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S U M M A R Y
A central problem of seismology is the inversion of regional waveform data for models of
earthquake sources. In regions such as Southern California, preliminary 3-D earth structure
models are already available, and efficient numerical methods have been developed for 3-D
anelastic wave-propagation simulations. We describe an automated procedure that utilizes
these capabilities to derive centroid moment tensors (CMTs). The procedure relies on the
use of receiver-side Green’s tensors (RGTs), which comprise the spatial-temporal displace-
ments produced by the three orthogonal unit impulsive point forces acting at the receivers. We
have constructed a RGT database for 219 broad-band stations in Southern California using
a tomographically improved version of the 3-D SCEC Community Velocity Model Version
4.0 (CVM4) and a staggered-grid finite-difference code. Finite-difference synthetic seismo-
grams for any earthquake in our modelling volume can be simply calculated by extracting a
small, source-centred volume from the RGT database and applying the reciprocity principle.
The partial derivatives needed for the CMT inversion can be generated in the same way. We
have developed an automated algorithm that combines a grid-search for suitable focal mech-
anisms and hypocentre locations with a Gauss–Newton optimization that further refines the
grid-search results. Using this algorithm, we have determined CMT solutions for 165 small
to medium-sized earthquakes in Southern California. Preliminary comparison with the CMT
solutions provided by the Southern California Seismic Network (SCSN) shows that our solu-
tions generally provide better fit to the observed waveforms. When applied to a large number
of earthquakes, our algorithm may provide a more robust CMT catalogue for earthquakes in
Southern California.

Key words: Probability distributions; Earthquake ground motions; Earthquake source ob-
servations; Computational seismology; Wave propagation; Early warning.

1 I N T RO D U C T I O N

Accurate and rapid seismic source parameter inversions are important for seismic hazard analysis in earthquake-prone areas such as Southern
California. The Southern California Seismic Network (SCSN) routinely determines the focal mechanisms from first-motion polarities for
earthquakes with local magnitude as low as 2.0–2.5 (Hauksson 2000). With the advancement of digital broad-band instrumentation, complete
Centroid Moment Tensor (CMT; Dziewonski et al. 1981) solutions can be automatically recovered from regional broad-band waveform
data for earthquakes with local magnitude larger than 3.0 (Dreger & Helmberger 1991; Zhao & Helmberger 1994; Thio & Kanamori 1995;
Pasyanos et al. 1996; Zhu & Helmberger 1996; Liu et al. 2004; Clinton et al. 2006).

In the waveform inversion approach, an optimal CMT solution is found by minimizing a certain measure of the waveform misfit between
observed and model-predicted (synthetic) seismograms either in time domain (e.g. Zhao & Helmberger 1994; Zhu & Helmberger 1996) or in
frequency domain (e.g. Romanowicz et al. 1993; Thio & Kanamori 1995). To reduce computational cost, synthetic seismograms as well as
their partial derivatives with respect to CMT parameters are often computed in simple 1-D earth structure models using semi-analytic methods
(e.g. Zhao & Helmberger 1994; Dreger 2003). Multiple 1-D structure models can be adopted to account for gross lateral variations in crustal
structure. And phases that are relatively insensitive to crustal heterogeneities, such as long-period surface waves and Pnl, the combination
of Pn and PL (Helmberger & Engen 1980), can be used in the inversion to alleviate the dependence on structure models. Difficulties may
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arise when attempting inversions for smaller earthquakes, as the signal-to-noise ratio (SNR) at long periods may become too low for smaller
earthquakes (Mw ≤ 3.7). For inversions at shorter periods, small-scale lateral variations in crustal structure can become important and to
further accommodate those small-scale structural variations, simple time shifts between portions of observed and synthetic seismograms are
allowed while minimizing the waveform misfit (e.g. Zhao & Helmberger 1994; Zhu & Helmberger 1996).

Recent advances in parallel computing technology and numerical methods (Olsen 1994; Graves 1996; Akçelik et al. 2003; Olsen et al.
2003; Komatitsch et al. 2004) have made large-scale 3-D numerical simulations of seismic wavefields much more affordable, and they
open up the possibility of using highly accurate synthetic Green’s functions computed in 3-D earth structure models in source parameter
inversions. Synthetic Green’s functions computed from a good 3-D earth structure model can account for complex wave phenomena and
reduce phase differences with observed waveforms. Ramos-Martı́nez & McMechan (2001) developed a full-waveform focal mechanism
inversion algorithm that uses synthetic Green’s functions computed for a 3-D heterogeneous viscoelastic anisotropic structure model using
a staggered-grid finite-difference method and applied it to two aftershocks of the 1994 Mw 6.7 Northridge earthquake. They found that
incorporation of realistic 3-D structure reduced the residual errors of the waveform fitting by more than 50 per cent compared to those for a
1-D layered model. In their algorithm, source locations are not inverted. Liu et al. (2004) developed a full-waveform CMT inversion technique
using synthetic Green’s functions computed in the 3-D Harvard crustal structure model for Southern California (Süss & Shaw 2003) based
on the spectral-element method (Komatitsch et al. 2004). The partial derivatives of the synthetic waveforms with respect to the six moment
tensor components and the source location were evaluated numerically through differencing. Up to 10 wave-propagation simulations were
needed to calculate all partial derivatives. When the initial location is far from the true location, non-linear, iterative optimization algorithms
can be adopted but the computational cost can become quite high for obtaining a robust solution in a short period of time after the earthquake.
A similar approach has been recently adapted to continental scale in Hingee et al. (2010) using a 3-D structure model for the Australasian
region obtained through full-wave adjoint tomography (Fichtner et al. 2009; Fichtner et al. 2010). A number of sensitivity tests show that the
3-D model is superior to a well-calibrated 1-D model in obtaining accurate CMT solutions.

As numerical simulations of seismic wavefields in 3-D structure models are still computationally intensive, if we perform forward
simulations for every potential source model, it is very impractical for rapid or (near) real-time applications. A more practical approach for
rapid CMT inversions in a 3-D earth structure model is to use the reciprocity principle (Aki & Richards 2002; Okamoto 1994a,b; Okamoto
2002). Zhao et al. (2006) introduced the use of receiver Green’s tensors (RGTs) for source parameter inversions in 3-D earth structure models
by taking advantage of the reciprocity principle. The RGTs are the strain fields, as functions of both space and time, generated by three
orthogonal unit impulsive point forces acting at the receiver locations. By applying the reciprocity principle, it can be shown that the RGTs
provide exact partial derivatives of the waveforms at the receiver locations with respect to the moment tensor at any point in the modelling
volume. The RGTs can be calculated with high accuracy in a 3-D earth structure model using numerical methods, such as finite-difference,
finite-element and spectral-element methods, and stored in a database. Since the synthetic seismograms and their partial derivatives can
be retrieved from the database very rapidly, the RGT-based approach is better suited for (near) real-time source parameter inversions. The
disadvantage of this approach is that since the RGT database has to be constantly on-line for rapid access, the disk storage cost could be quite
high. The computational and storage costs for CMT inversions using RGTs calculated in a 3-D structure model for the Los Angeles basin
region based on the finite-difference method were summarized in Chen et al. (2007). Traditional high-performance computing platforms
such as distributed-memory computer clusters are usually shared by multiple users and suffer from long delays in acquiring computational
resources. The emerging cloud computing platform allows users to acquire and release resources on-demand with very low scheduling
overheads and may provide a much more cost-effective alternative for RGT-based (near) real-time synthetic seismogram calculations and
source parameter inversions (Subramanian et al. 2010).

In Zhao et al. (2006), an iterative optimization approach based on the Gauss–Newton algorithm was adopted and to initiate the
optimization process a reference source model is needed. In that study, the reference source location was obtained from the relocated
hypocentre catalogue SHLK (Shearer et al. 2005) and it was not perturbed during the optimization. The reference focal mechanism was
estimated from first-motion polarity data using the HASH algorithm (Hardebeck & Shearer 2002), which carries out a grid search for suitable
dip, rake and strike angles that best fit the polarities of the first motions. In this paper, we extend the RGT-based CMT inversion algorithm in
Zhao et al. (2006) to include a grid search in the vicinity of the reference locations for suitable focal mechanisms and source locations that
minimize different measures of waveform misfit. The source models obtained from the grid-search step are then used as the initial solutions
in the subsequent iterative optimization process based on the Gauss–Newton algorithm. The grid-search step is computationally efficient
as it involves retrieving from the pre-computed RGT database a small volume centred at the reference source location and no additional
3-D wave-propagation simulations are needed. We have applied our CMT inversion algorithm to 165 earthquakes in Southern California.
In general, our CMT solutions are consistent with solutions obtained using other methods and usually provide better fit to the observed
waveforms. Our CMT inversion algorithm does not require manual intervention, when combined with real-time access to telemetered, digital
data streams from the seismic network, our algorithm has the potential to provide improved moment tensor estimates in (near) real-time.

2 M E T H O D O L O G Y

In general, the moment tensor M has six independent elements. For a purely deviatoric source, we require the trace of M to be zero. For
a purely double couple source, we further require the determinant of M to be zero. Following Kikuchi & Kanamori (1991), we represent a
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general moment tensor M as a linear combination of six elementary basis moment tensors Mm,

M =
6∑

m=1

amMm, (1)

where am is the coefficient for the basis moment tensor Mm and the six basis moment tensors are given by

M1 =

⎡
⎢⎣ 0 1 0

1 0 0
0 0 0

⎤
⎥⎦ ; M2 =

⎡
⎢⎣−1 0 0

0 1 0
0 0 0

⎤
⎥⎦ ; M3 =

⎡
⎢⎣ 0 0 −1

0 0 0
−1 0 0

⎤
⎥⎦ ;

M4 =

⎡
⎢⎣ 0 0 0

0 0 −1
0 −1 0

⎤
⎥⎦ ; M5 =

⎡
⎢⎣ 0 0 0

0 −1 0
0 0 1

⎤
⎥⎦ ; M6 =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

⎤
⎥⎦ . (2)

We note that different from Kikuchi & Kanamori (1991) the coordinate system (x, y, z) for Mij adopted in this study corresponds to (east,
north, up) and the resulting basis moment tensors in eq. (2) are different from those in Kikuchi & Kanamori (1991).

An important advantage for decomposing an arbitrary moment tensor into a linear combination of the six basis moment tensors is
that specific solutions, such as pure-deviatoric moment tensors (represented using M1–M5), general double couple solutions (represented
using M1–M5 with zero determinant), double couple solutions with a vertical nodal plane (represented using M1–M4 with zero determinant)
and pure strike-slip solutions (represented using M1 and M2) can be obtained from subgroups of the six basis moment tensors (Kikuchi
& Kanamori 1991) and certain constraints can be incorporated into the inversion through selectively inverting for a subgroup of the six
coefficients am. The synthetic seismogram at receiver location rR due to a source at rS with a general moment tensor M can thus be expressed
as a linear combination of the synthetics for the six basis moment tensors

uk(rR, t ; rS) =
6∑

m=1

am gkm(rR, t ; rS), (3)

where gkm(rR, t ; rS) is the kth component synthetic seismogram due to basis moment tensor Mm and is computed from the RGT by applying
the reciprocity principle.

2.1 Receiver Green’s tensors (RGTs)

Following Zhao et al. (2006), the displacement field from a point source located at r′ with moment tensor Mij can be expressed as (e.g. Aki
& Richards 2002, equation 3.23)

uk(r, t ; r′) = Mi j∂
′
j Gki (r, t ; r′), (4)

where ∂ ′
j denotes the source-coordinate gradient with respect to r′ and the Green’s tensor Gki (r, t ; r′) relates a unit impulsive force acting at

location r′ in direction êi to the displacement response at location r in direction êk . Taking into account the symmetry of the moment tensor,
we also have

uk(r, t ; r′) = 1

2

[
∂ ′

j Gki (r, t ; r′) + ∂ ′
i Gkj (r, t ; r′)

]
Mi j . (5)

Applying reciprocity of the Green’s tensor

Gki (r, t ; r′) = Gik(r′, t ; r), (6)

eq. (5) can be written as

uk(r, t ; r′) = 1

2

[
∂ ′

j Gik(r′, t ; r) + ∂ ′
i G jk(r′, t ; r)

]
Mi j . (7)

For a given receiver location r = rR, the RGT is a third-order tensor defined as the spatial-temporal strain field

Hjik(r′, t ; rR) = 1

2

[
∂ ′

j Gik(r′, t ; rR) + ∂ ′
i G jk(r′, t ; rR)

]
. (8)

Using this definition, the displacement recorded at receiver location rR due to a source at rS with moment tensor M can be expressed as

uk(rR, t ; rS) = Mi j Hjik(rS, t ; rR) or u(rR, t ; rS) = M : H(rS, t ; rR), (9)

and the synthetic seismogram due to a source at rS with the basis moment tensor Mm can be expressed as

gm(rR, t ; rS) = Mm : H(rS, t ; rR). (10)

Most of the numerical algorithms for solving the seismic wave equation, such as finite-difference, finite-element and spectral-element
methods, explicitly use the spatial gradients of the displacement (or velocity) and the stress (or stress rate) in their calculations. For a given
receiver, the RGT can therefore be computed through three wave-propagation simulations with a unit impulsive force acting at the receiver
location rR and pointing in the direction êk (k = 1, 2, 3) in each simulation and store the strain fields at all spatial grid points r′ and all time
sample t. The synthetic seismogram at the receiver due to any point source located within the modelling domain can be obtained by retrieving
the strain Green’s tensor at the source location from the RGT volume and then applying eq. (9).
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2.2 Grid search based on Bayesian inference

For each earthquake, we consider a random vector H composed of six source parameters: the longitude, latitude and depth of the centroid
location rS, and the strike, dip and rake of the focal mechanism. We assume a uniform prior probability P0(H) over a sample space �0, which
is defined as a subgrid in our modelling volume centred around the initial hypocentre location provided by the seismic network with grid
spacing in three orthogonal directions given by a vector h0 and a focal mechanism space with the ranges given by 0◦ ≤ strike ≤ 360◦, 0◦ ≤
dip ≤ 90◦ and –90◦ ≤ rake ≤ 90◦ and with angular intervals in strike, dip and rake specified by a vector θ 0. The strike, dip and rake values
can be converted into the Cartesian components of the moment tensor M (Aki & Richards 2002), which can be subsequently converted into
the six coefficients am through a simple algebraic manipulation. Synthetic seismograms for each source parameter vector in the sample space
can then be computed using the RGT database by applying eqs (3) and (10) above.

We apply Bayesian inference in three steps sequentially. In the first step, the likelihood function is defined in terms of waveform similarity
between synthetic and observed seismograms. We quantify waveform similarity using a normalized correlation coefficient (NCC) defined as

NCCn = max
�t

⎡
⎣∫ t1

n

t0
n

s̄n(t)sn(t − �t)dt

/√∫ t1
n

t0
n

s̄2
n (t)dt

∫ t1
n

t0
n

s2
n (t − �t)dt

⎤
⎦ , (11)

where n is the observation index, s̄n(t) and sn(t) are the filtered observed seismogram and the corresponding synthetic seismogram, [t0
n , t1

n ]
is the time window for selecting a certain phase on the seismograms for cross-correlation. We allow a certain time-shift �t between the
observed and synthetic waveforms. To prevent possible cycle-skipping errors, we restrict |�t | to be less than half of the shortest period. We
assume a truncated exponential distribution for the conditional probability

P(NCCn|Hq ) = λn exp[−λn(1 − NCCn)]

1 − exp(−2λn)
, −1 < NCCn ≤ 1, Hq ∈ �0, (12)

where λn is the decay rate. Assuming the NCC observations are independent, the likelihood function can be expressed as

L0

(
H

∣∣∣∣∣
N⋂

n=1

NCCn

)
= exp

[
−

N∑
n=1

λn (1 − NCCn)

]
N∏

n=1

{
λn [1 − exp(−2λn)]−1

}
, (13)

where N is the total number of NCC observations. The posterior probability for the first step can then be expressed as

P0

(
H

∣∣∣∣∣
N⋂

n=1

NCCn

)
=

P0(H ) exp

[
−

N∑
n=1

λn (1 − NCCn)

]
N∏

n=1

{
λn [1 − exp(−2λn)]−1

}
P0

(
N⋂

n=1
NCCn

) , (14)

where

P0

(
N⋂

n=1

NCCn

)
=

∑
q

P

(
N⋂

n=1

NCCn |Hq

)
P0(Hq ). (15)

We note that the λn in front of (1 − NCCn) in eq. (14) can be used as a weighting factor for various purposes, such as to account for
different SNRs in observed seismograms and to avoid the solution to be dominated by a cluster of closely spaced seismic stations.

The probability for individual measurements

P0 (NCCn) ∝
∑

q

P(NCCn|Hq )P0(Hq ) (16)

can be used for rejecting problematic observations. In practice, we only accept observations with

P0 (NCCn) ≥ Q0. (17)

A very low P0(NCCn) indicates that the nth observed waveform cannot be fit well by any solutions in our sample space. This may be
due to instrumentation problems or unusually high noise levels in the observed waveform data.

In the second step, the posterior probability from the first step, eq. (14), is used as the prior probability

P1 (H ) = P0

(
H

∣∣∣∣∣
N⋂

n=1

NCCn

)
, (18)

and the sample space for the second step, �1, consists of source parameter vectors H that satisfy

P1(H ) ≥ P̄1, (19)

where P̄1 is a threshold used to reject source parameters with low probabilities. The sampling intervals for centroid location and focal
mechanism are reduced to h1 and θ 1, respectively and synthetic seismograms for the new sample space �1 are computed using eqs (3) and
(10). The likelihood function for the second step is defined in terms of the time-shift �Tn that maximizes the NCC observation as defined in
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eq. (11). We assume an exponential distribution for the conditional probability

P(�Tn|Hq ) = μn exp(−μn |�Tn − �TM |), Hq ∈ �1, (20)

where μn is the decay rate and �TM is the median of all �Tn observations. Assuming the �Tn observations are independent, the likelihood
function for the second step can be expressed as

L1

(
H

∣∣∣∣∣
N⋂

n=1

�Tn

)
= exp

(
−

N∑
n=1

μn |�Tn − �TM |
)

N∏
n=1

μn (21)

and the posterior probability for the second step can be expressed as

P1

(
H

∣∣∣∣∣
N⋂

n=1

�Tn

)
= P1 (H ) exp

(
−

N∑
n=1

μn |�Tn − �TM |
)

N∏
n=1

μn

/
P1

(
N⋂

n=1

�Tn

)
, (22)

where

P1

(
N⋂

n=1

�Tn

)
=

∑
q

P

(
N⋂

n=1

�Tn|Hq

)
P1(Hq ). (23)

We note that like λn , the decay rate μn in eq. (22) can also be used as a weighting factor. The probability for individual observation

P1 (�Tn) ∝
∑

q

P
(
�Tn|Hq

)
P1(Hq ) (24)

can be used for controlling observation quality, and we only accept observations with

P1 (�Tn) ≥ Q1. (25)

In the third step, the posterior probability from the second step, eq. (22), is used as the prior probability

P2 (H ) = P1

(
H

∣∣∣∣∣
N⋂

n=1

�Tn

)
. (26)

The sample space for the third step, �2, consists of source parameter vectors H that satisfy

P2(H ) ≥ P̄2, (27)

where P̄2 is our second threshold for rejecting source parameters with low probabilities. The sampling intervals for centroid location and
focal mechanism are further reduced to h2 and θ 2, respectively and synthetic seismograms for the new sample space �2 are computed. The
likelihood function in the third step is defined in terms of the amplitude anomaly (Ritsema et al. 2002)

An =
∫ t1

n

t0
n

s̄n(t)sn(t − �Tn)dt

/∫ t1
n

t0
n

sn(t)sn(t − �Tn)dt, (28)

where �Tn is the time-shift that maximizes the NCC observation. We assume an exponential distribution for the conditional probability

P(An|Hq ) = γn exp (−γn |ln(An) − ln(AM )|) , Hq ∈ �2, (29)

where AM is the median of all An observations. Assuming the amplitude anomaly observations are independent, the likelihood function can
be expressed as

L2

(
H

∣∣∣∣∣
N⋂

n=1

An

)
= exp

(
−

N∑
n=1

γn |ln(An) − ln(AM )|
)

N∏
n=1

γn, (30)

and the posterior probability for the third step can be expressed as

P2

(
H

∣∣∣∣∣
N⋂

n=1

An

)
= P2 (H ) exp

(
−

N∑
n=1

γn |ln(An) − ln(AM )|
)

N∏
n=1

γn

/
P2

(
N⋂

n=1

An

)
, (31)

where

P2

(
N⋂

n=1

An

)
=

∑
q

P

(
N⋂

n=1

An |Hq

)
P2(Hq ). (32)

The probability for individual observations

P2 (An) ∝
∑

q

P
(

An |Hq

)
P2(Hq ) (33)

can be used to reject problematic observations, and we require

P2 (An) ≥ Q2. (34)
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After the third step is completed, the source parameter vector HM that maximizes the posterior probability in eq. (31) is selected as our
optimal estimate. The centroid time is estimated as

TS = �TM , (35)

where �TM is the median of all time-shift observations �Tn measured for the optimal source parameter vector HM . The scalar seismic
moment is estimated as

M0 = AM , (36)

where AM is the median of all An observations measured for the optimal source parameter vector HM .
An important advantage of the Bayesian approach is that, instead of a single best solution, the complete posterior probability density on

the sample space is obtained, which allows formal estimation of the uncertainties associated with the derived source parameters. In Fig. 4,
examples of the marginal probabilities for some of the source parameters are shown for the 2002 September 3 Yorba Linda earthquake.

2.3 Gauss–Newton optimization

The optimal source parameter vector HM together with the estimates of centoid time TS and scalar seismic moment M0 are used as the initial
solution in an iterative Gauss–Newton optimization procedure to further refine our estimates of the centroid location, centroid time and the
coefficients for the six basis moment tensors am.

Following Zhao et al. (2006), we quantify the waveform misfit between the observed and synthetic waveforms using the generalized
seismological data functionals (GSDF; Gee & Jordan 1992). In the frequency domain, we can map the synthetic waveform ui (rR, ω) into the
observed waveform ūi (rR, ω) using two frequency-dependent, time-like quantities δτp(rR, ω) and δτq(rR, ω)

ūs
i (rR, ω) = us

i (rR, ω) exp
{
iω

[
δτp(rR, ω) + iδτq(rR, ω)

]}
, (37)

and in GSDF analysis, we estimate δτp,q(rR, ω) by measuring frequency-dependent phase-delay time δtp(rR, ωn) and amplitude-reduction
time δtq(rR, ωn) at a set of discrete frequencies of interest ωn . The GSDF measurements can be expressed in terms of waveform perturbation
using the seismogram perturbation kernel (Chen et al. 2007, 2010)

δtx(rR, ωn) =
∫

dt Jx (t, rR, ωn) δuk(rR, t − tS; rS), (x = p, q). (38)

Explicit expressions of the perturbation kernels J x for GSDF measurements are presented in Chen et al. (2010). The waveform
perturbation can be expressed in terms of perturbations of centroid time tS, centroid location rS and am as

δuk(rR, t − tS; rS) = −u̇k(rR, t − tS; rS)δtS + ∇Suk(rR, t − tS; rS) · δrS +
6∑

m=1

gkm(rR, t − tS; rS)δam, (39)

where ∇S is the gradient with respect to source coordinates rS, u̇k(rR, t − tS; rS) and ∇Suk(rR, t − tS; rS) are the synthetic velocity and strain
field at the reference time tS and reference location rS. The synthetic velocity and strain Green’s tensor fields are explicitly calculated and
stored in our RGT-based algorithm (Zhao et al. 2006), therefore the partial derivatives of the waveform with respect to source parameters tS,
rS and am can be readily calculated from our RGT database. The partial derivatives of the GSDF measurements with respect to the source
parameters can be obtained by combining eq. (38) and (39) through the chain rule.

3 T H R E E - D I M E N S I O NA L E A RT H S T RU C T U R E M O D E L

In this study, we have computed and stored the RGTs for 219 Southern California Seismic Network (SCSN) stations in the region shown in
Fig. 1 using a tomographically updated version of the 3-D earth structure model, Southern California Earthquake Center (SCEC) Community
Velocity Model Version 4.0 (CVM4) (Magistrale et al. 2000; Kohler et al. 2003), and a fourth-order staggered-grid finite-difference code
(Olsen 1994).

The seismic velocity model SCEC CVM4 is composed of detailed, rule-based representation of major basins embedded in a 3-D
regional crust model. The background seismic velocities were interpolated from the 3-D crustal model constructed from regional traveltime
tomography (Hauksson 2000). Within the basins the P velocity was determined from the age and depth of sediments using empirical relations
and the S velocity was then scaled from P velocity with a given Poisson’s ratio. The Moho in CVM4 is represented with a variable-depth
surface, which was determined using the receiver function technique (Zhu & Kanamori 2000).

Using the 3-D SCEC CVM4 as our starting model, we have carried out two iterations of full 3-D tomography using the scattering-integral
method (Zhao et al. 2005; Chen et al. 2007). This updated 3-D seismic structure model is named CVM4SI2. To obtain CVM4SI2, we inverted
about 7000 cross-correlation traveltime measurements made on body- and surface-waves generated by local earthquakes and surface-waves
extracted from ambient-noise Green’s functions (Ma et al. 2008). Compared with CVM4, the variance-reduction in cross-correlation traveltime
measurements for CVM4SI2 is about 40 per cent. The updated model CVM4SI2 provides substantially better fit to observed waveforms than
the starting model CVM4 for frequencies up to 0.2 Hz. Examples of improvements in waveform fitting for some source-station (for earthquake
waveform data) and station–station (for ambient-noise Green’s function data) paths are shown in Fig. 2. Compared with CVM4, CVM4SI2
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Figure 1. The focal mechanisms for the 165 earthquakes analysed in this study. Red beachballs, focal mechanisms obtained using our CMT inversion algorithm;
blue beachballs, SCSN focal mechanisms. SCSN event numbers for those earthquakes are listed above the beachballs. Red dots indicate the epicentres of those
earthquakes. The purple box indicates our study area. Major faults in this area are plotted in black solid lines. The background colour shows topography.

has lower velocities in the Mojave block and high velocities in the Los Angeles Basin and the Ventura Basin. Currently, CVM4SI2 is still
being refined through full –3-D, full-wave tomography using waveform data from local earthquakes and ambient-noise Green’s functions.
The details of our tomographic inversion for Southern California will be documented in a separate paper. At the current stage, we feel that
CVM4SI2 has sufficient accuracy to provide improved CMT estimates for local earthquakes.

The finite-difference wave-propagation simulations needed for constructing the RGT database were carried out in CVM4SI2. The
768-km long, 496-km wide and 50-km deep modelling volume (Fig. 1) was discretized into a uniform mesh with 500 m grid-spacing and
152 million grid points, which is sufficient for achieving accurate simulation results for frequencies up to 0.2 Hz. Synthetic seismograms for
source locations right on our grid points were extracted directly from our RGT database by applying eqs (3) and (10). Synthetics for source
locations off our grid points were generated from the strain fields at the surrounding grid points using a trilinear interpolation algorithm. Our
numerical experiments have shown that this interpolation algorithm provides synthetics with sufficient accuracy for frequencies up to 0.2 Hz.

To demonstrate the importance of the 3-D earth structure model in improving the accuracy of our synthetic seismograms compared
with a well-calibrated laterally homogeneous 1-D velocity model, we use the 2008 July 29 Mw 5.4 Chino Hills earthquake as an example.
This earthquake is located close to the centre of our modelling region and at a depth of about 14 km (Fig. 3). This earthquake was well
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Figure 2. Examples of the observed and synthetic waveform comparisons for CVM4 and CVM4SI2 using the 2008 July 29 Mw 5.4 Chino Hills earthquake
and some ambient noise Green’s functions at different azimuths and different distances. The map shows the epicentre (the star) and the CMT solution (the red
beachball) of the Chino Hills earthquake, as well as source-station and interstation paths for the seismograms (the green lines). For waveform comparisons, the
black solid lines are observed waveforms from the earthquake and ambient-noise Green’s functions and red solid lines are synthetic seismograms calculated
for the starting model CVM4 (the red lines below) and our current model CVM4SI2 (the red lines above). The ambient noise Green’s functions comparisons
are above the thick black line and the earthquake waveform comparisons are below the thick black line.
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Figure 3. Waveform comparisons for the 2008 July 29 Mw 5.4 Chino Hills earthquake. The histograms show the distributions of waveform misfits for the
SoCaL model (grey area) and for CVM4SI2 (area under the red line). Waveform misfits were computed for 414 high-quality seismograms (i.e. signal-to-noise-
ratio higher than 10) from 153 stations using eq. (42). The beachball shows the focal mechanism used for computing the synthetics. Example observed and
synthetic seismograms for 12 stations (blue triangles) around the epicentre (yellow star) are shown. For the waveform comparison plots, black solid lines are
observed seismograms and red solid lines are synthetic seismograms calculated for either SoCaL or CVM4SI2 using the finite-difference code. In each pair of
seismograms, the red line above is synthetic seismogram computed using CVM4SI2 and the red line below is the one computed using SoCaL.
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recorded by SCSN and its source-station paths provide good sampling throughout the structure model. Our CMT solution for this earthquake
is almost identical to the one provided by SCSN moment tensor catalogue. Synthetic seismograms were calculated using the 3-D CVM4SI2
and a slightly modified version of the laterally homogeneous 1-D Standard Southern California Crustal Model (SoCaL; Hadley & Kanamori
1977; Dreger & Helmerger 1993), which was used in Clinton et al. (2006) to compute synthetic Green’s functions for CMT inversions.
In general, the CVM4SI2 synthetics provide much better fit to the observed waveforms than SoCaL synthetics (Fig. 3). The reduction in
waveform misfit, which is quantified using eq. (42) below, for 414 four-minute-long seismograms from 153 stations is about 56 per cent. A
systematic comparison between CVM3, which is an earlier version of the 3-D SCEC CVM, and SoCaL by using about 2000 seismograms
from 67 earthquakes in the Los Angeles region was presented in Chen et al. (2007). Waveform misfit, which was quantified using frequency-
dependent phase-delay and amplitude anomalies, reduced more than 57 per cent for CVM3 synthetics relative to SoCaL synthetics. Based
on the waveform data we have analysed so far, we believe that in general synthetics computed using the 3-D CVM4SI2 provide substantially
better fit to the observed waveform data than synthetics computed from the laterally homogeneous SoCaL model in the region of our study
(Fig. 1).

4 I N V E R S I O N P RO C E D U R E

We illustrate our inversion procedure using the 2002 September 3 Mw 4.3 Yorba Linda earthquake as an example. The epicentre, the best-fitting
double couple and the complete CMT solutions for this earthquake are shown in Fig. 4(a).

We retrieve broad-band, three-component seismic waveform data from the Southern California Earthquake Data Center. Two criteria
were used to reject seismograms with low SNR,

SNRA = AS/AN , (40)

where AN and AS are the maximum amplitudes before and after the first-arrival time, and

SNRE = ES/EN =
∫ t1

S

t0
S

ū2(t)dt/(t1
S − t0

S )

/∫ t1
N

t0
N

ū2(t)dt/(t1
N − t0

N ), (41)

where ū(t) is the observed seismogram, [t0
N , t1

N ] and [t0
S , t1

S ] are time windows before and after the first-arrival time. In this study, we rejected
seismograms with SNRA or SNRE below five. The two horizontal components were rotated into radial and transverse components. We then
remove the mean and any linear trend in the seismogram and apply a sixth-order low-pass Butterworth filter with corner frequency at 0.2 Hz.
For the 165 earthquakes analysed in this study, the number of seismograms with acceptable SNR ranges from 20 for an ML 3.16 earthquake to
460 for the Mw 5.4 Chino Hills earthquake. In general, earthquakes with larger magnitudes usually have more high-quality data seismograms.

The filtered seismogram was then processed using an automated waveform segmentation algorithm to extract waveforms of our interest.
Examples of the selected waveforms for the Yorba Linda earthquake are shown in Fig. 4(b). For the CMT inversions in this study, we primarily
extracted and fitted the first-arriving P- and S-waves and the surface waves on the observed seismograms. Our waveform segmentation and
selection algorithm is based on the continuous wavelet transform, which allows us to detect and separate different wave groups with intersecting
temporal and/or frequency supports. The segmented seismograms are processed using an artificial neural network that is embedded with
human knowledge about characteristics of certain seismic wave arrivals to automatically select a set of waveforms of our interest. The same
algorithm is also being used in our tomographic inversions. The details of our waveform segmentation and selection algorithm are documented
in a separate paper (Diersen et al. 2011).

The grid search as formulated in Section 2.2 is then carried out using the selected data waveforms. Throughout the three grid-search
stages, the source-model sample space is successively refined around the optimal solutions obtained from the previous stage. The sampling
interval reduces from 30◦ grid-spacing in strike, dip, rake and 2-km spacing in hypocentre locations in the first stage to 5◦ grid-spacing in
strike, dip, rake and 0.5-km spacing in hypocentre locations in the last stage. The source-model subspace selected for refinement is controlled
by P̄1 and P̄2 as defined in eqs (19) and (27). In our procedure, we found in general that P̄1 = 0.7 and P̄2 = 0.8 provide a good balance
between search efficiency and solution accuracy. Throughout the grid-search step, thresholds Q̄0, Q̄1 and Q̄2, as defined in eqs (17), (25) and
(34), are used to reject problematic data waveforms. If the probability for an individual measurement is below the threshold, it suggests that
the particular data waveform cannot be fit well by any source solutions in the model sample space, which may due to instrumental problems
or unusually high noise level. In our procedure, we found that a value of 0.2 for these three thresholds provide a good balance between
solution accuracy and algorithm robustness. The posterior probability density after the third grid-search stage is a 6-D function. The marginal
probability densities for strike, dip, rake and depth are plotted in Fig. 4(c).

The optimal solution obtained from the grid-search step is used as the initial solution in an iterative Gauss–Newton optimization as
formulated in Section 2.3 and in Zhao et al. (2006) to find the optimal coefficients for the six basis moment tensors am (m = 1, 2, . . . 6).
The partial derivatives of the GSDF measurements with respect to am are computed using eqs (38) and (39) and the Gauss–Newton normal
equation is solved using the LSQR method (Paige & Saunders 1982). The perturbation obtained in the Gauss–Newton optimization step
is quite small, which is due to the fact that the grid search has been carried out through successively refined sample space. The isotropic
component of the complete moment tensor is constrained to be zero by setting a6 = 0 in our inversion. For the deviatoric part, we measure
the contribution of the non-double-couple component using the parameter ε = −λ2/ max(|λ1| , |λ3|), λ1, λ2 and λ3 being the eigenvalues of
the moment tensor with λ1 ≥ λ2 ≥ λ3 (eq. 1 in Giardini 1983). For the Yorba Linda earthquake ε is less than 4 per cent and the best-fitting
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Figure 4. An example of our CMT inversion procedure. (a) The map shows epicentre of the 2002 September 3 Mw 4.3 Yorba Linda earthquake (the star) and
the best-fitting double couple solution (left beachball) and the full moment tensor solution (right beachball). Stations that have waveforms being selected for
our inversion are shown as grey triangles. (b) Examples of the waveforms selected for our CMT inversion using our automated seismogram segmentation and
selection algorithm. The black lines are observed seismograms and the red lines are synthetic seismograms computed using our optimal best-fitting double
couple solution. The black bars below the seismograms indicate the waveforms we have selected for CMT inversion. (c) The marginal probability densities for
strike, dip, rake and depth obtained after our grid-search step.

double couple solution is plotted in Fig. 4(a). In general, for the 165 earthquakes analysed in this study, the value of ε is less than 10 per cent
and the best-fitting double couple solutions are shown in the figures.

Depending on the total number of data waveforms used in the inversion, it takes from around 30 s to about few minutes to complete the
three stages of grid search on 128 computing cores of the Intrepid (IBM Blue Gene/P) supercomputer at the Argonne Leadership Computing
Facility (ALCF). The computational cost for the Gauss–Newton optimization step is negligible compared with that for the grid-search step
and it usually takes one computing core less than 5 s for the LSQR algorithm to converge. The disk storage cost is substantial. The RGTs
for the 219 stations used in our CMT inversion and also in our full –3-D, full-wave tomographic inversion for Southern California currently
occupies around 400 TB (1 TB = 1024 GB) disk space on Intrepid.
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5 R E S U LT S

The SCSN automatically generate and catalogue moment tensor solutions and moment magnitudes for regional earthquakes with local
magnitude ML > 3.0 (Clinton et al. 2006). This automated algorithm inverts three-component, broad-band waveforms with period from 10 s
to 100 s from at least four stations using pre-determined Green’s functions for various 1-D seismic velocity profiles calibrated for different
regions in Southern California. It can provide reliable moment tensor solutions for local events with ML > 4.0.

We have successfully applied our automated CMT inversion algorithm to 165 earthquakes with local magnitude 3.0 ≤ ML ≤ 5.7 in
Southern California. In general our CMT solutions are consistent with the SCSN automatically generated solutions and our solutions provide
better or equally good fit to the observed waveforms for frequencies up to 0.2 Hz. A comparison between the focal mechanisms we have
determined with those from the SCSN moment tensor catalogue is shown in Fig. 1. Finite-difference synthetic seismograms were computed
using SCSN moment tensor solutions and our own CMT solutions in the same 3-D earth structure model, CVM4SI2. To quantify waveform
misfits within a certain time window [t0, t1], we use the following normalized misfit measure

F =
∫ t1

t0

dt [ū(t) − u(t)]2

/√∫ t1

t0

dt [ū(t)]2

∫ t1

t0

dt [u(t)]2, (42)

where ū(t) is the observed seismogram and u(t) is the corresponding synthetic seismogram (Zhu & Helmberger 1996). The advantage of
this misfit definition is that it prevents a few strongest waveforms from dominating the misfit measure. The Pnl waves usually have smaller
amplitudes than surface waves and stations close to the source usually have larger amplitudes. The normalization in eq. (42) helps to weight
waveforms with different amplitudes equally. We note that this misfit measure is only used for evaluating CMT solutions and it is not used in
our inversion algorithm. Waveform misfits are quantified using normalized cross-correlation coefficients, cross-correlation traveltime shifts
and amplitude anomalies in our grid-search step and using frequency-dependent GSDF measurements in our Gauss–Newton optimization
step. The justifications for not using eq. (42) in our CMT inversion algorithm are discussed in more detail in Section 6.

For the 165 earthquakes analysed in this study, the accumulative waveform misfit (i.e. the summation of F for all selected waveforms
and all earthquakes) between the observed seismograms and the synthetics computed using our own CMT solutions is about 86 per cent of the
accumulative waveform misfit between observed seismograms and the synthetics computed using SCSN moment tensors. In this comparison,
the synthetic seismograms for our own CMT solutions and for SCSN solutions are both computed using CVM4SI2 and the finite-difference
method. We note that the forward modelling apparatus used for the comparison is identical to the one used in our CMT inversion, therefore
it could produce comparison results favouring our CMT solutions. Ideally, such a comparison should be carried out using an independent
forward modelling apparatus with the true earth structure model, which is difficult, if possible at all, in practice. However, we think that in
general the 3-D CVM4SI2 provides better predictions of observed waveforms than the laterally homogeneous SoCaL model (e.g. Fig. 3)
and might be closer to the actual structure model in general. At the current stage, CVM4SI2 is still being refined through our full-wave
tomographic inversions. A more objective comparison could be conducted using an improved version of our tomographically refined 3-D
earth structure model, which will be documented in a future publication.
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Figure 5. The difference in the normalized moment tensor e (eq. 43) as a function of earthquake moment magnitude. The magnitude interval from 3.0 to 6.0
is separated evenly into six bins. The median of e for earthquakes in each bin is plotted at the centre of each magnitude bin. The peak between magnitude
interval from 4.0 to 4.5 may be due to the fact that a number of earthquakes close to the north of Mexico have larger e (Fig. 7).
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Figure 6. Waveform comparison for a small earthquake used in our study. Red beachball, focal mechanism determined using our CMT inversion algorithm;
blue beachball, SCSN focal mechanism. Star, epicentre of the earthquake; blue triangles, station locations of waveform comparison examples. Black solid lines,
observed seismograms; red solid lines, synthetic seismograms computed using our optimal CMT solution; blue solid lines, synthetic seismograms computed
using SCSN CMT solution. In the box, the histograms show the distributions of waveform misfits of SCSN CMT solution (grey area) and our optimal solution
(area included by red line).

C© 2011 The Authors, GJI, 186, 311–330

Geophysical Journal International C© 2011 RAS



324 E.-J. Lee et al.

Among the 165 earthquakes we have studied, a few of them have larger discrepancies with the SCSN moment tensor solutions. In
general, the discrepancies are larger for smaller earthquakes and for earthquakes located close to the boundary of the seismic network. We
give a more detailed explanation in the following.

5.1 CMT solutions for small earthquakes

As shown in Fig. 1, for the 165 earthquakes we have analysed so far, the CMT solutions determined using our method are generally consistent
with the SCSN solutions. To quantify the differences between our focal mechanisms and SCSN solutions, we define the quantity

e = (M̂cvm − M̂scsn) : (M̂cvm − M̂scsn), (43)

where M̂cvm and M̂scsn are normalized moment tensors for our focal mechanism and for the SCSN solution. We separate the magnitude range
into six bins with 0.5 magnitude interval. The median of e for earthquakes in each bin is shown in Fig. 5. In general, the difference in focal
mechanism between our solution and the SCSN solution is larger at smaller magnitudes.

The smallest earthquake we have analysed so far has local magnitude ML = 3.16 (SCSN event ID 9659437). For this small earthquake,
the SCSN automatic algorithm inverted waveforms at four stations and its solution is shown in Fig. 6. Due to the small magnitude of this
earthquake, the signal-to-noise ratio of observed waveforms with period longer than 10 s is quite low, which partly explains the low variance
reduction (7.52 per cent) obtained by the SCSN algorithm. To improve the signal-to-noise ratio of the observed waveforms, we need to reduce
the shortest period to below 10 s. The 3-D seismic velocity model CVM4SI2 used in our algorithm can provide accurate Green’s functions
for frequencies up to 0.2 Hz, which allows us to fit observed waveforms at 5 s or longer. For this small earthquake, the centroid location
determined using our algorithm is about 3 km shallower than the SCSN solution and the difference in dip is about 20◦ (Fig. 6). Comparison
with the observed waveforms low-pass filtered to 0.2 Hz shows that the synthetics generated using our CMT solution provide better fit than
those generated using the SCSN solution (Fig. 6). We note that the improvements in the waveform fits are caused by differences in the
source parameters only. The structure model and the forward modelling apparatus for computing synthetics are identical. For this earthquake,
the shallower centroid location in our CMT solution causes different excitations of surface waves, which may explain the better fits to the
observed surface waves.

For the 10 smallest earthquakes (3.11 ≤ Mw ≤ 3.51) analysed in this study, the ratio between the accumulative misfit for our solution and
the accumulative misfit for SCSN solution ranges from around 0.44 to around 0.95, which suggests that our solutions fit observed waveforms
better than SCSN solutions or equally well in general. By using a well-calibrated 3-D seismic structure model to generate Green’s functions,
our synthetics can fit observed waveforms at higher frequencies than synthetics generated using 1-D models, thereby providing more robust
CMT solutions for earthquakes with smaller magnitudes.

5.2 Effects of station azimuthal coverage

Among the earthquakes with relatively large discrepancies between our CMT solutions and the SCSN solutions, many of them lie close to
the boundary of the seismic network (Fig. 7), in which case the station azimuthal coverage can be poor. An example is shown in Fig. 8. For
this ML 4.33 earthquake (SCSN event ID 14178236), the difference in centroid location between our solution and the SCSN solution is less
than 1 km, the difference in focal mechanism is significant (Fig. 8). Synthetics generated using our CMT solution generally provide better
fit to the observed waveforms, especially for longer source-station paths that traverse basins (Fig. 8). The 1-D seismic structure model used
for determining the SCSN solution might not provide good approximations for those source-station paths, which introduces a bias into the
estimated CMT solution. Such a bias due to inaccuracy in seismic structure model is alleviated when the azimuthal coverage of the seismic
stations is good.

5.3 Depths of earthquakes

The RGT database and the reciprocity principle allow us to conduct efficient grid search to find the optimal epicentre locations and depths
of earthquakes without running additional wave-propagation simulations. The grid spacing of our RGT database is 500 m, which gives us a
spatial resolution up to 250 m in earthquake depth during the grid-search step.

For the 165 earthquakes analysed in this study, their depths range from around 2 km to about 18 km. The amplitudes of the surface
waves used in the inversion give us strong constraints on earthquake depths. A comparison of the earthquake depths determined using our
own algorithm and those determined by Lin et al. (2007a) using a 3-D seismic structure model (Lin et al. 2007b) and those extracted from
the SCSN moment tensor catalogue is shown in Fig. 9. In general, the depths determined using our own algorithm correlates well with
those determined by Lin et al. (2007a). For the outliers in Fig. 9(a), we conducted a grid search at the earthquake locations provided by Lin
et al. (2007a) and generated synthetic seismograms for the optimal focal mechanisms. We found that in general, synthetics generated using
our CMT solutions provide better fit to surface-wave amplitudes than those generated using the optimal focal mechanisms at the locations
provided by Lin et al. (2007a). An example is shown in Fig. 10 for a magnitude about 4.98 earthquake (SCSN event ID 14065544) in the
offshore region. For this earthquake, the depth provided by Lin et al. (2007a) is 33.97 km and the depth provided by our algorithm is about
13.5 km. Synthetics computed using our CMT solution provide much better fit to the observed waveforms, especially for the surfaces waves.
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Figure 7. Geographic distribution of the difference in normalized moment tensor e (eq. 43). The radii of the circles are proportional to the size of e and the
centres of the circles are located at the epicentre locations of the analysed earthquakes. The colour of the circle is corresponding to the moment magnitude
range of the earthquake.

Synthetics generated using the location provided by Lin et al. (2007a) generally do not have sufficient amplitudes for the surface waves,
which suggests that Lin et al. (2007a) may have overestimated the depth of this earthquake.

5.4 Moment magnitudes of earthquakes

For most of the earthquakes analysed in this study, the moment magnitudes provided by our algorithm are in good agreement with those
provided by the SCSN moment tensor catalogue, except for a few outliers (Fig. 11a). The same outliers also exist on the correlation plot
between the SCSN ML and SCSN Mw (Fig. 11b). The correlation plot between our Mw estimates and SCSN ML estimates (Fig. 11c) has larger
scattering than that between our Mw estimates and SCSN Mw estimates. However, for the outliers in Fig. 11(a) and (b), our Mw estimates
seem to correlate better with the SCSN ML estimates than the SCSN Mw estimates, which suggests that the SCSN automated algorithm may
have overestimated the moment magnitudes of those earthquakes.

6 D I S C U S S I O N

In this study, we have extended the CMT inversion algorithm based on the RGT database introduced in Zhao et al. (2006) to include
a grid-search step. The formulation presented in this paper allows us not only to obtain an optimal solution but also to quantify uncer-
tainties in the solution. The procedure allows us to iteratively condition the model space by rejecting solutions with low probabilities. At
the beginning of step 2 in our grid-search procedure, by selecting appropriate values for the probability threshold P̄1, we can reject solu-
tions that do not provide sufficiently high NCC values, thereby ensuring the accuracy of the cross-correlation traveltime shifts measured
in step 2 and the amplitude anomalies measured in step 3. The sample space and the sampling intervals are successively refined only
around regions in the model space that have higher probabilities and high accuracy in the solution is achieved with minimal computing
time.

C© 2011 The Authors, GJI, 186, 311–330

Geophysical Journal International C© 2011 RAS



326 E.-J. Lee et al.

33˚

34˚

35˚

SCEC3D
GLA

BZN

ALP

ARV

BBR

DEV

ERR

FMP

DSC

ADO

DPP

SES

ID: 14178236

0

20

40

60

80

100

N
u
m

b
e
r 

o
f 
S

e
is

m
o
g
ra

m
s

0 2 4 6 8 10 12 14

Waveform misfit

25th
percentile  Median 

CVM     1.09         1.60 

SCSN   1.89         2.42

0 20 40

20 40 60

20 40 60

20 40 60

Time (s)

40 60 80 100

20 40 60 80

40 60 80 100

40 60 80 100

Time (s)

60 80 100 120

80 100 120 140

100 120 140 160

100 120 140 160

Time (s)

Figure 8. Waveform comparison for an earthquake with relatively poor azimuthal station coverage. Red beachball, focal mechanism determined using our
CMT inversion algorithm; blue beachball, SCSN focal mechanism. Star, epicentre of the earthquake; blue triangles, station locations of waveform comparison
examples. Black solid lines, observed seismograms; red solid lines, synthetic seismograms computed using our optimal CMT solution; blue solid lines, synthetic
seismograms computed using SCSN CMT solution. In the box, the histograms show the distributions of waveform misfits of SCSN CMT solution (grey area)
and our optimal solution (area included by red line).
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Figure 9. Correlation between earthquake depths determined using our algorithm (horizontal axes) and those determined by Lin et al. (2007) (left panel) and
those determined by SCSN (right panel). Dash lines indicate locations of two standard deviations. Normal data points are represented as circles and the outliers
are represented as crosses.

Unlike conventional waveform-based CMT inversion algorithms that try to minimize waveform differences between synthetic and
observed seismograms directly, in this study we have separated the waveform fitting procedure into three steps and used data functionals
(i.e. NCC, cross-correlation traveltime shifts and amplitude anomalies) to quantify waveform misfit. In direct waveform-fitting algorithms,
amplitude information, which is more sensitive to focal mechanism, is mixed together with phase information, which is affected, to a large
extent, by errors in seismic structure models. Such signal-generated noise not only biases the obtained CMT solutions directly, but also
makes it more difficult to move to higher frequencies, at which errors in structure models might increase. In this study, we have separated
phase information from amplitude information. The cross-correlation traveltime shifts can provide useful constraints on centroid location and
centroid time. Their effects on focal mechanism estimates can be controlled through the weighting factor μn or by directly constraining the
model space.

The CMT inversion algorithm presented in this paper is a generic module of our computational platform for unified seismic data
processing and inversion. The observed waveforms selected for CMT inversions are also used in our full –3-D waveform tomography. The
RGT database used for generating synthetic seismograms are also used for computing the Fréchet kernels of the GSDF measurements with
respect to seismic velocities using the scattering-integral method (Zhao et al. 2005). Once a tomographically updated seismic structure model
becomes available, the RGT database is re-calculated using the updated structure model and improvements in the structure model is used to
obtain better earthquake source models. We expect this unified computational platform will provide seismologists a general tool for seismic
waveform analysis and inversion at different geographic scales. In the near future, our computer codes will be freely available to other
researchers for non-commercial purposes through the Southern California Earthquake Center (SCEC) Community Modelling Environment
(CME) (http://epicenter.usc.edu/cmeportal/index.html).
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Figure 10. Comparison of waveforms for a magnitude about 4.98 offshore earthquake. Synthetics were generated using the CMT solution determined by our
algorithm at our optimal location (red star) and at the location (blue star) provided by Lin et al. (2007a). Black solid lines, observed seismograms; red solid lines,
synthetic seismograms computed using our optimal CMT solution and location (depth = 13.5 km); blue solid lines, synthetic seismograms computed using our
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Figure 11. (a) Correlation between the Mw determined using our algorithm with the Mw determined by SCSN for earthquakes analysed in this study, normal
data points are represented as circles and the outliers are represented as crosses; (b) correlation between SCSN Mw and SCSN ML; (c) correlation between our
Mw estimates and SCSN ML for the same set of earthquakes. The dash lines in (a) indicate location of two standard deviations. We note that the same outliers
(crosses) in (a) are also plotted as crosses in (b) and (c).
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