
1 23

International Journal of System
Assurance Engineering and
Management
 
ISSN 0975-6809
Volume 2
Number 2
 
Int J Syst Assur Eng Manag (2011)
2:135-143
DOI 10.1007/s13198-011-0069-2

HEAT: a combined approach for thread
escape analysis

Qichang Chen, Liqiang Wang & Zijiang
Yang



1 23

Your article is protected by copyright and all

rights are held exclusively by The Society for

Reliability Engineering, Quality and Operations

Management (SREQOM), India and The

Division of Operation and Maintenance, Lulea

University of Technology, Sweden. This e-

offprint is for personal use only and shall not

be self-archived in electronic repositories.

If you wish to self-archive your work, please

use the accepted author’s version for posting

to your own website or your institution’s

repository. You may further deposit the

accepted author’s version on a funder’s

repository at a funder’s request, provided it is

not made publicly available until 12 months

after publication.



ORIGINAL ARTICLE

HEAT: a combined approach for thread escape analysis

Qichang Chen • Liqiang Wang • Zijiang Yang

Received: 14 December 2010 / Revised: 26 August 2011 / Published online: 18 September 2011

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2011

Abstract Thread escape analysis can determine whether

and when a variable becomes shared by multiple threads,

which is a foundation for many other program analysis and

software testing techniques. Most existing escape analysis

tools are either purely dynamic or static analyses. Static

analysis, which considers all possible behaviors of a pro-

gram, may produce false positives; whereas dynamic

approaches miss the information from unexecuted code

sections of a program. This paper presents a hybrid

approach that integrates static and dynamic analyses to

address this problem. We first perform static analysis to

obtain succinct summaries of accesses to all variables and

interprocedural information. Dynamic analysis is then used

to confirm variable sharing; for unexecuted code, we

determine the sharing of variables by performing an in-

terprocedural synthesis based on the runtime information

and static summaries. Compared to dynamic analysis, the

hybrid approach is able to determine the escape property of

variables in unexecuted code. Compared to static analysis,

the hybrid approach produces fewer false alarms. We

implemented this hybrid escape analysis in Java. Our

experiments on several benchmarks and real-world appli-

cations show that the hybrid approach improves the

accuracy of escape analysis compared to existing approa-

ches and significantly reduces the performance overhead of

a subsequent program analysis.

Keywords Thread escape analysis � Program analysis �
Concurrent program � Software testing � Dynamic analysis

1 Introduction

Thread escape analysis is a program analysis technique

that determines which and when objects escape from their

creating threads (i.e., may be accessed by multiple threads).

Thread escape analysis is a fundamental technique for

many other program analyses. For example, it can deter-

mine unnecessary synchronizations for thread-local

objects; it can reduce the runtime overhead when dynam-

ically detecting concurrency-related errors, such as race

conditions, atomicity violations, and deadlocks, since all

accesses to thread-local variables can be ignored. For

object-oriented programming, even if an object escapes

from its creating thread, some fields may never be accessed

by multiple threads. In addition, many concurrent software

testing techniques are dependent on the thread escape

analysis on identifying the thread escape variables that are

of their analysis focus. In this paper, the granularity for

thread escape analysis is on the field level.

Most existing approaches for escape analysis are either

purely dynamic (e.g., Lee et al. 2007; Nishiyama 2004) or

purely static (e.g., Choi et al. 2003; Salcianu and Rinard

2001). Static analysis reasons over program source code

without actually executing the program. Static escape

analysis is conservative and can report all potential shared

variables because all of the source code can be analyzed,

Q. Chen (&) � L. Wang

Department of Computer Science, University of Wyoming,

Laramie, WY 82071-3315, USA

e-mail: qchen2@cs.uwyo.edu

L. Wang

e-mail: wang@cs.uwyo.edu

Z. Yang

Department of Computer Science, Western Michigan University,

Kalamazoo, MI 49008-5314, USA

e-mail: zijiang.yang@wmich.edu

123

Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143

DOI 10.1007/s13198-011-0069-2

Author's personal copy



but it may have a high rate of false positives (alarms).

Dynamic analysis reasons about behavior of a program

through executing it. Generally, dynamic escape analysis is

more accurate in identifying shared variables, but it may

have a high rate of false negatives (i.e., some shared

variables cannot be found) because it does not analyze

unexplored behavior of programs.

This paper presents a novel hybrid approach that extends

a dynamic escape analysis by incorporating static analysis.

Our hybrid approach contains two phases: in the first phase,

it performs static analysis on program source code to obtain

the concise static summaries about field accesses and

method invocations; the second phase is a dynamic anal-

ysis: we monitor the actual field accesses during execution

and perform an interprocedural synthesis on the runtime

information and the static summaries to determine the

escaped fields. In addition, if a field would become thread-

shared eventually, our approach can also determine when a

field becomes shared, thus we treat the field as thread-local

before it escapes in order to avoid unnecessary monitoring

overhead on it.

We implement our analysis for Java programs in a tool

called HEAT (Hybrid Escape Analysis for Thread) and

evaluate it on several benchmarks and real-world applica-

tions. The experiment shows that the hybrid approach

improves accuracy of escape analysis compared to existing

approaches and significantly reduces monitoring overhead

of subsequent program analyses (in our experiment, spe-

cifically, a hybrid program analysis approach for checking

data race). For example, many memory-intensive programs

would take many hours to finish because of overwhelming

number of events generated from monitoring the field

accesses. Our tool identifies more unshared fields, which in

turn considerably reduces the number of monitored events

and allows the dynamic or hybrid program analysis to

finish within a reasonable time.

To summarize, our paper makes the following contri-

butions:

– It presents an integrated static and dynamic thread

escape approach to determine whether and when a field

becomes shared by multiple threads. The approach

theoretically has less false positives than static analysis

and less false negatives than dynamic analysis.

– Subsequent analyses can significantly benefit from the

proposed escape analysis in reducing dynamic moni-

toring overhead and improving analysis accuracy.

– We implement the approach in Java and evaluate it on a

few benchmarks including large-scale real-world pro-

grams. The experiment shows that the tool significantly

reduces runtime overhead by more than 90% for

several memory-intensive benchmarks for the subse-

quent race condition analysis.

The rest of this paper is organized as follows. Section 2

introduces thread escape analysis. Section 3 presents the

design and implementation details of our tool HEAT. Section

4 introduces our experiments. Section 5 discusses the related

work. Section 6 gives conclusions and the future work.

2 Introduction to thread escape analysis

In multithreaded object-oriented programming, such as

Java, when an object o is created, o is owned by the cre-

ating thread. Object o escapes from its creating thread

when it can be accessed by two or more threads. Thus,

o may have multiple thread-owners. A thread-owner of o is

also the owner of its all instance fields. For a static field, all

threads are its owner. Thread-ownership can be transferred.

The thread ownership of a field o.f is said to be transferred

from a thread t to another thread t0 if there exists a program

execution state after which t will not access field o.f any

more, and t0 does not access o.f until reaching that program

state. A field o.f is thread-local if it does not have multiple

thread-owner simultaneously (i.e., only one thread-owner

at the same time); otherwise, it is shared by multiple

threads. For a field o.f, its escape point is the earliest

program state where it becomes shared.

Most existing static escape analyses (Choi et al. 2003;

Salcianu and Rinard 2001; Sura et al. 2005) apply points-to

and interprocedural analysis on program source code or

byte code to identify thread-local objects and fields. They

are usually very expensive and tend to report many false

positives due to the difficulty of reconciling the symbolic

references with the actual memory locations. To our best

knowledge, none of them can deal with escape analysis

with respect to container objects (e.g., Collections and

Maps in Java). For example, if a container object escapes,

then all objects contained inside this object are considered

escaped by static analysis, which might be false positives,

since some objects may be never accessed by other threads.

Dynamic escape analyses (e.g., Dwyer et al. 2004; Lee

et al. 2007) monitor accesses during execution and identify

the escaped objects and fields if they have been observed to

be accessed by multiple threads. This is more accurate for

the executed traces but suffers from the incompleteness due

to the fact that not all code will be executed.

Figure 1 shows an example where both static and

dynamic escape analyses are inaccurate in identifying

thread-local fields. In thread-1, two objects a1 and a2

of Account are created and saved in a vector acct-

Vector, then thread-2 is created and started. We

assume that every Account object has a unique identifier.

A static escape analysis (e.g., Salcianu and Rinard 2001)

will report that all fields of a1 and a2 escape when starting

thread-2, because static analysis is usually conservative

136 Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143

123

Author's personal copy



and cannot resolve pointer/reference accurately. If

a1.checking, a1.saving, a2.checking and

a2.saving are not really accessed by both thread-1

and thread-2 (e.g., deposit and withdraw are done on

different accounts), they are just thread-local. A dynamic

escape analysis (e.g., Nishiyama 2004) can resolve pointer/

reference on runtime, however, it may report false negatives,

because not all program code is analyzed. For example, if

thread-1 and thread-2 deposit and withdraw from

account a1, when a1.checking have enough balance,

a1.saving and a1.checking are not shared by both

threads; otherwise, a1.saving will be accessed by both

threads. Thus, a dynamic escape analysis is highly sensitive

to the input test cases.

The hybrid escape analysis proposed in the paper

overcomes the above problems. It can speculatively

approximate the unexecuted branch based on its static

summary and runtime information. Specifically, the sym-

bol a in the static summary is resolved using its current

runtime identifier based on executed code. Thus, we can

identify that the field a.saving is shared under some

circumstances. The potential errors on a.saving (e.g.,

race condition) may be detected early.

3 Combining static and dynamic escape analyses

3.1 Overview of the hybrid approach

Figure 2 shows the workflow of our tool HEAT, which

consists of five components.

1. A static analyzer, which parses the source code to

generate static summary trees (SSTs).

2. An instrumentation tool, which inserts event intercep-

tion code.

3. A dynamic monitor, which intercepts events and

records them during execution.

4. A speculator, which performs interprocedural synthe-

sis to combine the static summaries for unexecuted

code blocks from SSTs and the runtime observed

information.

5. A reporter, which analyzes hybrid information to

report all escaped fields.

3.2 Static analyzer

The static analyzer analyzes the program source code and

keeps track of any possible escape fields. To be more

specific, the static analyzer parses the program source code

to construct static summary trees (SSTs) which are used in

conjunction with the runtime monitor. Each SST corre-

sponds to a brief summary of a method in a Java class.

Specifically, a SST may contain nodes representing the

following events.

– Read/write to non-final, non-volatile and non-

static fields. We ignore the final fields because most

subsequent concurrency analyses focus on mutable

shared variables and the immutable final fields are not

in their concerns. The volatile fields are ignored because

they are deemed to be share variables as the keyword

Fig. 1 Examples in Java

demonstrating an escaped object

Fig. 2 The workflow of the tool

HEAT

Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143 137

123

Author's personal copy



‘‘volatile’’ implies that the fields will be accessed and

updated by multiple threads. The static fields are ignored

due to the fact that any static field is always accessible to

multiple threads as long as its access scope permits.

– Method invocations (interprocedural information),

which are recorded in the SST for the on-the-fly

interprocedural analysis in the speculation stage. In

each method invocation node, we also include a link to

the method definition SST node.

– Object reference assignment statements, which are

recorded for the intraprocedural points-to analysis.

– Control flow structures (i.e., if/them/else, do/while/for,

switch/case), which are recorded for a thorough explo-

ration of the speculated control block in the runtime.

Figure 3 shows an example of a code block and its

corresponding SST.

We implemented the static analyzer based on Eclipse

JDT framework (Eclipse, http://www.eclipse.org/). For

each source code file, it traverses the corresponding AST

using JDT and iteratively analyzes each method and

appends the nodes to the SSTs. Finally, the SSTs are

dumped into an XML file to be used by the subsequent

stage of dynamic speculation.

3.3 Dynamic monitor

HEAT uses the Eclipse JDT framework (Eclipse, http://

www.eclipse.org/) to rewrite the source code of the target

program. We instrument all field accesses (i.e., read and

write) inside the program. Specially, we ignore accesses on

those fields whose declarations are outside the scope of the

program (i.e., fields from imported library). This has no

effect on our escape analysis for the target program under

testing since we only concern about the escape fields inside

the program.

For each running thread in the program, we have a cor-

responding monitor to observe all field accesses occurring in

that thread. For each field, we identify it using the unique

identifier of its owner object (i.e.,hashCode) plus the name

of that field.

To identify the escaped fields, one straightforward

implementation is to collect a set of fields accessed in each

thread monitor, then perform the set intersection over these

sets from different thread when the program terminates.

However, this approach has its drawbacks since the set of

fields recorded during execution can be overwhelmingly

large such that the program may run out of memory before

it can finish. In addition, it is unnecessary to monitor a field

which has been identified escaped.

To alleviate this problem, we insert two additional

shadow fields (like an accompanying shadow) for each

existing field at their definitions in the program source

code. One field called isEscaped is to keep track of

whether a field has escaped. Its initial value is false.

When we decide the field escapes (which is discussed

below), the corresponding isEscaped is set to be true,

and we will skip all the subsequent observations on that

field to reduce the runtime overhead. The other field called

prevThread, which indicates the last thread that acces-

ses the field. prevThread is initialized to -1 if no thread

has accessed it. To determine whether a field has escaped,

we check whether the current accessing thread on that field

is same as the prevThread. The check can be phrased in

a plain expression as isEscaped = (j == prevThread? fal-

se:true), where j is the accessing thread of the current field

access.

3.4 Speculator: interprocedural synthesis

During the runtime, we speculate every unexecuted code

block using the SST generated by the static analyzer. A

context-sensitive interprocedural analysis is performed on

the SST at different calling contexts on the fly. Figure 4

shows the interprocedural analysis and synthesis algorithm.

When we speculate an unexecuted code block based on

the corresponding SST, symbolic names in the SST are

Fig. 3 An example of a static

summary tree (SST) with its

corresponding code

138 Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143

123

Author's personal copy

http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/


instantiated with their corresponding runtime object refer-

ence identifiers by querying them in the binding tables. A

binding table is maintained for each object; it stores the

mappings between symbolic names and runtime values of

all reference fields and local reference variables under the

context of the object. Another binding table is maintained

for each class with static reference fields. Binding tables

are updated when assignments to reference variables are

executed. During speculative execution, assignments to

reference variables in SSTs trigger updates on temporary

copies of binding tables, instead of the original ones. If the

runtime binding of the object reference in the speculation is

Fig. 4 The interprocedural

synthesis algorithm

Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143 139

123

Author's personal copy



unable to be determined based on binding tables, we would

replace the symbolic name with a wildcard object identifier

(e.g., Account_*.checking). For example, Fig. 5

gives an example of how we context-sensitively analyze

the method invocation method(o1). This significantly helps

improve the accuracy of HEAT without resorting to any

static analysis such as alias analysis (Whaley and Rinard

1999) or connection graph (Choi et al. 2003).

When we reach a method call in the SST, we expand it

with the SST of its definition and perform the formal

parameters and actual arguments substitution. This context-

sensitive approach enables us to resolve the object refer-

ences in the SST for that method invocation at different

thread calling sites. Inside the expanded method invoca-

tion, we use the binding table from dynamic monitor to

resolve the bindings of as many as symbolic object refer-

ence names in the static summary tree (SST). This is

continued for any method invocation encountered in that

expanded method invocation SST. We stop until all the

method invocations have been analyzed. For recursive

method calls, we only analyze its top level call because our

analysis is flow-insensitive and the interprocedural analysis

on the remaining calls will not yield any new escape

information. When the interprocedural speculative analysis

is completed, all the results from the analysis is synthesized

with the runtime information in the dynamic monitor for

this thread.

Once a method call has been analyzed, any of the same

subsequent invocations happen in that same thread from

the same calling context will be ignored by HEAT. This

prevents from duplicating the events to burden our escape

analysis since we only need a distinct field access from

each thread to determine the escape cases.

Our unified escape analysis will report more false pos-

itives than the purely dynamic escape analysis. However,

this also allows the subsequent analyses to reveal more

potential errors and provide more complete diagnostic

information to the developers and end users.

4 Experiment

This section discusses the evaluation of HEAT on a col-

lection of multi-threaded widely-used Java benchmarks:

elevator, tsp, sor, and hedc are from (von Praun

and Gross 2001), moldyn and raytracer are from the

Java Grande forum Multi-threaded benchmark suite (Java

Grande Forum, http://www.javagrande.org/); Jigsaw and

Apache Tomcat are two multi-threaded real-world web

services from (Jigsaw, http://www.w3c.org) and (Apache,

http://tomcat.apache.org), respectively. Elevator is a

program that uses 2 threads to simulate the elevator. tsp is

the multi-threaded Travel Sales Person problem solver

which comes with a standard set of TSP problems. Given a

specific TSP test harness, the user can additionally specify

the number of threads employed to solve that problem.

sor stands for Successive Over-Relaxation which per-

forms 100 iterations of successive over-relaxation on a

N 9 N grid as specified in the test harness. Hedc is a

multi-threaded web crawler. Jigsaw 2.2.6 is a basic

HTTP server that supports both secure and unsecure

communications. Apache tomcat is an HTTP and J2EE

application server that supports the dynamic content gen-

eration for server-side web pages. (Smith and Bull 2001)

has extensive coverages on the Java Grande bench-

marks(namely, Elevator, Tsp, Sor).

We perform the experiment on a machine with Intel

dual-core CPU of 1.8 GHz, 2 GB memory, Windows XP

SP3, and J2SE 1.6.

Figure 6 compares the result of pure dynamic escape

algorithm against our hybrid approach. ‘‘Base’’ is the

running time of the original (uninstrumented) program.

‘‘Dummy’’ is the running time of the instrumented program

including event intercepting but without performing any

online/offline analysis.

We evaluate our hybrid escape analysis in three ways.

First, we compare the runtime costs between the pure

dynamic escape analysis and the hybrid one. Second, we

also compare the accuracy, specifically number of escaped

fields, reported by the two approaches. Third, we compare

the effects of the two analyses on the performance of the

subsequent data race analysis.

From Fig. 6, we can conclude that our hybrid approach

reveals more escaped fields than the dynamic approach. The

time difference between them is not very significant for most

of benchmarks, which indicates that our hybrid analysis

improves the accuracy and completeness of escape analysis

without sacrificing much runtime overhead. For most of the

benchmarks, the memory remains under realistic limits. The

memory usage of most memory-intensive program under

HEAT has not exceeded 200 MB in contrast with a memory

of 30 MB for its uninstrumented version. Our HEAT tool

shows that tracking all the field accesses is not only possibleFig. 5 Reference binding resolving for a code segment

140 Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143

123

Author's personal copy

http://www.javagrande.org/
http://www.w3c.org
http://tomcat.apache.org


in terms of time and memory space but also very feasible for

most benchmarks.

Figure 6 also compares the performance among three

different ways for checking data race: using the results from

our hybrid escape analysis, using the results from a pure

dynamic escape analysis, and without using any escape

analysis (i.e., monitor all field accesses). To facilitate

checking data races with the escape information, all the

escaped fields reported from the first-stage escape analysis

are saved in a trace file. The instrumentor selectively

instruments the fields that are reported to be escaped, their

enclosing methods, and relevant control structures. We

perform the post-stage (offline) data race analysis after the

instrumented program terminates.

As indicated by Fig. 6, the most obvious two bench-

marks that benefit from this approach are moldyn and

raytracer. Without the first-stage escape analysis, we

have tested them for more than 2 h without termination.

With the assistance of the escape information, we can

easily ignore those heavily accessed but thread-local fields

when checking data race. The overall time has reduced to

as low as 2 min in contrast. For the other benchmarks, the

performance improvements are also quite significant.

Figure 7 shows the graphical comparison of the Eraser data

race monitoring time with and without escape results.

In addition, Fig. 6 shows that our hybrid escape analysis

results helps the subsequent data race analysis reveal more

faulty locations that could be involved in the potential data

race on the benchmark tsp. In the meantime, the Eraser

data race analysis with the hybrid escape analysis results

achieves the same accuracy as the original Eraser analysis

while significantly reducing the performance overhead on

most benchmarks.

Basen on our experimental evaluations, we can see that

our hybrid escape analysis is better than the purely

dynamic escape analysis in preserving the accuracy of the

subsequent concurrency analysis and only trades only a

small amount of overhead time for the accuracy gain over

the dynamic escape analysis.

5 Related work

This paper extends our previous work (Chen et al. 2009) by

formalizing our hybrid approach and presenting more

experimental evaluations for the hybrid escape analysis.

Choi et al. (2003) present a static interprocedural escape

analysis framework that incorporates both the thread-

escape and method-escape analyses. The escape analysis is

based on a connection graph which statically builds the

relationship between object references and objects. In

Salcianu and Rinard (2001), Rinard et al. propose a static

pointer and escape analysis that uses parallel interaction

graphs to analyze the interactions between threads and

provides precise points-to, escape and action ordering

information. Our tool differs from them in that we combine

the accuracy of dynamic analysis with the completeness of

static analysis. Bogda and Hölzle (1999) and Ruf (2000)

propose unification-based escape analyses and apply them

to synchronization elimination. Bogda et al. proposes an

static interprocedural, flow- and context-insensitive data-

flow analysis which ignores the control flow to identify the

thread escape objects. Ruf (2000) uses a equivalence-class

based interprocedural static analysis which groups poten-

tially aliased symbolic names into equivalence classes

flow-insensitively. It builds a static call graph for the

program and traverses the call graph with a initial context

to identify the thread escape equivalence classes. Both their

approaches will conservatively report more thread escape

objects which could put more burdens on the subsequent

concurrency analysis. In addition, their approach differs

from ours in that they focus on identifying thread escape

objects and achieving a performance gain in the program

by removing the synchronization instructions from the

Fig. 6 Comparison of the purely dynamic escape algorithm and the hybrid escape algorithm in performance, accuracy and improving the

subsequent Eraser data race analysis. All times are measured in seconds

Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143 141

123

Author's personal copy



program while our unified thread escape analysis aims to

reduce the overhead and improve the accuracy of the

subsequent concurrency analysis by identifying thread

escape fields.

Compared with static escape analysis, the dynamic

escape analysis in Dwyer et al. (2004) is more expensive

and more precise. Dwyer et al. (2004) design both dynamic

and static analysis independently to identify thread escape

objects which can be removed from the partial order

reduction to improve its performance. The dynamic escape

analysis in Ruf (2000) considers that a particular variable is

accessible(escapes) from other threads when it can be

accessed from the static fields which are global to all

threads. Our escape analysis is similar to them in that we

also aim in identifying thread escape fields that have read/

write accesses from multiple threads. In addition, our

escape analysis considers more escape scenarios, such as, a

variable is passed to the thread constructor. Lee et al.

(2007) introduces a dynamic analysis technique that caches

all possible escaping objects at runtime and then performs a

set intersection between cached escaping objects from

different threads to obtain the escaped objects. They also

perform an empirical study on several escape analysis

techniques. The dynamic phase of our approach is almost

the same to this approach except that we did not adopt the

caching technique but used the state variables. Nishiyama

(2004) uses an on-the-fly read-barrier-based dynamic

escape analysis that eliminates the thread-local memory

locations from being checked by the data race detector thus

improves the performance of lock-set based data race

detection.

Static and dynamic analyses have been combined for

multi-threaded programs. Lee (2006)’s approach is the

closest one to ours in that they present a two-phase static/

dynamic interprocedural and inter-thread escape analysis.

Both approaches perform an offline static analysis followed

by a more accurate and faster online dynamic analysis

which integrates the information from static analysis.

However, their approach uses the level summaries obtained

from dynamic analysis to improve the connection graph

built in the offline stage and thus improve the accuracy.

There are other approaches to combine static and dynamic

analyses. JPredictor (Chen et al. 2008) applies a dynamic

analysis on the target programs to obtain the relevant trace

and then uses the static analysis to prune irrelevant events

and extract the dependency relations which can be used for

checking for potential concurrency errors. Those techniques,

in contrast to ours, do not use speculative synthesis. Concolic

testing (Majumdar and Sen 2007) combines symbolic exe-

cution (a form of static analysis) and concrete execution to

achieve high code coverage in a scalable way. Our specu-

lative execution has a similar goal, aiming to improve code

coverage of dynamic analysis in a scalable way. However,

our approach is more approximate, but simpler and incurs

less overhead.

6 Conclusions and future work

In this paper, we present a hybrid (i.e., combining static

and dynamic) escape analysis and demonstrate its effec-

tiveness by evaluating it on several benchmarks and real-

world applications. It combines the accuracy of dynamic

analysis while enhancing it with the on the fly interproce-

dural static analysis. The augmentation from unexecuted

code blocks makes the dynamic analysis more effective at

finding many subtle escape cases which otherwise would

be missed by the subsequent concurrency analysis. Our

experimental evaluation shows that this approach has only

a slight overhead over the purely dynamic escape analysis

and improves the subsequent concurrency analysis’ accu-

racy over the purely dynamic escape analysis.

Fig. 7 Comparison of the data

race monitoring time with the

escape and without the escape

results. All times are measured

in seconds

142 Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143

123

Author's personal copy



Our approach can more accurately identify thread escape

variables that are the analysis focus of many concurrent

program analysis and software testing techniques as the

experimental data show that the proposed hybrid approach is

more effective at finding many subtle escape cases. Fur-

thermore, it can be adopted to boost the performance of

subsequent program analysis (e.g., detecting race conditions

and atomicity violation) and significantly lower the runtime

overhead for testing memory-intensive programs.

In our future work, we will extend the interprocedural

analysis to improve the approach’s accuracy and investi-

gate other ways to improve its performance. In addition, we

will apply it to analyze more concurrency-related program

properties.

Acknowledgment This work was supported in part by ONR under

Grant N000140910740.

References

Apache tomcat, version 6.0.16. Available from http://tomcat.apache.

org

Bogda J, Hölzle U (1999) Removing unnecessary synchronization in

java. SIGPLAN Not 34(10):35–46 http://doi.acm.org/10.1145/

320385.320388

Chen F, Serbanuta TF, Rosu G (2008) jpredictor: a predictive runtime

analysis tool for java. In: ICSE ’08: proceedings of the 30th

international conference on Software engineering, pp 221–230.

ACM, New York, NY, USA. http://doi.acm.org/10.1145/13680

88.1368119

Chen Q, Wang L, Yang Z (2009) HEAT: a combined static and dynamic

approach for escape analysis. In: 33rd annual IEEE international

Computer Software and Applications Conference (COMP-

SAC2009). IEEE Press, Seattle, USA

Choi JD, Gupta M, Serrano MJ, Sreedhar VC, Midkiff SP (2003)

Stack allocation and synchronization optimizations for java

using escape analysis. ACM Trans. Program Lang Syst 25(6):

876–910. http://doi.acm.org/10.1145/945885.945892

Dwyer MB, Hatcliff J, Robby, Ranganath VP (2004) Exploiting

object escape and locking information in partial-order reductions

for concurrent object-oriented programs. Form Method Syst Des

25(2–3):199–240

Eclipse. Available from http://www.eclipse.org/

Java Grande Forum. Java Grande Multi-threaded Benchmark Suite.

version 1.0. Available from http://www.javagrande.org/

Jigsaw, version 2.2.6. Available from http://www.w3c.org

Lee K, Midkiff SP (2006) A two-phase escape analysis for parallel java

programs. In: PACT ’06: proceedings of the 15th international

conference on Parallel architectures and compilation techniques.

ACM, New York, NY, USA, pp 53–62. http://doi.acm.org/

10.1145/1152154.1152166

Lee K, Fang X, Midkiff SP (2007) Practical escape analyses: how

good are they? In: VEE ’07: proceedings of the 3rd international

conference on virtual execution environments. ACM, New York,

NY, USA, pp 180–190. http://doi.acm.org/10.1145/1254810.

1254836

Majumdar R, Sen K (2007) Hybrid concolic testing. In: Proceedings

of the 29th International Conference on Software Engineering

(ICSE). Institute of Electrical and Electronics Engineers

Nishiyama H (2004) Detecting data races using dynamic escape

analysis based on read barrier. In: VM’04: proceedings of the 3rd

conference on Virtual Machine Research And Technology Sym-

posium. USENIX Association, Berkeley, CA, USA, pp 10–10

Ruf E (2000) Effective synchronization removal for Java. In: Proceed-

ings of ACM SIGPLAN conference on Programming Language

Design and Implementation (PLDI). ACM Press, pp 208–218

Salcianu A, Rinard M (2001) Pointer and escape analysis for

multithreaded programs. In: Proceedings of ACM SIGPLAN

2001 Symposium on Principles and Practice of Parallel Program-

ming (PPoPP). ACM Press

Smith LA, Bull JM (2001) A multithreaded java grande benchmark

suite. In: Proceedings of the third workshop on java for high

performance computing, pp 97–105

Sura Z, Fang X, Wong CL, Midkiff SP, Lee J, Padua D (2005) Compiler

techniques for high performance sequentially consistent java

programs. In: PPoPP ’05: proceedings of the tenth ACM

SIGPLAN symposium on principles and practice of parallel

programming. ACM, New York, NY, USA, pp 2–13. http://

doi.acm.org/10.1145/1065944.1065947

von Praun C, Gross TR (2001) Object race detection. In: Proceedings of

16th ACM conference on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA), SIGPLAN Notices. ACM

Press, vol 36(11):70–82. http://www.inf.ethz.ch/ praun/

Whaley J, Rinard M (1999) Compositional pointer and escape

analysis for Java programs. In: Proceedings of ACM conference

on Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA). ACM Press, pp 187–206. Appeared

in ACM SIGPLAN Notices 34(10)

Int J Syst Assur Eng Manag (Apr-June 2011) 2(2):135–143 143

123

Author's personal copy

http://tomcat.apache.org
http://tomcat.apache.org
http://doi.acm.org/10.1145/320385.320388
http://doi.acm.org/10.1145/320385.320388
http://doi.acm.org/10.1145/1368088.1368119
http://doi.acm.org/10.1145/1368088.1368119
http://doi.acm.org/10.1145/945885.945892
http://www.eclipse.org/
http://www.javagrande.org/
http://www.w3c.org
http://doi.acm.org/10.1145/1152154.1152166
http://doi.acm.org/10.1145/1152154.1152166
http://doi.acm.org/10.1145/1254810.1254836
http://doi.acm.org/10.1145/1254810.1254836
http://doi.acm.org/10.1145/1065944.1065947
http://doi.acm.org/10.1145/1065944.1065947
http://www.inf.ethz.ch/

	HEAT: a combined approach for thread escape analysis
	Abstract
	Introduction
	Introduction to thread escape analysis
	Combining static and dynamic escape analyses
	Overview of the hybrid approach
	Static analyzer
	Dynamic monitor
	Speculator: interprocedural synthesis

	Experiment
	Related work
	Conclusions and future work
	Acknowledgment
	References


