
Log-based Abnormal Task Detection and Root Cause Analysis for Spark

Siyang Lu∗, BingBing Rao∗, Xiang Wei,∗, Byungchul Tak†, Long Wang‡, Liqiang Wang∗
∗Dept. of Computer Science, University of Central Florida, Orlando, FL, USA

†Dept. of Computer Science and Engineering, Kyungpook National University, Republic of Korea
‡IBM TJ Watson Research Center, Yorktown Heights, NY, USA

Email: {siyang,robin.rao,xiangwei,liqiang.wang}@knights.ucf.edu, bctak@knu.ac.kr, wanglo@us.ibm.com

Abstract—Application delays caused by abnormal tasks are
common problems in big data computing frameworks. An
abnormal task in Spark, which may run slowly without
error or warning logs, not only reduces its resident node’s
performance, but also affects other nodes’ efficiency.

Spark log files report neither root causes of abnormal tasks,
nor where and when abnormal scenarios happen. Although
Spark provides a “speculation” mechanism to detect straggler
tasks, it can only detect tailed stragglers in each stage. Since
the root causes of abnormal happening are complicated, there
are no effective ways to detect root causes.

This paper proposes an approach to detect abnormality and
analyzes root causes using Spark log files. Unlike common
online monitoring or analysis tools, our approach is a pure
off-line method that can analyze abnormality accurately. Our
approach consists of four steps. First, a parser preprocesses
raw log files to generate structured log data. Second, in
each stage of Spark application, we choose features related
to execution time and data locality of each task, as well as
memory usage and garbage collection of each node. Third,
based on the selected features, we detect where and when
abnormalities happen. Finally, we analyze the problems using
weighted factors to decide the probability of root causes. In this
paper, we consider four potential root causes of abnormalities,
which include CPU, memory, network, and disk. The proposed
method has been tested on real-world Spark benchmarks.
To simulate various scenario of root causes, we conducted
interference injections related to CPU, memory, network,
and Disk. Our experimental results show that the proposed
approach is accurate on detecting abnormal tasks as well as
finding the root causes.

Keywords-Spark; Log Analysis; Abnormal Task; Root
Cause;

I. INTRODUCTION

With rapid growth of data size and diversification of
workload types, big data computing platforms increasingly
play more important role for solving real-world problems
[6] [10] [11] [15] . Several outstanding frameworks are in
active use today including Hadoop [1], Spark [2], Storm
and Flink. Among them, the Apache Spark has arguably
seen the widest adoption. It supports a fast and general
programming model for large-scale data processing, in
which Resilient Distributed Dataset (RDD) [14] are used
to describe the input and intermediate data generated during
the computation stages. RDDs are divided into different
blocks, called partitions, with almost equal size among
different compute nodes. Apache Spark uses pipeline to
distribute various operations that work on a single partition
of RDD. In order to serialize the execution of tasks, Spark

introduces stage. All tasks in the same stage execute the
same operation in parallel.

Compute nodes may suffer from a huge of interferences
from software (such as operating systems or other pro-
cesses) or hardware, which leads to abnormal problems. For
instance, we name a tasks an abnormal task or straggler
when it encounters significant delay in comparison with
other tasks in the same stage. In Spark, there is a mechanism
named speculation to detect this scenario, in which such
slow tasks will be re-submitted to another worker. Spark
performs speculative execution of tasks till a specified
fraction (defined by spark.speculation.quantile,
which is 75% by default) of tasks must be complete, then
it checks whether or not the running tasks run slower
than the median of all successfully completed tasks in a
stage. A task is a straggler if its current execution time is
slower than the median by a given ratio (which is defined
by speculation.multiplier, 1.5x by default). In
this paper, we propose a different approach compared with
Spark Speculation. In our method, we consider whole Spark
stages and abnormal tasks happening in any life span could
be detected. In addition, Spark’s report could be inaccurate
because Spark uses only fixed amount of finished task
durations to speculate the unfinished tasks.

When abnormal tasks (including stragglers) happen, the
performance of Spark applications could be degraded. How-
ever, it is very difficult for users to detect and analyze the
root causes. First, Spark log files are tedious and difficult
to read, and there is no straight-forward way to tell whether
abnormal tasks happen or not, even through stragglers can
be reported when speculation is enabled. Second, when an
abnormal scenario happen, there is few information about
the error in log files so that it is difficult for users to see
the concreted reasons that lead to the straggler problem.
Third, even online tools can monitor the usage and status of
system resource such as CPU, memory, disk, and network,
these tools do not directly cooperate with Spark, and users
still need many efforts to scrutinize root causes based on
their reporting. In addition, these monitoring tools usually
carry overhead and may slow down Spark’s performance.
Abnormal tasks could be caused by many reasons, where
most of them are resource contentions [4] by CPU, memory,
disk, and network. Our motivation is to help users find root
causes of abnormal tasks by analyzing only Spark logs.

In this paper, we propose an off-line approach to detect
abnormal tasks and analyze the root causes. Our method is

based on a statistical spatial-temporal analysis for Spark
logs, which consists of Spark execution logs and Spark
garbage collection logs. There are four steps to detect
the root causes. (1) We parse Spark log files according
to key words, such as task duration, data location, time
stamp, task finish time, and generate a structured log data
file. This step will eliminate all irrelevant messages and
values. (2) We extract the related feature set directly from
structured log file based on our experimental study. (3) We
detect abnormal tasks from the log data by analyzing all
relevant features. Specifically, we calculate the mean and
standard deviation of all tasks in each stage, then determine
abnormal tasks for each stage. (4) We generate factor
combination criteria for each potential root cause based on
analyzing their weighted factor in training datasets. Thus,
our approach can effectively determine the proper root
causes for given abnormal tasks.

The major contributions of this paper are as follows:
• The approach can accurately locate where and when

abnormal tasks happen based on analyzing only Spark
logs.

• Our offline approach can detect root causes of ab-
normal tasks according to Spark logs without any
monitoring data, thus it does not have any monitoring
overhead.

• It provides an easy way for users to deeply understand
Spark logs and tune Spark performance.

• It gives an reasonable probability result for root cause
analysis.

II. SPARK ARCHITECTURE

A. Background

Apache Spark is a fast and general engine for large-scale
data processing. In order to achieve scalability and fault
tolerance, Spark introduces an abstraction called resilient
distributed dataset (RDD) , which represents a read-only
collection of objects partitioned across a set of machines
that can be rebuilt if a partition is lost. When an application
is submitted to Spark, the cluster manager will allocate
compute resource according to the requirement of the appli-
cation, then Spark scheduler distributes tasks to executors,
and tasks will be executed in parallel. During this process,
Spark driver node will monitor the status of executors and
collect the tasks results from the worker nodes. In order
to parallelize a job, Spark scheduler divides an application
into a series of stages based on data dependence. In each
stage, all tasks do not have data dependence and execute
the same function.

B. The Framework of Spark Logging

Spark driver and executors record the status of executor
and collection of execution information about tasks, stages,
and job, which are the source of Spark logs.

Each Spark executor contains two log files, Spark exe-
cution log which record by log4j [5] and Spark garbage
collection (GC) log, which are the outputs by stderr and

Master

Driver
Execution log

Aggregated Spark
Execution log

Driver

Worker 1

Executor 1

Stage 0.0

Stage n

…

Spark
Execution log

Spark
GC log

Worker 2

Executor 2

Stage 0.0

Stage n

…

Spark
Execution log

Spark
GC log

Worker n

Executor n

Stage 0.0

Stage n

…

Spark
Execution log

Spark
GC log

…

Aggregated Spark
GC log

Figure 1. Spark workflow and log files.

stdout, respectively. Each of worker nodes and master
nodes has its own log files. When an application is finished,
we collect all Spark log files and aggregate them into an
execution log and a GC log.

III. ABNORMAL TASK DETECTION AND ROOT CAUSE
ANALYSIS

Spark log does not show abnormal tasks directly, thus
users cannot locate abnormal tasks by simply searching key-
words. This motivates us to design an automatic approach to
help users detect the abnormals and analyze the root causes.

A. Approach Overview

https://spark.apache.org/docs/0.9.1/h
ardware-provisioning.html

Abnormal
Location

Weighted
Factor

Structure Data

Raw Log
CPU

Memory

Network

Disk

Log Parsing

Feature Extracting

Factor Creating Probability

Root Causes Analysis

Abnormal Detecting

Feature Set

Abnormal localization

Factor Creating

Data preparation

Figure 2. Workflow of abnormal detection and root cause analysis.

The workflow of our approach for abnormal detection
and root cause analysis is shown in Figure 2.

1) Log preprocessing: We collect all Spark logs, includ-
ing execution logs and Spark GC logs, from the driver
node and all worker nodes. Then, we eliminate noisy
data and reformat logs into more structured data.

2) Feature extraction: Based on Spark scheduling
and potential abnormal task happening conditions,
we screen execution-related, memory-related, CPU-
related data to generate two matrices: execution log
matrix and GC matrix. The details are illustrated in
Section III-B.

3) Abnormal detection: We implement a statistical anal-
ysis approach based on the analysis of four kinds
of features, including task duration, timestamps, GC
time, and other task-related features, to determine the
degree of abnormal tasks and locate their happening.
The details are discussed in Section III-C.

4) Root cause detection: Instead of qualitatively deciding
the exact root causes that lead to the abnormals,
we quantitatively measure the degree of abnormals
by a weighted combination of certain specific cause-
related factors. The details are sh in Section III-E.

B. Feature Execution

According to Spark scheduling strategy, we define and
classify all features into three categories, namely, execution-
related, memory-related, and CPU-related, which are shown
in Table I. For example, the execution-related features can
be extracted from Spark execution logs, including task ID,
task duration, task finished time, task started time, stage ID,
and job’s duration. Spark GC log records all JVM memory
usage, from which we can extract memory-related features
such as heap usage, young space usage, as well as features
related system CPU usage such as system time and user
time. These feature sets extracted from Spark execution log
and GC log are shown in Table I.

C. Abnormal Detection

Adopting Spark speculation may bring false negatives in
the process of abnormal detection. Hence, we provide a
more robust approach to locate where stragglers happen and
how long they take. We will also consider about special
scenarios, for example, different stages are executed in
sequence or in parallel.

One basic justification of abnormal tasks is that the
running time of abnormal tasks is relatively longer than
the normal ones. [4] uses “mean” and “median” to decide
the threshold. However, in order to seek a more reasonable
anomaly detection strategy, we consider not only the mean
or median task running time, but also the distribution of the
whole data, namely the standard deviation. In this way, we
can get a macro-awareness on the task’s execution time, and
then based on the distribution of data, a more reasonable
threshold can be set to differentiate abnormals from the
normal ones. The abnormal detection mainly includes the
following two issues.

1. Comparing task running time on different nodes
We compare task execution time on different nodes in

the same stage. Let T taski,j,k denote the execution time
of task k in stage i on node j. Let avg stagei denote
the average execution time of all tasks, which belong to
different nodes but in the same stage i.

avg stagei =
1

J∑
j=1

Kj

(

J∑
j=1

Kj∑
k=1

T taski,j,k) (1)

Work flow where J and Kj are the total number of nodes
and the number of tasks in node j, respectively.

Similarly, the standard deviation of task execution in
stage j of all nodes is denoted as std stagei. Abnormal
tasks are determined by the following conditions:

taskk

{
abnormal T taskk > avg stagei + k ∗ std stagei

normal otherwise
(2)

where k is a factor that controls the threshold for abnor-
mal detection. In this paper, we set it to 1.5 by default for
fair compare with Spark provided speculator.

Figure 3 (c) shows abnormal detection process in Word-
count under CPU interference. Figure 3 (a) and (b) are
two stages inside the whole application. Moreover, inside
each of the stage, purple-dot line is the abnormal threshold
determined by Eq. (1), and the black dot-line indicates
the threshold calculated by Spark speculation. For all
tasks within a certain stage, the execution time above that
threshold are detected as abnormals; otherwise, they are
normals. Figure 3 (d) displays memory occupation along
the execution of its corresponding working stages.

2. Locating abnormal happening
After all tasks are properly classified into “normal” and

“abnormal”, the whole time line are labeled as a vector
with binary number (i.e., 0 or 1, which denote normal
and abnormal, respectively). To smooth the outliers (for
example, 1 appears in many continuous 0) inside each
vector, which could be an abrupt change but not consistent
abnormal base, we then empirically set a sliding window
with size of 5 to flit this vector. If the sum of numbers inside
the window is larger than 2, the number in the center of the
window will be set to 1, otherwise 0.

The next step is to locate the start and end time of
this abnormal task. Note that, as Spark logs record the
task finishing time but not the start time, so we locate the
abnormal task’s start time as the recorded task finishing time
minus its execution time. Moreover, for abnormal detection
in each stage, the tasks are classified into two sets. One is
for the initial tasks whose start time stamps are the begin of
each stage, as these tasks often have more overhead (such as
loading code and Java jar packets), and the execution time
usually operates much longer than its followings. Another
set consists of the rest tasks. Our experiments show that this
classification inside each stage can lead to a much accurate
abnormal threshold. In this way, our abnormal detection
method can not only detect whether abnormals happen, but
also locate where and when they happen.

D. Factors Used for Root Causes Analysis

After abnormals are located, we analyze their root causes
inside that certain area. For different root causes, we use
different features in Spark log matrix and GC matrix to
determine criteria to decide the root causes. Specifically,
for each root cause analysis, we use the combination of
weighted factors to define the degree of probability of each
root cause. In all normal cases the factor should equal to
1, and if an abnormal tends to any root cause, the factor
will become much bigger than 1. The factors are denoted
as a,b,c,d,e,f ,g for weight calculating. All of the indexes
which are used in our factors’ definition are listed here:

Table I
SPARK EXECUTION LOG MATRIX & GC LOG MATRIX

Related Name Meaning

Execution-Related

Time stamp Event happening time
Task execution time A task’s running duration time

Stage ID The ID number of each stage
Host ID The Node ID number

Executor ID The ID number of each executor running in per-worker
Task ID The unique ID number of each task

Job execution time A job running duration time (an application may contains many jobs)
Stage execution time A stage running duration time

Application execution time An application running duration time (after submitted)
Data require location The location of task required data

Memory-Related

Heap space Total Heap memory usage
Before GC Young space Young space memory usage before clearing Young space
After Young GC space Young space memory usage after clearing Young space
Before Heap GC space Total Heap memory usage before GC
After Heap GC space Total Heap memory usage after GC

Full GC time Full GC execution time
GC time Minor GC execution time

GC category The time spend on one full GC operation

CPU-Related
user time CPU time spent outside kernel execution
sys time CPU time spent insides kernel execution
real time Total elapsed time of the GC operation

194 196 198 200 202 204
0

500

1000

1500

2000

node1

node2

node3

node4

0 50 100 150 200
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

node1

node2

node3

node4

20 40 60 80 100 120 140 160 180 200 220
0

1

2

3

4
x 10

4

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6
x 10

6

node1

node2

node3

node4

(a) (b)

(c)

(d)

ms

s

ms

s

s

ms

kb

s

ta
sk

 d
u

ra
ti

o
n

ti
m

e

stage execution time

ta
sk

 d
u

ra
ti

o
n

ti
m

e

stage execution time

job execution time

ta
sk

 d
u

ra
ti

o
n

ti
m

e

application execution time

m
em

o
ry

 u
sa

ge

Figure 3. Abnormal detection under CPU interference in the experiment of WordCount: (a) Abnormal detection result in Stage-1. (b) Abnormal detection
result in Stage-2. (c) Spark execution log features for abnormal detection in the whole execution. (d) Spark GC log features for abnormal detection in
the whole execution.

j,J ,i,I ,k,K,n,N , inside which, j indicates the jth node, J
is set of nodes; i is the index of stage, I is a set of stages; k
denotes a task, K is a task set; n stands for a GC record, N
is GC records set. All factors used to determine root causes
are listed as below.

1. Degree of Abnormal Ratio (DAR)

Eq. (3) indicates the degree of abnormal ratio in a certain
stage, as defined in Eq. (3).

a =
kj′

1
J−1 ((

J∑
j=1

kj)−kj′)
(3)

where kj indicates the number of tasks in node j, and J
is the total number of nodes in the cluster. Here, we assume
that node j′ is abnormal.

2. Degree of Abnormal Duration (DAD)
The average task running time should also be considered,

as the abnormal nodes often record longer task running
time.

b =
avg nodej′

1
J−1 ((

J∑
j=1

avg nodej)−avg nodej′)

(4)

where avg nodej is defined as:

avg nodej =
1

Kj
(

Kj∑
k=1

T taski,j,k) (5)

ms

0 50 100 150 200
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

node1

node2

node3

node4

stage execution time

ta
sk

 d
u

ra
ti

o
n

ti
m

e

s

Figure 4. CPU interference injected after 20s application was submitted,
and continuously impacts 80s

3. Degree of CPU Occupation (DCO)
This factor c shown in Eq. (6) is used for expressing the

ratio between the wall-clock time and the real CPU time.
In the normal multiple-core environment, “realTime” is
often less than “sysTime+UserTime”, because GC is usually
invoked in multi-threading way. However, if the “realTime”
is bigger than “sysTime+UserTime”, it may indicate that the
system is very busy. We choose a Max value across nodes
as the final factor.

c = max
j∈J

(avg
j∈J

(
realT imei,j

sysT imei,j + userT imei,j
)) (6)

4. Memory Changing Rate (MCR)
Eq. (7) indicates the gradient of GC curve. Under CPU,

memory, and Disk interference, the interfered node’s GC
curve will change slower than the normal nodes’ GC
curve, as shown in Figure 5. k stable and k end are the
gradients of the connected lines between start position (the
corresponding memory usage at abnormal starting time) to
the stable memory usage position and the start position
to the abnormal memory end position (both the abnormal
start and end time are obtained in the previous section)
respectively. The reason we conduct this equation is that the
interfered node uses less memory than normal nodes under
interference. In this way, we use the maximum value of
k stable in the whole cluster (k stable of normal node) to
divide the minimums k end in the whole cluster (interfered
node) to get the value of this factor.

d =

max
j∈J

(k stablej)

min
j′∈J

(k end j′)
(7)

0 50 100 150 200
0

1

2

3

4

5

6
x 10

6

node1

node2

node3

node4

k_end j
k_start j

k_stable j

application execution time

m
em

o
ry

 u
sa

g
e

kb

s

Figure 5. CPU interference is injected after WordCount has run for 30s,
and continuously impacts 120s.

5. Degree of Task Delay (DTD)
For network interference, the task execution time will

be affected when data transmission is delayed. Moreover,
a Spark node often accesses data from other nodes, which
leads to network interference propagation. Based on these
facts, if network interference happens inside the cluster, the
whole nodes will be affected, as shown in Figure 6, which
is the location of our detected interference. Let a be a factor
that describes the degree of interference.

e = exp(J ∗
J∏

j=1

abn probj) (8)

Where abn probj indicates the ratio of abnormal that
we detect for each node j inside that area. The reason that
we use the product of abnormal ratio other than the sum
of them is that only when all nodes are with a portion
of abnormal should we identify them with a potential of
network interference, or if sum is used, we cannot detect
this joint probability. Meanwhile, the exponential is to make
sure that the final factor e is no less than 1. In this way,
the phenomenon of error propagation will be detected and
quantified, which can only be shown in the cluster with
network interference injection.

s

ms

Figure 6. Network interference is injected after WordCount has been
executed for 30s, and continuously impacts for 160s.

6. Degree of Memory Changing (DMC)

As network bandwidth is limited or the network speed
slows down, when one node get affected by that interfer-
ence, the task will wait for their data transformation from
other nodes. Hence, CPU will wait, and data transfer rate
becomes low. As shown in Figure 7.

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

6

node1

node2

node3

node4

application execution time

m
em

o
ry

 u
sa

g
e

kb

s

Figure 7. Network interference is injected after WordCount has been
executed for 30s, and continuously impacts for 120s.

f =

max
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}

min
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}

where,mj,n =
yj,n − yj,n−1
xj,n − xj,n−1

(9)

where mj,n indicates the gradient of memory changing in
nth task on node j. Eq. (4) is to find the longest horizontal
line that presents the conditions under which tasks’ progress
become tardy (e.g., CPU is relatively idle and memory
is kept the same). We first calculate the max value of
gradient for each GC point, denoted as m. To identify the
longest horizontal line in each node, we make a trade-
off between its gradient and the corresponding horizontal
length. To determine a relative value that presents the degree
of abnormal out of normal, we finally compare the max
and min among nodes with their max “horizontal factor”
(e−|mj,n|∗(xj,n − xj,n)), where e is to ensure that the whole
factor of b not less than 1).

7. Degree of Loading Delay (DLD)
Considering that the initial task at the beginning of each

stage always have a higher overhead to load data blocks
compared to the rest tasks. To only focus on that area, the
factor of g is proposed to measure its abnormality. Similar
to factor f , instead of taking all the tasks inside the detected
stage into consideration, here, the first task of each node is
used to replace the “avg nodej”in Eq. (4). Formally, the
equation is modified as Eq. (10) shows.

g =
T taski,j′,1

avg
j∈J

(T taski,j,1)
, where j′ /∈ J (10)

0 100 200 300 400 500
0

1

2

3

4

5

6

7
x 10

4

node2

node1

node3

node4

T_task i,j`,1

avg(T_task i,j,1)

stage execution time

ta
sk

 d
u

ra
ti

o
n

 t
im

e

ms

s

Figure 8. Disk interference is injected after WordCount has run for 20s,
and continuously impacts 80s

E. Root Causes Analysis

As shown in Table II, each root cause is determined by
a combination of factors with specific weights.

The nodes with CPU interference often have a relatively
lower computation capacity, which leads to less tasks allo-
cated and longer execution time for tasks on it. Factors
a and b are used to test if the interference is CPU or
not, because CPU interference can reduce the number of
scheduled tasks and increase the abnormal tasks’ execution
time. Factor c indicates the degree of CPU occupation,
and CPU interference will slow down of the performance
compared to normal cases. Factor d is used to measure
memory changing rate, because CPU interference may lead
memory change to become slowly than other regular nodes.

For the network-related interferences, because of its
propagation, the original interfered node will often recover
earlier. So our approach is to detect the first recovered
node as the initial network-interfered node, and the degree
b quantitatively describes the interference. When network
interference occurs, tasks are usually waiting for data de-
livery (factor e), the memory monitored by GC log f is
usually unchanged.

For the memory-related interferences, when memory in-
terference is injected into the cluster, we can even detect a
relatively lower CPU usage than other normal nodes. Con-
sidering this, the task numbers (factor a) and task duration
(factor b) are also added to determine such root causes with
certain weights. Moreover, the memory interference will
impact memory usage, and the factor d should be considered
for this root cause detection.

To determine disk interferences, we introduce the factor
g to measure the degree of disk interference. The task set
scheduled at the beginning of each stage could be affected
by disk I/O. Therefore, these initial tasks on disk I/O
interfered nodes behave differently from other nodes’ initial
tasks beginning tasks (factor g), CPU will become busy, and
memory usage is different with other nodes’. Therefore,
The memory changing rate (factor c) and CPU Occupation
(factor d) are also used to determine such root causes.

After deciding the combination of factors for each root
cause, we give them weights to determine root causes

Table II
FACTOR FOR EACH ROOT CAUSES

Factor type CPU Mem Network Disk
a DAR

√ √

b DAD
√ √ √

c DCO
√ √

d MCR
√ √ √

e DTD
√

f DMC
√

g DLD
√

accurately. Here, all weights are between 0 and 1, and the
sum of them for each root cause is 1. To decide the values
of weights, we use classical liner regression on training
sets that we obtained from experiments on WordCount,
Kmeans, and PageRank, which are discussed in more details
in Section IV.

CPU = 0.3 ∗ a+ 0.3 ∗ b+ 0.2 ∗ c+ 0.2 ∗ d
Memory = 0.25 ∗ a+ 0.25 ∗ b+ 0.5 ∗ d
Network = 0.1 ∗ b+ 0.4 ∗ e+ 0.5 ∗ f
Disk = 0.2 ∗ c+ 0.2 ∗ d+ 0.6 ∗ g

(11)

Then, Eq. (12) is proposed to calculate the final proba-
bility that the abnormal belongs to each of the root causes.

probability = 1− 1

factor
(12)

IV. EXPERIMENTS

In this section, we present the experimental results on
our abnormal detection and the root cause analysis in
three Spark applications, i.e., WordCount, Kmeans, and
PageRank which are provided by sparkbench [7].

A. Experimental Setup

To evaluate the performance of our proposed approach,
we build an Apache Spark Standalone Cluster with four
compute nodes, in which each compute node has a hard-
ware configuration with Intel Xeon CPU E5-2620 v3 @
2.40GHz, 16GB main memory, 1 Gbps Ethernet, and Cen-
tOS 6.6 with kernel 2.6. Apache Spark is v2.0.2.

B. Interference Injection

1) CPU: We spawn a bunch of processes to compete with
Apache Spark jobs for computing resources, which
triggers straggler problems in consequence of limited
CPU resource.

2) Memory: We run a program that requests a significant
amount of memory to compete with Apache Spark
jobs. Thus, Garbage Collection will be frequently
invoked to reclaim free space.

3) Disk: We simulate disk I/O contention using “dd”
command to conduct massive disk I/O operations to
compete with Apache Spark jobs.

4) Network: We simulate a scenario where network
latency has a great impact on Spark. Specifically, we
use “tc” command to limit bandwidth between two
computing nodes.

C. Experimental Result Analysis & Evaluation

We conduct experiments on three benchmarks, Word-
Count in Spark package, Kmeans and Page Rank in Spark-
Bench [7]. We run each of the benchmarks 20 times with
simulated interference injection.

Table III summarizes the probability results of our root
cause detection approach. For the first step, totally 320
abnormal cases are created, out of which 38 are detected as
normal (accuracy: 88.125%). Among these mis-classified
cases, 29 are from memory fault injection and the rest 9
are from disk IO. Meanwhile, additional 60 normal cases
are also put into our approach for root cause detection, and
no one is reported as abnormal. We also check the normal
cases’ abnormal factors to demonstrate the effectiveness of
our approach. In all three benchmarks, the impact of CPU
interference is significant, and tasks under CPU interfer-
ence can be detected as abnormal with high probability.
For memory interference, its probability is not significant
because memory interference has less direct effect on Spark
tasks, not like root causes. Injecting significant memory
interference into one node will cause the whole application
crash because the executers of Spark will fail if without
enough memory. For network interference, the results show
that the proposed approach gives a high probability. Lastly,
disk interference shows a high probability in disk root
causes. Worth mentioning here, for all different root causes,
the detected probability of CPU are always high, because
all root causes will eventually affect the efficiency of CPU.

Table III
ROOT CAUSES DIAGNOSIS RESULT

Benchmark Interference CPU Memory Network Disk

Wordcount

CPU 86.5 35.0 20.0 60.0
Memory 61.2 62.6 20.4 36.0
Network 51.5 32.5 85.0 32.4

Disk 60.2 40.5 26.2 82.5
Normal 8.5 3.5 5.2 10.3

Kmeans

CPU 86.0 53.1 24.5 42.3
Memory 60.5 53.5 35.6 30.5
Network 43.5 35.2 87.2 42.5

Disk 76.5 53.2 46.2 82.3
Normal 8.6 2.3 3.6 9.6

PageRank

CPU 83.2 43.3 24.3 52.5
Memory 65.4 67.6 26.5 45.0
Network 53.5 46.8 85.8 51.0

Disk 60.3 53.6 25.5 75.6
Normal 9.1 4.5 3.6 10.2

D. Discussion

Our approach is only tested on clusters with injecting
interference on a single node. In order to show considerable
effect, the interference will last a while. Additionally, as our
approach is based on the task analysis inside each stage,
it requires the target application with a certain amount of
task partitions for each stage. Furthermore, our approach
would be less suitable for analyzing user’s log with different
Garbage Collectors such as G1, CMS, and the new version
of Spark log with different Spark schedulers.

V. RELATED WORK

Abnormal tasks could lead to performance degradation
in the big data computing frameworks and their root causes
are complicated. Ananthanarayanan et al. [3] classified
root causes into three categories: machine characteristics,
which are the main reason, such as CPU usage, memory
availability, and disk failure; network characteristics faults
like the network bandwidth limitation and package drop;
the internals of the execution environment such as data-
work partitioning. Garbageman et al. [4] proposed that
most common cause for abnormal occurrence is server
resource utilization and data skew problem only takes 3% of
total root causes. Therefore, we consider machine resources
include CPU, memory, network, and disk as main root
causes to analyze, and ignore data skew.

There are two kinds of approaches in abnormal detec-
tion, online and off-line. Some monitoring-related online
approaches have been investigated. For example, Anantha-
narayanan et al. [3] provide a tool called MANTRI that
monitors tasks and outliers using cause- and resource-aware
techniques. MANTRI uses real-time progress to detect out-
liers in their lifetime. Spark and Hadoop themselves provide
an on-line “speculation”, which is a built-in component
to detect stragglers. There are many off-line approaches
analyze log to locate the error event positions [8] [9]
[14]. Moreover, Xu et al. [13] use an automatic log parser
to parse source code and combine PCA to detect anomaly,
it is based on abstract syntax tree (AST) to analyze source
code and uses machine learning to train data. Tan et al. [12]
provides an approach to analyze Hadoop log by extracting
state-machine views of a distributed system’s execution.
Moreover, it combines control-flow and data-flow generated
from debug log to catch normal system events and errors. In
our approach, we extract features directly from log, but do
not change any level of logging. And Xu et al. [4] provide
an experiment-based approach to determine root causes of
stragglers using an integrated off-line and online model.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel approach for Spark
log analysis, and it identifies abnormals by combining
both Spark log and GC log, and then analyze the root
causes by weighted factors without using additional system
monitoring information. Moreover, our approach can also
identify the root causes of abnormals with probability.

In the future work, we will consider more complex sce-
narios, such as multiple interferences happened in parallel,
so as to make our framework more robust to find root causes
under more complicated scenarios.

VII. ACKNOWLEDGEMENT

This work was supported in part by NSF-CAREER-
1622292.

REFERENCES

[1] Apache Hadoop website. http://hadoop.apache.org/.
[2] Apache Spark website. http://Spark.apache.org/.
[3] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,

I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in map-reduce clusters using mantri. In
OSDI, volume 10, page 24, 2010.

[4] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and
J. Xu. Straggler root-cause and impact analysis for
massive-scale virtualized cloud datacenters. IEEE
Transactions on Services Computing, 2016.

[5] C. Gülcü. The complete log4j manual. QOS. ch, 2003.
[6] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang.

Cap3: A cloud auto-provisioning framework for par-
allel processing using on-demand and spot instances.
In Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, CLOUD ’13, pages
228–235. IEEE, 2013.

[7] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura.
Sparkbench: a comprehensive benchmarking suite for
in memory data analytic platform spark. In The
12th ACM International Conference on Computing
Frontiers, page 53. ACM, 2015.

[8] A. Oliner and J. Stearley. What supercomputers say:
A study of five system logs. In DSN, pages 575–584.
IEEE, 2007.

[9] S. Ryza, U. Laserson, S. Owen, and J. Wills. Advanced
Analytics with Spark: Patterns for Learning from Data
at Scale. O’Reilly Media, 2015.

[10] V. Subramanian, H. Ma, L. Wang, E. Lee, and P. Chen.
Rapid 3d seismic source inversion using windows
azure and amazon EC2. In SERVICES, pages 602–
606. IEEE, 2011.

[11] V. Subramanian, L. Wang, E. Lee, and P. Chen. Rapid
processing of synthetic seismograms using windows
azure cloud. In CloudCom, 2010.

[12] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and
P. Narasimhan. Salsa: Analyzing logs as state ma-
chines. WASL, 8:6–6, 2008.

[13] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I.
Jordan. Detecting large-scale system problems by
mining console logs. In SOSP, pages 117–132. ACM,
2009.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-
ica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI.
USENIX Association, 2012.

[15] H. Zhang, H. Huang, and L. Wang. MRapid: An
efficient short job optimizer on hadoop. In the 31st
IEEE International Parallel & Distributed Processing
Symposium (IPDPS). IEEE, 2017.

