
A Resilient Framework for Fault Handling in Web Service Oriented Systems

Weidong Wang1,2,Liqiang Wang1,Wei Lu2

1Dept. of Computer Science,University of Wyoming,Laramie, WY, USA. Email: {wwang8,lwang7}@uwyo.edu
2School of Software Engineering,Beijing Jiaotong University, Beijing, China. Email: {11112094,luwei}@bjtu.edu.cn.

Abstract—Resilience is an important factor in designing web
service oriented systems due to frequent failures arising in run-
time. These failures derive from the stochastic and uncertainty
nature of a composite web service. Service providers need to
rapidly address issue when a fault occurs in system running.
But it is not easy to locate and fix the faults only using the
log generated by the system. In this paper, we propose a
resilient framework to automatically generate a fault handling
strategy for each failed service to improve the efficiency of fault
handling. In the framework, we design and implement three
components including exception analyzer, decision maker, and
strategy selector. First, The exception analyzer builds a record,
derived from the system log generated by an application, for
each failed service. Next, the decision maker adopts a k-means
clustering approach to construct a decision including the fault
handling to each failed service in a scope. Then, the strategy
selector uses an integer program solver to generate the solution
to strategy selection problem that is boiled down to the opti-
mization problem. The experiment shows that the framework
can improve resilience of Web service-oriented systems under
acceptable overheads, and meanwhile the accuracy of fault
handling strategy is over 95% .

Keywords-Web service, Resilience, Fault handling.

I. INTRODUCTION

In Web service-oriented systems, fault is a common phe-
nomenon, for example, services might be down, programs
may return wrong results, and process might throw excep-
tions and so on. Once a fault occurs, a composite service
provider often faces a situation that he/she takes a lot of time
to analyze the system log, and then locate faults and further
give a fault handling strategy. Meanwhile, it is not easy to
rapidly locate the faults in a big composite service, because it
has so many different atomic services. Next, once the failure
is located, a decision that how to handle these failed atomic
services should be made within a limited time. Moreover,
it becomes impossible to deploy a fault handler for each
atomic service especially in a complex workflow, because
such a fault handling method will spent huge expenses,
which seriously affects the system’s performance. In reality,
the general method is to identify the key path and pivot
atomic services in this key path. For the pivot atomic
services, fault handler can be manually added into the pivot
services according to the types of faults and experience of
programmer. However, once a fault occurs in a non-critical
path, the above method becomes unuseful.

In order to solve the above problem, we adopt a two-step
solution. First, we need to locate the all failed services in

both non-critical paths and critical paths. Second, we explore
an automatic approach to automatically generate a fault
handling strategy to reduce the workload of programmer
when a fault occurs. In the first step, the system log can be
viewed as the data source for fault analysis. By retrieving
the log, we identify the locations of faults and fault types. In
the second step, we analyze some samples of fault handling
strategy to the above failed services in a small scale, and then
construct the fault handling strategy based on the learning
results for each type of failed service.

Based on the above analysis, we call the above strategy as
resilient fault handling, which is an ability to automatically
make a system strong, healthy, and successful after faults
happened. The resilient fault handing implementation in
the Web service-oriented systems is usually designed using
business process tools such as Business Process Execution
Language for Web service (BPEL4WS) and WS-BPEL1.
Furthermore, the resilient fault handling should be efficiently
achieved in the manner of automation. The achieved capabil-
ity of fault resilience is important and essential for a variety
of critical services (e.g. E-commerce), which are attracting
attentions.

In this paper, we combine the two-step solution and
propose a framework for resilient fault handling. In the
framework, three components are designed and implemented
including exception analyzer, decision maker, and strategy
selector. First, The exception analyzer builds a record for
each failed service by tracking system log. Next, the decision
maker adopts a k-means clustering approach to generate a
decision including the fault handling to each failed service
in a scope. Then, the strategy selector uses the integer pro-
gram algorithm to generate a solution for strategy selection
optimization problem.

A. Contributions

The contributions of this paper can be categorized as
follows.

–Compared with traditional approaches, the proposed
framework achieves higher fault recognition rate and less
messages. Long duration and asynchronous communica-
tion make tracing fault more different. In the past, a
runtime fault detector based on the method of message

1http://docs.oasis-open.org/wsbpel/2.0/



listening [1] generates lots of messages during its execu-
tion in such an environment. In this paper, we introduce an
approach by analyzing system log to acquire the location
of failed path and services to improve the fault recognition
rate under less messages.
–We adopt the similarity-based clustering approach to au-
tomatically classify these failed services. Then, we design
a decision algorithm that can make a decision to generate
fault handling strategies for a set of failed services.
The rest of this paper is organized as follows. Section

II provides the design of a resilience approach. Section III
gives a framework details about implementation. Section
IV presents the experiment results. Section V provides an
overview of the related work. Section VI concludes this
paper and outlines the future work.

II. RESILIENCE STRATEGY

In this section, we explain the resilience methodology in
service oriented systems.

A. Fault Model

The types of malfunctions to service oriented systems
includes errors, faults, failures, and exceptions. An error, as
part of system state, indicates a serious system problem, such
as machine crash or system shutdown. A fault is a cause of
an error, which can be repaired by some strategies including
manual operations and automatic repaired methods. A failure
is considered as the result of an error or fault. An exception
is an event occurring during the execution of a program, and
disrupts the normal flow of the program’s instructions2. The
classification about failures is shown in Table I.

Class 1. Network and system errors or faults. These
errors or exceptions are raised by system hardware faults,
middleware platform faults, or communication faults.

Table I
FAILURES IN WEB SERVICE ORIENTED SYSTEMS.

Error or fault No. Type of error or fault

Class 1. Network and
system errors or
faults

1 Network connection failure or breakoff
2 Servers shut down
3 Reply or receive packets drop
4 Partner computer unavailable
5 System runtime error

Class 2. Application
faults

6 Process logic faults
7 Web service failure during transaction
8 User-defined faults

Class 3. Interface
matching and Web
service binding faults

9 Exception in Web service name or port
name

10 Input or output parameter mismatching
including name, type, and number

11 Web service style mismatching
12 Target name space fault

Class 4. Contract
violation faults

13 QoS dissatisfaction
14 SLA violation
15 User-defined rules violation

2http://docs.oracle.com/javase/tutorial/essential/exceptions/
definition.html

Class 2. Application faults. These faults can be classified
into three types. The first type of fault is raised by Web
service itself during system running time. There are so
many causes to raise such kind of faults. The fault mainly
derives from the design of a Web service itself, and is
associated to different running environments. The second
kind of exception is process logic fault. The cause could be
that the designer may design the business process incorrectly.
The third kind of fault is user-defined fault. To increase the
system’s robustness, fault handling mechanisms are added
into the program.

Class 3. Interface matching and Web service binding
faults. These faults often occur at Web service binding time.
Interface mismatching results in Web service binding failure,
which is often caused by mismatching of the name, type, and
number of a Web service.

Class 4. Contract violation faults. These faults can be clas-
sified into three types, QoS dissatisfaction,SLA violations,
and violations of rules defined by users.

B. Resilience Strategy
According to the characteristics of faults mentioned in

Section II-A, we classify resilience mechanisms into six
categories [2].

–Abort. In order to ensure the completion of a process, we
have to give up the failed service, which can be used in
deadlock or other runtime fatal failures.
–Hang. The service fails to complete execution due to un-
satisfied execution conditions. If the waiting time exceeds
the plan’s requirement, the main process automatically
gives up this service.
–Notify. The main process invokes a service, but fails to
complete execution due to out-of-service problems such as
data access failure or network connection failure. In order
to keep the execution going on, the main process should
give up this service and write logs or notice users.
–Retry. This strategy repeats the execution of a service
upon its successful completion. Specifically, we may set
the retry times as a special condition. This handler can be
used in a subprocess, which requires more data exchange,
especially when a network environment is relatively poor.
–Skip. This strategy means that the process omits the
execution of optional services. This strategy focuses on
uncritical services, which can be skipped. SLA faults could
be usually handled by the skip strategy.
–Substitute. The main process invokes a service, but fails
to complete execution due to some failures, where the
invoked service is necessary for the completion in a
composite service. In order to complete the process, the
main process provides more service candidates to ensure
the success of this process.

III. DESIGN AND IMPLEMENTATION

In this section, we design and implement a framework
with a resilient fault handling using the mechanisms men-



tioned in Section II-B. The framework consists of three
components, i.e., exception analyzer, decision maker, and
strategy selector, as shown in Figure 1.

Decision 

maker

Log 
 Domain 

Knowledge 

 Exception 

analyzer

Strategy

selector

Fault info.

Failed 

services

Knowledge

History 

Decision 
Decision 

reserve

Decision 

retrieval
Strategy 

operation

Fault 

record

 Resilient fault 

handling strategy

Strategy 

Template

Template

Figure 1. Framework of a resilient fault handling.

A. Exception Analyzer
The exception analyzer builds records for all failed ser-

vice. The records come from the system log generated by an
application. The flowchart is shown in Figure 2. First, the
original log is filtered to ignore irrelevant information using
the BM [3] algorithm based on the keywords (e.g., time and
type of faults). Next, we merge the results with the same
time, type, and location. Then, we re-sort the merged log
using the quick-sort algorithm3 based on the main attribute
(e.g., time). Finally, we group faults from the same scope
but different services together by association analysis. If the
faults occur within the given period, it will be saved into the
database.

Original Log

Filter log infomation 

based on the keyword

Merge log information 

Based on the specified 

attributes

Sort log infomation

Association analysis 

Repeat the 

process 

Save the record to 

database

Specified period

Yes

No

Figure 2. Flowchart of exception analyzer.

An example is shown in Table II, the exception in the first
row indicates the current failed service including the fault
type and the time of fault occurrence.

3http://en.wikipedia.org/wiki/Quicksort

B. Decision Maker
As the core of three components, the decision maker

decides what fault handling strategy to use. According to
the fault location and ID of failed services provided by
the exception analyzer, the decision maker firstly looks
for the matching fault handling strategy by retrieving the
history decision database. If a decision is available, it will
be provided to the strategy selector. Otherwise, the decision
maker will combine domain knowledge and use a decision
algorithm to generate a new fault handling decision, which
is sent to the strategy selector and meanwhile is also saved
into the history decision database.

In order to match fault handling strategy for each type
of fault, we divide fault records into two parts: training
sample and test data. For training sample, we record every
fault handling strategy for each different type of fault. Let
P strategy
type be the occurrence frequency for a type of the

strategy appearing in the same type of fault. For instance,
P skip
SLAV means the occurrence frequency for the skip han-

dling in SLAV (SLA violation) fault. Let Ustrategy
type be the

probability of usability with an fault handling strategy (e.g.,
NCF, Network connection failure) upon an fault handling
strategy (e.g., retry). Let Ttype be the occurrence number of
a type of fault, for instance, TNCF indicates that the number
of network connection failures. The equation is shown as
follows.

Ustategy
type =

P strategy
type

Ttype
(1)

According to Equation 1, we compute the probability
for each handling strategy upon a type of fault. As Table
III shows, the column denotes the types of faults, the row
represents the handling strategy for each type of fault. In
order to find rules related to the usability of each fault
handling strategy, we use training sample derived from
system log. Then, using Equation 1, we obtain the value
for each item in Table III, which indicates the probability
for the corresponding fault handling strategy applied to
the same type of fault. Based on these results, we know
what handling strategy can be used. In reality, we try each
probable strategy and then choose the most appropriate one.
However, there are three handling strategies at least for
each type of fault. We need to know which one is the best
solution for the given failed service. In order to decrease the
complexity of this processing, we design a metric to measure
similarity of type of fault among fault handling strategies.
Here, Euclidean Distance-based Similarity Algorithm [4],
[5] shown in Equations 2 and 3 is adopted by our approach.

Distance(Eαj , Eβj) =

√∑N

j=1
(Eα − Eβ)2, ∀α ̸= β, 1 ≤ j ≤ N

(2)

Similarity(Eαj , Eβj) =
1

1 +Distance(Eαj , Eβj)
, ∀α ̸= β, 1 ≤ j ≤ N

(3)



Table II
SYSTEM LOG RELEVANT TO FAULTS IN DATABASE

(Note: fault type is denoted by ET; the failed service is denoted by FS; the time of the fault thrown is denoted by TT; the number of services in process
sequence is denoted by SS; associated services in the same scope numbers are denoted by SN; the severity of the fault is denoted by SE; and the scope

that the fault belongs to is denoted by SC.)

ID ET FS TT SS SN SE SC

20001 Style mismatching Hotel reservation 05-09-2014, 17:04:30 1 C101 Medium SC03
20002 SLA exception Searching tourist 05-09-2014, 18:01:42 4 C101:104 Low SC05
20003 Network failure Car reservation 05-09-2014, 19:03:50 1 C102 High SC11

According to the k-means cluster algorithm [6], [7], we
obtain four clusters (k = 4) as follows. The first cluster in-
cludes SRE, PLF, SSD, and WSF, the second cluster includes
PCU, EWP, IOPM, WSSM, and TSF, the third cluster in-
cludes UDE, QOSD, SLAV, and UDRV, and the fourth clus-
ter includes NCF and RPD (The above abbreviative notations
are defined in Table III). Function Distance(Eαj , Eβj) in-
dicates the distance computation between the fault handling
strategy α and fault handling strategy β at the same fault
j. Similarity(Eαj , Eβj) denotes the similarity between the
fault handling strategy α and fault handling strategy β at the
same fault j. N denotes the number of types of faults.

Let Rskip be the strategy for the first cluster using
skip handling, Rretry be the strategy for second cluster
using retry handling, Rsubstitute be the strategy for the
third cluster using substitute handling, and Rrollback be the
strategy for the fourth cluster using rollback handling.

When handling a failed service, we should consider all
executed services within its scope. Here, we assume that all
services can be compensated in a scope, and there is no
conflicts between the compensating activities. Algorithm 1
shows how to choose a concrete fault handling strategy to
deal with the fault. Let dij be the decision probability of the
jth fault handling strategy for the ith service.

C. Strategy selection

A fault handling decision has a number of variations based
on different strategies for the failed services in a scope. For
example, if there are n failed service to be handled, and
each one may generate m fault handling strategies, where n
is the maximal number of failed services and m is maximal
number of fault handling strategies. Here, we consider three
user constraints: execution time, response time, and cost.
The selection problem of fault handling strategy with user
constraints can be formulated mathematically as

Problem 1. Minimize:
n∑

i=1

m∑
j=1

dij × xij

Subject to:

•
n∑

i=1

m∑
j=1

eij × xij ≤ u1

•
n∑

i=1

m∑
j=1

rij × xij ≤ u2

•
n∑

i=1

m∑
j=1

cij × xij ≤ u3

Algorithm 1 Decision algorithm.
Input:

Failed path and service,“Pij” and“Sij”
Output:

Decision set for the given faults in a scope,“dij”.
1: For (i = 0; i ≤ n; i++) do {
2: j=0;
3: if Pij and Sij happened before then
4: Retrieve the previous decision for dij
5: else if Sij .FaultType ∈ Rskip then
6: // Skip the failed service.
7: dij ← Skip(Sij);
8: else if Sij .FaultType ∈ Rretry then
9: // Retry the service that was failing.

10: dij ← Retry(Sij);
11: j=j+1;
12: if Pij is not in key path then
13: Skip the failed service.
14: dij ← Abort(Sij);
15: end if
16: else if Sij .FaultType ∈ Rsubstitute then
17: // Find a service that substitutes a failed one.
18: dij ← Substitute(Snew, Sij );
19: j=j+1;
20: if Pij is not in key path then
21: dij ← Reminder(Sij);
22: end if
23: else if Sij .FaultType ∈ Rrollback; then
24: dij ← Rollback(Scope, Sij );
25: else if Sij .FaultType ∈ Others then
26: dij ← Reminder(Sij);
27: end if
28: } EndFor
29: return (dij );

• ∀i,
m∑
j=1

xij = 1

• xij ∈ {0, 1}

In Problem 1, xij is set to 1 if the jth candidate strategy
for the ith failed service is selected and 0 otherwise. Fur-
thermore, dij , eij , rij , and cij are the decision probability,
execution time, response time, and cost of the strategy
candidates, respectively. n is the number of failed services
in the same scope, and m is the number of fault handling
resilient strategy candidates for a failed service. u1, u2, and
u3 are the user constraints for execution time, response time,
and cost, respectively. Problem 1 can be extended by adding
more constraints in the future.

By solving Problem 1 using the open source Integer



Table III
THE USABILITY OF EACH FAULT HANDLING STRATEGY FOR EACH TYPE OF FAULT IN WEB SERVICE ORIENTED SYSTEMS.

(Note: Network connection failure is denoted by NCF; servers shut down is denoted by SSD; packets drop is denoted by RPD; partner computer
unavailable is denoted by PCU; system runtime error is denoted by SRE; process logic faults is denoted by PLF; Web service failure during transaction
is denoted by WSF; user defined faults is denoted by UDE; exception in Web service name or port name is denoted by EWP; input or output parameter
mismatching including name, type, and number is denoted by IOPM; Web service style mismatching is denoted by WSSM; target name space fault is

denoted by TSF; QoS dissatisfaction is denoted by QOSD; SLA violation is denoted by SLAV; user defined rules violation are denoted by UDRV.)
No. Name Null Abort Hang Reminder Retry Skip Substitute Rollback
1 NCF 0.08 0.10 0.25 0.22 0.35 0 0 0
2 SSD 0.06 0 0 0.14 0.20 0 0 0.60
3 RPD 0.05 0.06 0.15 0.05 0.69 0 0 0
4 PCU 0.01 0.06 0.29 0.04 0.15 0.10 0.35 0
5 SRE 0.01 0.03 0 0.06 0.35 0 0 0.55
6 PLF 0.01 0.04 0 0.15 0.27 0 0 0.53
7 WSF 0 0 0.15 0.15 0.37 0.03 0 0.30
8 UDE 0.02 0.18 0 0.25 0 0.55 0 0
9 EWP 0 0.10 0 0.30 0.05 0 0.55 0
10 IOPM 0 0.11 0 0.32 0.04 0 0.53 0
11 WSSM 0 0.13 0 0.28 0.06 0 0.53 0
12 TSF 0 0.16 0 0.22 0.10 0 0.52 0
13 QOSD 0.05 0.05 0 0.26 0 0.64 0 0
14 SLAV 0.03 0.06 0 0.21 0 0.66 0 0
15 UDRV 0.02 0.03 0 0.28 0 0.67 0 0

Program solver 4, a set of strategies are generated for failed
services in a scope. Finally, according to the strategy set,
the strategy selector automatically generates a resilient fault
handling for each failed service in the scope by retrieving
strategy template database.

IV. EVALUATION OF EXPERIMENTS

All components in the framework are implemented in Java
6. Apache Tomcat 6 is used as Web server, and Apache Axis
5 is used as a Web service container, which can generate and
deploy Web service applications.

A. Effectiveness Evaluation

In our experiment, test data derived from system log
including 15 different types of faults are divided into 3
groups as 3 cases. Then, we record the success numbers
of fault handling strategies.

In Figure 3, let x-axis be type of fault, y-axis be fault
handling strategy, and z-axis be success numbers of fault
handling strategies. This figure shows that the system per-
forms success times under the each group.

In the same scenario, in order to show the success rate
for each type of fault, we calculate the success rate and
draw Figure 4. In Figure 4, x-axis denotes type of fault and
y-axis indicates the success rate of fault handling strategy.
The average success rate is 97.07%. In the above, all the
results are from random test data, which further shows that
our component is very effective and usable. We also test
whether the solution is correct. The test validates whether
the output values after executing the fault handling strategy
is the same as manually selecting fault handling strategy.
Then, we compare the output values obtained from executing

4http://lpsolve.sourceforge.net/5.5/Java/README.html
5http://http://axis.apache.org/axis/

NCF
SSD

RPD
PCU

SRE
PLF

WSF
UDE

EWP
IOPM

WSSM
TSF

QOSD
SLAV

UDRV
Abort

Hang

Reminder

Retry

Skip

Substitute

Rollback

0

10

20

30

40

50

60

70

80

Type of faults

Effectiveness evaluation

Strategy

N
u

m
b

er
 o

f 
su

cc
es

sf
u

lly
 r

ep
ai

re
d

 f
au

lt
s

Figure 3. Effectiveness evaluation under different types of faults.

the strategy with the output values obtained from original
executing process. The strategy is valid if these results are
equal. Consequently, the test result proves that our approach
is valid. More importantly, the fault handling strategy pro-
duced by our framework can provide a new evidence to
further improve the performance of Web service systems.

B. Performance Study

We conduct experiment to evaluate execution time and
response time. First, we evaluate the performance in two
scenarios: with resilient fault handling strategy and without
any strategy. We deploy the framework on the computer
where a composite service runs on, and then execute the
service without any fault handling in another computer.
Finally, we test the response time and the execution time
related to the composite service, and compare them in
different scenarios with resilient fault handling strategy and
without any strategy. Here, all computers have the same



0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Su
cc

es
s

ra
te

of
fa

ul
th

an
dl

in
g

[%
]

NCF, SSD, RPD, PCU, SRE, PLF, WSF, UDE, EWP, IOPM,WSSM, TSF, QOSD,SLAV,UDRV

Type of fault

Effectiveness evaluation

Baseline
Experimental results

Figure 4. Success rate under different types of faults.

configuration: HP 8280 with Intel Core i5-2400 with four
CPU at the clock speed of 3.1GHz and 8GB RAM. All the
computers are connected by Ethernet (100 Mbps).

In the experiment, there are 3 cases, each of which has
certain number of atomic services (e.g., the number of
services is 5, 10, 15, 20, 25, or 30) consisting of a composite
service. In each case, we consider two scenarios: the case
with resilient fault handling strategy, and the case without
any strategy.

1) Response time indicates the time that a system takes
to react to a given fault handling strategy.

2) Execution time indicates the time required to complete
all failed services in a scope.

In Figure 5(a), we can see that both response time with
and without our strategy are obviously increasing, while the
number of atomic services in a composite service increases.
The reason is that the invocation of each service in a
composite service needs some time, which depends on the
number of services and the invocation time for each service.
In addition, the response time with the strategy is slightly
longer than the response time without any strategy. For
example, when the number of services is 20, the response
time with the strategy is 507 (msec), and the response time
without any strategy is 210 (msec). From this result, we can
conclude that additional time 297 (msec) is used to generate
a resilient fault handling strategy as the additional overhead.

In Figure 5(b), both execution time with and without
resilient fault handling strategy are obviously increasing
while the number of atomic services in a composite service
increases. In other words, the execution time is increasing
as the number of atomic services increases. In each case, for
example, when the number of services is 15, the execution
time with resilient fault handling strategy is 6100 (msec),
and the execution time without any strategy is 5562 (msec).
The additional overhead is 538 (msec), which means that
the system needs 538 (msec) to execute a fault handling
resilient strategy, including the interface operation, reading
and writing the information from database and so on. Al-
though this process increases execution time, the additional
overhead is usually not a big burden for a composite service.
On the other side, the resilience of a composite service has

(a) Response time.

(b) Execution time.

Figure 5. Performance with and without resilient fault handling strategy.

been improved. The reason is that if the system suffers from
fault handling strategy or without any strategy, we can only
manually deal with the fault. This process will generate more
overhead than our approach.

In the above, we analyze the performance in terms of
response time and execution time, and the overheads is less
than 10% in total execution time and is acceptable to users.

C. Performance Comparison

To study the resilience improvement, we compare four
methods as follows:

1) NoRT. No resilient fault handling strategy is added in
the components.

2) RandomRT. The resilient strategy is employed based
on random selection.

3) UserRT. The resilient strategy is employed based
on specified strategy according to users’ subjective
experiences.

4) SLRT. The resilient strategy is employed based on the
system log.

In our experiments, a group of atomic services are con-
tained for each composite service (e.g., 10, 50, 100 atomic
services). The above four methods (i.e., NoRT, RandomRT,
UserRT, and SLRT) are conducted on these different volume
of service numbers, and the results are reported in Table IV.

In Table IV, Service FP represents the failure of proba-
bility of the service. The details of experimental results are
shown below.



Table IV
EVALUATION OF RESILIENCE IMPROVEMENT

Services Numbers Method Service FP = 0.5% Service FP = 1% Service FP = 3%
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

10

NoRT 0.912 0.912 0.913 0.710 0.710 0.711 0.350 0.350 0.350
RandomRT 0.921 0.923 0.924 0.710 0.711 0.713 0.357 0.355 0.358

UserRT 0.922 0.934 0.945 0.739 0.745 0.746 0.611 0.611 0.624
SLRT 1.000 1.000 1.000 0.993 0.992 0.995 0.987 0.988 0.985

50

NoRT 0.532 0.531 0.531 0.321 0.321 0.321 0.068 0.066 0.068
RandomRT 0.531 0.532 0.534 0.330 0.334 0.333 0.069 0.067 0.069

UserRT 0.710 0.742 0.781 0.670 0.678 0.674 0.520 0.524 0.524
SLRT 0.991 0.991 0.990 0.980 0.984 0.983 0.967 0.965 0.965

100

NoRT 0.211 0.210 0.210 0.101 0.102 0.102 0.014 0.014 0.016
RandomRT 0.212 0.214 0.218 0.102 0.103 0.101 0.015 0.015 0.016

UserRT 0.762 0.767 0.811 0.612 0.612 0.613 0.459 0.459 0.459
SLRT 0.989 0.989 0.989 0.976 0.976 0.976 0.956 0.950 0.955

1) In the above four testing methods, SLRT gives the
best success probability performance while the NoRT
provides the worst success probability performance,
because the SLRT method uses the components based
on the analysis of system log, and the NoRT method
provides no resilience strategy.

2) Compared with the NoRT, the RandomRT obtains little
performance improvement in success probability.

3) Compared with the NoRT and RandomRT, the UserRT
method can obtain a certain success probability, be-
cause the approach uses users’ experiences as the basis
of strategy selection. But UserRT is more complicated
and needs certain field knowledge, which is subjective.

4) Compared with the NoRT, RandomRT, and UserRT,
SLRT obtains the better resilience than the other
methods, because the SLRT is based on the analysis
of system log.

5) When the number of activities increases from 10 to
100, the success probability of the UserRT slightly de-
creases, while success probabilities of RandomRT and
NoRT have no change or decrease. The results indicate
that fault handling performance can be improved by
our resilient strategy.

6) While the service failure probability increases from
0.5% to 3%, the success probabilities of all methods
except SLRT dramatically decrease. This indicates the
SLRT has better resilience than other methods.

In summary, our resilient fault handling strategy has been
proved to be valid and accurate.

V. RELATED WORK

In the area of Web service fault handling, Liu et al.
[2] propose FACTS, a framework for fault-tolerant com-
position of transactional Web services. Meanwhile, fault
handling resilient mechanisms including exception detec-
tion are designed and implemented. However, the resilient
mechanism more or less depends on manually operation but
not automatic operation. Guan et al. [1] present a policy
driven based framework (EHF-S) for web service exception

handling to simplify the exception handling process. But
the framework lacks software performance verification, and
software test work is more or less missing in the paper.
Modafferi et al. [8] propose self-healing plug-in for a WS-
BPEL engine, which utilizes a BPEL4WS compatible engine
that has the ability of executing processes defined using
BPEL language, to provide process-based recovery actions.
In the area of self-healing software systems [9], David et
al. [10] propose architecture models for problem diagnosis
and repair for self-healing systems. This architecture can
handle specified simple failed services and less consider
coupled complex services. Shin [11] proposes an approach to
design a self-healing component for robust, concurrent and
distributed software systems. The plans for reconfiguration
and repair are considered as black boxes. Gerhard friedrich
et al. [12] propose a self-healing approach to cure exceptions
and a model-based approach to repair the faults in service-
based processes. Moreover, a platform is introduced for fault
diagnosis. A prototype is developed to validate the proposed
repair approach for Web service composition. However,
the heuristic-based repair ability does not give concrete
description at design-time. Especially for a complex Web
service-based process, a reasoning model needs to be further
validated.

There are also several traditional resilience strategies.
Moorsel et al. [13] note that retries or restarts are con-
sidered as a phenomenon in computing system in software
rejuvenation, preventive maintenance, or when a suspicious
failure is spotted. Okamura et al. [14] consider that retries
or restarts are typical recover strategies to satisfy a deadline
in real-time systems as a significant environmental diversity
technique in service computing. The approaches in [15],
[16] show that transaction mechanism has been widely used
in Web service-oriented system. Li et al. [16] propose two
kinds of transaction types, coordination mechanisms, and a
transaction processing coordination model based on BPEL.
However, these fault handling strategies focus on some types
of faults, but fail to handle a batch of different types of failed
services.



VI. CONCLUSION

It is important to locate faults rapidly and give a fault
handling solution when faults occur in Web service system.
In this paper, we propose a resilient framework to auto-
matically generate a fault handling strategy for each failed
service. In the framework, we design and implement three
components including exception analyzer, decision maker,
and strategy selector. The exception analyzer generates a
record for each failed service. The decision maker constructs
a decision according to these faults. Based on the decision,
the strategy selector gives a fault handling strategy for each
failed service. The experiment shows that the framework
improves the system’s resilience under acceptable overheads
with high accuracy. In the future, we will further extend the
framework by considering more constraints in the process
of selecting strategy. Meanwhile, more efficient selection
algorithms will be investigated. In addition, we will adapt
the framework to generate fault handling strategies for cloud
services by combining our works [17], [18], [19], [20] in the
fields of service computing and cloud computing.

ACKNOWLEDGMENT

This work is supported in part by NSF under Grant
1118059 and NSFC under Grant 61272353, 61428201.

REFERENCES

[1] H. Guan, S. Ying, and C. Jiang, “An exception handling
framework for web service,” in Proceedings of Interna-
tional Conference on Computer Engineering and Network.
Springer, 2013, pp. 1173–1180.

[2] A. Liu, Q. Li, L. Huang, and M. Xiao, “FACTS : A Frame-
work for Fault-Tolerant Composition of Transactional Web
Services,” IEEE Transactions on Service Computing, vol. 3,
no. 1, pp. 46–59, 2010.

[3] R. Boyer and J. Moore, “A fast string searching algorithm,”
Communication of ACM, vol. 20, no. 1, pp. 762–772, 1977.

[4] S. Muchun and C. Chienhsing, “A modified version of the K-
means algorithm with a distance based on cluster symmetry,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 6, pp. 674–680, 2001.

[5] M. S. Charikar, “Similarity Estimation Techniques from
Rounding Algorithms,” in Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing, ser. STOC
’02. ACM, 2002, pp. 380–388.

[6] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silver-
man, and A. Wu, “An efficient k-means clustering algorithm:
analysis and implementation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881–
892, 2002.

[7] P. La Rosa, A. Nehorai, H. Eswaran, C. Lowery, and
H. Preissl, “Detection of Uterine MMG Contractions Using
a Multiple Change Point Estimator and the K-Means Cluster
Algorithm,” IEEE Transactions on Biomedical Engineering,
vol. 55, no. 2, pp. 453–467, 2008.

[8] S. Modafferi, E. Mussi, and B. Pernici, “Sh-bpel: A self-
healing plug-in for ws-bpel engines,” in Proceedings of the
1st Workshop on Middleware for Service Oriented Computing
(MW4SOC 2006). ACM Press, 2006, pp. 48–53.

[9] R. Hamadi, B. Benatallah, and B. Medjahed, “Self-adapting
Recovery Nets for Policy-driven Exception Handling in Busi-
ness Processes,” Distrib. Parallel Databases, vol. 23, no. 1,
pp. 1–44, 2008.

[10] D. Garlan and B. Schmerl, “Model-based adaptation for self-
healing systems,” in Proceedings of the First Workshop on
Self-healing Systems. ACM Press, 2002, pp. 27–32.

[11] M. E. Shin, “Self-healing components in robust software
architecture for concurrent and distributed systems,” Science
of Computer Programming, vol. 57, no. 1, pp. 27–44, 2005.

[12] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni,
“Exception Handling for Repair in Service-Based Processes,”
IEEE Transactions on Software Engineering, vol. 36, no. 2,
pp. 198–215, 2010.

[13] A. van Moorsel and K. Wolter, “Analysis of Restart Mecha-
nisms in Software Systems,” IEEE Transactions on Software
Engineering, vol. 32, no. 8, pp. 547–558, 2006.

[14] H. Okamura, T. Dohi, and K. S. Trivedi, “On-Line Adaptive
Algorithms in Autonomic,” in IEEE-EURASIP Workshop,
2010, pp. 32–46.

[15] S. Chang-ai, E. El-Khoury, and M. Aiello, “Transaction Man-
agement in Service-Oriented Systems: Requirements and a
Proposal,” IEEE Transactions on Services Computing, vol. 4,
no. 2, pp. 167–180, 2011.

[16] L. Wenjuan, P. Shanliang, and W. Yabei, “Research of web
service transaction extending model based on ws-bpel,” in
2010 2nd Int’l Conf.on Information Engineering and Com-
puter Science (ICIECS), 2010, pp. 1–6.

[17] W. Wang, W. Lu, L. Wang, W. Xing, and Z. Li, “A ranking-
based approach for service composition with multiple qos
constraints,” in In International Conference on Information
Technology and Software Engineering. Springer, 2013, pp.
185–195.

[18] H. Huang and L. Wang, “Pp: A combined push-pull model
for resource monitoring in cloud computing environment,” in
In 3rd International Conference on Cloud Computing. IEEE,
2010, pp. 260 – 267.

[19] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang, “Cap3:
A cloud auto-provisioning framework for parallel processing
using on-demand and spot instances,” in In the IEEE 6th
International Conference on Cloud Computing. IEEE, 2013,
pp. 228–235.

[20] L. Wang, S. Lu, and X. Fei, “Atomicity and provenance
support for pipelined scientific workflows,” In Journal of
Future Generation Computer Systems, vol. 25, no. 5, pp. 568–
576, 2009.


