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ABSTRACT 

 
Detecting temporal trends in large networks has strategic importance in many domains, such as cybersecurity and 
social media analytics, where the activities of key actors (e.g., activists, terrorists, leaders) are concerned. In a large 
evolving network, the relationships of actors in the network often change over time. Characterizing these changes can 
provide important insight on individual- and group-level activities. This insight can inform situational understanding 
and intelligence analysis in the cyber domain.  
 
This research developed and validated a dynamic network activity model to characterize temporal trends in a large 
social-media network of interactive human agents. The model supports prediction of agent activities over time through 
modeling agents’ network interactions and network growth. We argue that large social-media networks exhibit 
significant effects of randomness and exponential growth due to community size, low connection cost, and high 
reachability. To study its predictive accuracy, the model was compared against an existing model that is based on 
exponential aggregation of agent activities. The two models were validated using a social-media community focused 
on U.S. border and immigration security. The community consists of 210,921 human agents who posted 533,246 
messages and formed 453,552 links among agents. Temporal networks were extracted from the community, where 
each network captures a pre-defined temporal length of activities. Each model was used to predict activities of human 
agents given their historical activity levels. We implemented these prediction using Apache Spark, a distributed big-
data platform, and its graph computation package, GraphX. The experimental results show that the proposed model 
achieved significantly better accuracy than the baseline model. This research should contribute to providing new 
approaches and system artifacts for dynamic trend detection in social-media networks, reporting new findings of 
network trend detection, and providing new technical approaches to process large graph-based data. 
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INTRODUCTION  
 
Detecting temporal trends in large networks has strategic importance in many domains. For instance, intelligence 
agencies examine organized networks of cyber-criminals to detect criminal activity trends. E-commerce marketers 
study customer networks to detect changes in consumer tastes and preferences. The U.S. border security agents analyze 
network relationships to identify terrorist activities and border crimes. 
 
Social media has emerged as an important source of intelligence in recent years (Tayouri, 2016) and is identified as 
one of three major elements in “the enemy’s battle terrain” in the complex cyber-environment (Section 9.4 of (Marble 
et al., 2015)). The relationships among actors in social media (SM) networks can reveal their affiliations and activities, 
which often change over time as new events and actors emerge. Gaining insight into these evolving SM network 
activities can help intelligence officers and security experts (among others) to stay abreast of the latest threats in the 
cyberspace. The intelligence can reveal potential development of adversarial online campaigns and can be used to 
project future trends. The result is also useful for training cyber-intelligence personnel and for conducting simulation 
to enhance cyber-situational understanding. Despite these benefits, there is scarce work in dynamic SM network trend 
detection. 
 
Social media analytics has been developed in many domains where SM data are available, such as product marketing, 
health informatics, national security, and intelligence gathering (Zeng, Chen, Lusch, & Li, 2010). A common feature 
of these domains is the dynamic nature of the data obtained in their social networks, such as customer networks, 
patient communities, and terrorist networks. Dynamic network analysis is a growing research area due to its 
multidisciplinary connections with social science, network analysis, and predictive analytics. Existing research on 
dynamic SM network trend detection focus on influence identification, modeling, and prediction. As computational 
power increases, graph analytics is increasingly used to facilitate complex calculation of graph metrics. However, 
research on dynamic trend detection in social networks is relatively scarce. 
 
This paper addresses the needs to accurately predict user activities in large-scale social networks. These needs arise 
from growing volume and velocity of intelligence gathering from online channels such as social media and forums. 
Specifically, we developed a new dynamic network prediction model that characterizes user interactions as they form 
relationships over time in networks. We implemented the models in a distributed computing environment and 
empirically evaluated the two models in terms of their predictive accuracy. The results should shed light on dynamic 
trend detection in social media networks and should be relevant to intelligence analysts, social network researchers, 
and border security practitioners. 
 
 
RELATED WORK  
 
In this section, we review related works on social media analytics, social network dynamics, and graph computation 
on social networks. Social media analytics is a growing field of importance to policy makers, intelligence analysts, 
and social researchers. Network dynamics, a specialty area in social network analysis, examines changes of network  
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Social Media Analytics  
 
Social media analytics (SMA) is a rich set of tools and technologies most recently applied to various domains (Zeng 
et al., 2010). Traditional domains include business intelligence, online product review analysis, and security 
informatics (Chen, Chiang, & Storey, 2012; Chung, 2014; Chung & Tseng, 2012). Sentiment analysis and emotion 
extraction are important tools for understanding large amounts of social media data (Fan & Gordon, 2014; Feldman, 
2013). Analyzing networks of users and user relationships has drawn much attention from researchers. Centrality 
computation, influence identification, and community structure analysis are some of the areas studied in recent 
research (Probst, Grosswiele, & Pfleger, 2013). A basic approach to identifying influence is to count the number of 
social actions taken by other people in response to one’s published message. For example, one study measured 
influence by counting the number of replies and retweets in Twitter, and exposure was measured by observing the 
tendency of a user to respond to another user and found that influence is highly concentrated among the top 1 percent 
of users (Berger & Strathearn, 2013). Follower count, reply count, and retweet count were also used to measure 
influence (Ye & Wu, 2010). Ratios calculated based on these counts and on user interaction were used to measure 
“social network potential” of users (Anger & Kittl, 2011). The interaction was studied on Facebook to reveal emotional 
contagion without direct human contact and nonverbal cues (Kramer, Guillory, & Hancock, 2014). These works 
illustrate the importance of examining user influence in a networked environment, and also bring up new questions 
on studying changes of influence over time. 
 
Temporal Network Dynamics in Emerging Media and Human Communities 
 
A rapidly growing field, temporal network dynamics is a confluence of social computing, network analysis, and 
predictive analytics. Researchers have developed dynamic influence models to study social learning and networking 
using fine-grained data obtained from social media websites and mobile devices (Pan et al., 2012). Influence is 
modeled as conditional dependence between entity’s current state and previous states based on a Markovian 
assumption. In another research, researchers developed two classes of dynamic network metrics, namely, emergence 
and persistence, and applied three widely-used models to predict network activities over time (Wei & Carley, 2015). 
Exponential aggregation model was found to outperform two other models (average aggregation and linear 
aggregation models) in predicting network activities. Studying the stability of network nodes, researchers have 
developed a method to identify active valuable nodes based on their static structural properties and spatio-temporal 
behavioral attributes extracted from the nodes’ activity records (Qiu, Li, & Li, 2014). Their experiments on two online 
social networks with thousands of nodes showed that the method identified valuable nodes in terms of node stability 
and influence. Another paper describes a simple probabilistic model to capture the probability of tweet-retweet-follow 
(TRF) events, which tend to co-evolve when social-media networks change over time (Antoniades & Dovrolis, 2015). 
The model provides descriptive statistics on TRF events but falls short of predictive power. These studies covered 
different aspects of temporal network dynamics and provided experimental results of testing real-world social 
networks. However, most studies tend to be descriptive and lack predictive capability of future network user activities, 
especially in social media networks of importance to international security. There is a lack of temporal models for 
dynamic trend modeling. More studies on dynamic SM network analysis are thus needed. 
 
Graph Analytics on Social Networks 
 
Social network analysis (SNA) is a broad strategy for investigating social structures based on the knowledge of 
network and graph theories (Otte & Rousseau, 2002). It uses the terms of vertices (individual people, actors, or nodes 
in the network and organizations) and the edges (ties, relationships or interactions between vertices) to represent the 
structure of a social community. Social and other networks are conveniently presented as a graph G = {V, E}, in which 
V represents the list of vertices and E represents a set of edges, each describing the interactions between a pair of 
vertices. We can define some kinds of objects attached to each vertex and edge to describe their characters and 
relationships between the vertices. We call this feature a property graph (Robinson, Webber, & Eifrem, 2015), which 
is derived from real-world phenomena such as social network and web graphs that have power-law degree distributions 
and orders of magnitude more edges than vertices (Leskovec, Lang, Dasgupta, & Mahoney, 2009). 
 
In response to the growing scalability and importance of graph data, numerous specialized graph processing systems 
have been developed, which include Pregel (Malewicz et al., 2010), GraphLab (Low et al., 2014) and PowerGraph 
(Gonzalez, Low, Gu, Bickson, & Guestrin, 2012). Pregel and GraphLab represent the vertex-centric computation 
model, in which vertex-programs defined by users can run iteratively and interact with neighbors along edges in the 
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graph. PowerGraph is an optimized graph-parallel abstraction module based on the vertex-centric computation 
module, which splits the vertex-program into three data-parallel stages: Gather, Apply, and Scatter. In the Gather 
phase, the information about adjacent vertices and edges is collected. The framework will use the output of the Gather 
phase to update the state of central vertex in the Apply stage. Finally, Scatter distributes the new state of the central 
vertex to its in- or out- edges and update their data. 
 
Unfortunately, these novel and powerful graph-parallel computation frameworks are not yet applicable to the problem 
of graph construction and transformation in iterative graph computations. In order to address the challenges of data 
ETL (preprocessing and construction), we use Spark GraphX (Xin, Gonzalez, Franklin, & Stoica, 2013), which is an 
embedded graph processing system built on the top of Apache Spark (Zaharia, Chowdhury, Franklin, Shenker, & 
Stoica, 2010), to handle large-scale distributed social network graphs. In GraphX, we can use the perspective of 
general-purpose dataflow operations (e.g., map, join, and reduce) to express graph computation and graph algorithms 
(e.g., PageRank, Connected Components, and Shortest Paths) in a data-parallel abstraction efficiently (Gonzalez et 
al., 2014). In our implementation, we used Apache Spark to build a graph at each timestamp and execute the predictive 
models in parallel; in the network interaction model (described below), we used the GraphX API to re-construct a new 
graph based on the forecasting strategies. 
 
There are many metrics to measure the activity of a vertex in a graph or the influence between the vertices, such as 
density, degree, centrality, and clustering coefficient (Jackson, 2008; Scott, 2000). In this paper, we focus on 
Betweenness Centrality (BC) (Freeman, 1977) of a vertex to evaluate the performance of two predictive models. 
Betweenness Centrality is an indicator of a node's connectivity in a graph, which is measured by the number of shortest 
paths from all vertices to all others that pass through that node. Vertices with a high BC play an important role of 
connecting different groups. 
 
TEMPORAL MODELS FOR DYNAMIC TREND DETECTION IN SOCIAL-MEDIA NETWORKS  
 
The research on temporal models for dynamic network trend modeling has not been widely investigated. As social 
media are increasingly used in studying phenomena of importance to cyber security, examining trends in temporal 
SM networks has strategic importance to intelligence analysts and social researchers. In this research, we developed 
a new temporal network activity model, named “Network Interaction Model with Random Link Formation” to predict 
agent activities. We compared it with the benchmark model named “Exponential Aggregation Model.” These two 
models are described below. 
 
Exponential Aggregation Model 
 
The baseline model is the exponential aggregation model (EAM) developed by (Wei & Carley, 2015). The idea is to 
use a single exponential smoothing formula to predict agents’ activities at time t+1, given all the agents’ activities 
from all time steps at and before t. The transmission parameter (or smoothing parameter), a, controls the extent to 
which recent data are used in predicting future activities (when a approaches 1, recent data are weighed more heavily; 
when a approaches 0, older data are weighed more heavily). 
 
Network Interaction Model with Random Link Formation 
 
The network interaction model (NIM) attempts to create a simulated network of human agents based on the most 
recent known network configuration and a process that simulates randomness of agent interaction. Table 1 shows the 
steps of the model, which also uses the betweenness centrality formula to predict individual agents’ activities. While 
other centrality measures exist, we chose betweenness centrality because it offers robust representation of agents based 
on their positions and connectivity in a network (Freeman, 1977). 
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Table 1. The high-level procedure of the Network Interaction Model 

 
Steps of the Network Interaction Model 

1. Initiation: Identify existing network’s configuration (numbers of human agents and relationships) at time 
t, and the time frame (w days) before t during which agent activities are considered in activity prediction. 

2. Simulation of Network for time (t+1): based on existing network, predict the configuration (numbers of 
human agents and relationships) of the network at (t+1) by using a single exponential smoothing 
procedure.  
a. Derive the density of the network at time (t+1) based on the predicted network configuration. 

 
b. Based on a random process of network interaction of agents, add or delete agents to the network. The 

random process preserves the predicted network configuration while models randomness of 
interaction. 

3. Predict activities of agents using the betweenness centrality formula (Freeman, 1977; Jackson, 2008): 

 

 
 

 
 
EVALUATION OF THE MODELS 
 
To study the predictive performance, we compared the network interaction model (NIM) against the baseline model 
(EAM) of agent activities. The two models were validated using a social-media community focused on U.S. border 
and immigration security. The community consists of 210,921 human agents who posted 533,246 messages and 
formed 453,552 links among agents. Temporal SM networks were extracted from the community. Each network 
captures the past w days of activities, where w is the window size used in the experiment.  
 
Both EAM (Wei & Carley, 2015) and NIM were used to predict the activity of each agent at time t+1 in parallel. The 
experimental setup and evaluation methods are described below.  
 
Experimental Setup 
 
In our experiment, we used Apache Spark 1.5.1 (Zaharia et al., 2010) and Spark GraphX (Gonzalez et al., 2014) to 
implement two predictive models. The experiment was conducted in the following environment. 
 
1. Hardware: Apache Spark Cluster consists one master which is Dell PowerEdge 2970 Server (Intel Xeon CPU 

5160 @ 3.00GHz, 16GB main memory with 667MHz and 1 GigE Ethernet) and seven slaves which are Dell 
Optiplex 960 Servers (Intel Core 2 Duo CPU E8500 @ 3.16GHz, 8GB main memory with 667MHz and 1 GigE 
Ethernet).  

Density of Network g

D(g) =
Number of links in Network g

Maximum possible number of links in Network g

(1)

Betweenness Centrality of Node i

CeBi (g) =
X

k 6=j:i/2{k,j}

Pi(kj)

P (kj)
(2)

where

g = An undirected, unweighted network of participants represented as an

adjacency matrix

gij =

⇢
1 if node i links with node j
0 otherwise

n = Number of nodes in g

Ni(g) = Neighborhood of node i (set of nodes that i is linked to)

Pi(kj) = Number of geodesics (shortest paths) between node k and node j
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2. Dataset: The dataset consists of 533,246 messages collected from Twitter during May-August of 2013. The 
messages focus on the U.S. border security and immigration discussion. To build the data collection, we 
constructed carefully a list of queries by reviewing a list of literature published on the topic (Bush, McLarty III, 
& Alden, 2009; Gans, Replogle, & Tichenor, 2012; LeMay, 2004; U.S. Commission on Immigration Reform, 
1994). Filtering and collection testing helped to reduce the original 14 queries to 8 domain-specific queries: 
“comprehensive immigration reform,” “illegal alien,” “illegal immigration,” “immigration debate,” “immigration 
policy,” “immigration reform,” “US border security,” and “US immigration.” Following Twitter’s guidelines of 
data collection, our automated system continually collected 4,773 tweets per day using the selected queries and 
then performs analysis on the data. Through the steps of searching, retrieving, parsing, filtering, and storing, the 
process converts unstructured social media data into a collection of structured social media data that are organized 
into messages, users, message-term associations, links, networks, and user-network associations. 

 
To identify networks within the community, we model users as network nodes (or graph vertices) and user interaction 
as network links (or graph edges). A node in the network represents a user; a link represents an interaction between 
two users. The system identifies a link between User A and User B when User A sends a tweet targeted to User B, or 
re-tweets another tweet written by User B, or modifies and then sends out a tweet written by User B. 
 
Because user interaction changes over time, the user interaction network is changed as time progresses. We define an 
interaction window as a specific time frame. This time frame is a sliding window of a pre-defined number (w) of days. 
Our system automatically constructs a new user interaction network for most recent interaction window. 
 
We used several metrics to identify importance of users in a network and the overall characteristics of the network 
(Jackson, 2008; Wasserman & Faust, 1994). Degree measures the number of connections that a user has in a network. 
Density measures the proportion of the number of connections in a network to the maximum possible number of 
connections in the network. To assess the activity of a user, we used betweenness centrality (BC) that measures how 
well situated a node is in terms of the paths that it lies on. While other measures of centrality are available (Freeman, 
1977; Jackson, 2008), BC identifies the extent to which a user serves as a bridge in the border security discussion, 
which heavily relies on the ability to find compromises and common grounds in participants of highly polarized views. 
 
We used a moving window (w) to obtain nodes (and their links) from the dataset to define temporal SM networks {G1, 
G2, …, Gn}. Each SM network (Gt) consists of user agents (nodes) who posted tweets during the time frame from  
t-w+1 to t (temporal granularity was day; each agent’s daily activity level was measured). A network link represents 
an interaction between two agents during the time frame (see description above). For each graph, we invoked the 
JUNG 2.0.1 API to calculate the BC value of each agent in the temporal SM network. The BC score represents the 
activity of an agent in bridging other users in the SM network of border security discussion, thus serving as the gold 
standard to evaluate our predictive models’ performance. Because the moving window separates SM networks of time 
steps t-w+1, t-w+2, …, t, we used Spark to perform calculations for each graph in parallel to achieve efficient 
prediction in large SM networks such as ours. Our implementation computed the daily BC scores of each agent and 
the numbers of vertices and edges from different temporal SM networks. Then we used EAM (Wei & Carley, 2015) 
and NIM (see Table 1) independently to predict the activity of each agent at time t+1. Finally, we evaluated the 
accuracies of the two predictive models by comparing their results with the gold standard (BC scores). Figure 1 
illustrates the procedure of the experiment. 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016 

2016 Paper No.16248 Page 7 of 11 

MySQL	
DB

Moving	window	to	sample	
the	edges	to	construct	a	

graph

Exponential	
Aggregation	

model

Network	
Interaction	
model

Calculate	the	BC	for	each	
agent	and	nums	of	vertex	
and	edges	in	the	graph	as	

the	gold	standard

Evalution	Metric	Models

Results
 

Figure 1. The experimental procedure 

Performance Evaluation 
 
Recently, there is increasing research work to find the most appropriate performance measures to evaluate predictive 
methods (Armstrong, 2001). In this paper, we tested three different evaluation metrics: Root Means Square Error 
(RMSE), Symmetric mean absolute percentage error (SMAPE) (Makridakis, 1993) and Logarithmic Median Absolute 
Percentage Error (LMAPE) to measure the accuracy of the predictive models. In the following formulas, At,i means 
that the actual BC score of agent i at time t, Ft,i represents its predicted value, and n represents the number of agents 
in the SM network. 
 
Root Mean Square Error (RMSE): it is a frequently used measure of the differences between values (sample and 
population values) predicted by a model or an estimator and the values actually observed and defined as follows: 

 
 
Symmetric Mean Absolute Percentage Error (SMAPE): it is a variant of Mean Absolute Percentage Error (MAPE) to 
fix the deviation in error caused by the form “one divided by zero” and is defined as follows: 
 

 
 
Logarithmic Median Absolute Percentage Error (LMAPE): To address the weaknesses of Mean Absolute Percentage 
Error (MAPE) (Tofallis, 2014), we developed a new metric by applying natural logarithmic smoothing to the actual 
and predictive values and by using the geometric mean of actual value. The formula is defined as follows: 

 

RMSE(t) =

vuut
nP

i=1
(At,i � Ft,i)2

n
(3)

SMAPE(t) =
1

n

nX

i=1

��At,i � Ft,i

��
(At,i + Ft,i)/2

(4)

LMAPE(t) =
1

n

nX

i=1

��� ln(At,i)� ln(Ft,i)
���

GM(At,i)
, where GM(At,i) =

 
nY

i=1

At,i

!1/n

(5)

Apache	Spark	
GraphX	
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Empirical Findings 
 
In the experiment, we assigned various moving window sizes and transmission parameters (α)  to the predictive models 
to evaluate their accuracies. Figures 2 and 3 present evaluation results of predicting agents’ activities on August 10, 
2013 and August 13, 2013 respectively. For each set of predictions reported in the two figures, we set moving window 
sizes as fixed values (4, 8 or 12) and then, for each window size, ran the predictive models with α varying from 0 to 
1. Each model was evaluated using the aforementioned three metrics to measure accuracies. In Figure 2, the three 
charts on the top row are associated with predictions that used a moving window size w = 4; the charts in the second 
row used w = 8; and the charts on the bottom row used w = 12 (the prediction were done by using w days’ data 
immediately before August 10, 2013). On each row, the metrics used in the three experiments are RMSE, SMAPE and 
LMAPE respectively (smaller values indicate better predictive performance). Each chart of Figure 2 shows results of 
comparing predictive performances of EAM (blue lines with square dots) and NIM (red lines with round dots), with 
x-axis representing transmission parameter values (α) ranging from 0 to 1 and y-axis showing performance values 
based on the respective metrics. 
 

 
Figure 2. Comparing two models’ performance on predicting agent activities on August 10, 2013 (smaller 

values indicate better predictive performance) 

To illustrate the performance difference between the two models over different window sizes, we plotted the 
evaluation results of predicting agents’ activities on August 13, 2013 in Figure 3. In the figure, we chose α= 0.3, 0.5 
or 0.7 and used moving window sizes of 4, 8, and 12. The figure shows nine experimental settings with different 
combinations of window sizes and evaluation metrics. The three charts on the top row are associated with setting that 
used α = 0.3; the charts in the second row used α = 0.5; and the charts on the bottom row used α = 0.7. On each row, 
the three aforementioned evaluation metrics are used respectively. For example, the three charts on the first row show 
evaluation results based on RMSE, SMAPE and LMAPE respectively, with w varying from 4 to 12 on the x-axis of 
each chart and α = 0.3 across three charts. In all the nine charts in Figure 3, the results for EAM are shown as columns 
with blue slanted line fill, and results for NIM are shown as columns with red solid fill.  
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Figure 3. Comparing two models’ performance on predicting agent activities on August 13, 2013 (smaller 

values indicate better predictive performance) 

The results in Figure 2 show that the accuracy of NIM (red lines with round dots) increases generally as α increases 
from 0 to 1. In contrast, the accuracy of EAM (blue lines with square dots) decreases generally as α increases. The 
contrast is more stark when using LMAPE as the evaluation metric (see the charts on the right-most column of Figure 
2), showing that NIM outperformed EAM for all window sizes and α values. In addition, NIM outperformed EAM 
based on SMAPE (when α > 0.5) and based on RMSE (when α > 0.6) for all window sizes. 
 
Figure 3 shows that the accuracies of both models improve as the window size increases. NIM (columns with red solid 
fill) outperformed EAM (columns with blue slanted line fill) in 12 of the 18 comparisons for w = 8 and w = 12 
(especially when α ³ 0.5). In contrast, EAM achieved higher accuracies when w = 4 for all values of α. 
 
Discussion 
 
From the experimental results, we believe that the higher predictive accuracy achieved by NIM (see Figures 2 and 3) 
was due to its flexibility in modeling link formation and its realistic prediction of future network configuration. In 
contrast, EAM follows a predefined exponential function to predict network activities, resulting in less accurate 
prediction when more recent data are considered. In addition, the accurate predictions of network density and link 
formation by NIM translate to a superior forecast of temporal network activities due to both macroscopic and 
microscopic assessment of future trends. Larger window sizes tend to favor NIM significantly, because the additional 
information benefit the comprehensive modeling that NIM used in prediction. 
 
In terms of the three evaluation metrics, LMAPE described network activity trends and distribution the best because 
its logarithmic function and geometric mean denominator both served to gauge predictive accuracy in an unbiased 
manner. LMAPE had a similar computational complexity while it does not suffer from biases toward the mean or 
median values. 
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SUMMARY AND FUTURE DIRECTIONS  
 
Detecting temporal trends in large networks has strategic importance in cybersecurity and social media analytics. 
Characterizing dynamic network changes can provide important insight on individual- and group-level activities. In 
this research, we developed and validated a dynamic network activity model to characterize temporal trends in a large 
social-media network of interactive human agents. The model, called Network Interaction Model (NIM), supports 
prediction of agent activities over time through modeling agents’ network interactions and network growth. To study 
its predictive accuracy, the model was compared against an exponential aggregation model (EAM). The two models 
were validated using a social-media community focused on U.S. border and immigration security. The community 
consists of 210,921 human agents who posted 533,246 messages and formed 453,552 links among agents. Temporal 
networks were extracted from the community.  
 
Experimental results show that NIM achieved higher predictive accuracy than EAM when emphasis is placed on 
recent trends (i.e., high a). NIM also has generally less fluctuation in predictive accuracy than EAM across different 
temporal span of networks. In addition, we compared the models using three evaluation metrics. The results confirmed 
our belief that NIM outperformed or is comparable to EAM in different settings. We developed a new metric known 
as Logarithmic Median Absolute Percentage Error (LMAPE) that was found to provide more intuitive measurement 
than existing metrics. 
 
This research should contribute to providing new approaches and system artifacts for dynamic trend detection in 
social-media networks, reporting new findings of network trend detection, and providing new technical approaches to 
process large graph-based data. Future directions include extending the experimental coverage of network spans, data 
sizes, and domain of study. It would be interesting to implement our model in a real-time predictive system that 
supports simultaneous prediction and evaluation. NIM also needs to be further enhanced by considering different 
methods of link formation, network property prediction, and addition or removal of agents in networks. 
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