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Abstract—Data have been generated and collected at an
accelerating pace. Hadoop has made analyzing large scale
data much simpler to developers/analysts using commodity
hardware. Interestingly, it has been shown that most Hadoop
jobs have small input size and do not run for long time. For
example, higher level query languages, such as Hive and Pig,
would handle a complex query by breaking it into smaller ad-
hoc ones. Although Hadoop is designed for handling complex
queries with large data sets, we found that it is highly inefficient
to operate at small scale data, despite a new Uber mode was
introduced specifically to handle jobs with small input size.

In this paper, we propose an optimized Hadoop extension
called MRapid, which significantly speeds up the execution of
short jobs. It is completely backward compatible to Hadoop,
and imposes negligible overhead. Our experiments on Microsoft
Azure public cloud show that MRapid can improve perfor-
mance by up to 88% compared to the original Hadoop.

Keywords-Hadoop; MapReduce; Short Job; Uber Mode;
Distributed Mode

I. INTRODUCTION

MapReduce [1] is a parallel programming model that uses

a reliable distributed architecture to process data. Hadoop

[2][3] is an open source implementation of that. It consists

of three components: a distributed file system (HDFS), a re-

source management system (Yarn), and a parallel processing

framework (MapReduce).

Although Hadoop is designed to process very large data

sets, a majority of jobs are short in the real world. For

example, the MapReduce jobs at Google in 2004 took 634

seconds on the average, and over 80% of Yahoo’s jobs

finished within 10 minutes [1][4][5]. This is mainly due

to the input data size being small, especially when it is

spread across the entire HDFS cluster and processed in

parallel. Moreover, SQL-like query systems, such as Pig

and Hive, that operate on top of MapReduce could break

a longer running job into a collection of shorter jobs [6][7].

More recently, Uber mode was introduced in Hadoop 2 to

specifically deal with jobs with small input size (less than 1

data chunk, to be precise). This special mode runs all tasks

of a job within one container. However, even Uber mode is

not efficient enough to handle small jobs. We summarize the

inefficiencies of running short jobs on Hadoop as follows:

• Hadoop scheduler does not take data locality into

account for short job, thus unnecessary data transfer

could significantly slow down the execution of short

jobs.

• One-time task setup and tear down overheads, which

are often negligible in a long running job, can no longer

be overlooked for short jobs.

• Piggybacking requests and responses to periodic heart-

beat messages is designed for cluster scalability, but

waiting a few seconds here and there adds up quickly.

Short-circuiting these paths can be beneficial for short

jobs.

• In Uber mode, running all tasks sequentially within a

single container does not take full advantage of all local

resources.

• Moreover, in Uber mode, intermediate data incur disk

I/Os, such as spill operation, could significantly degrade

performance.

Short jobs have been studied in the past [1][4][5]. Al-

though there is no exact definition, a short job roughly

means that its completion time ranges from seconds to

minutes, rather than hours. Hadoop’s Uber mode gives a

more quantitative definition: a small job has less than 10

mappers, only 1 reducer, and the input size is less than

the size of one HDFS block. However, this definition still

cannot help users decide whether to run MapReduce jobs

in Uber mode or not. We consider that the definition of

short job is relevant to resource available for users, and the

threshold between short job and large job varies depending

upon the available resource in the cluster. For instance,

if the cluster contains 10 DataNodes, each of which can

launch 2 containers, we can run 20 Map tasks in parallel.

But if the cluster consists of 100 DataNodes with the same

configuration, 200 Map tasks can be executed in one wave.

In this study, we propose an efficient short job optimiza-

tion on Hadoop, called MRapid, to speed up the execution

of MapReduce short jobs. In our system, we design two im-

proved modes based on Hadoop: Improved Distributed (D+)

mode and Improved Uber (U+) mode. Our contributions are

summarized as follows:

• In D+ mode, we design a new scheduler to schedule
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Map tasks according to the resource distribution sit-

uation and data locality. When an ApplicationMaster

requests resources from Yarn, instead of waiting for

report from NodeManager, our new scheduler allocates

resources according to the current resource availability

and data distribution in ResourceManager, and responds

the request in the same heartbeat, rather than waiting

for at least two heartbeats in Hadoop. Our algorithm not

only avoids load imbalance problem for short jobs, but

also reduces the communication cost. The benefits of

spreading out Map tasks and data-locality awareness are

significant, especially when a short job can be executed

in one wave.

• In U+ mode, rather than executing Map tasks sequen-

tially, we run multiple Map tasks in parallel on the

same node. The degree of parallelism depends on the

available resources on the node.

• In U+ mode, we cache intermediate data into memory

instead of writing them to disk and reading them back

later as intermediate data are usually small for short

jobs.

• We design a job submission framework, which reserves

an ApplicationMaster pool for reuse and avoids the long

waiting time to initialize new ones for short jobs.

• For a short job, deciding which mode (D+ or U+) runs

faster is a grand research challenge. Our job submis-

sion framework handles it by supporting speculative

execution. Specifically, the framework can execute an

application initially in both D+ and U+ modes. During

the execution, a profiler records the execution and data

I/O information for each mode. When the framework

is confident that one mode is behind the other, the

slower one will be terminated. The winner mode can

be designated to the short jobs for the future run.

Given a job, users may submit it as a short job as MRapid

can always bid the performance of the original Hadoop,

except for the overhead of running both D+ and U+ modes

at the short initial stage of the execution. However, if the

execution history has recorded the same job before, our

system can easily decide the faster mode to execute.

The rest of this paper is organized as follows. Section II

gives the background information about the job submission

process in Hadoop. We then describe the details of our

design in Section III including D+ mode, U+ mode, and

a speculative job submission framework. Section IV shows

experimental results. Section V provides a review of related

work. Conclusions and future work are summarized in

Section VI.

II. BACKGROUND

Yarn, a cluster resource manager, is a key component of

Hadoop 2, and MapReduce is one of computing frameworks

that runs on Yarn. In this section, we give a comprehensive

overview of the job submission process, and discuss the root

causes of its inefficiency. As shown in Figure 1, there are 6

steps to submit a job.

1) Job Submission: To submit a new job, a client first

communicates with the ResourceManager (RM) to

generate a new job ID. which in turn checks the spec-

ification of the job, uploads input splits, job Jar file,

and configuration to HDFS. The client then submits

the job to the RM.

2) ApplicationMaster (AM) Allocation: When the RM

receives the job submission request, the scheduler

allocates a container to set up and launches an AM

instance.

3) Launching AM: The designated NodeManager (NM)

of the allocated container launches AM for the job.

Once AM is started, it downloads input splits, job

Jar file, and configuration from HDFS, and initializes

itself.

4) Request Containers: If the job is not configured to

run in Uber mode, the AM requests containers for

Map and Reduce tasks from the RM, which schedules

resources based on data locality that allocates each

task to be near its input data. Hadoop employs Capac-

ityScheduler by default, which allows multiple tenants

to share a large cluster and allocate resources under

constraints of specified capacities for each user.

5) Task Assignment: After tasks have been assigned to

run in certain containers by the RM’s scheduler, the

AM starts the containers by contacting the correspond-

ing NMs.

6) Task Execution: After downloading configuration and

Jar file from HDFS, the Map or Reduce task is

executed as a Java application in JVM.

Figure 1. Hadoop job submission.

Submitting job in Hadoop system is inefficient and the

time consumption of creating containers for small amount

of input data is relatively expensive. To resolve this, Uber
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mode runs all tasks of a job in the same JVM as the AM

in order to avoid container allocation, start up overhead,

and the transferring of intermediate data from Map phase

to Reduce phase. However, the original Uber mode forces

tasks to be sequentially executed within a single container,

which is another weakness.

III. DESIGN AND IMPLEMENTATION

For a short job running in Hadoop, it is difficult to decide

which way is more efficient: distributing all Map tasks to

the cluster uniformly or executing them in a single con-

tainer. Spreading Map tasks to the whole cluster maximizes

resource utilization; however, requesting and launching con-

tainers will consume a large amount of unnecessary time,

and shuffling intermediate data from the Map phase to the

Reduce phase is also expensive. An alternative way is to

execute all Map and Reduce tasks in a single container in

Uber mode, but the current Uber mode executes all tasks

sequentially, which is extraordinarily inefficient. Therefore,

we design two computing modes: one is a new resource

and data-locality aware strategy that distributes and exe-

cutes Map tasks in parallel in the cluster, which is called

the Improved Distributed mode (D+ mode); another is the

Improved Uber Mode (U+ mode) that executes Map tasks

in a single container in parallel using multiple threads, and

stores intermediate data in memory rather than to disk to

speed up job execution.

No matter what mode to choose, it is inevitable to launch

an AM for each Hadoop job. From experiments, we notice

that the time on initializing a short job and launching its

AM is expensive compared to the overall execution time

of the short job. Therefore, to reuse AM, we introduce a

new framework to reserve AM objects in a pool rather than

allocating a new one for each short job.

A. Distributed Mode

In the D+ mode, our resource and locality aware scheduler

allocates Map tasks to different nodes as distributed as

possible in order to avoid resource contention like CPU,

memory, and disk I/O. Due to data-locality awareness, it also

increases the number of data-local Map tasks and reduces

data transferring between DataNodes.

Figure 2 shows steps how to request containers from RM

in the original Hadoop. The AM requests containers and

obtains resources from the RM. This request is wrapped into

a heartbeat and invoked periodically. The heartbeat contains

description of new request, list of released containers, and

update information of blacklist nodes.

When the RM receives such a kind of heartbeat, it

sends a CONTAINER STATUS UPDATE event to the Re-

sourceScheduler (RS). The RS puts the container request to

the corresponding queue.

As one of NMs reports its status to the RM by heartbeat,

the RM sends a NODE STATUS UPDATE event to RS,

Figure 2. Resource request in Hadoop.

then the RS allocates available resources of this node to the

container request in front of the request queue. Note that one

request may ask for multiple containers. The corresponding

AM will obtain these containers at the next heartbeat. Then

the AM tells the selected NM to start Map or Reduce Tasks.

The NM will register launched containers to the RM later.

From the description above, we know that the RM does

not respond to the container request immediately, it has

to wait until one NM with available resources reports its

status, then allocates these resources to the container request.

However, such a resource scheduling scheme has several

major defects, especially for short jobs. First, waiting for

NM status report is a waste of time, which causes the

AM cannot obtain resources at the current heartbeat, even

there are massive idle DataNodes. The time consumption of

communication between the AM and the RM is expensive

for short jobs and could not be ignored. Secondly, this

scheme can lead to container allocation imbalance, so that

some DataNodes may be squeezed with many containers,

but others could be idle. Last but not least, this algorithm

is not aware of data locality for short jobs. Although this

method in the original Hadoop is not bad if the input data

are large and spread uniformly in the cluster, lack of data

locality is a fatal problem for short job since transferring

input data is inevitable especially when the size of cluster

is not small.

Figure 3. Resource request in D+ Mode of MRapid.
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Figure 3 illustrates our improved distributed mode to

allocate resources to small jobs more evenly and efficiently.

The AM sends a request of resources to the RM, which in

turn generates a CONTAINER STATUS UPDATE event

and sends it to the RS. In Step 2, when the RS realizes

that this is a request for short job, instead of waiting

for available DataNodes to report their status, the RS can

allocate resources from Cluster Resource, which is a special

structure designed to store the current resource information

of each node and decide how to allocate resources using

Algorithm 1. The resource status for each node is updated

by each heartbeat, so it is sufficient to represent the latest

resource status. Step 3 in Figure 3 shows that the RS

updates the resource usage for every DataNode. After the

RS finishes resource allocation, the RM sends resource

allocation information immediately to the AM, as shown in

Step 4. The rest steps are the same as the original Hadoop

to launch containers on the selected NMs.

Algorithm 1 Scheduler algorithm for distributed mode

Input: request, nodes
Output: response

1: types = {NodeLocal, RackLocal, ANY }
2: for each type in types do
3: Decide which resource is the current dominant re-

source;

4: Sort nodes by available dominant resource in descend-

ing order;

5: for each node in nodes do
6: for each task in request do
7: container = getResource(task, node, type);
8: if (container is not null) then
9: response.add(container);

10: request.del(task);
11: end if
12: if (request is empty) then
13: return response
14: end if
15: end for
16: end for
17: end for
18: return response

Algorithm 1 shows our improved CapacityScheduler. The

original Hadoop scheduler allocates containers from each

available DataNode by a greedy algorithm, which deploys

tasks to DataNodes as few as possible. Thus it does not

consider data locality and container allocation balance in a

global view. In our algorithm, we sort nodes by available

dominant resource in descending order so that we assign

Map tasks to relatively idle nodes. Dominant resource is a

kind of resource such as CPU or memory that has the highest

usage ratio in the cluster. Note that our dominant resource

definition is based on the whole cluster, which is different

from dominant resource [8] for each user.

HDFS’s default replica is three. Its placement policy

usually stores one replica on a node in the local rack,

another replica on a node in a different rack, and the last

on a different node in the same remote rack. Then there are

three resource types corresponding to the preferred node of

resource request. NodeLocal means that the preferred node

is the same with the resource node. RackLocal is the type

that the requested node and the resource node are in the same

rack. ANY type is that we can designate any resource node

to execute Map tasks. So in our approach, we schedule Map

tasks to the NodeLocal resource first, then RackLocal, at last

ANY in order to take data locality into account adequately

until this resource request is satisfied. For each task, we

assign resource by “getResource” if the task preferred type

(NodeLocal, RackLocal, or ANY) matches the current node

with available resources. After one type of resource request

has been served, we calculate the dominant resource and

sort nodes again to place the current relatively idle nodes in

front before serving the next kind of request.

Our D+ mode spreads tasks of a short job across the

cluster uniformly, which avoids work overload on specific

nodes. In addition, our approach responds to AM requests

in one heartbeat, whereas Hadoop usually needs two or

more heartbeats. Another important advantage is that our

design fully considers data locality before assignment rather

than afterwards redistribution, which involves lots of data

movement.

B. Improved Uber Mode

An Uber task is that the AM uses its own JVM to run

the whole Map and Reduce tasks for a short job. Rather

than executing each mapper and reducer task in a separated

container, the AM container runs Map and Reduce tasks

within its own process to avoid the overhead of requesting,

launching, and communicating with remote containers.

Figure 4 describes the procedure to run a Hadoop job in

the original Uber mode. Since there is only one container

available, the AM has to execute Map and Reduce tasks

sequentially. Another reason causing inefficiency of the

original Uber mode is that intermediate data of Map tasks

are spilled to local disks.

Figure 4. Hadoop’s Uber mode.
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To eliminate these inefficiency problems, we design an

improved Uber Mode (U+ mode) that inherits the single

container feature from the original Uber Mode, but is

extended with the support of multithreading. Figure 5 shows

the details of U+ mode. When an AM is launched, it parses

the job configuration, fetches input data from HDFS, and

then executes Map tasks concurrently using multithreading.

The number of Maps per wave for the U+ mode (nm
u )

depends on cpu vcores (nc, the virtual CPU cores, which

can be configured by users) of the AM. Let nm
c denote

the number of Map tasks running simultaneously on each

cpu vcore. Thus, nm
u = nc ∗ nm

c indicates how many Maps

per wave. For a small amount of intermediate data, we store

them into memory instead of writing them to local disks.

Thus, the Reduce task can fetch results of Map tasks from

memory directly to decrease shuffle overhead.

Figure 5. U+ Mode in MRapid.

C. Job Submitting Framework and Speculative Execution

As shown in Figure 1, after a client uploads job files (e.g.,
jar file, configuration file) to HDFS, it submits the job to

the RM. Then the RM launches an AM in a DataNode to

manage job execution. The cost to request a container and

launch AM is high for a short job, so we design a novel

job submission framework using Spring Hadoop [9]. Our

framework consists of three major modules. (1) The proxy

is used to maintain an AM pool that contains a reasonable

number of AMs reserved for short jobs and allocate an AM

for each short job. (2) The client module is responsible

for uploading the jar file and configuration files to HDFS

and submitting short job to the proxy. (3) The AMSlave

module is the module to accept and execute AM from

the proxy instead of the RM of the original Hadoop. We

implemented a RPC (remote procedure call) to allow the

proxy to communicate with the AMs.

Due to the unpredictability of execution time for different

kinds of short jobs, we employ a speculative execution

mechanism to execute short jobs in both D+ mode and U+

mode. Figure 6 shows the workflow of speculative execution

in our system.

Figure 6. Speculative execution in MRapid.

1) Job Submission: When Hadoop starts, it launches a

proxy service and creates an AM pool that reserves a

certain number of AM containers for short jobs. The

number of AMs is configured by Hadoop administra-

tor, which is 3 by default. Users can use the client of

our submitting framework to submit a short job to the

proxy, request a job ID from HDFS, and upload the

jar file and configuration files to HDFS.

2) Pre-decision Making: When the proxy receives job

submission request, it consults the decision maker

for which mode will be more efficient based on the

execution records of the same job, even if they were

executed with different input data.

3) Launching AM: If the decision-maker gives a clear

answer on which mode is preferred, the proxy chooses

one AM container from the pool to submit the job.

Otherwise, it submits the job in both U+ and D+

modes.

4) Profiling: The designated AM receives the job infor-

mation from the proxy, then downloads input splits,

job Jar file, and configuration from HDFS, and exe-

cutes the job. We designed a specific Hadoop profiler

using ASM [10], which is a small and fast Java byte-

code manipulation framework. Our profiler collects

Hadoop application execution information including

input/output data size and the average execution time

for Map and Reduce tasks, and uploads them to HDFS.

5) Evaluation: We estimate the total execution time for

a job in both U+ mode and D+ mode using the record

collected by the profiler. The detailed estimation al-

gorithm will be discussed later. The decision maker

evaluates the performance of the two modes, and asks

the proxy to terminate the inefficient one.

6) Terminating Slower Mode: After the proxy receives

a notice from the decision maker, it kills the slower
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Table I
NOTATIONS USED IN THE ESTIMATION ALGORITHM

tjob the total execution time for job

tAM the AM setup time

tMap the Map phase execution time

tShuffle execution time of shuffling phase

tReduce the Reduce phase execution time
nm number of Map tasks
nc number of available containers
nw number of waves
nm
u number of Maps per wave for the U+ mode

tl execution time for launching container
tm execution time for map sub-phase

di disk input rate
do disk output rate

bi bandwidth

si average input data size of Map tasks
so average output data size of Map tasks
tu execution time for job in U+ mode
td execution time for job in D+ mode

mode and releases allocated resources.

tjob = tAM + tMap + tShuffle + tReduce

= tl + (tl + si/do + tm + so/di + so/do

+so/di) ∗ nw + (so ∗ nc)/bi + tReduce

(1)

Table I shows the notations used in our estimation algo-

rithm. Equation 1 gives an evaluation of time consumption

for a MapReduce job. The AM setup time can be expressed

by the container launch time tl. The execution time of Map

tasks tMap includes 5 sub-phases: setup, read, map, spill and

merge. The setup sub-phase can be shown as the container

launch time tl. The read sub-phase can be calculated by the

input data size si divided by the disk output rate do. The map

sub-phase is symbolized by tm, which can be evaluated by

history records. The spill sub-phase writes the intermediate

data into disk, i.e., so/di. The merge sub-phase is to read

the spilled data back for merging and write the merged data

into disk again, i.e., so/do + so/di, if the intermediate data

is too large to spill once. The above analysis of Map phase

is to calculate one wave, then we multiple it by the number

of waves (nw). The shuffle phase is intermediate data size

divided by the bandwidth in one wave, other waves are

not considered because there are overlaps between the Map

phase and Shuffle phase.

tu = tm ∗ (nm/nm
u ) (2)

td = (tl + tm + so/di) ∗ (nm/nc) + (so ∗ nc)/bi (3)

Our algorithm to estimate the performance of the U+ and

D+ modes are shown in Equations 2 and 3, respectively.

Since we only consider one Reduce task, its execution time

Table II
MICROSOFT AZURE INSTANCE TYPES

Instance Type Cores Memory Disk Price
A1 1 1.75GB 70GB $0.09/hr
A2 2 3.5GB 135GB $0.18/hr
A3 4 7GB 285GB $0.36/hr

for both U+ and D+ modes are exactly the same, which can

be omitted in Equations 2 and 3. The submission framework

also removes the AM setup time (tAM ) from the Equation 1

for both modes. The setup sub-phase and Shuffle phase can

be ignored due to a single container for the U+ mode. As

the intermediate data are cached instead of dumping them

into disk in the U+ mode, the time consumption of Spill

and Merge, i.e., so/di + so/do + so/di, are trivial. nm/nm
u

shows the calculation of the number of waves for U+ mode.

The overall performance tu is calculated as Equation 2. The

evaluation of time consuming for the D+ mode is shown in

Equation 3. For a short job, a majority of Map tasks only

spill to disk once, we can ignore the Merge sub-phase i.e.,
so/do + so/di, and only consider the Spill sub-phase, i.e.,
so/di. The Shuffle phase can be computed as (so ∗ nc)/bi

due to the overlap between the Map phase and Shuffle of

two adjacent waves. At last, the decision maker compares

the execution time for the U+ mode and D+ mode to kill

the slower one.

IV. EXPERIMENTS

A. Experimental Setup

The experiments were conducted on Microsoft Azure

[11], which supports different types of servers such as A1,

A2, A3. These instances differ in the number of cores,

memory size, disk size, and price, as shown in Table II.

Our experiments were performed on two different clusters,

which have the same usage charge per hour. One cluster con-

sists of 1 NameNode and 4 DataNodes of A3 instances. The

another cluster consists of 1 NameNode and 9 DataNodes

of A2 instance nodes. Each node runs CentOS Linux Server

7, JDK version 1.7, and Apache Hadoop version 2.2. To

evaluate our optimization techniques, we ran three different

benchmark applications from Hadoop example package, i.e.,
WordCount, TeraSort, and PI. WordCount is a MapReduce

program that counts words in input files. TeraSort samples

the input data generated by TeraGen, and uses MapReduce

to sort them into a total order. PI is a MapReduce program

that estimates pi using a quasi-Monte Carlo method.

B. Experimental Results on A3 Cluster

In this experiment, we create a cluster consisting of 1

NameNode and 4 DataNodes of A3 instances. In Figure 7,

the number of files varies from 1 to 16, and the size of

each file is 10MB. We execute the WordCount benchmark

to compare the performance under the original Hadoop and
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our MRapid. Our D+ mode gains an improvement of 36.36%

compared to the original Hadoop when the file size is 8. The

reason is that our improved scheduler chooses DataNodes

that are relatively idle and have better data locality to allocate

Map tasks. Our new submission framework also reduces the

setup and allocation overhead of AMs. When the number of

input files is 4, our U+ mode improves the performance by

59.26% compared to the original Uber mode. This is due to

our parallel computing mechanism, which can execute Map

tasks in parallel and avoid spilling intermediate data into disk

when they are small. Figure 7 shows that when the number

of input files is very large, the D+ mode can only gain

performance improvement by the submission framework,

since the original Hadoop behaves nearly to our D+ mode

in terms of data locality and resource usage. When the

total input file size is 160 MB, the U+ mode has to spill

intermediate data into the disk, which is similar to the

original Uber mode, the improvement is 11.43%. From our

experiment, when the number of files is 8, the D+ mode and

the U+ mode have similar performance; when the number

is more than 8, the U+ mode performs worse, even though

it is still better than the original Uber mode.
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Figure 7. WordCount performance when varying the number of files but
fixing the file size to 10MB.

Figure 8 demonstrates the performance of Hadoop and

MRapid with 4 input files but the file size varies from 5

MB to 40 MB. The D+ mode can outperform the original

Distributed mode by 43.40% when the file size is 40 MB,

which is also 11.32% faster than the U+ mode. We observe

that the D+ mode gains more performance improvement on

larger file size. This is because Algorithm 1 schedules Map

tasks as uniformly as possible; however, the original Hadoop

only employs the resource of recently reported nodes, which

can cause serious allocation imbalance for short jobs. The

performance of the D+ mode is better than the U+ mode

when the total input data size is large, as the D+ mode

can use cluster resource more efficiently than the U+ mode,

which uses only one container to execute all tasks.

Figure 9 shows the performance when the total file input
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Figure 8. WordCount performance by fixing the number of files to 4 but
varying file size.

size is fixed to 60 MB, and the number of files varies from

2 to 4. The performance of 4 files with the file size 15

MB is the best for the D+ mode, where we achieve 79.41%

improvement due to better parallelism. The performance of

the U+ mode is better when the number of files is 4 due to

multithreading parallelism, which outperforms the original

Uber mode by 88.89%.
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Figure 9. WordCount performance when fixing the input size to 60 MB.

Figure 10 shows the performance of another benchmark

called TeraSort. We vary the number of 100-byte rows

from 100k to 1,600k with 4 blocks, which designates 4

Map tasks. When the number of rows is 100k, the D+

mode gains 59.42% improvement compared to the original

Hadoop. We also observe that the U+ mode is always better

than the D+ mode; specifically, the U+ mode outperforms

by 67% when the number of rows is 800k because such

kind of applications do not require massive computation, and

one container can handle it. We notice that the benchmark

PI has the similar property, as shown in Figure 11. We

vary the random number size from 100m to 1,600m for

benchmark PI. When the random number size is more than

200m, for the original Hadoop, it is better to run PI in

the original Distributed mode rather than the original Uber
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Figure 10. TeraSort performance with different numbers of rows.

mode. However, for MRapid, when the random number size

is large, e.g., 1,600m, the U+ mode is still the better choice,

which indicates that MRapid alleviates the limitation of the

original Uber mode.
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Figure 11. PI performance when varying the number of seeds.

C. Experimental Results for A2 Cluster

In this section, we discuss our experiments on another

cluster consisting of 1 NameNode and 9 DataNodes of A2

instances.

Figure 12 compares the performance of our system with

the original Hadoop when the number of containers allocated

for each core is varied from 1 to 2 in A2 cluster. We find that

the performance for MRapid does not fluctuate obviously,

especially for the U+ mode when executing WordCount with

four 10MB files. This is because the U+ mode only uses

one container, and the D+ mode usually selects the relatively

idle nodes to launch Map tasks. But for the original Hadoop,

when the number of containers per core is 2, the performance

of the original distributed mode becomes much worse due

to its greedy scheduling.

For public cloud users, the cluster cost is often a concern.

We compare the performance for a 10-node A2 cluster and

a 5-node A3 cluster, which have around the same cost. As
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Figure 12. WordCount performance when varying the number of contain-
ers for each core.
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Figure 13. WordCount performance with different numbers of nodes.

shown in Figure 13, for the U+ mode, it is always better to

select the A3 cluster. For D+ mode, if the number of files

is few and the cluster is relatively idle, it is better to use

A3 cluster rather than A2 cluster; otherwise, it is better to

deploy A2 cluster. The reason is that although the U+ mode

just uses one container to execute the short job, if there are

more resources available on the same node, the container for

the U+ mode may steal these resources if allowed. For the

D+ mode, if the number of files is large, such as 16 in Figure

13, although a cluster with more nodes at the same cost

degrades the capability of each node, disk I/O and network

contentions could be reduced; thus a cluster with more nodes

may read input data and shuffle map results more efficiently.

D. Contribution Analysis

Figure 14 shows the contribution of each optimization

technique in the D+ mode when there are 5 nodes in the

cluster, there are eight 10 MB files as input for the Word-

Count benchmark. Our new scheduler using a round-robin

technique rather than the greedy approach, which contributes

50% to the performance improvement. The second most sig-

nificant contribution factor is the job submission framework

that creates an AM pool for reusing, which contributes 31%.
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Figure 14. The contribution comparison of different optimization tech-
niques on performance improvement under the D+ mode.

Locality awareness and reducing communication contribute

13% and 6%, respectively.

In Figure 15, there are 4 optimization techniques in

the U+ mode. Running tasks in parallel contributes the

most, which is 64%. And the submission framework is

the second most influential factor for U+ mode, which is

23%. Storing intermediate data into memory and reducing

communication between DataNodes and RM contribute 9%

and 4%, respectively.

23%

4%

64%

9%
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AM caching Communication Reduce
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Figure 15. The contribution comparison of different optimization tech-
niques on performance improvement under the U+ mode.

V. RELATED WORK

MRapid is related to the four research areas in optimizing

performance of MapReduce short jobs: short job scheduling

[5, 12, 13], data-locality awareness [14–16], cache mecha-

nism [17], and reusing resource [18].

Elmeleegy [5] designed a system called Piranha that

avoids checkpointing intermediate results to disk. It also

supports a simple fault-tolerance mechanism, and employs

self-coordination to reduce the cost of high-latency polling

protocol. However, this system reduces only cost of spilling

data into disk, and the Uber mode is not considered. Yao

et al. [12] propose a job-size based scheduling algorithm.

It leverages the knowledge of workload patterns to reduce

average job response time by dynamically tuning the re-

source sharing among users. But this approach cannot reduce

useless overhead caused by Hadoop itself. Yan et al. [13]

implement an optimized version of Hadoop to reduce the

time cost during the initialization and termination stages of a

job, and replace the pull-model task assignment mechanism

with a push-model approach. This system just reduces the

communication between Driver to NameNode and JobTrack

to TaskTrack, but cannot reuse previous jobs’ execution

environment to speed up.

Hammoud et al. [14] designed a Locality-Aware Reduce

Task Scheduler (LARTS), which collocate Reduce tasks

with the maximum required data after recognizing input

data locations and sizes. This method is useful only when

the input data are skewed, and the performance improve is

not significant. Zhang et al. [15] proposed a next-k-node

scheduling (NKS) method to reserve nodes for Map tasks

to satisfy node locality policy. It is not enough for short

job by just considering data locality. Maestro [16] is another

scheduling algorithm that schedules map tasks in two waves:

first, it fills the empty slots of each data node based on the

number of hosted map tasks; second, runtime scheduling

takes into account the probability of scheduling a map task

depending on the replicas of the tasks input data. But for

many short jobs, there is only one wave to be executed.

Spark [19][17] is a fast and general engine that can

be deployed on Hadoop Yarn. It organizes data into a

distributed data structure called resilient distributed dataset

(RDD), which can be cached in memory, and be reused

across different computations. But we observed that the

performance of Spark on Yarn is still slow for short jobs

because of the high overhead to launch containers for AMs

and executors.

HJ-Hadoop [18] is designed to exploit multicore paral-

lelism at the intra-JVM level, while limiting the number of

JVMs created on each node. In our U+ mode, we employ a

similar technique, which executes Map tasks of a container

in parallel rather than a sequential way.

Besides optimizing MapReduce performance, Hadoop can

be improved in many other aspects, such as network [20],

HDFS [21], middleware [22], and query optimization [23].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce an optimized Hadoop system

to improve the performance of short jobs in two modes: D+

mode and U+ mode. In D+ mode, we design a new scheduler

to schedule Map tasks based on the resource distribution

situation and data locality. Instead of waiting for heartbeats

reported from NMs to decide how to schedule tasks, our

scheduler can allocate resources immediately. Our algorithm

not only avoids allocation imbalance problem for short jobs,
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but also reduces the communication cost. For the U+ mode,

rather than executing Map tasks sequentially, we employ

multi-threading to run Map tasks in parallel. In addition,

we cache the intermediate data into memory instead of

writing them into disk and reading them later when the

intermediate data are small. Moreover, we implement a new

job submitting framework and speculative execution system

to reduce the setup cost for short jobs. Our experiments

show that our system can obtain significant performance

improvement by 11% to 88% compared with the original

Hadoop for short jobs.

Nowadays, Spark has become another data processing en-

gine in Hadoop ecosystem as an alternative to the traditional

MapReduce batch processing model. Several optimization

techniques of our system can also improve the performance

of Spark on Yarn such as the submission framework and

the improved CapacityScheduler. In the future, we plan to

migrate MRapid to Spark to handle applications such as real-

time stream data processing and interactive queries more

efficiently.
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