of all (varsOne andvarsMul) sets of variables
in all transaction tree nodes discussed in Section 4.7. “# of blocks” shows the number
of blocks (including 1v-blocks and 2v-blocks) stored by the block-based algorithm. The
“storage of the commit-node algorithm” is the sum of the number of nodes and the number
of inter-edges (which in these experiments is at most 2/3 of the number of nodes) in the
trimmed view-forest. “multi-lockset size” shows the sum of the maximum sizes of all sets
(includingReadSets, WriteSet, ReadThreadSet andWriteThreadSet for each moni-
tored variable) maintained by the multiple-lockset algorithm. “Eraser lockset size” shows
the sum of the maximal sizes of all locksets maintained by Eraser [44] algorithms.

The multi-lockset algorithm provides more accurate data race analysis with moderately
increased storage. The storage overhead of both algorithms are negligible under the cur-
rent computer systems. The relatively large difference onmoldyn between “multi-lockset
size” and “Eraser lockset size” is due to the use of barriers, which increase the number of
thread period IDs. The Eraser lockset sizes are zero forsor , moldyn , andmontecarlo
because they use barrier synchronization which is not monitored by the Eraser lockset al-
gorithm.

7.7 Conclusions

Generally, runtime analysis is unsound compared to static analysis because it depends
on the input to the program and may miss errors, especially (but not limited to) errors in
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unexecuted code. Still, our algorithms are sound in a limited sense. Given a particular exe-
cution as input, our dynamic escape analysis and happen-before analysis are conservative,
and our off-line reduction-based, block-based, and commit-node algorithms are conserva-
tive tests for atomicity of execution fragments (called transactions) as defined in Chapter 2.
The on-line version of the reduction-based algorithm is unsound, for reasons discussed in
Sections 4.5 and 4.6.

In conclusion, the block-based algorithm is most accurate and produces most specific
diagnostic information than the other two algorithms. The commit-node algorithm is less
accurate than the block-based algorithm in theory, but they have the same accuracy in
practice. The reduction-based algorithm is the least accurate. For efficiency, the commit-
node algorithm is as fast as the reduction-based algorithm, and significantly faster than the
block-based algorithm.

The experiments do not reveal any simple relationship between the running time and
the number of events. This reflects the fact that the running time depends strongly on many
other factors,e.g., how many events produce the same blocks, when variables escape, the
number of thread periods, lockset sizes, etc.

Escape analysis improves both efficiency and precision (i.e., fewer false alarms).
Happen-before analysis, the multi-lockset algorithm, and special treatment ofAcqA∗Rel
also increase precision but incur some overhead.

7.8 Related Work

7.8.1 Detecting Potential for Atomicity Violations

Flanagan and Freund [15] proposed a reduction-based algorithm with the improvements
in Section 4.6. Their tool, called Atomizer, implements the on-line reduction-based algo-
rithm described in Section 7.1.

Compared with Atomizer, this dissertation contributes the following improvements to
the reduction-based algorithms: (1) off-line checking, which avoids missing atomicity vi-
olations due to miss-classification of events; (2) more accurate treatment of accesses to
thread-local and read-only variables, as described in Theorem 4.4.2; (3) a new multi-lockset
algorithm that produces fewer false alarms than previous lockset algorithms; (4) use of dy-
namic escape analysis, which reduces false alarms and often reduces running time; (5) use
of happen-before analysis in data race detection to reduce false alarms; (6) on the imple-
mentation side, our system analyzes arrays; Atomizer does not.

Model checking can also be used to check atomicity [23, 13]. Model checking provides
stronger guarantees than runtime monitoring, because it explores all possible behaviors
of a program. Also, many of the supporting analyses, such as dynamic escape analysis,
analysis of array, deadlock detection, and special treatment of thread-local and read-only
variables, etc., can be performed more easily and precisely in model checking than by
program instrumentation [23]. However, model checking is more expensive and feasible
only for programs with relatively small state spaces.
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Cormac Flanagan and Shaz Qadeer developed a type systems for atomicity [19] which
extends a race-free type system [14] and Lipton’s reduction theorem [31]. These work are
summarized in Chapter 9.

von Praun and Gross [50] present a static analysis to detect violations ofmethod con-
sistency, which is an extension of view consistency [4]. Method consistency and atomicity
are also incomparable. Although their static analysis is unsound (in order to reduce the cost
and the number of false alarms), it considers the entire program and therefore may be more
thorough than runtime analysis in some cases. On the other hand, it produces more false
alarms than our block-based algorithm, based on a comparison of the false alarms in our
Table 7.1 with the false and spurious reports in Table 1 of [50].

Artho et al. developed a runtime analysis algorithm to detecthigh-level data races[4].
Absence of high-level data races is similar to atomicity. They introduce a concept ofview
consistencyand utilize it to detect high-level data races. Aview is the entire set of shared
variables accessed in a synchronized block. Threadt1 and threadt2 are view consistent if
the intersections of all views oft1 with the maximal view oft2 form a chain (with respect to
the subset ordering⊆), and vice versa. View consistency and atomicity are incomparable
(i.e., neither implies the other) [51].

Min Xu et al. developed a tool to detect serializability violations [56]. It differs
from atomicity detectors because it is concerned with particular program executions. [56]
presents a technique to automatically infer transaction boundaries, whereas our runtime
analysis for atomicity defines the transaction boundaries by the heuristic default or the user
input.

Burrows and Leino presented a static technique based on critical section to detectstale-
value error by tracking the assignments and uses of local variables [8]. In concurrent
programs, a shared variable is often cached at the first access in one thread, the following
accesses to the shared variable use the cached value, but another thread could update the
shared variable without updating the cached value in the first thread, thus, the cached value
becomesstale. Atomicity can prevent stale-value errors from happening on all share vari-
ables inside each atomic transaction; but it cannot prevent the errors from happening for
inter-transactions.

Linearizability [26] is a correctness condition for objects shared by concurrent pro-
cesses. Informally, a concurrent objecto is linearizable if and only if each concurrent
operation historyh for o is equivalent to some legal sequential historys, ands preserves
the real-time partial order of operations inh. The equivalence is based on comparing the ar-
guments and return values of procedure calls. Legality is defined in terms of a specification
of the correct behavior of the object. Linearizability is defined semantically,i.e., in terms of
the specification (correctness requirements) of the object. In contrast, we define atomicity
in terms of operations performed by the implementation. We focus on proving atomicity
rather than linearizability, because atomicity does not require a correctness specification.
Atomicity can help establish linearizability: first show that the concurrent implementation
executed sequentially (i.e., single-threaded) satisfies the sequential specification, and then
apply our analysis to show the procedures of the implementation are atomic.
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7.8.2 Detecting Potential for Data Races

Related work on runtime data race detection is discussed in Section 4.5.
Several type systems are developed for statically ensuring race-freedom [7, 14]. They

are summarized in Section 9.2.1.
[9] combines static analysis and dynamic analysis and considers happen-before relation

based onstart and join . [37] extends the happen-before relation to considerwait
and notify as well. Compared to the multi-lockset algorithm, [37] is more accurate
but maintains more locksets. Our happen-before analysis ignoreswait andnotify , but
considers barriers which [37] does not. Furthermore, we use dynamic escape analysis,
whereas [9] uses static escape analysis. The reduction-based algorithm could be improved
by using the race-detection techniques in [9], but it would still produce more false alarms
than the block-based algorithm, because imprecise race detection is only one of causes of
the additional false alarms.

Vaziri et al. proposed a new definition of a data race as a collection of a few problem-
atic interleaving scenarios, which subsumes traditional data races, stale value errors and
inconsistent views [47]. Their problematic interleaving scenarios are similar to our unseri-
alizable patterns discussed in Chapter 5, but are more concise. One main difference is that
our work focuses on detecting atomicity violations, while their work focuses on statically
inferring synchronization to avoid concurrency errors by allowing programmers to specify
atomic sets.

7.8.3 Detecting Potential for Deadlocks

Klaus Havelund proposed the GoodLock algorithm detects potential deadlocks at run-
time [24]. This GoodLock algorithm is summarized in Section 9.4.1.

Engleret al. [12], von Praun [48], and Williamset al. [55] developed inter-procedural
static analyses that detect potential deadlocks in programs. These static analyses are also
based on checking whether locks are acquired in a consistent order by all threads. These
static analyses are more sophisticated and more accurate than basic deadlock types but still
produce numerous false alarms (Engleret al. and Williamset al. partially address this
problem by using heuristics to rank or suppress warnings that seem more likely to be false
alarms), so it would be useful to use them in conjunction with run-time checking, which
generally produces fewer false alarms.
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Chapter 8

Static Analysis of Atomicity for
Non-Blocking Algorithms

8.1 Introduction

Many concurrent programs use blocking synchronization primitives, such as locks and
condition variables.Non-blocking synchronization primitives, such as Compare-and-Swap,
and Load-Linked / Store-Conditional, never block (i.e., suspend execution of) a thread.
Non-blocking (also called “lock-free”) synchronization is becoming increasingly popular,
because it offers several advantages, including better performance, immunity to deadlock,
and tolerance to priority inversion and pre-emption [34, 35].

An important use of non-blocking synchronization is in the implementation of non-
blocking objects. A concurrent implementation of an object isnon-blockingif it guarantees
that some process can complete its operation on the object after a finite number of steps of
the system, regardless of the activities and speeds of other processes [25]. Non-blocking
synchronization is also used to implement blocking objects, such as spin locks.

Algorithms that use non-blocking synchronization are often subtle and difficult to de-
sign and verify. This chapter presents a static analysis to show that code blocks using non-
blocking synchronization areatomic. Informally, a code block is atomic if every execution
is equivalent to one in which the code block is executed serially,i.e., without interruption
by other threads. Atomicity is well known in the context of transaction processing, where
it is sometimes calledserializability.

Atomicity is an important correctness requirement for many concurrent programs. Fur-
thermore, each atomic code block can be treated as a single transition during subsequent
static or dynamic analysis of the program; this can greatly improve the efficiency of the
subsequent analysis.

This chapter presents a conservative intra-procedural static analysis to infer atomic-
ity. We build on Flanaganet al.’s work on atomicity types [19] and purity [18] in order
to develop an analysis that is much more effective for programs that use non-blocking
synchronization primitives. Our analysis first classifies all actions (i.e., operations) in the
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program into different types based on their commutativity and atomicity, which are de-
termined based primarily on how locks and non-blocking synchronization is used in the
program. The analysis then combines those atomicity types to determine the atomicity
types of larger code blocks.

We formalize the analysis for a language SYNL that allows declaration of top-level
procedures (as in an API) that implicitly get concurrently called by the environment. The
language does not allow explicit procedure calls; internal procedures are inlined, and we
do not handle recursion. The analysis can be extended to be inter-procedural. It applies
equally to non-blocking objects and blocking objects.

The analysis is incomplete (i.e., sometimes fails to show atomicity), but is effective for
common patterns of non-blocking synchronization, as demonstrated by the applications in
Section 8.6. We applied it to three interesting non-trivial non-blocking programs, one of
them is the running example in Sections 8.4 and 8.5, the other two are described in Section
8.6. Although in two cases we must modify the algorithm before applying our analysis,
we consider the results encouraging, since we do not know of any other algorithmic (i.e.,
automatable) analysis that can show atomicity of the same (or larger) code blocks in the
modified or original versions. We believe our analysis provides a useful method for manual
verification of atomicity, as well as being suitable for automation.

8.2 Related Work

This chapter extends our previous work [52] with a formal semantics for the language
SYNL and correctness proofs for core aspects of the analysis.

Gao and Hesselink [21] used simulation relations to prove that a non-blocking (called
lock-free in [21]) algorithm refines a higher-level (coarse-grained) specification. Using the
PVS theorem prover, they proved correctness of algorithms similar to the ones in Figures
8.1, 8.5 and 8.6. The proofs took a few man-months and are not easily re-usable for new
algorithms.

Flanaganet al. developed type systems [19] based on Lipton’s reduction theorem [31]
to verify atomicity. Wang and Stoller [51, 54, 53] and Flanaganet al. [15] developed
runtime algorithms to check atomicity. All of this work focuses on locks and is not effective
for programs that use non-blocking synchronization.

Flanaganet al. extended their atomicity type system with a notion of purity [18].
A code block is pure if, when it terminates normally, it does not change the program
state. Non-blocking programs often contain code blocks that abort an attempted update
to a shared variable if the variable was updated concurrently by other threads; these code
blocks are often pure according to our definition of purity, which generalizes the definition
in [18] by taking into account liveness of variables and use of unique references. The type
system in [18] can show atomicity of simple non-blocking algorithms but not of any of the
three algorithms analyzed in this chapter, because it does not accurately analyze usage of
non-blocking synchronization primitives; for example, it has no analogue of the notions
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of “matching read” or “matching LL” in Section 8.5.2, and does not analyze exceptional
variants (also defined in Section 8.5.2) of a procedure separately.

Atomicity used to optimize model checking can be regarded as a partial-order reduction
[39], i.e., a method for exploiting commutativity to reduce the number of states explored by
a verification algorithm. For non-blocking algorithms, traditional partial-order reductions
are less effective than our analysis, because they do not distinguish left-movers and right-
movers, and they focus on exploiting commutativity of operations with little regard for the
context in which the operations are used, while our analysis considers in detail the context
(surrounding synchronization and conditions) of each operation.

The model-checking (i.e., state-space exploration) algorithm in [41] dynamically identi-
fies transactions, which correspond roughly to executions of atomic blocks. Their algorithm
relies on a separate analysis to determine commutativity of actions. An inter-procedural
extension of our analysis could be used for this. This would allow their algorithm to be
applied effectively to non-blocking programs.

Linearizability [26] is a correctness condition for objects shared by concurrent pro-
cesses. Informally, a concurrent objecto is linearizable if and only if each concurrent
operation historyh for o is equivalent to some legal sequential historys, ands preserves
the real-time partial order of operations inh. The equivalence is based on comparing the ar-
guments and return values of procedure calls. Legality is defined in terms of a specification
of the correct behavior of the object. We focus on proving atomicity rather than lineariz-
ability, because atomicity does not require a specification of correct behaviors. Atomicity
can help establish linearizability: first show that the concurrent implementation executed
sequentially (i.e., single-threaded) satisfies the sequential specification, and then apply our
analysis to show that the procedures of the implementation are atomic.

8.3 Background

8.3.1 Non-Blocking Synchronization Primitives

Non-blocking synchronization primitives includeLoad-Linked (LL) and Store-
Conditional (SC), supported by PowerPC, MIPS, and Alpha, andCompare-and-Swap
(CAS), supported by IBM System 370, Intel IA-32 and IA-64, Sun SPARC and the JVM
in Sun JDK 1.5.

LL(addr) returns the content of the given memory address. SC(addr, val) checks
whether any other thread has written to the addressaddr (by executing a successful SC
on it) after the most recent LL(addr) by the current thread; if not, the new valueval is writ-
ten intoaddr, and the operation returnstrue to indicate success; otherwise, the new value
is not written, andfalse is returned to indicate failure. Another primitive VL (validate)
is often supported. VL(addr) returnstrue iff no other thread has written toaddr after the
most recent LL(addr) by the current thread.

In a run of a program, thematchingLL (if any) for a SC(v, val) or VL(v) action is the
last LL(v) before that action in the same thread. If there is no matching LL for a SC action,
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the SC action fails.
CAS(addr, expval, newval) compares the content of addressaddr to the expected

valueexpval; if the two values are equal, then the new valuenewval is written toaddr,
and the operation returnstrue to indicate success; otherwise, the new value is not written,
and the operation returnsfalse to indicate failure.

CAS is also supported in the JVM of Sun JDK 1.5. There are fewsynchronized
blocks or synchronized methods in thejava.util.concurrent package. A
Lock class implemented using CAS, which offers higher performance, is used instead.

8.3.2 A Language: SYNL

We formalize our analysis for a language SYNL (Synchronization Language). The
syntax of SYNL is shown in Table 8.1. There is no explicit procedure call, as discussed in
Section 8.1.

In SYNL, global and local variables are distinguished syntactically, as described below.
An unshared objectis an object accessed by only one thread. Anunshared variableis a
local variable or a field of an unshared object. Ashared variableis a global variable or
a field of a shared object. A simple escape analysis is used to determine when objects
become shared.

A program consists of global variable declarations, and procedure definitions.
An execution of a SYNL program consists of an arbitrary number of invocations (by

the environment) of its procedures with arbitrary type-correct arguments (for brevity, we
leave the type system implicit), and with an arbitrary amount of concurrency. Therefore,
SYNL does not need constructs to create threads.

Expressions in SYNL include constant values, variables, field accesses, array accesses,
non-blocking synchronization,new operation to allocate objects, and calls to primitive
operations. Variables may have primitive types and reference types. A local variable may
contain a reference to a shared object. For example, a field accessx.fd may access both a
local variablex and a shared variable (i.e., a field of a shared object). Primitive operations
(such as arithmetic operations) have no side effect.

Statements include assignments,synchronized (for lock synchronization), se-
quential composition, conditionals,local blocks, loops,return , break , andskip .
synchronized has the same semantics as in Java. Alocal statement introduces a
scoped variable. The loop statement defines an unconditional loop: “loop s” is equiva-
lent to “while (true) s”. Every while loop can be re-written usingloop , if , and
break . All loops in SYNL are unconditional.

As syntactic sugar, we allow non-blocking primitives to be used as statements when
their return values are not needed; for example, SC(x, e) used as a statement is syntactic
sugar for:local dummy = SC(x, e) in skip .

An executionis an initial state and a sequence of transitions. A program state is a tuple
which consists of a global storeG, a heapH, each thread’s local storeL and program state-
ments (this indicates the next statement to execute; it takes the place of a program counter).
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Program ::= global var∗ ; procedure proc∗

Procedure ::= pn(var∗) stmt∗

Statement ::= loc := e | synchronized(e) s | s; s | if e s s | local x := e in s | loop s
| return | return e | break | skip

Expr ::= val | loc | CAS(loc, e, e) | LL(loc) | VL(loc) | SC(loc, e) | new C | prim(e, ...)
Location ::= x | x.fd | x[e]

proc ∈ Procedure
s ∈ Statement
e ∈ Expr

loc ∈ Location
pn ∈ ProcedureName
val ∈ V al

x ∈ V ariable
fd ∈ Field

prim ∈ PrimitiveOperation
C ∈ Class

Table 8.1: Syntax of SYNL.

Each transition corresponds to one step of evaluation of an expression or statement in a
standard way. The formal definitions of states and transitions are in Appendix B.2. For
each transition, we consider the action performed by it. These actions capture the relevant
behavior of the transition for our analysis and are described in Section 8.3.3. Note that
all constructs in SYNL are deterministic, so the intermediate states during an execution
are uniquely determined by the initial state and the sequence of transitions, and we will
sometimes talk about executions as if those states were present in it.

Code blocks in a programP areatomicif: for all reachable statess of P , if all threads
are executing outside those code blocks ins, thens is also reachable in an execution of
P in which those code blocks are executed atomically,i.e., without interruption by other
threads (note that the reverse implication trivially holds).

8.3.3 Commutativity and Atomicity Types

A reference variablep in a programP is uniqueif, in every reachable state ofP , there
is at most one location containing the reference value (i.e., an object identifier or address)
containedp. Please note that a unique reference can be contained only in a local variable.
In this chapter, “reference” is often short for “reference variable”. Alocal action is an
access to an unshared variable (i.e., a local variable or a field of unshared object) or a field
of a shared object accessed by dereferencing only unique references, starting with a unique
reference stored in a local variable. Both of these kinds of accesses are always both-movers
(defined below) and are treated the same way in our analysis, so it is convenient to refer
to both of them as local actions. Any static uniqueness analysis may be used to identify
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unique references.
Conservatively, other variable accesses can be treated asglobal actions. Acquire and

release on shared locks are also global actions. Thus, there are four kinds of global actions:
read, write, acquire lock, and release lock. LetR(v), W (v), acq(v), andrel(v) denote
these global actions, respectively, wherev denotes the accessed variable or lock. LL and
VL are global reads. SC and CAS are global writes to their first argument and, if their
second or third argument are shared variables, also global reads of those variables. Note
that arithmetic operations,etc., do not affect our analysis and hence are not treated as
actions.

Following [31], actions are classified according to their commutativity. An action is a
right-mover/left-moverif, whenever it appears immediately before/after an action from a
different thread, the two actions can be swapped without changing the resulting state. An
action is aboth-moverif it is a left-mover and a right-mover. An action not known to be
a left-mover or right-mover isatomic(since a single action is executed in a single step of
execution).

Theorem 8.3.1.Local actions are both-movers.

Proof. Accesses to unshared variables are obviously both-movers. For a field access per-
formed by dereferencing only unique references, suppose that the field isf , and threadt
executes an actiona that accesseso.f by dereferencing some local variablel (i.e., l con-
tains a unique reference too) or local variablel and a sequence of fieldsf1, f2, ..., fn where
l.f1, l.f1.f2, ..., l.f1...f2 are unique references andl.f1...fn contains the reference too. Be-
fore another thread can accesso.f , t must transfer the unique reference inl, f1, ..., orfn into
a global variable. This implies thata is a right-mover (because any action of another thread
that occurs immediately aftera cannot accesso.f ). Symmetrically,a is a left-mover be-
cause, betweena and the closest preceding access too.f by another thread,t must transfer
the unique reference from a global variable intol, l.f1, ..., orl.f1...fn.

Theorem 8.3.2.Lock acquires are right-movers. Lock releases are left-movers.

Proof. See [19], from which this theorem is taken. Here is a proof sketch. Foracq(v), its
immediate successor global actiona from another thread can not be a successfulacq(v)
or rel(v), becauseacq(v) would block, andrel(v) would fail (in Java, it would throw an
exception). Henceacq(v) anda can be swapped without affecting the result, so lock acquire
is a right-mover. For similar reasons, lock release is a left-mover.

Theorem 8.3.3.(1) For a global readR(v), if no global writeW (v) from other threads can
happen immediately before/afterR(v), R(v) is a left/right mover. (2) For a global write
W (v), if no global readR(v) or write W (v) from other threads can happen immediately
before/afterW (v), W (v) is a left/right mover.

Proof sketch.The main observations are that two reads commute, and accesses to different
variables commute.
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We briefly review atomicity types, which were introduced by Flanagan and Qadeer
[19]. An atomicity type is associated with an expression or statement. The atomicity types
are: right-mover (R), left-mover (L), both-mover (B), atomic (A), and non-atomic (N ,
called compound in [19]). The first three mean that all actions executed by the expression
or statement have the specified commutativity. Atomic has the same meaning as in Section
8.3.2. Non-atomic is used when none of the other atomicity types are known to apply.
Atomicity types are partially ordered such that smaller ones give stronger guarantees. The
ordering is: B @ t @ A @ N for t ∈ {L, R}. The atomicity type of an expression
or statement can be computed from the atomicity types of its parts using the following
operations on atomicity types. Thejoin (i.e., least upper bound) operation based on this
ordering is used to compute the atomicity ofif statements from the atomicity types of
the then andelse branches. Theiterative closuret∗ of an atomicity typet denotes the
atomicity of a statement that repeatedly executed a sub-statement with atomicity typet. It is
defined by:B∗ = B, R∗ = R, L∗ = L, A∗ = N , N∗ = N . Thesequential compositiona; b
is defined by the following table (the rows are labeled by the first argument; the columns
are labeled by the second argument):

; B R L A N
B B R L A N
R R R A A N
L L N L N N
A A N A N N
N N N N N N

8.4 Pure Loops

For a loop (recall that all loops in SYNL are unconditional, likewhile (true) s),
if an iteration terminates exceptionally via abreak or return statement, it is called an
exceptional iteration; otherwise, it is called anormal iteration. Note that we do not consider
nested loops in this chapter for simplicity. We define pure loops based on the notion of pure
statements introduced in [18]∗. Informally, a loop ispureif all normal iterations of the loop
have no side effect. Typically, a normal iteration performs checking operations for some
state conditions by using actions with no side effects, and finds that the conditions are not
satisfied, so another iteration is needed. When these conditions are satisfied, an exceptional
iteration occurs; it may have side effects and exit the loop. Therefore, following the idea
proposed in [18], to determine the atomicity of a pure loop, we may ignore its normal
iterations and focus on its exceptional iterations.

Note that pure is not the same as side-effect free, because a pure loop may have side
effects in exceptional iterations.

∗In our framework, unlike [18], purity is a property (of loops) that has no effect on the operational seman-
tics.
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A simple example of a pure loop appears in the following implementation of theDown
operation on a semaphore. Iterations that end atreturn are exceptional. Iterations that
end at line 4 (i.e., whentmp > 0 is false) or line 5 (i.e., when SC returnsfalse ) are
normal and have no residual side effects.

1 Down(sem) {
2 loop
3 local tmp = LL(sem) in
4 if (tmp > 0)
5 if (SC(sem, tmp-1))
6 return;
7 }

8.4.1 Formal Definition of Pure Loops

8.4.1.1 Classification of References

A reference variablep is quasi-uniquein a programP if p is unique (as defined in
Section 8.3.3) when locations accessed in normal iterations of all loops are ignored (i.e.,
such locations may contain the same reference asp).

If a quasi-unique reference variablep, which is not truly unique, is accessed only during
normal iterations of loops,p is called asecondary reference. Other quasi-unique reference
variables (including truly unique references) are calledprimary references. Obviously,
quasi-unique references accessed in exceptional iterations are primary references. All truly
unique references are primary references.

An example of a pure loop appears in Figure 8.1 which shows Herlihy’s algorithm for
non-blocking concurrent implementation of small objects [25]. Suppose a small object
(i.e., small enough to be copied efficiently) is shared by a set of threads. The main steps
on each thread in the algorithm are: (1) read the shared object referenceQ using LL; (2)
copy the data from the shared object into a private (i.e., currently unshared) working copy
of the object,i.e., the object referred byprv; (3) perform the requested computation on the
private object; (4) switch the reference values inQ andprv between the shared object and
the private object using SC and an assignment statement. Note that, the formerly shared
object becomes a private copy, and the formerly private object becomes the current shared
copy.

Before a threadt1 switches the reference of the shared copyo with the private copy of
t1, another threadt2 may read the reference too usingLL(Q) . Even thougho becomes
the private copy oft1, t2 may still hold the reference too, though the SC oft2 will fail
later, causingt2 to loop and read the current reference fromQ. Thus,t1 may write too
while t2 copies data fromo. If t2 tried to perform a computation on a copy of the data that
reflects only part of some update, it might suffer a fatal error, such as divide by zero. Line
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void proc(Val input)
1 loop
2 local m = LL(Q) in
3 copy(prv.data,m.data);
4 if (!VL(Q)) continue;
5 computation(prv.data,input);
6 if (SC(Q,prv))
7 prv = m;
8 break;

Figure 8.1: Herlihy’s non-blocking algorithm for small objects.Q is a shared variable.

a3 prevents this: ifo.data (accessed asm.data ) is modified by another thread during the
copy in line a2, the VL will fail.

At the beginning of any loop, bothQandprv are unique references. All references are
quasi-unique according to its definition. When reference values inQ andprv have been
switched between the shared object and the private object, some other loop may still keep
the old reference to the shared object which has become private. Thus,prv may be alias
of m andQ during some iterations from line 2 to line 6. The referenceprv is a primary
reference, all its aliases can be onlyQ andm in some other normal iterations, which are
secondary references.

In this dissertation, primary and secondary reference are identified manually. Develop-
ing conservative static analysis to automatically identify them is future work.

8.4.1.2 Pure Actions and Pure Loops

Informally, an action in a normal iteration of a loop ispure if any update performed by
the action is not visible to other threads or to the current thread after the current normal
iteration; in other words, there is no data flow from the action to outside (considering this
thread and other threads) of the normal iteration in which it occurs. Formally, a pure action
should satisfy the following two conditions:

(1) If it performs an update, the target locationloc must satisfy the following conditions:
(i) loc is a local variable, a field of an unshared object, or a field of a shared object accessed
by dereferencing only primary references; and (ii ) for all paths in the control flow graph
from the end of the loop body (i.e., the program point at the end of the loop body from
which control flows back to the beginning of the loop body) to the end of the loop, (1.ii.a)
if there is any access toloc, the first one must be a write, and (1.ii.b) if loc is not accessed
on some such path, thenloc is loop-local (i.e., a local variable, or a field of an unshared
object).

(2) If it is a LL action, each SC(loc,-) that can match it is also in the loop and there is a
LL( loc) on every path from loop entry to the SC.
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Condition (1) as a whole ensures that the value ofloc at the end of the loop body is
dead,i.e., will not be read. Condition (1.ii.a) implies that the value written by the pure
action is overwritten before the next read fromloc in this loop. Condition (1.ii.b) ensures
that, if that value is not overwritten on some path, thenloc (hence that value) is not visible
outside this loop. Condition (2) ensures that, in every execution, the matching SC for that
LL occurs in the same iteration as the LL. This special condition for LL is needed because
LL implicitly performs an update that can affect subsequent SCs by the same thread.

A loop is pure if, for each normal iteration of the loop, every action that can occur in it
is pure. To check whether a loop is pure, we construct a control flow graph (CFG), analyze
it to identify actions that can occur in normal iterations of the loop, and then check whether
those actions are pure according to the above definition. There is a special case for SC and
CAS. When a SC is used as the test condition of anif statement (e.g., the SC in Figure
8.1), if only the false branch of theif statement can be executed under normal iterations,
the SC is treated as a read (not an update). CAS is handled similarly.

In Herlihy’s small object algorithm shown in Figure 8.1, all actions in normal iterations
are pure, so the loop is pure.

8.4.1.3 Normal Iterations of Pure Loops Can Be Deleted

Theorem 8.4.1 shows that normal iterations of a pure loop can be deleted from an
execution without affecting the result of the execution. Informally, deleting a transition
from an execution means removing it and adjusting the subsequent states. Details are in
Appendix B.3. Theorem 8.4.1 is the basis for proving in Section 8.5 that normal iterations
of pure loops can be ignored when analyzing atomicity.

Theorem 8.4.1.Let σ be an execution of a programP . Let σ′ be an execution obtained
from σ by deleting all transitions in all normal iterations of all pure loops inP . Thenσ′

is also an execution ofP , andσ andσ′ contain the same states in which all threads are
executing outside pure loops.

Proof sketch.A detailed proof appears in Appendix B.3. Here is a proof sketch.
Recall that loops in SYNL are equivalent towhile (true) s. When the body of a

loop terminates normally, the thread begins another iteration of the same loop body.
According to the definition of pure loop, normal iterations perform no updates to global

variables, no live residual updates to local variables and fields of unshared objects, and no
updates to fields of shared objects except by dereferencing only primary references, even if
the program’s execution is interleaved with actions of other threads. The syntax of SYNL
ensures that acquire and release actions occur in matching pairs in an execution of a loop
body, so deleting them does not affect the resulting state or operations on the lock by other
threads that could have occurred while this thread held the lock.

Consider an update in a normal iteration to a field of a shared object accessed by deref-
erencing only primary references. Letτ denote the transition that performs the update. Let
t denote the thread that executesτ . Let loc denote the updated field of the shared object.
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Condition (1) in the definition of pure action ensures thatτ has no effect on the subsequent
execution oft. We show below thatτ has no effect on other threads. We consider two
cases.

Case 1: all primary references dereferenced byτ are unique. If there is no access to
loc from the end of normal iterations of the pure loop to the end of the pure loop,loc must
be loop-local according to condition (1.ii.b) in the definition of pure action, henceτ has no
effect to the other threads. Ifloc is updated from the end of normal iterations of the pure
loop to the end of the pure loop, the first access toloc must be a write, let it beτw. Since all
references are unique, there must be a read toloc beforeloc escapes to other threads. Thus,
τ happens beforeτw, andτw happens before the escape point. Therefore,τ has no effect on
other threads.

Case 2: some dereferenced primary reference ofτ are not unique. If a primary reference
is not unique, all its aliases are secondary references. By the same reasoning as in case
1, τ has no effect on other threads, except for accesses to these secondary references in
normal iterations of pure loops. Because all normal iterations of pure loops are removed
simultaneously, all effects ofτ on other threads are eliminated.

8.5 Checking Atomicity

The main issue in applying Theorem 8.3.3 is determining whether a global action can
happen immediately before or after another global action. Our analysis determines this
based on how synchronization primitives are used.

8.5.1 Lock Synchronization

Lock synchronization is well studied. We sketch a simple treatment of lock synchro-
nization, to illustrate how analysis of locks fits into our overall analysis algorithm.

Theorem 8.5.1.If expressionse1 ande2 appear in the bodies of differentsynchronized
statements that synchronize on the same lock, thene1 cannot be executed immediately be-
fore or aftere2.

Proof sketch.Sincee1 and e2 are protected by the same lock, at least one acquire and
release of the lock must occur betweene1 ande2 in any execution.

Alias analysis may be used to determine whether twosynchronized statements
synchronize on the same lock.

8.5.2 Non-Blocking Synchronization

8.5.2.1 Exceptional Variants

Based on Theorem 8.4.1, for pure loops, it suffices to analyze atomicity of each excep-
tional iteration of the loop. For eachbreak or return statement in a loop, the backward
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slice of the loop body starting at thatbreak or return and ending at the loop’s entry
point is called anexceptional sliceof the loop.

The atomicity of a procedure can be determined by analyzing atomicity of itsexcep-
tional variants. Each exceptional variant is a specialized version of the procedure, and
corresponds to a selection of exceptional slices of its pure loops, with each pure loop re-
placed by its selected exceptional slice. If the selected exceptional slice includes only the
true branch of an “if e S1 S2” statement, then we replace theif statement with “TRUE(e);
S1” in the corresponding exceptional variants of the procedure; if the slice includes only
the false branch, we replace theif statement with “TRUE(!e); S2”. A SC expression in
TRUE(SC(v, val)) must be successful, and we call it asuccessfulSC expression. Non-
pure loops appear unchanged in the exceptional variants. As an example, the procedure in
Figure 8.1 appears has one exceptional variant, shown below.

1 local m = LL(Q) in
2 copy(prv.data,m.data);
3 TRUE(VL(Q));
4 computation(prv.data,input);
5 TRUE(SC(Q,prv));
6 prv = m;
7 break;

Theorem 8.5.2.If all exceptional variants of a procedurep are atomic, thenp is atomic.

Proof Sketch.Let P denote the original program that containsp. Let σ be an execution of
P . Let ϕ be a state inσ in which all threads are executing outsidep.

According to Theorem 8.4.1, an executionσ′ of P can be obtained fromσ by deleting
all transitions in normal iterations of pure loops in procedurep, andϕ is reachable inσ′.
By the definition of exceptional variant, there must be exceptional variants ofp which can
produce the same exceptional iterations of pure loops ofp as inσ′. Let P ′ denote the
program obtained by replacing procedurep with such exceptional variants. Thus,σ′ is also
an execution ofP ′.

By hypothesis, all exceptional variants ofp are atomic. Based onσ′, by the definition
of atomicity, there exists an executionσ′′ of P ′ in which the exceptional variant ofp are
executed atomically and in whichϕ is reachable.

By the definition of exceptional variants of a procedure, every execution of an excep-
tional variant ofp is also an execution ofp. Therefore,σ′′ is also an execution ofP , and
all executions ofp in σ′′ are executed atomically, andϕ is reachable inσ′′. Thus, by the
definition of atomicity,p is atomic.

8.5.2.2 Atomicity Analysis of Non-Blocking Synchronization Primitives LL/SC/VL

There is a unique matching LL action for each successful SC action in an execution. In
program code, there might be multiple LL expressions or statements that can produce the
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matching LL action for an occurrence of SC. We call these thematchingLL expressions of
the SC expression. For example, if there is anif statement before a SC, and both branches
of the if statement contain LL, both of the LL expressions can possibly match the SC.

For a SC(v, val) in a program, to find its matching LL expressions, we do a backward
DFS on the control flow graph starting from the SC, and not going past edges labeled with
LL(v). All of the visited occurrences of LL(v) match the SC. For a VL(v), its matching
LLs can be found in the same way.

We implicitly assume hereafter that each SC expression has a unique matching LL
expression. This assumption is not essential, but it simplifies the analysis and is satisfied
by the non-blocking algorithms we have seen. We also implicitly assume that a variable
updated by a SC is updated only by SC, not by regular assignment or CAS.

Theorem 8.5.3.A successful SC or VL is a left-mover, and the matching LL is a right-
mover.

Proof. By the semantics of LL, SC and VL, for a successful SC(v, val) or VL(v) action
and its matching LL(v), any other SC action (successful or failed) onv executed by another
thread cannot be executed between them. Therefore, the successful SC or VL is a left-
mover, and the matching LL is a right-mover.

Theorem 8.5.4.LetSC andLL denote a successful SC(v, val) expression and its matching
LL(v) executed by a threadt, respectively. LetSC ′ andLL′ denote a successful SC(v, val′)
expression and its matching LL(v) executed by another threadt′, respectively.SC ′, LL′,
and all transitions oft′ between them cannot be executed betweenSC andLL.

Proof sketch.According to Theorem 8.5.3,SC ′ cannot happen betweenLL andSC. Thus,
there are two cases:SC ′ happens beforeLL, or SC ′ happens afterSC. For the first case,
the theorem obviously holds. For the second case, ifLL′ happens betweenLL andSC,
SC must also happen betweenLL′ andSC ′ (because SC succeeds), which is impossible
according to Theorem 8.5.3; ifLL′ happens afterSC, the theorem obviously holds.

8.5.2.3 Atomicity Analysis of Non-Blocking Synchronization Primitive CAS

CAS is often used in a similar way as LL/SC. CAS takes an address, an expected value,
and a new value as arguments. There is often an assignment before CAS to save the old
value into a temporary variable that is used as the expected value. For a CAS, itsmatching
read, if any, is the action which reads the old value and saves it as the expected value.
Note that a CAS can succeed even without a matching read; a SC cannot succeed without
a matching LL. We use a backward search on the control flow graph to find the matching
reads for a CAS expression. We implicitly assume hereafter that there is a unique matching
read for each CAS.

CAS-based programs may suffer from the ABA problem: if a thread reads a valueA of
a shared variablev, computes a new valueA′, and then executes CAS(v,A, A′), the CAS
may succeed when it should not, if the shared variable’s value was changed fromA toB and
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then back toA by CASs of other threads. A common solution is to associate a modification
counter with each variable accessed by CAS [34]. The counter is read together with the
data value, and each CAS checks whether the counter still has the previously read value. A
successful CAS increments the counter. With this mechanism, variants of Theorem 8.5.3
and 8.5.4 hold for CAS: just replace “matching LL” with “matching read”, and replace
“SC” with “CAS”.

8.5.3 Condition-based Non-Blocking Synchronization

A predicatep(lvar) is called alocal conditionof a code blocklocal lvar = e in
stmt (which is called alocal blockon lvar), if it satisfies the following two conditions: (i)
lvar is not updated instmt, and (ii ) p(lvar) holds throughout execution ofstmt.

Condition (i) is easy to check, because there is no aliasing of local variables in SYNL.
When condition (i) holds, a local condition for a block can easily be obtained from the
TRUEstatements instmt that depend only onlvar. For example, in the exceptional variant
of procedureDownshown in Section 8.4, a local condition for the code block in lines 3-6
is tmp > 0. If condition (i) does not hold, or no appropriateTRUEstatements appear in the
local block, its local condition istrue .

A local block of the formlocal lvar = LL(svar) in {stmt; TRUE(SC(svar, val));}
is called aLL-SC blockonsvar.

Theorem 8.5.5. Suppose a shared variablesvar is updated only by SC expressions
in LL-SC blocks, and every LL-SC blocklocal lvar = LL(svar) in {stmt;TRUE(
SC(svar, val)) ;} in the program has the same local conditionp(lvar). Suppose a lo-
cal blockS local lvar′ = svar in stmt′ has a local condition!p(lvar′).

(a) Any successful SC(svar) in the LL-SC blocks cannot happen insideS.
(b) No transition in local blockS can be executed inside any LL-SC block onsvar, and

no transition in any LL-SC block onsvar can be executed inside local blockS.

Proof of (a). We prove (a) by contradiction. Suppose a successful SC(svar) in a LL-
SC block executed by another thread happens insideS. Without loss of generality, we
consider the first such SC(svar). According to the assumption,!p(lvar) holds duringstmt′.
Becausesvar is updated only by SC actions from LL-SC blocks,lvar′ == svar and
hence!p(svar) holds from the start ofstmt′ until SC(svar) happens. This implies that
!p(svar) holds when SC(svar) happens. The LL-SC block has local conditionp(lvar),
andlvar == svar holds until the SC, becauselvar is not updated in the LL-SC block, and
svar is not updated before the first successful SC on it, sop(svar) holds when SC(svar)
happens.
Proof of (b). According to Proof of (a), no successful SC(svar) can happen insideS.
Consider an execution of a LL-SC block onsvar. There are two cases:

case 1: the successful SC happens beforeS. Thus, the whole LL-SC block happens
beforeS. Obviously, the theorem holds in this case.
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case 2: the successful SC happens afterS. If the matching LL also happens afterS,
the whole LL-SC block happens afterS. Hence the theorem holds. Suppose the matching
LL happens insideS or beforeS. Similar to the proof of (a), becausesvar is updated only
by SC actions from LL-SC blocks, and no successful SCs happen insideS or between the
matching LL and the SC,lvar′ == svar and hence!p(svar) holds from the start ofstmt′

until the SC(svar) happens. Thus,!p(svar) holds when SC(svar) happens. By the same
reasoning as in the proof of (a), p(svar) holds when SC(svar) happens. This contradicts
the previous conclusion. Therefore, when SC happens afterS, the matching LL cannot
happen insideS or beforeS.

The definition of LL-SC block and the above theorem can be generalized, so that the
LL does not need to occur at the beginning of a local block, and the SC does not need to
occur at the end of a local block. A similar theorem exists for CAS.

8.5.4 Atomicity Inference

To analyze atomicity of each procedure in a program, we identify pure loops, then check
atomicity of its exceptional variants, by computing atomicity types for all expressions and
statements. The algorithm is as follows:

• Step 1: Identify all local actions and lock actions. According to Theorem 8.3.1, all
local actions have atomicity type B. According to Theorem 8.3.2, all lock acquires
and releases have atomicity type R and L, respectively. A simple escape analysis is
used to identify accesses to objects that have not escaped from the creating threads;
those accesses are like accesses to unshared variables and have atomicity type B.

• Step 2: According to Theorem 8.5.3, if all updates on a variablev are done through
SC, all successful SC(v, val) and VL(v) have atomicity type L, and their matching
LL(v) have atomicity type R. A successful VL(v) between a successful SC(v, val)
and the matching LL(v) is a both-mover. The analogous theorem for CAS is used for
successful CAS and the matching reads.

• Step 3: Infer local conditions for local blocks, as described in Section 8.5.3.

• Step 4: Using Theorems 8.5.1, 8.5.3, 8.5.4 and 8.5.5, for each read, check whether
there is a write on the same variable that can happen immediately before/after it; for
each write, check whether there is a read or write on the same variable can happen
immediately before/after it. For access to variables on the heap, the analysis does
a case split on whether two field accesses refer to the same location; we consider
both cases, unless alias analysis shows one is impossible. Our current alias analysis
just checks whether the references have the same type and whether the same field is
being accessed; if not, the two field accesses must be to different locations. Assign
atomicity types to the reads and writes based on Theorem 8.3.3 if they are still not
given atomicity types in previous steps.
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• Step 5: For actions not given an atomicity type in previous steps, conservatively
assign them atomicity type A.

• Step 6: Propagate atomicity types from the actions up through the abstract syntax
trees of the procedures using the atomicity calculus in [19]. The atomicity type of a
compound program construct is computed from the atomicity types of its parts using
join, sequential composition, and iterative closure as appropriate.

• Step 7: For each procedurep in the original program, if every exceptional variant ofp
has a procedure body with atomicity type A, then by Theorem 8.5.2,p has atomicity
type A.

As an example, we compute the atomicity of Herlihy’s non-blocking algorithm for
small objects in Figure 8.1. Recall that the procedure has one exceptional variant, given in
Section 8.5.2.1. In step 1, local actions in line a7 and line a8 are identified and assigned
atomicity type B. Sinceprv is a primary reference, the computation action in line a4 and
the copy action in line a2 (the read in line a2 will consider later) are local actions, hence,
they are assigned atomicity type B. In step 2, successful SC in line a5 has atomicity type L,
the matching LL in line a1 has atomicity type R, and successful VL in line a3 has atomicity
type B. Step 3 is skipped in this algorithm. In step 4, we know any write tom.data (which
must through successful SC) in other threads cannot happen immediately before or after the
read tom.data in line a2, since a successful SC is followed. Hence, both actions in line
a2 have atomicity type B. Now we can propagate atomicity types from the actions, and
conclude the only exceptional variant is atomic. Therefore, the whole procedure is atomic.

local m = LL(Q) in a1:R local m = LL(Q) in
copy(prv.data,m.data); a2:B copy(prv.data,m.data);
if (!VL(Q)) continue; a3:B TRUE(VL(Q));
computation(prv.data,input); a4:B computation(prv.data,input);
if (SC(Q,prv)) a5:L TRUE(SC(Q,prv))

prv = m; a6:B prv = m;
break; a7:B break;

8.6 Applications

This chapter demonstrates the applicability of our analysis to three non-trivial non-
blocking algorithms from the literature. One is the illustration example; the other two are
presented in this section. Although in two cases we must modify the algorithm before
applying our analysis, we consider the results encouraging, since we do not know of any
other algorithmic (i.e., automatic) analysis that can show atomicity of the same (or larger)
code blocks in the modified or original versions.
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void Enq(int value)
local node = new Node();

node.value = value;
node.next = null;
loop

local t = LL(Tail) in
local next = LL(t.Next) in

if (!VL(Tail)) continue;
if (next != null)

SC(Tail,next);
continue;

if (SC(t.Next,node))
// optional
[SC(Tail,node);]
return;

int Deq()
loop

local h = LL(Head) in
local next = h.Next in

if !VL(Head) continue;
if (next == null)

return EMPTY;
if (h == LL(Tail))

SC(Tail,next);
continue;

local value = next.Value in
if (SC(Head,next))

return value;

Figure 8.2: Michael and Scott’s Non-Blocking FIFO Queue (NFQ).Head andTail are
global variables.

8.6.1 Michael and Scott’s Non-Blocking FIFO Queue Using
LL/SC/VL

8.6.1.1 NFQ and NFQ′

Figure 8.2 contains code for a non-blocking FIFO queue (NFQ) that uses LL/SC/VL
[33]. It is similar to the well-known CAS-based algorithm in [35]. It uses a singly-linked
list whose head and tail are pointed to by global variablesHead and Tail . Enqueue
consists of three main steps: create a node, add it to the end of the list, and updateTail .
A blocking implementation would use a lock around the second and third steps to achieve
atomicity. In the non-blocking algorithm, if a thread gets delayed (or killed) after the
second step, other threads may updateTail on its behalf; in that case, if the delayed thread
later tries to updateTail , its SC will harmlessly fail. To avoid blocking, the dequeue
operation also updatesTail . Dequeue is also non-blocking. A dummy node is used as the
head of the queue to avoid degenerate cases. The code forDeq in [33, 35] stores the value
of LL(Tail) in a local variable; the code in Figure 8.2 does not. This does not affect the
correctness or performance of the algorithm but makes it easier to analyze.

We would like to show that NFQ is linearizable, using the two-step approach described
in Section 8.2: one step is to show that the concurrent implementation executed sequentially
satisfies the sequential specification; the other step is to apply our analysis to show that the
procedures of the implementation are atomic.

An obstacle to apply our atomicity analysis to NFQ is that the loops inEnq andDeq
are not pure, because of the updates toTail in normal iterations. Therefore, we modify
the program to make the loops pure before applying our analysis algorithm; specifically,
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void AddNode(int value)
local node = new Node() in

node.Value = value;
node.Next = null;
loop

local t = LL(Tail) in
local next = LL(t.Next) in

if !VL(Tail)
continue;

if (next != null)
continue;

if SC(t.Next,node)
return;

void UpdateTail()
loop

local t = LL(Tail) in
local next = t.Next in

if !VL(Tail)
continue;

if (next != NULL)
SC(Tail,next);
return;

int Deq’()
loop

local h = LL(Head) in
local next = h.Next in

if (!VL(Head))
continue;

if (next == null)
return EMPTY;

if (h == LL(Tail))
continue;

local value = next.Value in
if (SC(Head,next))

return value;

Figure 8.3: NFQ′, a modified version of NFQ.

we consider the modified program NFQ′ in Figure 8.3, and we prove in Appendix B.1 that
the modification preserves linearizability. In NFQ′, all updates toTail are performed in
a separate procedureUpdateTail . UpdateTail may be invoked (by the environment)
at any time, so NFQ′ is effectively more non-deterministic than NFQ.

8.6.1.2 Atomicity of NFQ′

All exceptional variants for the procedures of NFQ′ are listed in Figure 8.4. Each line
of code is labeled on the left with a line number and the atomicity type of the code on
that line. A line may contain multiple actions; we refer to the sequential composition of
their atomicity types as the atomicity type of the line. Next we describe how the atomicity
analysis algorithm in Section 8.5.4 works on these procedures.

In step 1, a1, a2, a3, a7, a9, b4, b6, c4, c5, d4 and d8 are classified as both-movers,
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void AddNode(int value)
a1:B local node = new Node() in
a2:B node.Value = value;
a3:B node.Next = null;
a4:R local t = LL(Tail) in
a5:R local next = LL(t.Next) in
a6:B TRUE(VL(Tail));
a7:B TRUE(next == null);
a8:L TRUE(SC(t.Next,node));
a9:B return;

void UpdateTail()
b1:R local t = LL(Tail) in
b2:R local next = t.Next in
b3:B TRUE(VL(Tail));
b4:B TRUE(next != NULL);
b5:L TRUE(SC(Tail,next));
b6:B return;

int Deq’1()
c1:R local h = LL(Head) in
c2:A local next = h.Next in
c3:L TRUE(VL(Head));
c4:B TRUE(next == null);
c5:B return EMPTY;

int Deq’2()
d1:R local h = LL(Head) in
d2:R local next = h.Next in
d3:B TRUE(VL(Head));
d4:B TRUE(next != null);
d5:A TRUE(h != LL(Tail));
d6:B local value = next.Value in
d7:L TRUE(SC(Head,next));
d8:B return value;

Figure 8.4: Exceptional variants for procedures of NFQ′.

because they access local variables.
In step 2, a4, a5, b1, c1 are d1 are classified as right-movers, because they are matching

LLs for successful SCs or VLs; a6 (which is reclassified as a both-mover in step 4), a8, b5,
c3, and d7 are classified as left-movers because they are successful SCs or VLs; b3 and d3
are classified as both-movers because they are between matching LLs and successful SCs.

In step 3, the local condition for a5-a9 and c2-c5 isnext == null. The local condition
for b2-b6 and d2-d8 isnext ! = null.

Now consider step 4. Letta and tu denote the local variablet in AddNode and
UpdateTail , respectively. Ifta.Next of the LL-SC block inAddNode is aliased with
tu.Next of the local block inUpdateTail , then according to Theorem 8.5.5, the update
on Tail (i.e., b5) cannot happen between a6 and a7, so a6 is a both-mover. a8 cannot
happen between b2 and b3, so b2 is a right-mover. Supposeta.Next is not aliased with
tu.Next ; this impliesta is not aliased withtu, i.e., ta 6= tu, so even if a8 happens
between b2 and b3, b2 is a right-mover by Theorem 8.3.3.ta 6= tu implies that the value
of Tail read in line of a4 inAddNode is not equal to the value ofTail read in line
of b1 in UpdateTail . Thus, even if b5 happens between a6 and a7, a6 is still a both
mover by Theorem 8.3.3. For d2, ifh.Next is aliased witht.Next of AddNode, a8
cannot happen between d2 and d3 according to Theorem 8.5.5, hence d2 is a right-mover
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program without atomic with atomic
states time states time

unboundedAddNode threads 4500 > 19h 13 3.0s
unboundedDeq’ threads 1285 88 m 10 1.7s
incorrectAddNode 13 5 s 13 3.0s

Table 8.2: Experimental results for verification of NFQ′ with TVLA.

by Theorem 8.3.3; ifh.Next is not aliased witht.Next , d2 is again a right-mover. Also
in step 4, d6 is inferred to be a both-mover, because there is no write to theValue field of
any shared object; the only write a2 to theValue field is on an object that has not escaped.

In step 5, the unclassified c2 and d5 are given atomicity type A. Step 6 infers that each
procedure in Figure 8.4 has atomicity type A. Step 7 infers that all procedures in NFQ′ are
atomic.

8.6.1.3 Linearizability of NFQ′ and NFQ

We showed in Section 8.6.1.2 that the procedures in NFQ′ are atomic, and we showed
in Appendix B.1 that NFQ′ can simulate all behaviors of NFQ. To conclude that NFQ′, and
hence NFQ, are linearizable with respect to a sequential specification of FIFO queues, we
need to show that NFQ′ executed sequentially satisfies that specification. One approach is
to use a powerful verification tool such as TVLA [57], which is a model checker based on
static analysis. With our approach, TVLA only needs to consider sequential executions of
NFQ′, so the verification is much faster and use much less memory than the verification in
[57], where TVLA was used to show directly that NFQ satisfies some complicated temporal
logic formulas.

To evaluate the speedup that our atomicity analysis can provide for subsequent verifica-
tion, we used TVLA to verify several correctness properties of NFQ′, similar to the proper-
ties in [57, Table 2]. We analyzed the correct program with two different environments: in
the first one, the number of threads that concurrently callAddNode is unbounded (there is
only one thread that performs dequeues, and there is only oneUpdateTail thread, since
it contains a non-terminating loop); in the second one, the number of threads that concur-
rently perform dequeues is unbounded (there is only one thread that performsAddNode,
and one that callsUpdateTail ). We also checked the properties for an incorrect version
of NFQ′; specifically, we deleted the statementif (next != null) continue in
theAddNode procedure; TVLA catches this error. We performed all experiments twice:
once with each procedure body declared as atomic, as inferred by our analysis algorithm,
and once without those declarations. The atomicity declarations had little effect on the
time needed for TVLA to find an error in the incorrect program, but it reduced the time and
space needed to verify the correct versions by a factor of 100 or more. The experimental
results appear in Table 8.2.
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8.6.2 Gao and Hesselink’s Non-Blocking Algorithm for Large Objects

For large objects, copying is the major performance bottleneck in Herlihy’s algorithm.
Gao and Hesselink [21] proposed an algorithm that avoids copying the whole object. The
fields of each object are divided into disjoint groups such that each operation changes only
fields in one group. When copying data between the shared and private copies of an object,
only the modified groups are copied. To efficiently detect modifications, a version number
is associated with each group of fields of each copy of the object. The algorithm works as
follows: (1) read the shared object reference using LL; (2) copy data and version numbers
in all modified groups of fields of the currently shared copy of the object into the corre-
sponding groups of fields of the current thread’s private copy; (3) do the computation on
the private copy, updating fields in some group and incrementing the corresponding version
number; (4) switch the references between the shared object and the private object using
SC. The algorithm is more complicated than Herlihy’s algorithm for small objects in Figure
8.1 mainly because of the loop over groups of fields, the conditional behavior depending
on which groups of fields changed, and the use of version numbers to efficiently detect
changes.

Our analysis cannot directly show that the algorithm is atomic, due to the use of version
numbers. Our analysis algorithm is able to show that a version of the algorithm that does
not use version numbers is atomic. We then show that the transformations that optimize the
algorithm by introducing and using version numbers preserve atomicity; this is relatively
easy.

We show that the non-blocking algorithm for large objects (specifically, algorithm
3 in Figure 8.6) is atomic. For clarity, we usecontinue in the pseudo-code, even
though SYNL does not havecontinue . It is easy to rewrite the program to elim-
inate thecontinue , with no significant effect on the atomicity analysis. The proce-
dure callcopy(prvObj.data[i],m.data[i]) copies the data inm.data[i] to
prvObj.data[i] . The procedurecompute(prvObj,g) does computation based on
the data inprvObj and writes the result intoprvObj.data[g] .

Algorithm 3 in Figure 8.6 differs in some minor ways from the original algorithm in
[21]. It does not contain the redundant arrayold used in [21]. Like Herlihy’s algorithm in
Figure 8.1, it uses VL (line a13) to prevent errors due to inconsistent states ofprvObj that
may result from updates during copying (line a8). [21] simply assumed that such errors
do not occur. Also, we omit the guard predicate used in [21] to optimize cases where
compute is applied in a state in which it performs no updates.

Algorithm 1 in Figure 8.5 is a simplified version of the algorithm in which all data of
the shared object (i.e., m) are copied into the working object (i.e., prvObj ) of the current
thread in every iteration of the outer loop. All field accesses throughprvObj are local
actions, becauseprvObj contains a primary reference. Moreover,prvObj.data[i] is
dead at the end of the outer loop’s body under all normal terminations. Therefore, the outer
loop is pure. By the same reasoning as for the non-blocking algorithm for small objects in
Figure 8.1, the procedure of Algorithm 1 in Figure 8.5 is atomic.
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Algorithm 1
void proc(Object SharedObj, int g)
a1 loop
a2 local m = LL(SharedObj) in
a3 local i = 1 in
a4 loop
a5 if (i>W) break;
a6 copy(prvObj.data[i],m.data[i]);
a7 if (!VL(SharedObj))
a8 continue a2;
a9 i++;
a10 if (!VL(SharedObj)) continue a2;
a11 compute(prvObj,g);
a12 if (SC(SharedObj,prvObj))
a13 prvObj = m;
a14 return;

Algorithm 2
void proc(Object SharedObj, int g)
a1 loop
a2 local m = LL(SharedObj) in
a3 local i = 1 in
a4 loop
a5 if (i>W) break;
a6 if (prvObj.data[i] != m.data[i])
a7 copy(prvObj.data[i],m.data[i]);
a8 if (!VL(SharedObj))
a9 continue a2;
a10 i++;
a11 if (!VL(SharedObj)) continue a2;
a12 compute(prvObj,g);
a13 if (SC(SharedObj,prvObj))
a14 prvObj = m;
a15 return;
a16 //else continue a2;

Figure 8.5: Gao and hesselink’s non-blocking algorithm for large objects: algorithms 1 and
2.

Algorithm 2 in Figure 8.5 is an improved version of Algorithm 1 in which the copy is
omitted fromm.data[i] to prvObj.data[i] when those two locations already con-
tain the same value. Algorithm 2 clearly has the same behavior as Algorithm-1. Therefore,
the procedure in Algorithm 2 is atomic.

Algorithm 3 in Figure 8.6 is an improved version of Algorithm 2 in which ver-
sion numbers are used to efficiently and conservatively check whetherm.data[i] and
prvObj.data[i] are equal. “Conservatively” here means that the check might return
false when they contain the same value (e.g., because the values stored inm.data[i]
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Algorithm 3: Full Algorithm with Modification
void proc(Object SharedObj, int g)
a1 loop
a2 local m = LL(SharedObj) in
a3 local i = 1 in
a4 loop
a5 if (i>W) break;
a6 local newVersion[i] = m.version[i] in
a7 if (newVersion[i] != prvObj.version[i])
a8 copy(prvObj.data[i],m.data[i]);
a9 if (!VL(SharedObj))
a10 continue a2;
a11 prvObj.version[i] = newVersion[i];
a12 i++;
a13 if (!VL(SharedObj)) continue a2;
a14 compute(prvObj,g);
a15 prvObj.version[g]++;
a16 if (SC(SharedObj,prvObj))
a17 prvObj = m;
a18 return;
a19 else
a20 prvObj.version[g] = 0;

Figure 8.6: Gao and hesselink’s non-blocking algorithm for large objects: algorithm 3.

andprvObj.data[i] happen to be equal), but this merely causes the code in the full
algorithm to do an unnecessary copy (i.e., the copy does not actually change the value
of prvObj.data[i] ). The last statementprvObj.version[g] = 0 is needed so
that the update toprvObj.version[g] from line a15 will be discarded if the SC fails.
Algorithm 3 clearly has the same behaviors as Algorithm 2. Therefore, the procedure in
Algorithm 3 is atomic.

To evaluate the benefit of our atomicity analysis compared to a traditional partial-
order reduction, we implemented Algorithm 3 in the model checker SPIN [27]. We
wrote a driver with 3 threads that concurrently invoke arithmetic operations on a shared
object with 3 integer fields, each in its own group. The input files are available at
http://www.cs.sunysb.edu/˜liqiang/nonblocking.html . The numbers
of reachable states are: 4,069,080 with no optimization; 452,043 with SPIN’s built-in
partial-order reduction; 69,215 with the procedure body declared as atomic, as inferred
by our analysis algorithm; and 4619 with both optimizations.

8.7 Conclusions

This chapter presents a static analysis to infer atomicity of code blocks in programs with
non-blocking synchronization. Although we need to modify the program before applying
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our analysis in two out of the three examples, we consider the results encouraging, since we
do not know of any other algorithmic (i.e., automatable) analysis that can show atomicity of
the same (or larger) code blocks in the modified or original versions. Theorem-proving ap-
proaches, such as [21], can verify atomicity of the original programs but require much more
manual effort than our approach, even if our analysis algorithm is applied manually. Our
analysis significantly reduces the number of states considered during subsequent analysis
and verification.
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Chapter 9

Hybrid Analysis

9.1 Introduction

Runtime checking cannot guarantee absence of errors (such as deadlocks, data races
or atomicity violations) in all executions of the program. Runtime checking also incurs a
significant overhead. On the other hand, runtime checking generally produces fewer false
alarms than static analysis; this is a significant practical advantage, since diagnosing all of
the warnings from static analysis of large codebases may be prohibitively expensive.

Type systems can statically ensure race-freedom and atomicity [7, 14, 19, 43]. Type sys-
tems can ensure that methods are race-free or atomic in all possible executions. However,
some aspects of a program’s behaviors, such as happen-before relations due to start-join
on threads, are harder to analyze statically than dynamically, and are not considered by the
type system because of false alarms (i.e., type errors for methods that are atomic). More-
over, type inference for type systems is NP-complete [16, 17], so type system may require
manual annotation of the program. This is a significant burden, especially for legacy code.

Type inference reduces the annotation burden by automatically determining types for
all or parts of a program. Unfortunately, complete (i.e., inferring types for all typable
programs) type inference is NP-complete [16, 17]. This motivates the development of
incomplete type inference algorithms. Type discovery is an inexpensive approach to type
inference that employs both runtime monitoring and static analysis to infer types for all or
part of a program. Type discovery is incomplete but experience shows it is very effective
in practice, discovering 98% of the annotations in the experiments described in [1].

This chapter describes the use of static analysis to significantly decrease the overhead
of runtime checking [43, 2, 3]. First, type discovery is used to discover types for all or
part of the program. The discovered types are then given to the typechecker, which issues
warnings. Runtime deadlock, race or atomicity checking is then focused on fragments of
code for which the type checker issued warnings. The approach is completely automatic,
scalable to very large programs, and significantly reduces the overhead of runtime check-
ing for data races and atomicity violations. Although type discovery requires running an
instrumented program, the cost is much less than full runtime checking, because sampling
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(e.g., monitoring a few instances of each class) suffices for type discovery; furthermore, the
cost of type discovery is amortized across all subsequent testing in which the discovered
types are used to reduce the overhead of runtime checking.

9.2 Hybrid Analysis of Data Races

9.2.1 Type System for Race-Freedom

In Parameterized Race Free Java (PRFJ) [7] as in its predecessor Race Free Java [14],
types are extended to indicate the synchronization discipline (also called “protection mech-
anism” or “owner”) used to co-ordinate accesses to each object. To allow different in-
stances of a class to use different protection mechanisms, each class is parameterized by
formal owner parameters which may be instantiated with other formal owner parameters,
final expressions (i.e., expressions whose value does not change) representing locks, or
special owners (described below). The first owner parameter of each class indicates the
owner of thethis object; the other owner parameters are used to propagate ownership
information to the object’s fields and methods.

A final expression used as an owner specifies a lock that must be held when the object is
accessed. There are four special owners:thisThread , self , readonly andunique .
readonly indicates that the object is readonly and cannot be updated.unique means
that there is a unique reference to the object.thisThread means that the object is thread-
local (i.e., unshared).self means that the object is protected by its own lock (i.e., a
self-synchronized object). The owner of an object is said toguardall of its fields.

Method declarations may have arequires clause that contains a set of final expres-
sions; the locks on the owners of these expressions must be held when the method is in-
voked.∗ The special ownersthisThread , unique andreadonly are always assumed
to be in the lockset. PRFJ ensures that whenever a field of an object is accessed, either
the object is readonly, or the accessing thread either has a unique reference to the object or
holds the lock on the root owner of the object, thus avoiding races.

9.2.2 Discovery of Race-Free Types

The type discovery algorithm for race-free types has three main steps. First, the target
program is instrumented by an automatic source-to-source transformation and executed
on test inputs. The instrumented program monitors accesses to fields of certain objects
of each class and writes a log containing relevant information: which locks were held
when the object was accessed, whether multiple threads accessed the object, etc. Second,
the information in the log file is used to infer owners for fields, method parameters and
return values, and owners in class declarations. Third, the intra-procedural type inference
algorithm in [7] is used to infer the owners in the types of local variables and in the types of

∗For simplicity, we ignore the distinction between owners and root owners in this overview.
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allocation sites whose owners have not already been determined. Local type-inference has
the crucial effect of propagating type information into branches of the program that were
not exercised in the monitored executions.

Type discovery is not guaranteed to produce correct typings for all typable programs,
but experience shows that it is very effective in practice. For example, 98% of the race-free
types were automatically discovered in the experiments described in [1].

9.2.3 Integrating Static Analysis and Runtime Checking

This section presents a technique for utilizing the warnings from the type checker to
identify parts of the program from which runtime race checking can safely be omitted; in
other words, we focus runtime checking on parts of the code that may contain races. We
developed three approaches:field-based, method-basedand combined-field-and-method
based.

Field-based focused runtime checking works as follows. Given a program annotated
(in whole or part) with (possibly incorrect) PRFJ types, we run the PRFJ typechecker and
compute, based on the warnings it issues, a list of fields that might potentially be involved
in data races. We refer to these asrace-unsafefields. The other fields are guaranteed to be
race-free,i.e. accesses to them cannot be involved in data races. Thus, during runtime race
detection, there is no need to monitor accesses to race-free fields.

Method-based focused runtime checking works as follows. Type discovery is effective
only for methods executed in the test suite during type discovery. Executed methods are
likely to be well-typed,i.e., there are no errors in the types discovered for them. But many
methods will be “untyped”, either because there is an error in the discovered types (possibly
because the method is untypable), or because the methods were not executed hence no types
were discovered for them, or because source code for them is unavailable. The method-
based approach is to perform runtime checking on all accesses in untyped methods and
omit it from all accesses in well-typed methods. This can potentially perform better than
the field-based approach, because the test suite used for type discovery typically exercises
the most frequently executed methods; if these methods are well-typed, then the method-
based approach succeeds in eliminating runtime checking in places where this provides the
most benefit.

The combined field- and method-based approach exploits the observation that not all
field accesses in untyped methods need to be monitored. Specifically, only race-unsafe
fields need to be monitored in untyped methods. Furthermore, at call sites to typed methods
in untyped methods, checking whether arguments’ owners or attributes conform to the
declared owners of the corresponding method parameters is necessary only for parameters
whose types are race-unsafe classes.
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9.2.4 Experiments with the Focused Runtime Race Checking

The conclusion of the experiments are summarized here, details appear in [2]. The field-
based approach does not introduce any additional checking (compared to the pure runtime
race detection), so field-based focused checking is always at least as fast as full checking,
and combined focused checking is always at least as fast as method-based focused check-
ing. The method-based approach introduces additional checking at the boundary between
untyped and typed code,i.e., at calls to typed methods from untyped methods. This can
make method-based focused checking slower than full checking. There is little correlation
between the percentage of fields classified as race unsafe or methods classified as untyped
and the speedups achieved, because different fields and methods may be used with much
different frequencies.

The field-based approach outperformed the method-based approach in all of the smaller
benchmarks,i.e., all except Jigsaw. This is not surprising, since most of the methods in
them are exercised by the sample inputs, and most of the fields are classified as race-free
by the typechecker. For Jigsaw, the average speedups for the field-based, method-based,
and combined approaches are 21%, 68%, and 72%, respectively.

9.3 Hybrid Analysis of Atomicity

9.3.1 Atomicity Types

Flanagan and Qadeer’s type system for atomicity [19] extends a race-free type system
[14] to associate an atomicity with each expression and statement (for brevity, “expression”
means “expression or statement” in the rest of this section). The atomicity of each method
is declared in the program; atomicities of other expressions are implicit. An atomicity is a
basic atomicityor a conditional atomicity. The basic atomicities and their meanings are:
const : evaluation of the expression does not depend on or change any mutable state;
mover : the expression left-commutes with every operation of another thread that could
occur immediately before it and right-commutes with every operation of another thread that
could occur immediately after it (i.e., the two operations can be swapped, and this still leads
to the same state);atomic : evaluation of the expression is always equivalent to evaluation
of the expression without interleaved actions of other threads;cmpd (compound): none of
the preceding atomicities apply;error : evaluation of the expression violates the locking
discipline specified by the race-free types.

Conditional atomicities are used when the atomicity of an expression depends on which
locks are held by the thread evaluating it. A conditional atomicityl ? a : b is equivalent to
atomicitya if lock l is held when the expression is evaluated, and is equivalent to atomicity
b otherwise.l ? a abbreviatesl ? a : error.

Let α anda, b range over basic atomicities and atomicities, respectively. Each atomicity
a is interpreted as a function[[a]] from the setls of locks currently held to a basic atomic-
ity: [[α]] (ls) = α and[[l ? a1 : a2]] (ls) = if l ∈ ls then [[a1]] (ls) else [[a2]] (ls). A partial
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orderv on atomicities is defined. The ordering on basic atomicities isconst v mover v
atomic v cmpd v error. The ordering on conditional atomicities is the pointwise exten-
sion of the ordering on basic atomicities,i.e., a v b iff ∀ls : [[a]] (ls) v [[b]] (ls). Rules for
effectively determining the ordering on atomicities appear in [19].

The typing rules express the atomicity of an expression in terms of the atomicities of its
subexpressions using five operations on atomicities: sequential compositiona; b, iterative
closurea∗, join a t b (based on the partial orderv described above), conditionall ? a : b,
and the operationS(l, a) described below. Sequential composition for basic atomicities is
defined by:α1; α2 equalscmpd if α1 andα2 are bothatomic, and equalsα1tα2 otherwise.
The iterative closurea∗ denotes the atomicity of an expression that repeatedly executes an
expression with atomicitya. For basic atomicities, it is defined by:a∗ equalscmpd if
a is atomic, and equalsa otherwise. Sequential composition and iterative closure for
conditional atomicities are defined as follows [19].

(l ? a : b)∗ = l ? a∗ : b∗

(l ? a1 : a2); b = l ?(a1; b) : (a2; b)
α; (l ? b1 : b2) = l ?(α; b1) : (α; b2)

Our atomicity type system is called Extended Parameterized Atomic Java (EPAJ) [43].
It combines Flanagan and Qadeer’s atomicity types with a more expressive race-free type
system, which extends PRFJ to allow a different owner for each field of an object.

9.3.2 The Focused Reduction-Based Algorithm

We use types to focus the runtime reduction-based algorithm. Chapter 4 describes two
reduction-based algorithms: online (i.e., atomicity is checked on-the-fly as the program
executes) and offline (i.e., atomicity is checked after execution of the program). The online
algorithm avoids the overhead of storing and retrieving data but may miss atomicity vio-
lations by misclassifying an access to a field as race-free, since a subsequent access might
lead to a possible race. The offline algorithm augments the online algorithm by incorpo-
rating dynamic escape analysis and start-join analysis. Therefore, the offline algorithm is
more precise, but slower than the online algorithm.

As described in Section 9.2.3, applying the EPAJ typechecker to discovered types pro-
duces warnings from which we can compute a list of fields that are not involved in a data
race (race-free fields). The type-checker can also list the methods that are verified to be
atomic. We focus the reduction-based algorithm by monitoring only the fields that are not
verified to be race-free by the type-checker and by analyzing atomicity only for methods
that are not verified to be atomic by the type-checker.

9.3.3 Experiments with the Focused Reduction-Based Algorithm

The results of our experiments are summarized in Table 9.1. “Base” gives the execution
time of the uninstrumented benchmark. “Online Slowdown” and “Offline Slowdown” give
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Base Slowdown
Benchmark (sec) Online Offline OptOnl OptOffl

elevator 0.2 1.25 3.30 1.25 1.5
tsp 1.8 119.17 421.11 2.56 2.57

moldyn 25.49 22.97 73.88 1.73 4.37
raytracer 13.88 111.07 45.82 6.87 6.31

montecarlo 16.07 8.47 30.42 1.12 1.12
hedc 0.53 1.13 1.89 1.04 1.51

median 7.84 15.72 38.12 1.49 2.09

Table 9.1: Optimization of runtime atomicity analysis.

the slowdown for the online and offline reduction-based algorithms compared to the Base
time. “OptOnl Slowdown” and “OptOffl Slowdowm” are similar but reflect the effect of
the above optimization. The table demonstrates that the optimization reduces the median
slowdown for the online algorithm from 15.7 to 1.5 and the median slowdown for the offline
algorithm from 38.1 to 2.1.

Type discovery uses a lockset algorithm, but the overhead for type discovery is low (less
than 20%) because it monitors only a sampling of objects. Furthermore, types discovered
after running a program once can be used to focus runtime atomicity checking for an entire
test suite, making the amortized cost of type-discovery negligible.

9.3.4 The Focused Block-Based Algorithm

This section presents an approach to focus the block-based algorithm using atomicity
types automatically produced by type discovery and type inference. The EPAJ type-checker
lists all methods that it has verified to be atomic. The list contains well-typed methods with
a basic atomicity less than or equal toatomic and methods with a conditional atomicty
that simplifies at all call sites to a basic atomicity less than or equal toatomic . We focus
the block-based algorithm by reducing the number of blocks constructed using events in
executions of those methods. Note that the accesses in those methods cannot be completely
ignored because they may participate in forming unserializable patterns with events from
other methods.

For a transactiont, the focused block-based algorithm does not directly construct blocks
from pairs of events int. Instead, it records a few items characterizing the accesses per-
formed byt, and uses that information as described below. For each escaped variablex
accessed int (a dynamic escape analysis is introduced in Section 3.1), it records whether
t writes (and possibly reads)x or merely readsx. It also records the setheld(t) of locks
held at any point duringt (i.e., the set of locks held whent starts or acquired at any time
during t). This information is stored for all transactions in a global table. The focused
block-based algorithm treats each transaction as if it consisted of the following events: for
each escaped variable accessed byt, a single write or read (depending on whethert wrote
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x) event protected by the locks inheld(t). These reduced (i.e., relatively small) sets of
events for the transactions are used in the following three ways.

First, for each 1v-block from a possibly non-atomic unit, the focused algorithm checks
whether an unserializable pattern can be formed from the two events represented by the
1v-block and one event from the reduced set of events of a transaction. Specifically, infor-
mation about the locks held is used to determine whether the latter event can occur between
the former two, and if so, whether the resulting pattern of three reads and writes matches
an unserializable pattern,i.e., the middle event does not commute with the first and last
events.

Second, for a possibly non-atomic unitu that contains calls to atomic methods, the
focused block-based algorithm treats those method calls as if they consisted of the reduced
sets of events described above,i.e., 1v-blocks and 2v-blocks foru are constructed from
the events in those sets and the other events int, except that 1v-blocks are not constructed
from two events from the same call to an atomic method. Note that the original block-
based algorithm processes events in method calls in a transaction in exactly the same way
as events in the top-level method call in the transaction; the block-based algorithm does not
incorporate a concept of nested transactions.

Third, 2v-blocks are constructed from the reduced set of events for each transaction.
Thus, the focused block-based algorithm may construct 2v-blocks from two events from
the same transaction, but it never constructs 1v-blocks from two events from the same
transaction.

Now we sketch a proof that treatingheld(t) as the set of locks held at each access in
a transactiont does not affect the result of the block-based algorithm. The proof relies
on the structure of the EPAJ type system, specifically, the fact that a transaction statically
verified as atomic does not acquire any lock after releasing a lock. It also relies on the
use of block-structured (i.e., properly nested) locking as in Java, and the assumption that
there is no potential for deadlock. Section 9.4 presents an algorithm to detect potential for
deadlock. Therefore, it suffices to show that our optimization is correct in the absence of
potential for deadlock.

Let held(e) be the locks held by the thread that executes evente whene occurs. Let
held(s) be the locks ever held by the thread during execution of a sequences of events.
For a blockb, let h12(b) denote the set of locks held continuously from the first event to
the second event ofb, and lethmid(b) denote the set of locks acquired and released int
between the two events ofb. An evente can happen inside a blockb if held(e) ∩ h12(b).
A block b can happen inside another blockb′ if both events ofb can happen insideb′,
h12(b) ∩ h12(b

′) = ∅, andhmid(b) ∩ h12(b
′) = ∅.

The execution of an atomic method is called an atomic sequence. All events of an
atomic sequence can be moved together to some place without changing the resulting state.
If the place is an eventex that accesses a variablex, obviously, we can replaceheld(ex)
with held(s) without affecting the atomicity analysis. If the place is notex, we need to
prove that this replacement does not affecting the atomicity analysis.

Theorem 9.3.1.Suppose that a setT of transactions has no potential for deadlock. For an
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eventex to variablex in an atomic sequences in transactiont ∈ T , it does not affect the
atomicity analysis for other transactions in the focused block-based algorithm ifheld(ex)
is replaced byheld(s).

Proof. If ex is a non-mover, all events ofs can swapped together. Obviously, we can
replaceheld(ex) with held(s) in this case without affecting the atomicity analysis.

If ex is not a non-mover, according to the algorithm of EPAJ, it must be a both mover.ex

is a both mover if (1) all events tox are read operations in the program; or (2) all events to
x hold a common lock. For the first case, any 1v-block or 2v-block which contains events
to x does not violate atomicity, hence, the theorem also holds.

Now we prove the theorem holds for the second case. LetL = held(x). Note that
L ⊆ held(s). If L = held(s), obviously, the theorem holds. In the following, we prove
that the theorem holds ifL ⊂ held(s). Let L′ = held(s) − L. According to the atomicity
pattern for types (i.e., R∗N ?L∗), the scope ofL′ must be totally inside the scope ofL.
Suppose that there are two blocksb and b′, whereb is built from ex and another event
ey, andb′ is built from two eventse′x ande′y in another transactiont′. Note thatx andy
may denote the same variable. The following explanation is applicable for 1v-block and
2v-block.

Now we prove that the replacement does not affect the atomicity checking betweenb
andb′. LetL1 = held(e′x)∩L andL2 = held(e′x)∩L′. According to the above discussion,
held(e′x) must also contain some lock inL, i.e., L1 6= ∅. If L2 = ∅, it is easy to show
that the theorem holds. SupposeL2 6= ∅. Because the scope ofL′ is inside the scope ofL
in t, the scope ofL1 is inside the scope ofL2 in t. Thus, the scope ofL2 must be inside
the scopeL1 in t′, otherwise, there will be potential for deadlock. Recall that we assume
locking is block-structured. Therefore, for any lockset, if it containsL2, L1 must be also
contained in it. In the following, we prove that ifb can happen insideb′, after extendingL
to L ∪ L′, b can still happen insideb′. For the other cases, the proofs are similar.

If b can happen insideb′, according to the condition discussed above, we have
held(ex) = L, held(ex) ∩ h12(b

′) = ∅, held(ey) ∩ h12(b
′) = ∅, h12(b) ∩ h12(b

′) = ∅,
andhmid(b) ∩ h12(b

′) = ∅. ExtendingL to L ∪ L′ affectsheld(ex) = L ∪ L′, h12, may
affectsh12(b) by addingL′, and my affectshmid(b) by adding or removingL′. If the above
conditions are changed by these modification, the corresponding lockset ofb′ must contain
L2 ⊆ L′. Thus,L1 will also be contained the lockset. This contradicts with these original
conditions.

9.3.5 Experiments with the Focused Block-Based Algorithm

We evaluated the focused block-based atomicity checking algorithm on the benchmarks
described in the previous section except Jigsaw, because Soot failed to construct the call
graph for it. The call graph is needed to compute the list of race-free fields. The results
appear in Table 9.2. Running times are measured in seconds on a 1GHz Sun Blade 1500
with Sun JDK 1.4 and are the average over five runs. Base Time is the running time of the
original program. Intcpt Ovhd is the overhead of intercepting events,i.e., the increase in
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Program Base Intcpt Unopt Foc Frac
Time Ovhd Ovhd Ovhd Spdup Ovhd

elevator 0.2 0.14 0.32 0.30 8.6% 46.5%
tsp(12) 0.3 9.59 8.89 8.49 4.5% 46.2%
tsp(14) 0.48 17.06 387.0 393.0 -1.5% 95.7%
hedc 0.6 0.22 0.64 0.55 15.0% 40.0%
moldyn 44.03 1430 172.7 129.5 25.0% 8.1%
montecarlo 15.85 443.2 10.3 0 100% 0%
raytracer 14.34 594 44.8 24.2 46.0% 3.8%

Table 9.2: Comparison of running time between the focused algorithm and the block-based
algorithm.

running time when all events relevant to atomicity checking (field accesses, method calls,
synchronized statements, etc.) are intercepted but not processed;i.e., code is inserted to
call a method with arguments describing the event, and that method simply returns. Unopt
Ovhd is the cost of the unoptimized block-based algorithm,i.e., the increase in running
time relative to the version that intercepts events without processing them. Foc Ovhd is the
cost of the focused block-based algorithm, measured the same way. The same code is used
to intercept events for the unoptimized and focused versions; our current optimization only
affects the cost of processing those events. Spdup is (Unopt Ovhd - Foc Ovhd) / Unopt
Ovhd. The average speedup is about 32%,i.e., the cost of the block-based algorithm is
reduced by about one third.Frac Ovhd is the overhead of the focused block-based algorithm
as a fraction of the total running time,i.e., Foc Ovhd / (Base Time + Intcpt Ovhd + Foc
Ovhd).

However, in some benchmarks, the overhead of intercepting events exceeds the over-
head of the block-based algorithm itself, so an important direction for future work is to
avoid intercepting some events. The focused block-based algorithm provides good oppor-
tunities for this. Using that algorithm, for each execution of a method classified as atomic
by the type checker, for each shared variable it accesses, it is sufficient to intercept one
write event or, if there is none, one read event. Thus, if static analysis can be used at in-
strumentation time to determine, for example, that expressione reads the same field of the
same object that statements writes, and thats is executed whenevere is executed (i.e., e
dominatess in the control flow graph), thene does not need to be instrumented.

The focused reduction-based algorithm completely ignores events in methods shown by
the typechecker to be atomic. This greatly reduces the interception overhead as well as the
cost of the reduction-based algorithm itself, reducing the median overall slowdown from
38.1 to 1.5 in the experiments. The opportunity for this more drastic improvement is re-
lated to the fact that the reduction-based algorithm is less accurate (i.e., more conservative,
producing more false alarms) than the block-based algorithm.
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9.4 Hybrid Analysis of Deadlocks

This section presents a runtime algorithm for detecting potential deadlocks, a deadlock
type system, and the technique to focus the runtime detection using the analysis result of
the type system [3].

9.4.1 Runtime Detection of Potential Deadlocks

The GoodLock algorithm [24] detects potential deadlocks at runtime. It records a run-
time lock tree for each thread. The runtime lock tree for a thread represents the nested
pattern in which locks are acquired by the thread. Each node of the runtime lock tree is
labeled with a lock and represents the thread acquiring that lock. There is an edge from a
noden1 to a noden2 if n1 represents the most recently acquired lock that the thread holds
when it acquires the lock associated withn2. At each instant, each runtime lock tree has
one node designated as thecurrent node; the path from the root of the tree to that node rep-
resents the nested acquires of locks held by that thread at that instant. If a thread re-acquires
a lock that it already holds, its runtime lock tree does not contain a node representing the
re-acquire. When a thread acquires a lock that it does not already hold, if there is already a
child of the current node labeled with that lock, that child becomes the current node, oth-
erwise a new child labeled with that lock is created and becomes the current node. At the
end of the execution of the program, if there exist threadst1 andt2 and locksl1 andl2 such
that t1 acquiresl2 while holdingl1, andt2 acquiresl1 while holdingl2, then a warning of
potential deadlock is issued, unless there is a common lock, called a gate lock, that is held
by both threads when they acquirel1 andl2; the gate lock prevents the acquires ofl1 andl2
from being interleaved in a way that leads to deadlock. The worst-case time complexity of
the algorithm isO(|T |3×|Thread|2), where|T | is the size of the largest runtime lock tree,
andThread is the set of threads. However, this algorithm only detects potential deadlocks
caused by interleaving of lock acquires in two threads.

We present a generalized version of the GoodLock algorithm that detects potential
deadlocks involving any number of threads. In particular, it checks whether there exist
distinct threadst0, . . . , tm−1 and locksl0, . . . , lm−1 such that, for alli = 0..m− 1, ti holds
lock li while acquiring lockli+1 mod m. Note that we always ignore a thread re-acquiring
a lock it already holds, so a thread acquiringli+1 mod m while holdingli implies li+1 mod m

and li are different locks. In the absence of other constraints on the schedule (e.g., due
to gate locks or start-join synchronization), such acquires can be interleaved in a way that
leads to deadlock. We call this the Potential for Deadlock from Locks Ignoring GateLocks
(PDL-IGL) condition.

The algorithm constructs a runtime lock tree for each thread during execution, as de-
scribed above. At the end of the execution, it constructs a runtime lock graph, which is a
directed graphG = (V, E), whereV contains all the nodes of all the runtime lock trees,
and the setE of directed edges contains (1)tree edges:the directed (from parent to child)
edges in each of the runtime lock trees, and (2)inter edges:bidirectional edges between
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Figure 9.1: Runtime lock graph.

nodes that are labeled with the same lock and that are in different runtime lock trees.
For a runtime lock graphG, a valid path is a path that does not contain consecutive

inter edges and such that nodes from each lock tree appear as at most one consecutive
subsequence in the path. Similarly, avalid cycleis a cycle that does not contain consecutive
inter edges and nodes from each thread appear as at most one consecutive subsequence in
the cycle.

As an example, Figure 9.1 shows the runtime lock graph for the illustrative program in
Figure 9.2. The graph in Figure 9.1 contains several cycles including the following three,
whereliTj denotes the node for lockl i in the runtime lock tree for threadj: l3T1 →
l3T2 → l3T4 → l3T1,

l1T1 → l2T1 → l2T2 → l3T2 → l3T1 → l4T1 → l4T3 → l1T3 → l1T1, and
l3T1 → l4T1 → l4T4 → l3T4 → l3T1.
The first cycle is not valid because it contains two or more consecutive inter edges. The

second cycle is not valid because nodes from thread T1 appear in more than one subse-
quence. The third cycle is valid and hence indicates a potential deadlock. Specifically, it
indicates that the program in Figure 9.2 can deadlock if thread 1 acquires lockl3 and waits
for lock l4 and thread 4 acquires lockl4 and waits for lockl3 .

Now we show that PDL-IGL holds iff the runtime lock graphG contains a valid cycle.
Suppose there exist distinct threadst0, . . . , tm−1 and locksl0, . . . , lm−1 such that for all
i = 0..m − 1, ti holds lockli while acquiring lockli+1 mod m. Let ni andn′i denote the
nodes inTi corresponding to the acquire ofli and the acquire ofli+1 mod m nested within it,
respectively. Since threadti acquires lockli and waits for lockli+1 mod m, there is a path
from ni to n′i in runtime lock treeTi for ti (because,n′i is nested belowni). Note that this
path is made of tree edges. The locksli andli+1 mod m are distinct, so this path contains at
least one tree edge. Also, there is an inter edge fromn′i in runtime lock treeTi to ni+1 mod m

in runtime lock treeTi+1 mod m in G (by construction). These tree edges and inter edges
together form a valid cycle.

Next, we show that existence of a valid cycleC in G implies that the PDL-IGL con-
dition holds. The cycle involves nodes from more than one lock tree, because nodes of
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Thread 1:
sync(l1) {

sync(l2) {
}

}
sync(l3) {

sync(l4) {
}

}

Thread 2:
sync(l2) {

sync(l3) {
}

}

Thread 3:
sync(l4) {

sync(l1) {
}

}

Thread 4:
sync(l4) {

sync(l3) {
}

}

Figure 9.2: Synchronization behavior of 4 threads.sync abbreviatessynchronized .

a single tree cannot be involved in a cycle. Suppose,C had nodesni andn′i in runtime
lock treeTi for threadti, i ∈ 0..m − 1 (without loss of generality, we can just consider
the beginning and end nodes in the consecutive subsequence from the same thread). Also,
nodesn′i andni+1 mod m are labelled with the same lock (they are consecutive nodes from
different lock trees and this is only possible through an inter edge which connects two sim-
ilar labeled locks). Thus, existence ofC implies there exist distinct threadst0, . . . , tm−1

and locksl0, . . . , lm−1 (nodeni corresponds to lockli and noden′i corresponds to lock
li+1 mod m) such that, for alli = 0..m − 1, ti holds lockli while acquiring lockli+1 mod m.
Hence, the PDL-IGL condition holds.

Our algorithm to detect existence of a valid cycle traverses all valid paths starting from
the root of each lock tree inG using a modified depth-first search (DFS) algorithm, called
DFS-ValidCycle, which differs from standard DFS in two ways. First, it traverses only valid
paths, because it extends the current path (on the search stack) only with edges satisfying
both criteria for validity. Second, a node all of whose neighbors have been explored may be
explored multiple times (along incoming inter edges); this is necessary because the set of
threads with some lock-tree nodes on the stack might be different on different visits, so the
set of valid paths that can be explored by continuing the search from that node is different.
The algorithm terminates when a valid cycle is found or all valid paths have been explored.
Pseudo-code for the algorithm appears in Figure 9.3.

To see that the algorithm traverses every valid path, consider a valid pathP that begins
at a noden in a lock treeT . ExtendingP by prepending the edges on a path from the root
of T to n produces a valid path that is explored by the algorithm when DFS-ValidCycle
is started from the root ofT . Note that a cycle involvingP will be detected, because we
check in the algorithm whethern′ is anywhere on the stack (not just on the bottom).

To show the worst-case complexity of the algorithm, we consider the number of valid
paths in the runtime lock graph. LetS(k) be the number of valid paths ink lock trees
T1, . . . , Tk, assuming the path visits those lock trees in that order. ThenS(k) = S(k −
1) + Nk × Nk−1, whereNk andNk−1 are the number of nodes in lock treesTk andTk−1
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/* check whether the graph contains a valid cycle. initially, the stack is empty, and all nodes
are unvisited. edge(n,n1) denotes the edge from n to n1.*/

DetectValidCycle(){
stack = empty;
for each lock tree T

r = the root of T;
DFS-ValidCycle(r, treeEdge);

}

DFS-ValidCycle(Noden, EdgeType lastEdgeType){
stack.push(n);
/* Determine which neighbors ofn to visit. */
/* A neighbor ofn is a node reachable from n by traversing a single edge.*/
if (lastEdgeType = interEdge)

nbors = neighbors ofn in the same lock tree;
else{

if (some neighbor ofn is on the stack){
print “valid cycle”;
halt;

}
nbors = all neighbors ofn that

(1) are in the lock tree ofn or
(2) are in a lock tree no node of which is on the stack.

}
for ni in nbors /* iterate over the selected neighbors of n.*/

DFS-ValidCycle(ni, edgeType(n,ni));
stack.pop(); /*removen from the stack*/

}
Figure 9.3: Algorithm to detect valid cycles.

respectively, because for each noden in Tk−1, the valid paths ending atn can be extended
in Nk different ways. Thus, the total number of valid paths isO(|V ||Thread|), where|V | is
the total number of nodes in the graph, and|Thread| is the total number of threads. There
are|Thread|! permutations ofT1, . . . , Tk, and each step of extension or backtracking takes
constant time, so the overall worst-case complexity of this algorithm isO(|V ||Thread| ×
|Thread|!).

The algorithm can be optimized by observing that many valid paths share a common
suffix. Define an ordering on edge types: tree-edge≥ inter-edge. This reflects the fact that
in the definition of validity, a tree edge implies fewer restrictions on the next edge in the
path. For each noden, n.visits is a set of pairs<ts, et>, wherets is a set of threads, and
et is an edge type. The meaning of<ts, et> ∈ n.visits is thatn has been visited along
an edge with typeet with a stack containing nodes from the lock trees of the threads in
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/* check whether the graph contains a valid cycle.*/
DetectValidCycle(){

stack = empty;
for each nodes in each lock tree

for each noder in each lock tree{
r.visits = emptySet;

DFS-ValidCycle(s,interEdge,s);
}

}

DFS-ValidCycle(Noden, EdgeType lastEdgeType, StartNodes) {
ts = {t in Threads — some node from the lock tree oft is on the stack};
if ( ∃et > lastEdgeType.∃ts1 : n.visits.contains(〈ts1, et〉) andts.containsAll(ts1))

return;
stack.push(n);
n.visits.insert(〈ts, lastEdgeType〉);
/* determine which neighbors of n to visit.*/
if (lastEdgeType = interEdge)

nbors = neighbors of n in the same lock tree and not on the stack;
else{

if (s is a neighbor ofn){
print “valid cycle”;
halt;

}
nbors = neighbors ofn that

(1) are in the lock tree ofn and are not on the stack, or
(2) are in the lock tree of a thread not ints.

}
for ni in nbors /* iterate over the selected neighbors*/

DFS-ValidCycle(ni,edgeType(n,ni),s);
stack.pop(); /*remove n from the stack*/

}
Figure 9.4: Optimized algorithm to detect valid cycles.

ts. If we start the modified DFS at every noden, we do not need to explore a noden′ if
n′.visits contains a pair<ts1, et> such that the current stack contains all nodes from the
lock trees of the threads ints1 andn′ is being visited along an edge with type less than
or equal toet. If those conditions hold, then no valid cycles are reachable by continuing
the search fromn′. This is because there is no valid path fromn′ back ton that avoids
the lock trees on the stack, because if there were, the search would have detected the cycle
(containingn andn′) and terminated during the visit that added that tuple ton′.visits.
Pseudo-code for the optimized algorithm appears in Figure 9.4.

The worst-case complexity of the optimized algorithm isO(2|Thread| × |V |3), It is easy
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to see that each node can haveO(2|Thread|) items in its visits set. Hence, each node can be
exploredO(2|Thread|) times and during each visit it may need to visit its out-edges. There
are at most|V | out-edges from each node. Since we repeat the algorithm for each node, the
overall worst-case complexity of the algorithm isO(2|Thread| × |V |3).

If the number of threads is a constant, then the algorithm is polynomial in the number
of nodes in the runtime lock graph.

However, the algorithm does not consider gate locks and therefore produces false
alarms whenever some common lock acquired by at least two threads prevents deadlocks.
To eliminate these false alarms, we extend the algorithm to check whether there exist dis-
tinct t0 . . . tm−1 and locksl0 . . . , lm−1 such that for alli = 0..m − 1, ti holds lockli while
acquiring lockli+1 mod m and there do not existti, tj, andl such thatti andtj hold l when
acquiringli andlj, respectively. (Such a lockl is called agate lockfor the cycle). We call
this the Potential for Deadlocks from Locks (PDL) condition.

To check the PDL condition, we modify the algorithm to backtrack (instead of halting)
when a valid cycle is encountered, so the algorithm explores all valid cycles, and we check
for every valid cycle generated whether there is a gate lock,i.e., whether no two nodes in
different runtime lock trees have ancestors labeled with the same lock. This can be done in
O(|V |2×|Lock|) time for each valid cycle , where|Lock| is the number of locks. If a valid
cycle without a gate lock is found, potential for deadlock is reported.

9.4.2 Deadlock Types

Deadlock types associate a lock level with each lock. The typing rules ensure that if
a thread acquires a lockl2 (which the thread does not already hold) while holding a lock
l1, thenl2’s level is less thanl1’s level; in other words, locks are acquired in descending
order. Lock levels and the partial order on them are defined by statements of the form
LockLevel l 1 = new; l 2 < l 1. In PRFJ, only locks on objects with ownerself
can be acquired (acquiring locks on other objects is not useful for showing race-freedom),
so lock levels are associated only with objects with ownerself . In this chapter, we con-
sider only basic deadlock types, in which all instances of a class are associated with the
same lock level.

In the deadlock type system, each methodm is annotated with a locks clause that con-
tains a set of lock levels. These lock levels are the maxima amongst the levels of locks that
may be acquired whenm is executed. To ensure that a program is free of deadlocks, the
typing rule for method calls ensures that the caller only holds locks that are of a higher level
than the levels in the called method’slocks clause. Alocks clause may also contain
a lock l, which indicates that the thread invoking the method may hold a lock on objectl.
The typing rule for synchronized expression checks that the lock being acquired isl or has
a lower level thanl. This allows typing of programs in which, for example, a synchronized
method of a class calls a synchronized method of the same class on the same object.

We designed a type inference algorithm for the above deadlock type system, which can
infer deadlock types for programs [3].
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9.4.3 Integrating Static Analysis and Runtime Checking

Deadlock types enforce a conservative strategy for preventing deadlocks. Runtime
checking can safely be omitted for parts of the program guaranteed to be deadlock-free
by the type system.

To optimize the generalized version of the GoodLock algorithm that does not handle
gate locks, we find all the cycles of the forml1 > l2... > l1 among lock level orderings
produced by the deadlock type inference algorithm. We instrument only lock acquires and
releases of expressions whose lock level is part of a cycle. Other synchronized expressions
do not need to be instrumented. This leads to fewer intercepted events and smaller lock
trees that need to be analyzed. It is easy to determine which lock levels are part of cycles.
Construct a graphG = (V,E), where each lock level is a node inV and there is an edge
from l to l′ if the inferred typing declaresl > l′. A simple depth first search can find all
nodes that are part of some cycle.

To optimize the generalized version of the GoodLock algorithm that handles gate locks,
we find all the cycles among lock level orderings produced by the type inference algorithm
as discussed above. All lock levels that are comparable to lock levels involved in a cycle
in the ordering of lock levels need to be instrumented (not just the lock levels involved in a
cycle).

9.4.4 Experiments

We implemented the unoptimized and optimized generalized Goodlock algorithms
without gate locks described in Section 9.4.1 and used them to analyze the elevator pro-
gram. Table 9.3 shows the running times for theelevator program with 3,7,15, 30 and
60 Lift threads. The “Base time” row gives the execution time of the original program
without any instrumentation. The “Full” and “Focused” rows give the execution results of
the program augmented with full and focused runtime checking, respectively. For “Full”
and “Focused” rows, sub rows “Size”, “Unopt” and “Opt” give the the number of nodes in
all runtime lock trees, execution times of the unoptimized algorithm, and optimized algo-
rithm respectively. As discussed in Section 9.4.3, focused runtime checking in this example
intercepts lock acquires and releases only on instances ofVector . The results demonstrate
that the focused analysis significantly decreases the runtime overhead of deadlock check-
ing and the size of runtime lock trees. LetOfull = Full − Base denote the overhead of
full checking, andOfoc = Focused− Base denote the overhead of focused checking. The
average speedup (i.e., fractional reduction in overhead) is(Ofull − Ofoc)/Ofull, which is
55.8% for the unoptimized algorithm, and 58.4% for the optimized algorithm. The average
size of the runtime lock trees is reduced by 41%. Surprisingly, the optimized algorithm
runs slower than the unoptimized algorithm, although its asymptotic worst-case time com-
plexity is better. The main reason is that the optimized algorithm uses more complicated
data structures, and for the modifiedelevator example, where the runtime lock graph is
relatively simple, the benefit of caching explored paths falls short of the overhead of data
structure maintenance.
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3 threads 7 threads 15 threads 30 threads 60 threads
Base time 0.23s 0.30s 0.52s 2.60s 6.60s

Full Size 621 1037 1848 3359 5734
Unopt 0.76s 0.94s 14.93s 1m23.08s 3m42.9s
Opt 1.10s 1.66s 17.32s 1m28.05s 4m3.0s

Focused Size 433 646 1063 1824 2947
Unopt 0.40s 0.53s 11.71s 34.91s 1m22.66s
Opt 0.51s 0.72s 12.40s 36.35s 1m28.28s

Table 9.3: Running times of dynamic deadlock checking for the modified elevator example.
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Appendix A

Polynomial Equivalence of Conflict- and
View-Atomicity

The following theorem shows that the problems of checking conflict-atomicity and
checking view-atomicity are polynomially reducible to each other. This result is some-
what surprising, considering that checking conflict serializability is in P [5] and checking
view serializability is NP-complete [38], so they are not polynomially reducible unless
P=NP. To simplify the problem, we consider only transactions,i.e., we assume there are no
non-transactional units; we expect that the result also holds without this restriction. In this
chapter, we first prove two lemmas and then the main theorem.

Lemma A.0.1. Suppose〈T, ∅〉 has no potential for deadlock, andT contains only two
transactions. 〈T, ∅〉 is not conflict-atomic iff there are at least two inter-edges in the
conflict-forest.

Proof. Suppose that the two transactions aret andt′.
“⇒”: We prove the contrapositive holds. If there is only one or no inter-edge between

t andt′, then it is easy to show that each of them has at most one commit node, soT is
conflict-atomic according to Theorem 6.3.2.

“⇐”: Suppose that one inter-edge connects noden1 of t and noden′1 of t′; another inter-
edge connects noden2 of t and noden′2 of t′. These are two different edges, son1 6= n2 or
n′1 6= n′2. If n1 or n2 is the ancestor of the other,n′1 andn′2 cannot be ancestor for each other
according to the algorithm in Figure 6.2 (because the “outmost common lock” condition
would implyn1 = n2 andn′1 = n′2), so there are at least two commit nodes int′, henceT is
not conflict-atomic according to Theorem 6.3.2. Otherwise,t contains at least two commit
nodes, soT is not conflict-atomic according to Theorem 6.3.2.

Lemma A.0.2. Suppose〈T, ∅〉 has no potential for deadlock, andT contains only two
transactions.〈T, ∅〉 is not view-atomic iff there are at least two inter-edges in the view-
forest.

Proof. The proof is similar as the proof for Theorem A.0.1.
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Theorem A.0.3. The problems of checking conflict-atomicity and checking view-atomicity
are polynomially reducible to each other when restricted to problem instances where the
setE of non-transactional units is empty.

Proof. 1. We first prove that the problem of checking conflict-atomicity can be polynomi-
ally reducible to the problem of checking view-atomicity. We transformT as follows. Let
l be a lock not used inT . For each variablex, each reader

x is replaced byeacq
l er

x erel
l ; and

each writeew
x is replaced byeacq

l er
x ew

x erel
l . Let T ′ denote the resulting set of transactions.

Now we prove thatT is conflict-atomic iffT ′ is view-atomic.
“⇒”: For any tracetr of T , T is conflict-atomic implies thattr has an conflict-

equivalent serial tracetrs, We transformtr and trs in the same manner that is used to
transformT , yielding tr′ and tr′s of T ′, respectively. For each read in the original trace
tr, the corresponding read intr′ has the same write-predecessor intr′ and tr (because
the insertions do not affect this relationship) and the same write-predecessor intr andtrs

(because they are conflict equivalent), and the same write-predecessor intrs andtr′s (be-
cause the insertions do not affect this), so it has the same write-predecessor intr′ andtr′s.
Similarly, we can show that the final write to each variable is the same intr′ andtr′s. For
each read inserted next to a write event, that write has the same order with respect to all
other writes intr andtrs, so the associated read has the same write-predecessor intr′ and
tr′s. Thustr′ has a view-equivalent serial tracetr′s. Because the lockl is not used inT ,
and is added in the pattern described above, there is a one-to-one correspondence between
traces ofT and traces ofT ′. According to the previous analysis, each trace ofT ′ has an
view-equivalent serial trace, soT ′ is view-atomic.

“⇐”: For each tracetr′ of T ′, we remove the operations inserted when constructing
T ′ from T . This yields a tracetr of T . By assumptiontr′ has a view-equivalent tracetr′s.
Writes to the same variable must occur in the same order intr′ and tr′s. Otherwise, the
inserted read next to some write would have a different write predecessor intr′ andtr′s.
Using this observation, and similar reasoning as above, we can show that view-atomicity
of T ′ implies conflict-atomicity ofT .

2. Now we prove that the problem of checking view-atomicity is polynomially re-
ducible to the problem of checking conflict-atomicity. We can check view-atomicity of
pairs of transactions inT in polynomial time based on Theorem 6.3.5. In the following, we
prove that checking view-atomicity can be reduced to checking conflict-atomicity when all
pairs of transactions inT are view-atomic.

Because all pairs of transactions ofT are view-atomic, all unit-non-final writes cannot
be read by other transaction, and each read either reads a preceding write of its own trans-
action in all traces, or reads writes of other transactions in all traces. We remove from each
transaction all unit-non-final writes and all unit-non-initial reads,i.e., all unit-final writes
and unit-initial reads are retained. LetTf denote the resulting set of transactions.

Now we prove thatT is view-atomic iffTf is conflict-atomic.
“⇒”: We prove the contrapositive by showing: ifTf has a tracetr that is not conflict-

serializable, thentr is not view-serializable. Restoring the writes and reads removed when
constructingTf does not affect view serializability of the tracetr, because those writes are
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not read by other transactions, and those reads do not read other transactions. Therefore,
the resulting trace is a non-view-serializable trace forT , soT is not view-atomic.

Let g be the serialization graph fortr. Sincetr is not conflict-serializable,g contains a
cyclec of length two or more,i.e., c contains two or more transactions. In the following,
we prove by contradiction thatc cannot contain exactly two transactions. Suppose thatc
contains exactly two transactionstj and tj, thus,c contains exactly two edges. We first
show that the two edges indicate two edges in the conflict-forest forti andtj which are also
in the view-forest forti andtj. For the edgeti → tj, there must be two conflicting events
ei andej from ti andtj, respectively, andei happens beforeej in tr; similarly, for the edge
tj → ti, there must be two conflicting eventse′j ande′i from tj andti, respectively, ande′j
happens beforee′i in tr. There should be at least two inter-edges in the conflict-forest forti
andtj. Otherwise,i.e., if there is only one inter-edge betweenti andtj (it is easy to know
there must be inter-edge(s) because of these conflict events), bothei ande′i happen either
before or after bothej ande′j according to the algorithm in Figure 6.2. This contradicts
with the conclusion discussed above. Therefore, there must be at least two inter-edges in
the conflict-forest forti andtj. Because all non-final writes and the following reads are
removed, each inter-edge in the conflict-forest must be one of the following two kinds of
inter-edges:(i) between a unit-initial read of one transaction and a unit-final write to the
same variable of the other transaction; or (ii ) between a unit-final write of one transaction
and a unit-final write to the same variable of the other transaction. These two kinds of
inter-edges also exist in the view-forest,i.e., all edges in the conflict-forest also exist in the
view-forest that consists of the same transactions. Thus, ifc contains only two transactions,
the view-forest would contain two inter-edges between nodes in those two transactions, so
according to Lemma A.0.2, the two transactions would not be view-atomic; this contradicts
with the assumption that all pairs of transactions are view-atomic. Hencec contains at least
three transactions. LetT ′ denote the set of transactions contained onc. Hereafter we focus
on the transactions inT ′. Let tr′ denote the subsequence oftr obtained by removing all
events of transactions not inT ′.

The algorithm in Figure A.1 shows an algorithm to generate a shortened cyclecv from
c. We will show that existence of this cycle impliesT is not view-atomic. The first three
cases identify and mark the edges that denote precedence between transactions for all serial
traces view-equivalent totr, i.e., if an edget1 → t2 is marked, thent1 precedest2 in all
serial traces view-equivalent totr. The next two cases add shortcut edges to shortenc; the
new shortcut edges are immediately marked because they also denote precedence between
transactions for all serial traces view-equivalenttr. In the algorithm,c is updated in each
iteration, andtr′ is updated accordingly by removing the transactions not on the currentc.
Let cv andtrv denote the cyclec and tracetr′ when the algorithm terminates. Note that
trv is a sub-sequence of the originaltr′. trv does not have any view-equivalent serial trace,
because of the cyclic precedence of transactions indicated bycv. More details are discussed
next.

Each edge onc must imply one of the six cases shown in the cases view write-read,
view traceinitial read-write, view write-tracefinal write, write-read, write1-write2, and
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read-write. The added edgeeg′ in each case also belongs to one of the six cases.
An edge fromti to tj marked in the case by “view write-read” implies thatti contains

a write ew
x whose written value is read bytj. Thus, for any sub-trace oftr′ obtained by

deleting transactions other thanti and tj, if it contains the write and read tox in ti and
tj, respectively,ti precedestj in all serial traces view-equivalent to that sub-trace. Edges
marked in the cases view traceinitial read-write and view write-unitfinal write have the
similar implication.

In the case write-read, the write-predecessor of the read must be in a third transaction,
i.e., tk is neitherti nor tj. To see this, first note that the write-predecessor ofer

x cannot be
er

x, otherwise this edge would be handled in the case “view write-read”. Therefore, iftk
wereti, ti would contain two writes tox contradicting the fact that each transaction inTf

contains at most one write to each variable. Iftk weretj, er
x would not be a unit-initial read

in tj, contradicting the fact that unit-non-initial reads are removed when constructingTf .
In the following, we show by contradiction thatc contains at least three transactions after
being shortened. Supposec contains only two transactions, namelytk andtj, after being
shortened.c contains an edgeti → tk, which was onc already, and the new-edgetk →
tj. From the definition of view-forest, the view-forest contains inter-edges corresponding
to these two edges, so according to Lemma A.0.2,tj and tk are not view-atomic; this
contradicts the assumption. The algorithm marks the edgetk → tj becausetk must precede
tj in all serial traces view-equivalent to sub-traces oftr′ that containtk andtj.

In the case write1-write2, the trace-final write must be in a third transaction. Iftk
wereti, ti would contain two writes to the same variable, which implies a contradiction.
If tk weretj this edge would be processed in the case view write-unitfinal write instead.
After being shortened in this case,c must contain at least three transactions. Otherwise,
supposec contains only two transactions, namelyti and tk, by the similar reasoning as
above, the shortened cyclec contains at least three transactions after this step. The added
edgeeg′ always implies thatti must happen beforetk in all serial traces view-equivalent to
sub-traces oftr′ that containti andtk.

In the case “read-write”,tk cannot beti because theer
x is a unit-initial read.tk cannot

betj because each transaction cannot have two writes to the same variable.th cannot beti
becauseer

x is a unit-initial read. Note thatth may betj. Similar as before,c must contains
at least three transactions after this step of shortening cycle by the similar reasoning as
above.

After each iteration of the algorithm in Figure A.1,c is always a cycle with at least
three nodes (i.e., transactions), hence,cv is a cycle and contains at least three transactions.
Each edgeti → tj of cv, implies that transactionti must happen beforetj in all serial
traces view-equivalent totrv. Thus, existence of cyclecv implies that there is no serial trace
view-equivalent totrv. If we consider only the transactions contained bytrv, after restoring
the deleted writes and reads, the resulting trace is still not view-serializable because these
deleted writes and reads do not interact with any transaction except for its own. Because
the set of transactions in this trace is a subset ofT , T is not view-atomic.

“⇐”: SupposeTf is conflict-atomic. This impliesTf is also view-atomic. For each
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while(some edges ofc are unmarked){
let ti → tj be an unmarked edge of c;

/* view write-read: this edge is kept incv. */
if ∃x.(the written value by a writeew

x of ti is read by a reader
x of tj in tr′)

markti → tj ; continue;

/* view trace initial read-write: this edge is also kept incv. */
if ∃x.(ti contains a trace-initial read ofx in tr′ andtj contains a write tox)
markti → tj ; continue;

/* view write-tracefinal write: this edge is also kept incv. */
if ∃x.(ti contains a write tox andtj contains a trace-final write tox in tr′)

markti → tj ; continue;

/* write-read: find the write-predecessor of the read, delete the current path onc from the
write-predecessor to the read, and add an edge from the write-predecessor to the read.*/
if ∃x.(a writeew

x of ti happens before a reader
x of tj in tr′)

let tk be the transaction that contains the write-predecessor ofer
x in tr′;

c := c - {path fromtk to tj on c};
remove fromtr′ transactions no longer onc;
c = c ∪ {tk → tj};
mark edgetk → tj ;
continue;

/* write1-write2: find the trace-final write tox in tr′, delete the current path onc
from write1 to write2, and add an edge from write1 to the trace-final write tox.*/
if ∃x.(a writeew

x of ti happens before a writeew
x of tj in tr′)

let tk be the transaction that contains the trace-final write tox in tr′;
c := c - {path fromti to tk on c};
remove fromtr′ transactions no longer onc;
c := c ∪ ti → tk;
markti → tk;
continue;

/* read-write: find the write-predecessor of the read and the trace-final write
to the same variable, connect the write-predecessor and the trace-final write,
at last delete the path that contains the read.*/

if ∃x.(a reader
x of ti happens before a writeew

x of tj in tr′)
let tk denote the transaction that contains the write-predecessor ofer

x in tr′;
let th denote the transaction that contains the trace-final write tox in tr′;
c := c - {path fromtk to th on c};
remove fromtr′ transactions no longer onc;
c = c ∪ tk → th;
marktk → th;
continue;

}

Figure A.1: The algorithm to reduce a conflict-atomicity violating cycle to a view-atomicity
violating cycle.
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tracetr of T , there is a corresponding tracetrf of Tf . SinceTf is view-atomic, there is
a serial tracetrs

f that is view-equivalent totrf . We can expandtrs
f into a serial tracetrs

for T by restoring the removed unit-non-initial reads and unit-non-final writes for each
transaction.trs is view-equivalent totr because all reads have the same write-predecessor
in tr and trs, and all trace-final writes are the same intr and trs. Hence,T is view-
atomic.
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Appendix B

Atomicity Analysis of Non-Blocking
Algorithm

B.1 Simulation of NFQ′

By construction, NFQ′ is more non-deterministic than NFQ and can simulate all behav-
iors of NFQ. We show below that linearizability of NFQ with respect to any specification
(of the kind defined in [26]) follows from linearizability of NFQ′ with respect to that spec-
ification augmented freely with calls toUpdateTail .

Following [26], a specificationSpec is a prefix-closed set of single-object sequential
histories.

Based on a givenSpec for NFQ, the specificationSpec′ for NFQ′ is defined by
introducing a new threadPTail that executes theUpdateTail procedure: for each
H ∈ Spec, for each well-formed sequential historyH ′ that can be obtained by insert-
ing 〈Q.UpdateTail(), PTail〉 (which denotes an invocation ofQ.UpdateTail by PTail)
and〈Q.OK(), PTail〉 (which denotes a return, also called response, fromQ.UpdateTail
by PTail) in H, addH ′ to Spec′.

Recall thatcomplete(Hr) is the subsequence ofHr obtained by deleting the invocations
without matching responses. Recall thatH is linearizable with respect toSpec if H can be
extended to some historyHr by adding response events, such that

L1. complete(Hr) is equivalent to someS ∈ Spec, i.e., ∀ thread P :
complete(Hr)|P = S|P , and

L2. <H ⊆<S

Theorem B.1.1.If NFQ′ is linearizable with respect toSpec′ then NFQ is linearizable with
respect toSpec.

Proof. Let σ be an execution of NFQ. LetH be the corresponding history of NFQ obtained
by deleting all actions except for call/return. Construct an executionσ′ from σ as follows.

• Replace each successful SC(Tail,) with an execution ofUpdateTail() by PTail.
Success of the original SC implies that the SC inUpdateTail() succeeds.
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• Delete each unsuccessful execution of SC(Tail,).

One can show thatσ′ is an execution of NFQ′. LetH ′ denote the corresponding history.
Linearizability of NFQ′ with respect toSpec′ implies that there is an executionH ′

r of H ′

and a sequential historyS ′ ∈ Spec′ such that
L1′. complete(H ′

r) is equivalent toS ′, and
L2′. <H′⊆<S′

Let Hr andS be the subsequences ofH ′
r andS ′, respectively, obtained by deleting all

invocations ofUpdateTail() and the matching responses. Note thatHr is an exten-
sion of H by adding response events. Also,S ∈ Spec, by design ofSpec′. Note that
complete(Hr) is equivalent toS; this follows fromL1′, and the fact thatPTail does not
appear inHr or S, so the projection of both ontoPTail is the empty sequence.

Let f(<) denote the projection of an ordering< onto operations of all threads other
thanPTail. L2′ impliesf(<H′) ⊆ f(<S′). Note that<H = f(<H′) and<S = f(<S′). So
<H ⊆<S.

The converse of the above theorem can be proved similarly. Therefore, this approach,
i.e., proving the linearizability of NFQ by showing the linearizability of NFQ′, is complete.

B.2 Semantics of SYNL

B.2.1 Domains

The semantic domains used in the semantics of SYNL are shown in Table B.1.A ⇀ B
is the type of partial functions fromA to B. A program state is a tuple〈G, H, T 〉 containing
a global storeG, a heapH, and a sequenceT containing, for each thread, a local storeL
and a statement to be executed next. The address of a record structure (an object or array)
is often stored in a reference variable. To access the record structure, there are two maps:
the first map is from reference variable to address, and has typeGStore or LStore; the
second map is from address to structure, and has typeHeap. H[p 7→ d] denotes a new heap
that is identical toH except it maps addressp to recordd.

TheStructdomain allows arrays with gaps in the set of legal indices. This generality
is unnecessary but harmless; our proofs remain valid for semantic domains that exclude
arrays with gaps.

The semantics of LL/VL/SC and CAS associate a set of thread identifiers with each
global variable, each field of each object, and each element of each array. We call this
informationsynchronization stateand represent it using theSyncStatedomain. The set of
thread identifiers denotes that what threads have read the corresponding variable before
they successfully submit their updates. For example, suppose variablev has a setY of
thread identifiers. A LL(v) by threadi addsi into Y . A successful SC(v, val) by threadj
resetsY to empty.

→i is the transition relation of threadi. → is the transition relation of the program.
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ϕ ∈ State = GStore × Heap × Thread∗

H ∈ Heap = Addr ⇀ Struct
d ∈ Struct = (Field ⇀ V al × SyncState) ∪ (Index ⇀ V al × SyncState)
L ∈ LStore = LV ar ⇀ V al
t ∈ Thread = LStore × Statement
v ∈ V al = Addr ∪ int ∪ bool
i ∈ TID = Nat

G ∈ GStore = GV ar ⇀ V al × SyncState
Y ∈ SyncState = Set(TID)

idx ∈ Index = Nat
p ∈ Addr
T ∈ Thread∗

→i ⊆ State× State
→ ⊆ State× State

Table B.1: Semantic domains for SYNL.

B.2.2 Evaluation Contexts

Based on the syntax and semantic domains of SYNL defined in Tables 8.1 and B.1,
respectively, the evaluation contexts of SYNL are defined in Table B.2. Evaluation contexts
are used to identify the next part of an expression or statement to be executed. An evaluation
contextE is an expression or statement with a hole in place of the next sub-expression or
sub-statement to be evaluated. Expressions evaluate to expressions and eventually become
values. Statements evaluate to statements and eventually become thedone statement or
get blocked or stuck.

Table B.2 also introduces additional expression and statement forms to help keep track
of computations. Theinlet statement denotes that execution is proceeding inside a state-
mentlocal . Theinloop andinsync statements are similar.

Let T [i] denote theith element of sequenceT . In a stateG, H, T whereT [i] contains
insync p, we say that threadi holds lockp. In a state where no thread holds lockp, we
say that lockp is free. We refer to this as the state of the lock.

Note that LL(E) is not an evaluation context; if it were, LL(x) would evaluate to,e.g.,
LL(3), if the value ofx is 3.

Expr ::= p
Statement ::= inloop s s | done | inlet x s | insync p s

E ::= [ ] | E.fd | E[e] | x[E] | prim(e1, ..., en, E, ...) | SC(loc, E)
| CAS(loc,E,e) | CAS(loc,v,E) | loc := E| if E s s | loop E
| inloop s E | E;s | local x := E in s | inlet x E
| return E | synchronized E s | insync p E

Table B.2: Evaluation contexts of SYNL.
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B.2.3 Transition Rules

Letπi select theith component of a tuple. For example,π2(〈a, b, c〉) = b. For a mapping
L, let L− x denoteL with x removed from its domain.

The transition rules of SYNL are shown in Figures B.1 and B.2, where1 6 i 6 |T |,
and

val(x,G, L) =





π1(G(x)) if x ∈ dom(G)
π1(L(x)) if x ∈ dom(L)
⊥ otherwise

The transition ruleG,H, T →i G,H, T.〈L, s〉 in Figure B.2 models the environment
calling a procedure in a new thread.

Recall that SYNL allows procedures called implicitly and concurrently by the environ-
ment, and SYNL does not allow explicit procedure calls (internal procedures are inlined).

The ruleG,H, T.〈L, done〉.T ′→i G,H, T.〈L′, s〉.T ′ in Figure B.2 models the environ-
ment calling a procedure in an existing thread that finished its previous procedure calls.

Note that the only actions performed by the environment are calls to procedures defined
in the program.

This semantics does not model garbage collection of unreachable structures or termi-
nated threads. This semantics allows the heap, procedure arguments,etc., to contain invalid
addresses,i.e., addresses not indom(H). Attempting to dereference them causes the thread
to get stuck. We can considernull to be such an invalid address, if getting stuck is appro-
priate semantics for an attempted dereferencing ofnull. Otherwise, we could introduce a
specialnull value inAddr, and add appropriate transition rules for dereferencing ofnull.
The semantics forreturn does not explicitly model the communication of the return
value to the environment; it could easily be modified to do so.

B.3 Proof of Theorem 8.4.1

Let σ = G0, H0, T0 →t0 G1, H1, T1 →t1 . . . be an execution of a programP .
A normal iteration leads to another iteration of the loop’s body, so threadi0 is at the

same “control point” inTα0 andTαn+1. In our semantics, this means thatπ2(Tα0 [i0]) =
π2(Tαn+1 [i0]).

Let I be the indices inσ of all transitions that are part of normal iterations of pure loops.
Let σ′ be the execution constructed fromσ by deleting transitions inI. Deleting transitions
involves adjusting the states as follows. Thejth state inσ′ corresponds to thef(j)th state
in σ, wheref(j) = max({m | m − |[0..m − 1] ∩ I| = j}), i.e., f(j) is the maximalm
which satisfies that there arej transitions remaining from the0th to (m − 1)th transitions
after deleting transitions inI. [0..m-1] denotes the set of integers from0 to m− 1.

Thef(j)th state inσ is denoted asGf(j), Hf(j), Tf(j). Thejth state inσ′ is denoted as
G′

j, H
′
j, T

′
j and is computed as follows. Letp ∈ Addr, fd ∈ Field, x ∈ LV ar ∪ GV ar.

The treatment of arrays is very similar to the treatment of records, so for brevity, we show
only the latter.
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G,H, T.〈L,E[x]〉.T ′ →i G,H, T.〈L,E[v]〉.T ′,
if v = val(x,G, L) ∧ v 6= ⊥

G, H, T.〈L, E[p.fd]〉.T ′ →i G,H, T.〈L,E[π1(H(p)(fd))]〉.T ′,
if p ∈ dom(H) ∧ fd ∈ dom(H(p))

G,H, T.〈L,E[p[idx]]〉.T ′ →i G,H, T.〈L,E[π1(H(p)(idx))]〉.T ′,
if p ∈ dom(H) ∧ idx ∈ dom(H(p))

G,H, T.〈L,E[new C]〉.T ′ →i G,H[p 7→ d], T.〈L,E[p]〉.T ′, wherep /∈ dom(H),
Note:d is a record of type C,
and appropriately initialized

G,H, T.〈L, E[prim(v̄)]〉.T ′ →i G,H, T.〈L,E[v0]〉.T ′, wherev0 = [[prim]](v̄)
Note:prim operations have no side effect

G,H, T.〈L,E[LL(x)]〉.T ′ →i G[x 7→ 〈v, Y ∪ {i}〉],H, T.〈L,E[v]〉.T ′,
if x ∈ dom(G) ∧ 〈v, Y 〉 = G(x)

G,H, T.〈L,E[LL(x.fd)]〉.T ′ →i G,H[p 7→ H(p)[fd 7→ 〈v, Y ∪ {i}〉]], T.〈L,E[v]〉.T ′
if p = val(x,G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧〈v, Y 〉 = H(p)(fd)

Note:p ∈ dom(H) impliesp 6= ⊥
G,H, T.〈L,E[LL(x[idx])]〉.T ′ →i G,H[p 7→ H(p)[idx 7→ 〈v, Y ∪ {i}〉]], T.〈L,E[v]〉.T ′

if p = val(x,G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧〈v, Y 〉 = H(p)(idx)

Note:p ∈ dom(H) impliesp 6= ⊥
G, H, T.〈L, E[V L(x)]〉.T ′ →i G,H, T.〈L,E[true]〉.T ′, if x ∈ dom(G) ∧ i ∈ π2(G(x))
G, H, T.〈L, E[V L(x)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′, if x ∈ dom(G) ∧ i /∈ π2(G(x))

G,H, T.〈L, E[V L(x.fd)]〉.T ′ →i G,H, T.〈L,E[true]〉.T ′
if p ∈ val(x,G,L) ∧ p 6= ⊥ ∧ p ∈ dom(H)
∧fd ∈ dom(H(p)) ∧ i ∈ π2(H(p)(fd))

G,H, T.〈L, E[V L(x.fd)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′
if p ∈ val(x,G,L) ∧ p 6= ⊥ ∧ p ∈ dom(H)
∧fd ∈ dom(H(p)) ∧ i /∈ π2(H(p)(fd))

G,H, T.〈L,E[V L(x[idx])]〉.T ′ →i G,H, T.〈L,E[true]〉.T ′
if p ∈ val(x,G,L) ∧ p 6= ⊥ ∧ p ∈ dom(H)
∧idx ∈ dom(H(p)) ∧ i ∈ π2(H(p)(idx))

G,H, T.〈L,E[V L(x[idx])]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′
if p ∈ val(x,G,L) ∧ p 6= ⊥ ∧ p ∈ dom(H)
∧idx ∈ dom(H(p)) ∧ i /∈ π2(H(p)(idx))

G,H, T.〈L,E[SC(x, v)]〉.T ′ →i G[x 7→ 〈v, ∅〉], H, T.〈L,E[true]〉.T ′,
if x ∈ dom(G) ∧ i ∈ π2(G(x))

G,H, T.〈L,E[SC(x, v)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′, if x ∈ dom(G) ∧ i /∈ π2(G(x))
G,H, T.〈L,E[SC(x.fd, v)]〉.T ′ →i G,H[p 7→ H(p)[fd 7→ 〈v, ∅〉]], T.〈L,E[true]〉.T ′

if p ∈ val(x,G,L) ∧ p 6= ⊥ ∧ p ∈ dom(H)
∧fd ∈ dom(H(p)) ∧ i ∈ π2(H(p)(fd))

G,H, T.〈L,E[SC(x.fd, v)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′
if p ∈ val(x,G,L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧i /∈ π2(H(p)(fd))

G,H, T.〈L,E[SC(x[idx], v)]〉.T ′ →i G,H[p 7→ H(p)[idx 7→ 〈v, ∅〉]], T.〈L, E[true]〉.T ′
if p ∈ val(x,G,L) ∧ p 6= ⊥ ∧ p ∈ dom(H)
∧idx ∈ dom(H(p)) ∧ i ∈ π2(H(p)(idx))

G,H, T.〈L,E[SC(x[idx], v)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′
if p ∈ val(x,G,L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧i /∈ π2(H(p)(idx))

Figure B.1: Transition rules of SYNL, part 1.
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H ′
j(p)(fd) = let k = max((WriteH(σ, p, fd)\I) ∩ [0..f(j)− 1])

in Hk+1(p)(fd)
G′

j(x) = let k = max((WriteG(σ, x)\I) ∩ [0..f(j)− 1])
in Gk+1(x)

WriteH(σ, p, fd) denotes the indices of transitions inσ that write the value or syn-
chronization state of fieldfd of the structure at addressp. Thus,max((WriteH(σ, p, fd)
\I) ∩ [0..f(j)− 1]) denotes the maximal transition that is not contained inI and writes the
value or synchronization state ofp.fd before thef(j)th state.WriteG(σ, x) denotes the
indices of transitions inσ that write the value or synchronization state of global variablex.

Note that a LL is considered as a write, since it writes the synchronization state ofx.
Failed SC and CAS transitions are not considered as writes.

Let Trans(σ, i) denote the indices of transitions of threadi in σ. WriteL(σ, x, i) is
analogous toWriteG, except it is for local variables of threadi.

T ′
j = 〈L′j, S ′j〉

L′j[i](x) = let k = max((WriteL(σ, x, i)\I) ∩ [0..f(j)− 1]
in Lk+1(x)

S ′j[i] = let k = max((Trans(σ, i)\I) ∩ [0..f(j)− 1])
in Sk+1[i]

The following formulas forσ express the fact that each variable contains the value most
recently written to it.

Hj(p)(fd) = let k = max((WriteH(σ, p, fd)) ∩ [0..j − 1])
in Hk+1(p)(fd)

Gj(x) = let k = max((WriteG(σ, x)) ∩ [0..j − 1])
in Gk+1(x)

For each threadi, we have
Lj[i](x) = let k = max((WriteL(σ, x, i)) ∩ [0..j − 1]

in Lk+1(x)
Sj[i] = let k = max((Trans(σ, i)) ∩ [0..j − 1])

in Sk+1[i]
A storage location can be a local variable, global variable, field, or array element. The

sets of locations read or written by a transition are defined in a straightforward way.
Let τ ′j denote thejth transition ofσ′, i.e., G′

j, H
′
j, T

′
j →i G′

j+1, H
′
j+1, T

′
j+1. Let τf(j) de-

note the corresponding transition inσ, i.e., Gf(j), Hf(j), Tf(j) →i Gf(j+1), Hf(j+1), Tf(j+1).

Lemma B.3.1. For every transitionτ ′j in σ′,
(i) τ ′j andτf(j) are transitions of the same thread, call it threadi, and
(ii) S ′j[i] = Sf(j)[i], and
(iii) all locations read byτ ′j have the same value in stateG′

j, H ′
j, L′j[i] and stateGf(j),

Hf(j), Lf(j)[i].

Proof. Claims(i) and(ii) follow directly from the definitions ofσ′ andf . For claim(iii),
we consider the different kinds of locations thatτ ′j may read.

1. τ ′j reads a global variablex, i.e., x ∈ GV ar.
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According to the definition of pure loop,I does not contain writes to global vari-
ables, soWriteG(σ, x) ∩ I = ∅. Thus, in the definitions ofG′

j(x) andGf(j)(x), k is
max(WriteG(σ, x) ∩ [0..f(j)− 1]), therefore,G′

j(x) = Gf(j)(x).
2. τ ′j reads a local variablex of threadi.
Let τk be threadi’s last write tox beforeτf(j) in σ; note that this is the same value ofk

as in the definition ofGf(j)(x). To concludeL′j[i](x) = Lf(j)[i](x), it suffices to show that
k /∈ I, which implies that the writeτk also appears inσ′. We prove this by contradiction.
Supposek ∈ I. Note thatf(j) /∈ I, becauseτf(j) corresponds toτ ′j and hence is not a
deleted transition.k ∈ I implies τk is a pure action in a normal iteration of some loop.
(1.ii.a) in the definition of pure action implies that there is another write tox by threadi
betweenτk andτf(j), contradicting the definition ofk.

3. τ ′j reads a field of an unshared object.
The proof is the same as in case 2 for local variables, except for differences in notation.
4. τ ′j reads a fieldp.fd of a shared object.
Let τw be threadi’s last write top.fd beforeτf(j) in σ. Similar as Case 2, it suffices to

show thatw /∈ I. We prove this by contradiction. Supposew ∈ I.
If τw andτf(j) are executed by the same threadi, by the same reason as in Case 2, there

is another write tox by threadi betweenτw andτf(j), contradicting the definition ofw.
Supposeτw andτf(j) are executed by different threadsi to h, respectively. According

to the definition of pure loop,τw is performed by dereferencing primary reference(s). For
brevity, we talk only one primary reference, the proof for multiple primary references can
be done in the same way. Thus,τf(j) must be performed by dereferencing a quasi-unique
reference. Sinceτf(j) is not performed by dereferencing a secondary reference (otherwise,
τf(j) cannot have a correspondingτj in σ), τf(j) must be performed by dereferencing a
primary reference. Therefore, the ownerships of the quasi-unique reference is transferred
from threadi to threadh. In SYNL, this transfer must be performed by assigning the ref-
erence to some global variable. Letasgn denote the assignment.asgn is not in normal
iterations, becauseτw is performed by dereferencing primary references. Thus,asgn hap-
pens after the normal iteration whereτw occurs, and beforeτf(j). By the same reason as in
Case 2, there is another write top.fd by threadi betweenτw andasgn, i.e., τw andτf(j),
contradicting the definition ofw.

5. τ ′j reads an array element. The analysis is similar to the analysis for a field access.
6. τ ′j performs LL or CAS.
Reads performed by LL or CAS do not require separate analysis: the preceding analysis

applies to these reads.
7. τ ′j performs SC or VL on some locationx.
A SC or VL reads the synchronization state of threadi for that variable (i.e., checks

whetheri is in the set of thread id’s associated withx). Since this SC or VL is not in
the deleted normal iterationI of the pure loop, condition(2) in the definition of pure
loop implies that the matching LL, if any, is not inI, so deletingI does not affect the
synchronization state read by this SC or VL.

8. τ ′j performs asynchronized transition,i.e., acquires some lock.
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The lock must be free or held by threadi in the state immediately beforeτf(j). Syn-
chronized statements are block-structured, so if some transition inI performs an acquire
transition, then(i) I also contains the matching release transition (which exits the corre-
sponding synchronization block), and(ii) τf(j) does not occur between that matching pair
of lock operations. Deleting an execution of a synchronized block does not affect the state
of the lock before or after it, so the state of the lock beforeτ ′j is the same as it is before
τf(j).

Lemma B.3.2. σ′ is an execution of the programP .

Proof. A straightforward property of the operational semantics is that, if some transition
rule shows thatϕ1 → ϕ2 is a transition ofP , andϕ′1 andϕ′2 are obtained fromϕ1 andϕ2,
respectively, by a change to some parts of the state that are not accessed by the transition
according to Lemma B.3.1, then the same transition rule shows thatϕ′1 → ϕ′2 is a transition
of P . We conclude thatτ ′j is a transition of the program based on the same transition rule
used to show thatτf(j) is a transition of the program. Therefore,σ′ is an execution of the
programP .

Lemma B.3.3. σ andσ′ contain the same states in which all threads are executing outside
pure loops.

Proof. All deleted transitions are in pure loops, so there is a one-to-one correspondence
between states outside executions of pure loops inσ and states outside executions of pure
loops inσ′. We show that the corresponding states are the same. By inspection of the for-
mulas definingH ′, G′, andT ′, deletion of a transition that updates a locationx produces
a difference between corresponding states inσ andσ′ that propagates forward inσ′ until
it encounters either a transition that updatesx or the end ofx’s scope. Conditions (1.ii.a)
and (1.ii.b) in the definition of pure loop imply that, for each such locationx, at least one
of these two things happens before the end of the pure loop.

Theorem 8.4.1Letσ be an execution of a programP . Letσ′ be an execution obtained from
σ by deleting all transitions in all normal iterations of all pure loops inP . Thenσ′ is also
an execution ofP , andσ andσ′ contain the same states in which all threads are executing
outside pure loops.
Proof. The theorem follows directly from Lemmas B.3.2 and B.3.3.
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G,H, T.〈L,E[CAS(x, v1, v2)]〉.T ′ →i G[x 7→ 〈v2, π2(G(x))〉],H, T.〈L,E[true]〉.T ′,
if x ∈ dom(G) ∧ π1(G(x)) = v1

G,H, T.〈L,E[CAS(x, v1, v2)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′,
if x ∈ dom(G) ∧ π1(G(x)) 6= v

G,H, T.〈L,E[CAS(x.fd, v1, v2)]〉.T ′ →i G,H[p 7→ H(p)[fd 7→ 〈v2, π2(H(p)(fd))〉]],
T.〈L,E[true]〉.T ′
if p ∈ val(x,G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧π1(H(p)(fd)) = v1

G,H, T.〈L,E[CAS(x.fd, v1, v2)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′
if p ∈ val(x,G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧π1(H(p)(fd)) 6= v1

G,H, T.〈L,E[CAS(x[idx], v1, v2)]〉.T ′ →i G,H[p 7→ H(p)[idx 7→ 〈v2, π2(H(p)(fd))〉]],
T.〈L,E[true]〉.T ′

if p ∈ val(x,G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧π1(H(p)(idx)) = v1

G,H, T.〈L,E[CAS(x[idx], v1, v2)]〉.T ′ →i G,H, T.〈L,E[false]〉.T ′
if p ∈ val(x,G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧π1((H(p)(idx)) 6= v1

G,H, T.〈L,E[x := v]〉.T ′ →i G′,H, T.〈L′, E[done]〉.T ′
if (x ∈ dom(G) ∧G′ = G[x 7→ 〈v, π2(G(x))〉] ∧ L′ = L)
∨ (x ∈ dom(L) ∧ L′ = L[x 7→ v] ∧G′ = G)

G, H, T.〈L,E[x.fd := v]〉.T ′ →i G,H[p 7→ H(p)[fd 7→ 〈v, π2(H(p)(fd))〉]],
T.〈L,E[done]〉.T ′
if p = val(x, G,L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))

G,H, T.〈L,E[x[idx] := v]〉.T ′ →i G,H[p 7→ H(p)[idx 7→ 〈v, π2(H(p)(idx))〉]],
T.〈L,E[done]〉.T ′
if p = val(x, G,L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))

G,H, T.〈L,E[if true s1 s2]〉.T ′ →i G,H, T.〈L,E[s1]〉.T ′
G,H, T.〈L,E[if false s1 s2]〉.T ′ →i G,H, T.〈L,E[s2]〉.T ′

G,H, T.〈L,E[loop s]〉.T ′ →i G,H, T.〈L,E[inloop s s]〉.T ′
G,H, T.〈L,E[inloop s E′[break]]〉.T ′ →i G,H, T.〈L,E[done]〉.T ′,

if E′ does not containinloop
G,H, T.〈L,E[inloop s done]〉.T ′ →i G,H, T.〈L,E[inloop s s]〉.T ′

G,H, T.〈L,E[synchronized p s]〉.T ′ →i G,H, T.〈L,E[insync p s]〉.T ′,
if T andT ′ do not containinsync p

G,H, T.〈L,E[insync p done]〉.T ′ →i G,H, T.〈L,E[done]〉.T ′
G,H, T.〈L, E[done; s]〉.T ′ →i G,H, T.〈L,E[s]〉.T ′

G,H, T.〈L,E[local x = v in s]〉.T ′ →i G,H, T.〈L[x 7→ v], E[inlet x s]〉.T ′, if x /∈ dom(L)
G, H, T.〈L, E[inlet x done]〉.T ′ →i G,H, T.〈L− x,E[done]〉.T ′

G,H, T.〈L,E[return]〉.T ′ →i G,H, T.〈L, done〉.T ′
G,H, T.〈L,E[return v]〉.T ′ →i G,H, T.〈L, done〉.T ′

G,H, T →i G,H, T.〈L, s〉, where the program declares a procedure
p(x̄) {s}, anddom(L) = x̄.

G,H, T.〈L, done〉.T ′ →i G,H, T.〈L′, s〉.T ′, where the program declares a procedure
p(x̄) {s}, anddom(L) = x̄.

Figure B.2: Transition rules of SYNL, part 2.


