
Data Replication in Data Intensive Scientific
Applications with Performance Guarantee

Dharma Teja Nukarapu, Student Member, IEEE, Bin Tang, Member, IEEE,

Liqiang Wang, Member, IEEE, and Shiyong Lu, Senior Member, IEEE

Abstract—Data replication has been well adopted in data intensive scientific applications to reduce data file transfer time and

bandwidth consumption. However, the problem of data replication in Data Grids, an enabling technology for data intensive

applications, has proven to be NP-hard and even non approximable, making this problem difficult to solve. Meanwhile, most of the

previous research in this field is either theoretical investigation without practical consideration, or heuristics-based with little or no

theoretical performance guarantee. In this paper, we propose a data replication algorithm that not only has a provable theoretical

performance guarantee, but also can be implemented in a distributed and practical manner. Specifically, we design a polynomial time

centralized replication algorithm that reduces the total data file access delay by at least half of that reduced by the optimal replication

solution. Based on this centralized algorithm, we also design a distributed caching algorithm, which can be easily adopted in a

distributed environment such as Data Grids. Extensive simulations are performed to validate the efficiency of our proposed algorithms.

Using our own simulator, we show that our centralized replication algorithm performs comparably to the optimal algorithm and other

intuitive heuristics under different network parameters. Using GridSim, a popular distributed Grid simulator, we demonstrate that the

distributed caching technique significantly outperforms an existing popular file caching technique in Data Grids, and it is more scalable

and adaptive to the dynamic change of file access patterns in Data Grids.

Index Terms—Data intensive applications, Data Grids, data replication, algorithm design and analysis, simulations.

Ç

1 INTRODUCTION

DATA intensive scientific applications, which mainly aim
to answer some of the most fundamental questions

facing human beings, are becoming increasingly prevalent in
a wide range of scientific and engineering research domains.
Examples include human genome mapping [38], high-
energy particle physics and astronomy [1], [24], and climate
change modeling [30]. In such applications, large amounts of
data sets are generated, accessed, and analyzed by scientists
worldwide. The Data Grid [46], [4], [20] is an enabling
technology for data intensive applications. It is composed of
hundreds of geographically distributed computation, sto-
rage, and networking resources to facilitate data sharing and
management in data intensive applications. One distinct
feature of Data Grids is that they produce and manage very
large amount of data sets, in the order of terabytes and
petabytes. For example, the Large Hadron Collider (LHC) at
the European Organization for Nuclear Research (CERN)
near Geneva, Switzerland, is the largest scientific instrument
on the planet. Since it began operation in August of 2008, it
was expected to produce roughly 15 petabytes of data

annually, which are accessed and analyzed by thousands of
scientists around the world [2].

Replication is an effective mechanism to reduce file
transfer time and bandwidth consumption in Data Grids—
placing most accessed data at the right locations can greatly
improve the performance of data access from a user’s
perspective. Meanwhile, even though the memory and
storage capacity of modern computers are ever increasing,
they are still not keeping up with the demand of storing
huge amounts of data produced in scientific applications.
With each Grid site having limited memory/storage
resources,1 the data replication problem becomes more
challenging. We find that most of the previous work of data
replication under limited storage capacity in Data Grids
mainly occupies two extremes of a wide spectrum: they are
either theoretical investigations without practical considera-
tion, or heuristics-based experiments without performance
guarantee (please refer to Section 2 for a comprehensive
literature review). In this article, we endeavor to bridge this
gap by proposing an algorithm that has a provable
performance guarantee and can be implemented in a
distributed manner as well.

Our model is as follows: Scientific data, in the form of data
files, are produced and stored in the Grid sites as the result of
scientific experiments, simulations, or computations. Each
Grid site executes a sequence of scientific jobs submitted by
its users. To execute each job, some scientific data as input
files are usually needed. If these files are not in the local
storage resource of the Grid site, they will be accessed from
other sites, and transferred and replicated in the local storage
of the site if necessary. Each Grid site can store such data files

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 8, AUGUST 2011 1299

. D.T. Nukarapu and B. Tang are with the Department of Electrical
Engineering and Computer Science, Wichita State University, Wichita, KS
67260. E-mail: dxnukarapu@wichita.edu, bintang@cs.wichita.edu.

. L. Wang is with the Computer Science Department, University of
Wyoming, Laramie, WY 82071. E-mail: wang@cs.uwyo.edu.

. S. Lu is with the Computer Science Department, Wayne State University,
Detroit, MI 48202. E-mail: shiyong@wayne.edu.

Manuscript received 5 Aug. 2009; revised 4 June 2010; accepted 17 Nov. 2010;
published online 2 Dec. 2010.
Recommended for acceptance by J. Weissman.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-08-0352.
Digital Object Identifier no. 10.1109/TPDS.2010.207. 1. In this article, we use memory and storage interchangeably.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

subject to its storage/memory capacity limitation. We study
how to replicate the data files onto Grid sites with limited
storage space in order to minimize the overall file access
time, for Grid sites to finish executing their jobs.

Specifically, we formulate this problem as a graph-
theoretical problem and design a centralized greedy data
replication algorithm, which provably gives the total data
file access time reduction (compared to no replication) at
least half of that obtained from the optimal replication
algorithm. We also design a distributed caching technique
based on the centralized replication algorithm,2 and show
experimentally that it can be easily adopted in a distributed
environment such as Data Grids. The main idea of our
distributed algorithm is that when there are multiple
replicas of a data file existing in a Data Grid, each Grid
site keeps track of (and thus fetches the data file from) its
closest replica site. This can dramatically improve Data
Grid performance because transferring large-sized files
takes tremendous amount of time and bandwidth [16].
The central part of our distributed algorithm is a mechan-
ism for each Grid site to accurately locate and maintain such
closest replica site. Our distributed algorithm is also
adaptive—each Grid site makes a file caching decision
(i.e., replica creation and deletion) by observing the recent
data access traffic going through it. Our simulation results
show that our caching strategy adapts better to the dynamic
change of user access behavior, compared to another
existing caching technique in Data Grids [37].

Currently, for most Data Grid scientific applications, the
massive amount of data is generated from a few
centralized sites (such as CERN for high energy physics
experiments) and accessed by all other participating
institutions. We envision that, in the future, in a closely
collaborative scientific environment upon which the data-
intensive applications are built, each participating institu-
tion site could well be a data producer as well as a data
consumer, generating data as a result of scientific experi-
ments or simulations it performs, and meanwhile accessing
data from other sites to run its own applications. Therefore,
the data transfer is no longer from a few data-generating
sites to all other “client” sites, but could take place between
an arbitrary pair of Grid sites. It is a great challenge in such
an environment to efficiently share all the widely dis-
tributed and dynamically generated data files in terms of
computing resources, bandwidth usage, and file transfer
time. Our network model reflects such a vision (please
refer to Section 3 for the detailed Data Grid model).

The main results and contributions of our paper are as
follows:

1. We identify the limitation of the current research of
data replication in Data Grids: they are either
theoretical investigation without practical considera-
tion, or heuristics-based implementation without a
provable performance guarantee.

2. To the best of our knowledge, we are the first to
propose data replication algorithm in Data Grid,
which not only has a provable theoretical perfor-
mance guarantee, but can be implemented in a
distributed manner as well.

3. Via simulations, we show that our proposed
replication strategies perform comparably with the
optimal algorithm and significantly outperform an
existing popular replication technique [37].

4. Via simulations, we show that our replication
strategy adapts well to the dynamic access pattern
change in Data Grids.

Paper Organization. The rest of the paper is organized
as follows: We discuss the related work in Section 2. In
Section 3, we present our Data Grid model and formulate
the data replication problem. Section 4 and Section 5
propose the centralized and distributed algorithms, respec-
tively. We present and analyze the simulation results in
Section 6. Section 7 concludes the paper and points out
some future work.

2 RELATED WORK

Replication has been an active research topic for many years
in World Wide Web [33], peer-to-peer networks [3], ad hoc
and sensor networking [23], [41], and mesh networks [26].
In Data Grids, enormous scientific data and complex
scientific applications call for new replication algorithms,
which have attracted much research recently.

The most closely related work to ours is by �Cibej et al.
[44]. The authors study data replication on Data Grids as a
static optimization problem. They show that this problem is
NP-hard and nonapproximable, which means that there is
no polynomial algorithm that provides an approximation
solution if P 6¼ NP . The authors discuss two solutions:
integer programming and simplifications. They only con-
sider static data replication for the purpose of formal
analysis. The limitation of the static approach is that the
replication cannot adjust to the dynamically changing user
access pattern. Furthermore, their centralized integer pro-
gramming technique cannot be easily implemented in a
distributed Data Grid. Moreover, Baev et al. [5], [6] show
that if all the data have uniform size, then this problem is
indeed approximable. And they find 20.5-approximation
and 10-approximation algorithms. However, their ap-
proach, which is based on rounding an optimal solution
to the linear programming relaxation of the problem, cannot
be easily implemented in a distributed way. In this work,
we follow the same direction (i.e., uniform data size), but
design a polynomial time approximation algorithm, which
can also be easily implemented in a distributed environ-
ment like Data Grids.

Raicu et al. [34], [35] study both theoretically and
empirically the resource allocation in data intensive
applications. They propose a “data diffusion” approach
that acquires computing and storage resources dynami-
cally, replicates data in response to demand, and schedules
computations close to the data. They give a OðNMÞ
competitive ratio online algorithm, where N is the number
of stores, each of which can store M objects of uniform size.
However, their model does not allow for keeping multiple

1300 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 8, AUGUST 2011

2. We emphasize the difference between replication and caching in this
article. Replication is a proactive and centralized approach wherein the
server replicates files into the network to achieve certain global perfor-
mance optimum, whereas caching is reactive and takes place on the client
side to achieve certain local optimum, and it depends on the locally
observed network traffic, job and file distribution, etc.

copies of an object simultaneously in different stores. In our
model, we assume each object can have multiple copies,
each on a different site.

Some economical model-based replica schemes are
proposed. The authors in [9], [7] use an auction protocol
to make the replication decision and to trigger long-term
optimization by using file access patterns. You et al. [47]
propose utility-based replication strategies. Lei et al. [28]
and Schintke and Reinefeld [39] address the data replication
for availability in the face of unreliable components, which
is different from our work.

Jiang and Zhang [25] propose a technique in Data Grids
to measure how soon a file is to be reaccessed before being
evicted compared with other files. They consider both the
consumed disk space and disk cache size. Their approach
can accurately rank the value of each file to be cached. Tang
et al. [42] present a dynamic replication algorithm for multi-
tier Data Grids. They propose two dynamic replica algo-
rithms: Single Bottom Up and Aggregate Bottom Up.
Performance results show both algorithms reduce the
average response time of data access compared to a static
replication strategy in a multitier Data Grid. Chang and
Chang [11] propose a dynamic data replication mechanism
called Latest Access Largest Weight (LALW). LALW
associates a different weight to each historical data access
record: a more recent data access has a larger weight. LALW
gives a more precise metric to determine a popular file for
replication. Park et al. [31] propose a dynamic replica
replication strategy, called BHR, which benefits from “net-
work-level locality” to reduce data access time by avoiding
networking congestion in a Data Grid. Lamehamedi et al.
[27] propose a lightweight Data Grid middleware, at the
core of which are some dynamic data and replica location
and placement techniques.

Ranganathan and Foster [37] present six different
replication strategies: No Replication or Caching, Best
Client, Cascading Replication, Plain caching, Caching plus
Cascading Replication, and Fast Spread. All of these
strategies are evaluated with three user access patterns
(Random Access, Temporal Locality, and Geographical plus
Temporal Locality). Via the simulation, the authors find that
Fast Spread performs the best under Random Access, and

Cascading would work better than others under Geogra-
phical and Temporal Locality. Due to its wide popularity in
the literature and its simplicity to implement, we compare
our distributed replication algorithm to this work.

Systemwise, there are several real testbed and system
implementations utilizing data replication. One system is
the Data Replication Service (DRS) designed by Chervenak
et al. [15]. DRS is a higher level data management service
for scientific collaborations in Grid environments. It
replicates a specified set of files onto a storage system and
registers the new files in the replica catalog of the site.
Another system is Physics Experimental Data Export
(PheDEx) system [19]. PheDEx supports both the hierarch-
ical distribution and subscription-based transfer of data.

To execute the submitted jobs, each Grid site either gets
the needed input data files to its local computing resource,
schedules the job at sites where the needed input data files
are stored, or transfers both the data and the job to a third
site that performs the computation and returns the result. In
this paper, we focus on the first approach. We leave the job
scheduling problem [45], which studies how to map jobs
into Grid resources for execution, and it’s coupling with
data replication, as our future research. We are aware of
very active research studying the relationship between
these two [10], [36], [14], [21], [12], [43], [17], [8]. The focus of
our paper, however, is on the data replication strategy with
a provable performance guarantee.

As demonstrated by the experiments of Chervenak et al.
[15], the time to execute a scientific job is mainly the time it
takes to transfer the needed input files from server sites to
local sites. Similar to other work in replica management for
Data Grids [28], [39], [8], we only consider the file transfer
time (access time), not the job execution time in the
processor or any other internal storage processing or I/O
time. Since the data are read only for many Data Grid
applications [36], we do not consider consistency main-
tenance between the master file and the replica files. For
readers who are interested in the consistency maintenance
in Data Grids, please refer to [18], [40], [32].

3 DATA GRID MODEL AND PROBLEM FORMULATION

We consider a Data Grid model as shown in Fig. 1. A Data
Grid consists of a set of sites. There are institutional sites,

NUKARAPU ET AL.: DATA REPLICATION IN DATA INTENSIVE SCIENTIFIC APPLICATIONS WITH PERFORMANCE GUARANTEE 1301

Fig. 1. Data Grid model.

which correspond to different scientific institutions partici-
pating in the scientific project. There is one top level site, which
is the centralized management entity in the entire Data Grid
environment, and its major role is to mange the Centralized
Replica Catalogue (CRC). CRC provides location information
about each data file and its replicas, and it is essentially a
mapping between each data file and all the institutional sites
where the data is replicated. Each site (top level site or
institutional site) may contain multiple grid resources. A grid
resource could be either a computing resource, which allows
users to submit and execute jobs, or a storage resource, which
allows users to store data files.3 We assume that each site has
both computing and storage capacities, and that within each
site, the bandwidth is high enough that the communication
delay inside the site is negligible.

For the data file replication problem addressed in this
article, there are multiple data files, and each data file is
produced by its source site (the top level site or the
institutional site may act as a source site for more than
one data files). Each Grid site has limited storage capacity
and can cache/store multiple data files subject to its storage
capacity constraint.

Data Grid model. A Data Grid can be represented as an
undirected graph GðV ;EÞ, where a set of vertices V ¼
f1; 2; . . . ; ng represents the sites in the Grid, and E is a set of
weighted edges in the graph. The edge weight may
represent a link metric such as loss rate, distance, delay,
or transmission bandwidth. In this paper, the edge weight
represents the bandwidth and we assume all edges have the
same bandwidth B (in Section 6, we study heterogeneous
environment where different edges have different band-
widths). There are p data files D ¼ fD1; D2; . . . ; Dpg in the
Data Grid, Dj is originally produced and stored in the source
site Sj 2 V . Note that a site can be the original source site of
multiple data files. The size of data file Dj is sj. Each site i
has a storage capacity of mi (for a source site i, mi is the
available storage space after storing its original data).

Users of the Data Grid submit jobs to their own sites, and
the jobs are executed in the FIFO order. Assume that the
Grid site i has ni submitted jobs {ti1; ti2; . . . ; tini }, and each
job tik (1 � k � ni) needs a subset Fik of D as its input files
for execution. If we use wij to denote the number of times
that site i needs Dj as an input file, then wij ¼

Pni
k¼1 ck,

where ck ¼ 1 if Dj 2 Fik and ck ¼ 0 otherwise. The transmis-
sion time of sending data file Dj along any edge is sj=B. We
use dij to denote the number of transmissions to transmit a
data file from site i and j (which is equal to the number of
edges between these two sites). We do not consider the file
propagation time along the edge, since compared with
transmission time, it is quite small and thus negligible. The
total data file access cost in Data Grid before replication is the
total transmission time spent to get all needed data files for
each site:

Xn

i¼1

Xp

j¼1

wij � diSj � sj=B:

The objective of our file replication problem is to minimize
the total data file access cost by replicating data files in the

Data Grid. Below, we give a formal definition of the file
replication problem addressed in this article.

Problem Formulation. The data replication problem in the
Data Grid is to select a set of sets M ¼ fA1; A2; . . . ; Apg,
where Aj � V is a set of Grid sites that store a replica copy
of Dj, to minimize the total access cost in the Data Grid:

�ðG;MÞ ¼
Xn

i¼1

Xp

j¼1

wij �mink2ðfSjg[AjÞdik � sj=B;

under the storage capacity constraint that jfAjji 2 Ajgj �
mi for all i 2 V , which means that each Grid site i appears
in, at most, mi sets of M. Here, each site accesses the data
file from its closest site with a replica copy. �Cibej, Slivnik,
and Robi�c show that this problem (with arbitrary data file
size) is NP-hard and even nonapproximable [44]. However,
Baev et al. [5], [6] have shown that when data is uniform
size (i.e., si ¼ sj for any Di;Dj 2 D), this problem is
approximable. Below we present a centralized greedy
algorithm with provable performance guarantee for uni-
form data size, and a distributed algorithm respectively.

4 CENTRALIZED DATA REPLICATION ALGORITHM IN

DATA GRIDS

Our centralized data replication algorithm is a greedy
algorithm. First, all Grid sites have all empty storage space
(except for sites that originally produce and store some
files). Then, at each step, it places one data file into the
storage space of one site such that the reduction of total
access cost in the Data Grid is maximized at that step. The
algorithm terminates when all storage space of the sites has
been replicated with data files, or the total access cost
cannot be reduced further. Below is the algorithm.

Algorithm 1. Centralized Data Replication Algorithm

BEGIN

M ¼ A1 ¼ A2 ¼ � � � ¼ Ap ¼ ; (empty set);
While (the total access cost can still be reduced by

replicating data files in Data Grid)

Among all sites with available storage capacity and

all data files, let replicating data file Di on site m

gives the maximum �ðG; fA1; A2; . . . ; Ai; . . . ; ApgÞ
��ðG; fA1; A2; . . . ; Ai [fmg; . . . ; ApgÞ;
Ai ¼ Ai [fmg;

end while;
RETURN M ¼ fA1; A2; . . . ; Apg;

END.

The total running time of the greedy algorithm of data
replication is Oðp2n3mÞ, where n is the number of sites in
the Data Grid, m is the average number of memory pages in
a site, and p is the total number of data files. Note that the
number of iterations in the above algorithm is bounded by
nm, and at each stage, we need to compute at most pn
benefit values, where each benefit value computation may
take OðpnÞ time. Below we present two lemmas showing
some properties of above greedy algorithm. They are also
necessary for us to prove the theorem below, which shows
that the greedy algorithm returns a solution with a near
optimal total access cost reduction.

1302 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 8, AUGUST 2011

3. We differentiate site and node in this paper. We refer to each site in the
Grid level and each node in the cluster level, where each node is a
computing resource or storage resource or combination of both.

Lemma 1. Total access cost reduction is independent of the order

of the data file replication.

Proof. This is because the reduction of total access cost
depends only on the initial and final storage configura-
tion of each site, which does not depend on the exact
order of the data replication. tu

Lemma 2. Let M be a set of cache sites in an arbitrary stage. Let

A1 and A2 be two distinct sets of sites not included in M. Then

the access cost reduction due to selection of A2 based upon

cache site set M [A1, denoted as a, is less than or equal to the

access cost reduction due to selection of A2 based upon M,

denoted as b.

Proof. Let ClientSetðA2;MÞ be the set of sites that have their
closest cache sites in A2 when A2 are selected as cache
sites upon M. With the selection of A1 before A2, some
sites in ClientSetðA2;MÞ may find that they are closer to
some cache sites in A1 and then “deflect” to become
elements of ClientSetðA1;MÞ. Therefore, ClientSetðA2;

M [A1Þ � ClientSetðA2;MÞ.
Since the selection of A1 before A2 does not change the

closest sites in M for all sites in ClientSetðA2;M [A1Þ, if
ClientSetðA2; M [A1Þ ¼ ClientSetðA2; MÞ, a ¼ b; if
ClientSetðA2;M [A1Þ � ClientSetðA2;MÞ, a < b. tu

Above lemma says that the total access cost reduction
due to an arbitrary cache site never increases with the
selection of other cache site before it.

We present below a theorem that shows the performance
guarantee of our centralized greedy algorithm. In the theorem
and the following proof, we assume that all data files are of the
same uniform-size (occupying unit memory). The proof
technique used here is similar to that used in [41] for a closely
related problem of data caching in ad hoc networks.

Theorem 1. Under the Data Grid model we propose, the

centralized data replication algorithm delivers a solution

whose total access cost reduction is at least half of the optimal

total access cost reduction.

Proof. Let L be the total number of memory pages in the
Data Grid. WLOG, we assume L is the total number of
iterations of the greedy algorithm (note it is possible that
the total access cost cannot be reduced further even
though sites still have available memory space). We
assume the sequence of selections in greedy algorithm is
fng1f

g
1 ; n

g
2f

g
2 ; . . . ; ngLf

g
Lg, where ngi f

g
i indicating that at

iteration i, data file fgi is replicated at site ngi . We also
assume the sequence of selections in optimal algorithm is
fno1fo1 ; no2fo2 ; . . . ; noLf

o
Lg, where noi f

o
i indicating that at

iteration i, data file foi is replicated at site noi . Let O and
C be the total access cost reduction from optimal
algorithm and greedy algorithm, respectively.

Next, we consider a modified data grid G0, wherein
each site i doubles its memory capacity (now 2mi). We
construct a cache placement solution for G0 such that for
site i, the first mi memories store the data files obtained
in greedy algorithm and the second mi memories store
the data files selected in the optimal algorithm, as shown
in Fig. 2. Now we calculate the total access cost reduction
O0 for G0. Obviously, O0 � O, simply because each site in

G0 caches extra data files beyond the data files cached in
the same site in G.

According to Lemma 1, since the total access cost
reduction is independent of the order of the each
individual selection, we consider the sequence of the
cache section inG0 as fng1f

g
1 ; n

g
2f

g
2 ; . . . ; ngLf

g
L; n

o
1f

o
1 ; n

o
2f

o
2 ; . . . ;

noLf
o
Lg, that is, the greedy selection followed by optimal

selection. Therefore, inG0, the total access cost reduction is
due to the greedy selection sequence plus the optimal
selection sequence. For the greedy selection sequence,
after the selection of ngLf

g
L, the access cost reduction is C.

For the optimal selection sequence, we need to calculate
the access cost reduction due to the addition of each noi f

o
i

(1 � i � L) based on the already added selections of
fng1f

g
1 ; n

g
2f

g
2 ; . . . ; ngLf

g
L; n

o
1f

o
1 ; n

o
2f

o
2 ; . . . ; noi�1f

o
i�1g, and from

Lemma 2, we know that it is less than the access cost
reduction due to the addition of noi f

o
i based on already

added sequence of fng1f
g
1 ; n

g
2f

g
2 ; . . . ; ngi�1f

g
i�1g. Note that the

latter is less than the access cost reduction due to the
addition of ngi f

g
i , based on the same sequence of

fng1f
g
1 ; n

g
2f

g
2 ; . . . ; ngi�1f

g
i�1g. Thus, the sum of the access cost

reduction due to selection of fno1fo1 ; no2fo2 ; . . . ; noLf
o
Lg is less

than or equal to C too.
Thus, we come to the conclusion that O is less than or

equal to O0, which is less than or equal to 2 times of C. tu

5 DISTRIBUTED DATA CACHING ALGORITHM IN

DATA GRIDS

In this section, we design a localized distributed caching
algorithm based on the centralized algorithm. In the
distributed algorithm, each Grid site observes the local Data
Grid traffic to make an intelligent caching decision. Our
distributed caching algorithm is advantageous since it does
not need global information such as the network topology of
the Grid, and it is more reactive to network states such as the
file distribution, user access pattern, and job distribution in
the Data Grids. Therefore, our distributed algorithm can
adopt well to such dynamic changes in the Data Grids.

The distributed algorithm is composed of two important
components: nearest replica catalog (NRC) maintained at
each site and a localized data caching algorithm running at
each site. Again, as stated in Section 3, the top level site
maintains a Centralized Replica Catalogue (CRC), which is
essentially a list of replica site list Cj for each data file Dj. The
replica site list Cj contains the set of sites (including source
site Sj) that has a copy of Dj.

Nearest Replica Catalog (NRC). Each site i in the Grid
maintains an NRC, and each entry in the NRC is of the form

NUKARAPU ET AL.: DATA REPLICATION IN DATA INTENSIVE SCIENTIFIC APPLICATIONS WITH PERFORMANCE GUARANTEE 1303

Fig. 2. Each site i original graph G has mi memory space, each site in
modified graph G’ has 2mi memory space.

ðDj;NjÞ, where Nj is the nearest site that has a replica of Dj.
When a site executes a job, from its NRC, it determines the
nearest replicate site for each of its input data files and goes
to it directly to fetch the file (provided the input file is not in
its local storage). As the initialization stage, the source sites
send messages to the top level site informing it about their
original data files. Thus, the centralized replica catalog
initially records each data file and its source site. The top
level site then broadcasts the replica catalogue to the entire
Data Grid. Each Grid site initializes its NRC to the source site
of each data file. Note that if i is the source site of Dj or has
cached Dj, then Nj is interpreted as the second nearest replica
site, i.e., the closest site (other than i itself) that has a copy of
Dj. The second nearest replica site information is helpful
when site i decides to remove the cached file Dj. If there is a
cache miss, the request is redirected to the top level site,
which sends the site replica site list for that data file. After
receiving such information, the site will update correctly its
NRC table and sends the request to the site’s nearest cache
site for that data file. Therefore, a cache miss takes much
longer time. The above information is in addition to any
information (such as routing tables) maintained by the
underlying routing protocol in the Data Grids.

Maintenance of NRC. As stated above, when a site i
caches a data file Dj, Nj is no longer the nearest replica site,
but rather the second-nearest replica site. The site i sends a
message to the top level site with information that it is a
new replica site of Dj. When the top level site receives the
message, it updates its CRC by adding site i to data file Dj’s
replica site list Cj. Then it broadcasts a message to the entire
Data Grid containing the tuple ði; DjÞ indicating the ID of
the new replica site and the ID of the newly made replica
file. Consider a site l that receives such message ði; DjÞ. Let
ðDj;NjÞ be the NRC entry at site l signifying that Nj is the
replica site for Dj currently closest to l. If dli < dlNj

, then the
NRC entry ðDj;NjÞ is updated to ðDj; iÞ. Note the distance
values, in terms of number of hops, are available from the
routing protocol.

When a site i removes a data file Dj from its local
storage, its second-nearest replica site Nj becomes its
nearest replica site (note the corresponding NRC entry
does not change). In addition, site i sends a message to the
top level site with information that it is no longer a replica
site of Dj. The top level site updates its replica catalog by
deleting i from Dj’s replica site list. And then it broadcasts a
message with the information ði; Dj; CjÞ to the Data Grid,
where Cj is the replica site list for Dj. Consider a site l that
receives such a message, and let ðDj;NjÞ be its NRC entry. If
Nj ¼ i, then site l updates its nearest replica site entry using
Cj (with the help of the routing table).

Localized data caching algorithm. Since each site has
limited storage capacity, a good data caching algorithm that
runs distributedly on each site is needed. To do this, each
site observes the data access traffic locally for a sufficiently
long time. The local access traffic observed by site i includes
its own local data requests, nonlocal data requests to data
files cached at i, and the data request traffic that the site i is
forwarding to other sites in the network.

Before we present the data caching algorithm, we give
the following two definitions:

. Reduction in access cost of caching a data file.
Reduction in access cost as the result of caching a
data file at a site is the reduction in access cost given
by the following: access frequency in local access
traffic observed by the site � distance to the nearest
replica site.

. Increase in access cost of deleting a data file.
Increase in access cost as the result of deleting a data
file at a site is the increase in access cost given by the
following: access frequency in local access traffic
observed by the site � distance to the second-nearest
replica site.

For each data file Dj not cached at site i, site i calculates
the reduction in access cost by caching the file Dj, while for
each data file Dj cached at site i, site i computes the increase
in access cost of deleting the file. With the help of the NRC,
each site can compute such a reduction or increase of access
cost in a distributed manner using only local information.
Thus our algorithm is adaptive: each site makes a data
caching or deletion decision by observing locally the most
recent data access traffic in the Data Grid.

Cache replacement policy. With the above knowledge, a
site always tries to cache data files that can fit in its local
storage and that can give the most reduction in access cost.
When the local storage capacity of a site is full, the
following cache replacement policy is used. Let jDj denote
the size of a data file (or a set of data files) D. If the access
cost reduction of caching a newly available data file Dj is
higher than the access cost increase of some set D of cached
data files where jDj > jDjj, then the set D is replaced by Dj.

Data file consistency maintenance. In this work, we
assume that all the data are read-only, and thus no data
consistency mechanism is needed. However, if we do
consider the consistency issue, two mechanisms can be
considered. First, when the file in a site is modified, it can be
considered as a data file removal in our distributed
algorithm discussed above with some necessary deviation.
That is, the site sends a message to the top level site with
information that it is no longer a replica site of the file. The
top level site broadcasts a message to the Data Grid so that
each site can delete the corresponding nearest replica site
entry. The second mechanism is Time to Live (TTL), which
is the time until the replica copies are considered valid.
Therefore, the master copy and its replica are considered
outdated at the end of the TTL time value and will not be
used for the job execution.

6 PERFORMANCE EVALUATION

Please refer to the Supplemental File, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2010.207, for the
details of the performance evaluations.

7 CONCLUSIONS AND FUTURE WORK

In this article, we study how to replicate data files in data
intensive scientific applications, to reduce the file access
time with the consideration of limited storage space of Grid
sites. Our goal is to effectively reduce the access time of data
files needed for job executions at Grid sites. We propose a
centralized greedy algorithm with performance guarantee,

1304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 8, AUGUST 2011

and show that it performs comparably with the optimal
algorithm. We also propose a distributed algorithm wherein
Grids sites react closely to the Grid status and make
intelligent caching decisions. Using GridSim, a distributed
Grid simulator, we demonstrate that the distributed
replication technique significantly outperforms a popular
existing replication technique, and it is more adaptive to the
dynamic change of file access patterns in Data Grids.

We plan to further develop our work in the following
directions:

. As ongoing and future work, we are exploiting the
synergies between data replication and job schedul-
ing to achieve better system performance. Data
replication and job scheduling are two different but
complementary functions in Data Grids: one to
minimize the total file access cost (thus total job
execution time of all sites), and the other to minimize
the makespan (the maximum job completion time
among all sites). Optimizing both objective functions
in the same framework is a very difficult (if not
unfeasible) task. There are two main challenges: first,
how to formulate a problem that incorporates not
only data replication but also job scheduling, and
which addresses both total access cost and max-
imum access cost; and second, how to find an
efficient algorithm that, if it cannot find optimal
solutions of minimizing total/maximum access cost,
gives near-optimal solution for both objectives.
These two challenges remain largely unanswered
in the current literature.

. We plan to design and develop data replication
strategies in the scientific workflow [29] and large-
scale cloud computing environments [22]. We will
also pursue how provenance information [13], the
derivation history of data files, can be exploited to
improve the intelligence of data replication decision
making.

. A more robust dynamic model and replication
algorithm will be developed. Right now, each site
observes the data access traffic for a sufficiently long
time window, which is set in an ad hoc manner. In
the future, a site should dynamically decide such an
“observing window,” depending on the traffic it is
observing.

ACKNOWLEDGMENTS

Bin Tang’s research has been supported in part by Kansas
NSF EPSCoR Grant EPS-0903806.

REFERENCES

[1] The Large Hadron Collider, http://public.web.cern.ch/Public/
en/LHC/LHC-en.html, 2011.

[2] Worldwide Lhc Computing Grid, http://lcg.web.cern.ch/LCG/,
2011.

[3] A. Aazami, S. Ghandeharizadeh, and T. Helmi, “Near Optimal
Number of Replicas for Continuous Media in Ad-Hoc Networks
of Wireless Devices,” Proc. Int’l Workshop Multimedia Information
Systems, 2004.

[4] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster,
“Secure, Efficient Data Transport and Replica Management for
High-Performance Data-Intensive Computing,” Proc. IEEE Symp.
Mass Storage Systems and Technologies, 2001.

[5] I. Baev and R. Rajaraman, “Approximation Algorithms for Data
Placement in Arbitrary Networks,” Proc. ACM-SIAM Symp.
Discrete Algorithms (SODA), 2001.

[6] I. Baev, R. Rajaraman, and C. Swamy, “Approximation Algo-
rithms for Data Placement Problems,” SIAM J. Computing, vol. 38,
no. 4, pp. 1411-1429, 2008.

[7] W.H. Bell, D.G. Cameron, R. Cavajal-Schiaffino, A.P. Millar, K.
Stockinger, and F. Zini, “Evaluation of an Economy-Based File
Replication Strategy for a Data Grid,” Proc. Int’l Workshop Agent
Based Cluster Computing and Grid (CCGrid), 2003.

[8] D.G. Cameron, A.P. Millar, C. Nicholson, R. Carvajal-Schiaffino,
K. Stockinger, and F. Zini, “Analysis of Scheduling and Replica
Optimisation Strategies for Data Grids Using Optorsim,” J. Grid
Computing, vol. 2, no. 1, pp. 57-69, 2004.

[9] M. Carman, F. Zini, L. Serafini, and K. Stockinger, “Towards an
Economy-Based Optimization of File Access and Replication on a
Data Grid,” Proc. Int’l Workshop Agent Based Cluster Computing and
Grid (CCGrid), 2002.

[10] A. Chakrabarti and S. Sengupta, “Scalable and Distributed
Mechanisms for Integrated Scheduling and Replication in Data
Grids,” Proc. 10th Int’l Conf. Distributed Computing and Networking
(ICDCN), 2008.

[11] R.-S. Chang and H.-P. Chang, “A Dynamic Data Replication
Strategy Using Access-Weight in Data Grids,” J. Supercomputing,
vol. 45, pp. 277-295, 2008.

[12] R.-S. Chang, J.-S. Chang, and S.-Y. Lin, “Job Scheduling and Data
Replication on Data Grids,” Future Generation Computer Systems,
vol. 23, no. 7, pp. 846-860, Aug. 2007.

[13] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing and
Querying Scientific Workflow Provenance Metadata Using an
Rdbms,” Proc. IEEE Int’l Conf. e-Science and Grid Computing, 2007.

[14] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S.
Bharathi, G. Mehta, and K. Vahi, “Data Placement for Scientific
Applications in Distributed Environments,” Proc. IEEE/ACM Int’l
Conf. Grid Computing, 2007.

[15] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe,
“Wide Area Data Replication for Scientific Collaboration,” Proc.
IEEE/ACM Int’l Workshop Grid Computing, 2005.

[16] A. Chervenak, R. Schuler, M. Ripeanu, M.A. Amer, S. Bharathi, I.
Foster, and C. Kesselman, “The Globus Replica Location Service:
Design and Experience,” IEEE Trans. Parallel and Distributed
Systems, vol. 20, no. 9, pp. 1260-1272, Sept. 2009.

[17] N.N. Dang and S.B. Lim, “Combination of Replication and
Scheduling in Data Grids,” Int’l J. Computer Science and Network
Security, vol. 7, no. 3, pp. 304-308, Mar. 2007.

[18] D. Düllmann and B. Segal, “Models for Replica Synchronisation
and Consistency in a Data Grid,” Proc. 10th IEEE Int’l Symp. High
Performance Distributed Computing (HPDC), 2001.

[19] J. Rehn et al., “Phedex: High-Throughput Data Transfer Manage-
ment System,” Proc. Computing in High Energy and Nuclear Physics
(CHEP), 2006.

[20] I. Foster, “The Grid: A New Infrastructure for 21st Century
Science,” Physics Today, vol. 55, pp. 42-47, 2002.

[21] I. Foster and K. Ranganathan, “Decoupling Computation and
Data Scheduling in Distributed Data-Intensive Applications,”
Proc. 11th IEEE Int’l Symp. High Performance Distributed Computing
(HPDC), 2002.

[22] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degrees Compared,” Proc. Grid Computing Envir-
onments Workshop, pp. 1-10, 2008.

[23] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM MobiCom, 2000.

[24] J.C. Jacob, D.S. Katz, T. Prince, G.B. Berriman, J.C. Good, A.C.
Laity, E. Deelman, G. Singh, and M.-H Su, “The Montage
Architecture for Grid-Enabled Science Processing of Large,
Distributed Datasets,” Proc. Earth Science Technology Conf., 2004.

[25] S. Jiang and X. Zhang, “Efficient Distributed Disk Caching in Data
Grid Management,” Proc. IEEE Int’l Conf. Cluster Computing, 2003.

[26] S. Jin and L. Wang, “Content and Service Replication Strategies in
Multi-Hop Wireless Mesh Networks,” Proc. ACM Int’l Conf.
Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), 2005.

[27] H. Lamehamedi, B.K. Szymanski, and B. Conte, “Distributed Data
Management Services for Dynamic Data Grids,” unpublished.

NUKARAPU ET AL.: DATA REPLICATION IN DATA INTENSIVE SCIENTIFIC APPLICATIONS WITH PERFORMANCE GUARANTEE 1305

[28] M. Lei, S.V. Vrbsky, and X. Hong, “An Online Replication Strategy
to Increase Availability in Data Grids,” Future Generation Computer
Systems, vol. 24, pp. 85-98, 2008.

[29] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J.
Hua, “A Reference Architecture for Scientific Workflow Manage-
ment Systems and the View Soa Solution,” IEEE Trans. Services
Computing, vol. 2, no. 1, pp. 79-92, Jan.-Mar. 2009.

[30] M. Mineter, C. Jarvis, and S. Dowers, “From Stand-Alone
Programs towards Grid-Aware Services and Components: A Case
Study in Agricultural Modelling with Interpolated Climate Data,”
Environmental Modelling and Software, vol. 18, no. 4, pp. 379-391,
2003.

[31] S.M. Park, J.H. Kim, Y.B. Lo, and W.S. Yoon, “Dynamic Data Grid
Replication Strategy Based on Internet Hierarchy,” Proc. Second
Int’l Workshop Grid and Cooperative Computing (GCC), 2003.

[32] J. Pérez, F. Garcı́a-Carballeira, J. Carretero, A. Calderón, and J.
Fernández, “Branch Replication Scheme: A New Model for Data
Replication in Large Scale Data Grids,” Future Generation Computer
Systems, vol. 26, no. 1, pp. 12-20, 2010.

[33] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the Placement
of Web Server Replicas,” Proc. IEEE INFOCOM, 2001.

[34] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, and
D. Thain, “The Quest for Scalable Support of Data Intensive
Workloads in Distributed Systems,” Proc. ACM Int’l Symp. High
Performance Distributed Computing (HPDC), 2009.

[35] I. Raicu, Y. Zhao, I. Foster, and A. Szalay, “Accelerating Large-
Scale Data Exploration through Data Diffusion,” Proc. Int’l
Workshop Data-Aware Distributed Computing (DADC), 2008.

[36] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou,
K. Vahi, K. Blackburn, D. Meyers, and M. Samidi, “Scheduling
Data-Intensive Workflows onto Storage-Constrained Distributed
Resources,” Proc. Seventh IEEE Int’l Symp. Cluster Computing and
the Grid (CCGRID), 2007.

[37] K. Ranganathan and I.T. Foster, “Identifying Dynamic Replication
Strategies for a High-Performance Data Grid,” Proc. Second Int’l
Workshop Grid Computing (GRID), 2001.

[38] A. Rodriguez, D. Sulakhe, E. Marland, N. Nefedova, M. Wilde,
and N. Maltsev, “Grid Enabled Server for High-Throughput
Analysis of Genomes,” Proc. Workshop Case Studies on Grid
Applications, 2004.

[39] F. Schintke and A. Reinefeld, “Modeling Replica Availability in
Large Data Grids,” J. Grid Computing, vol. 2, no. 1, pp. 219-227,
2003.

[40] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, and B.
Tierney, “File and Object Replication in Data Grids,” Proc. 10th
IEEE Int’l Symp. High Performance Distributed Computing (HPDC),
2001.

[41] B. Tang, S.R. Das, and H. Gupta, “Benefit-Based Data Caching in
Ad Hoc Networks,” IEEE Trans. Mobile Computing, vol. 7, no. 3,
pp. 289-304, Mar. 2008.

[42] M. Tang, B.-S. Lee, C.-K. Yeo, and X. Tang, “Dynamic Replication
Algorithms for the Multi-Tier Data Grid,” Future Generation
Computer Systems, vol. 21, pp. 775-790, 2005.

[43] M. Tang, B.-S. Lee, C.-K. Yeo, and X. Tang, “The Impact of Data
Replication on Job Scheduling Performance in the Data Grid,”
Future Generation Computer Systems, vol. 22, pp. 254-268, 2006.

[44] U. �Cibej, B. Slivnik, and B. Robi�c, “The Complexity of Static Data
Replication in Data Grids,” Parallel Computing, vol. 31, nos. 8/9,
pp. 900-912, 2005.

[45] S. Venugopal and R. Buyya, “An Scp-Based Heuristic Approach
for Scheduling Distributed Data-Intensive Applications on Global
Grids,” J. Parallel and Distributed Computing, vol. 68, pp. 471-487,
2008.

[46] S. Venugopal, R. Buyya, and K. Ramamohanarao, “A Taxonomy
of Data Grids for Distributed Data Sharing, Management, and
Processing,” ACM Computing Surveys, vol. 38, no. 1, 2006.

[47] X. You, G. Chang, X. Chen, C. Tian, and C. Zhu, “Utility-Based
Replication Strategies in Data Grids,” Proc. Fifth Int’l Conf. Grid and
Cooperative Computing (GCC), 2006.

Dharma Teja Nukarapu received the BE degree
in information technology from Jawaharlal Nehru
Technological University, India, in 2007, the MS
degree from the Department of Electrical En-
gineering and Computer Science, Wichita State
University in 2009. He is currently working
toward the PhD degree in the Department of
Electrical Engineering and Computer Science at
Wichita State University. His research interests
include data caching and replication and job

scheduling in data intensive scientific applications. He is a student
member of the IEEE.

Bin Tang received the BS degree in physics
from Peking University, China, in 1997, the MS
degrees in materials science and computer
science from Stony Brook University in 2000
and 2002, respectively, and the PhD degree in
computer science from Stony Brook University in
2007. He is currently an assistant professor in
the Department of Electrical Engineering and
Computer Science at Wichita State University.
His research interests include algorithmic aspect

of data intensive sensor networks. He is a member of the IEEE.

Liqiang Wang is currently an assistant pro-
fessor in the Department of Computer Science
at the University of Wyoming. He received the
BS degree in mathematics from Hebei Normal
University, China, in 1995, the MS degree in
computer science from Sichuan University,
China, in 1998, and the PhD degree in
computer science from Stony Brook University
in 2006. His research interests include the
design and analysis of parallel computing

systems. He is a member of the IEEE.

Shiyong Lu received the PhD degree in
computer science from the State University of
New York at Stony Brook in 2002, the ME
degree from the Institute of Computing Technol-
ogy of Chinese Academy of Sciences at Beijing
in 1996, and the BE degree from the University
of Science and Technology of China at Hefei in
1993. He is currently an associate professor in
the Department of Computer Science, Wayne
State University, and the director of the Scientific

Workflow Research Laboratory (SWR Lab). His research interests
include scientific workflows and databases. He has published more than
90 papers in refereed international journals and conference proceed-
ings. He is the founder and currently a program cochair of the IEEE
International Workshop on Scientific Workflows (2007 2010), an editorial
board member for International Journal of Semantic Web and Informa-
tion Systems and International Journal of Healthcare Information
Systems and Informatics. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 8, AUGUST 2011

