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Abstract—Hadoop is a popular open-source implementation
of the MapReduce programming model to handle large data
sets, and HDFS is one of Hadoop’s most commonly used
distributed file systems. Surprisingly, we found that HDFS is
inefficient when handling upload of data files from client local
file system, especially when the storage cluster is configured to
use replicas. The root cause is HDFS’s synchronous pipeline
design. In this paper, we introduce an improved HDFS design
called SMARTH. It utilizes asynchronous multi-pipeline data
transfers instead of a single pipeline stop-and-wait mechanism.
SMARTH records the actual transfer speed of data blocks and
sends this information to the namenode along with periodic
heartbeat messages. The namenode sorts datanodes accord-
ing to their past performance and tracks this information
continuously. When a client initiates an upload request, the
namenode will send it a list of “high performance” datanodes
that it thinks will yield the highest throughput for the client.
By choosing higher performance datanodes relative to each
client and by taking advantage of the multi-pipeline design,
our experiments show that SMARTH significantly improves
the performance of data write operations compared to HDFS.
Specifically, SMARTH is able to improve the throughput of
data transfer by 27-245% in a heterogeneous virtual cluster
on Amazon EC2.

I. INTRODUCTION

The amount of generated and stored data has been grow-

ing rapidly, and the rate of the growth is only increasing. It

is estimated that 2.5 quintillion bytes of data are generated

every day, and 90% of the data in the world today has been

created in the last two years [1]. How to solve these big data

issues has become a hot topic in both industry and academia.

Apache Hadoop [2] is a popular open-source implementa-

tion of the MapReduce programming model to handle large

data sets. Hadoop hides the complex details of paralleliza-

tion, fault tolerance, data distribution, and load balancing.

It is designed to be deployed onto commodity hardware

ranging from a few nodes to thousands or more. Hadoop has

two main components: MapReduce and Hadoop Distributed

File System (HDFS). MapReduce paradigm is composed

of a Map function that performs filtering and sorting of

input data and a Reduce function that performs a summary

operation. HDFS is a distributed, scalable, and portable file

system written in Java for the Hadoop framework. There are

some major differences from other distributed file systems,

e.g., highly fault-tolerant, and can be easily deployed on

low-cost hardware.

HDFS contains a single namenode that manages the entire

file system, and one or more datanodes to serve read and

write requests from client systems. HDFS assumes that

all nodes in a cluster are homogeneous and can process

requests with similar speed. However, in real world, the

performance of (e.g., network, disks, and CPU) nodes could

be different from one another due to various reasons, e.g.,

different generations of hardware, different virtual resource

allocation, resource contention in virtualized environments,

etc. We found that this disparity in performance amongst

datanodes within an HDFS cluster can significantly hamper

its write performance.

In this study, we propose an asynchronous multi-pipeline

file write protocol to replace the traditional stop-and-wait

protocol in HDFS. Instead of transferring data blocks one by

one and waiting for ACK (acknowledgement) packets from

all datanodes involved in the transmission, SMARTH (Smart

HDFS) builds a new pipeline after it finishes sending the

current block to the first datanode in the pipeline so that it

can start sending the next data block right away. This new

design makes better use of the network capacity of the client

as well as the datanodes’ accessing bandwidth within the

cluster. In order to minimize the time of the file importing

process, we introduce a flexible sorting algorithm of datan-

odes based on real-time and historical datanode accessing

status (including network and storage I/O). We employ the

heartbeat mechanism to report the data transmission speed

on each client to the namenode every three seconds. Based

on the collected information, the namenode can give a good

estimate of which set of datanodes a client should use for

best performance. When the replication factor of an HDFS

cluster is greater than one, which is often used in production

environments, we optimize the way that a client interacts

with each of the datanodes in a pipeline to allow additional

parallelism in data transfer. However, this also changes the

way that HDFS ensures data fault tolerance, and thus, we

revise its fault tolerance method so that the new way is

compatible with the asynchronous multi-pipeline protocol.

We simulate various network conditions using bandwidth

throttling on Amazon EC2, we demonstrate that the asyn-

chronous multi-pipeline algorithm is able to remove the

single pipeline barrier and effectively overlap data transfer in

different pipelines for HDFS file write operations. Overall,

SMARTH is able to improve the throughput of data transfer
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by 27- 245% in a heterogeneous virtual cluster of Amazon

EC2.

The contributions of this paper are: (1) introducing an in-

novative asynchronous data transmission approach to greatly

improve the write operation’s performance in HDFS, (2)

supporting flexible sort of datanode pipelines based on real-

time and historical datanode accessing condition, and (3)

providing a comprehensive fault tolerance mechanism under

this asynchronous transmission approach.

The rest of this paper is organized as follows. Section

II discusses background on file write in Hadoop distributed

file system. We then describe the multi-pipeline design of

SMARTH in Section III focusing on performance, followed

by Section IV that details the accompanying fault tolerance

algorithm. Section V shows experimental results. Section VI

provides a review of related work. Conclusions and possible

future work are summarized in Section VII.

II. BACKGROUND

An HDFS cluster is comprised of a namenode and one or

more datanodes. In this section, we give a comprehensive

analysis about how a client communicates with the namen-

ode and datanodes when uploading data to HDFS. As shown

in Figure 1, there are 6 steps to upload data from a local

file system into HDFS.

Figure 1. Workflow of an HDFS file write operation.

1) Creating a file into the file system’s namespace.

The client first makes a create() HDFS call, which

results in a ClientProtocol RPC being invoked to

create a new file on the namenode. Before the creation

of the file in the namespace, the namenode conducts

several checks, e.g., whether the file already exists,

whether the user has the right to create the file, and

whether safe mode is disabled. If all these checks pass,

the namenode would create the corresponding file in

the file system’s namespace; otherwise it would throw

an exception.

2) Splitting data into packets and inserting into a data

queue. To write data to HDFS, client applications

consider the data file as a standard output stream.

This data stream is fragmented into blocks, each of

which has a default size of 64MB. In turn, each block

is split into 64KB packets by default when being

transmitted onto the network. When the client writes

a new block, a DataStreamer thread would send

an addBlock() call to the namenode to ask for

a new block ID and the datanode IDs to store the

block. After the corresponding packets are generated,

the client sends these packets to a FIFO queue and

then to the datanodes.

3) Sending packets to Datanodes. DataStreamer

uses the datanode IDs to build a pipeline between the

client and these datanodes, streams the packets to the

first datanode in the pipeline one by one, and stores

these packets into another queue called ACK queue

in case some datanodes require retransmitting due to

packet loss. When the first datanode receives a packet,

it verifies the packet’s checksum, stores the packet, and

transfers it to the next datanode in the pipeline. This

procedure will repeat until the packet reaches the last

datanode at the end of the pipeline.

4) Sending acknowledgement (ACK) back to the

client. When the last datanode obtains the packet,

it would send an ACK through the pipeline in

a reverse order. The client has a thread called

PacketResponder that is responsible for receiving

response ACKs. If the PacketResponder thread

receives a packet ACK from all datanodes, it removes

this packet from the ACK queue.

5) Closing the output stream. When the client has

flushed all data into the output stream, it calls

close() on the stream, and waits for all packets’

ACKs.

6) Completing file write. When all packets’ ACKs are

received by the PacketResponder thread, it wakes

up the client. The client would send a complete signal

to the namenode to complete this file write operation.

In Steps 3 and 4, the client has to wait until it received all

ACKs through the pipeline, during which the client could not

optimally make use of network capacity. In other words, only

one pipeline is utilized even though there are many other

available nodes in the cluster. This motivates us to design a

new protocol to better exploit the network bandwidth of the

client node and within the HDFS cluster.

III. DESIGN AND IMPLEMENTATION

In this section, we introduce SMARTH and compare it

with HDFS. First we use a common scenario to illustrate

how existing HDFS design cannot take advantage of the

full network bandwidth of the client node when data is

uploaded into an HDFS cluster. This motivates us to design

an asynchronous block transmission scheme to overcome the

existing limitations.
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A. Design of Asynchronous Multi-pipeline Protocol

In the original HDFS design, when a client wants to

write a data block to an HDFS cluster, it receives a list

of datanodes from the namenode to form a pipeline. The

data block travels from the client to each of the datanodes

sequentially, and the client will only mark a block as

completed when the ACK packets from all the datanodes in

the pipeline are received. Therefore, the effective bandwidth

of the pipeline is limited by the slowest datanode in the

pipeline.

Figure 2. Workflow of a SMARTH file write operation.

The way that SMARTH handles data write operations is

shown in Figure 2. Step 1 is similar to Hadoop. When the

client writes a block, it first asks for a block ID and a list

of datanodes to store the data. The SMARTH namenode

then chooses a high-bandwidth node relative to the client

as the first datanode in the pipeline (based on historical

information, which we will describe later). In step 2, the

client splits data blocks into same size packets and puts them

into a data queue.

During data transmission, the client sends these packets

to the first datanode, and after storing them locally, this

datanode forwards them to the second datanode and so on

and so forth until the last datanode receives all the packets

(step 3). When the first datanode receives all the packets of

a certain block, it sends back a special ACK packet called

FIRST_NODE_FINISH_ACK (FNFA) to the client. This

packet indicates to the client that the entire block has been

received and stored by the first datanode in the pipeline.

Instead of waiting for ACKs from the other datanodes, the

client continues to send the next data block by requesting

another block ID and datanodes from the namenode. This

results in a new pipeline being formed for sending the next

data block. Additional pipelines can be formed if the client

can send packets to the first datanode quicker than the speed

that the packets travel to the other datanodes in the pipeline.

After creating a pipeline, we create an ACK queue and

a PacketResponder thread for it. Each pipeline trans-

fers ACKs back to the corresponding PacketResponder

thread (step 4). As the PacketResponder thread receives

an ACK from its pipeline, it removes the correspond-

ing packet from its ACK queue. At the client, we use

a set to enumerate all active pipeline objects. When the

PacketResponder thread receives all ACKs, it will be

removed from this set. When the pipeline set is empty, we

close output stream (step 5) and complete this uploading

(step 6).

Using this method to upload files to HDFS, the client

can fully utilize its bandwidth capacity and reduce idle

time on waiting for ACK messages. Thus, the speed of the

asynchronous pipeline transmission is now determined not

by the minimum bandwidth amongst client and datanodes

but the network speed between the client and the first

datanode in the pipeline. In the following subsections, we

describe how SMARTH namenode finds the “best” first

datanode for each client while keeping the cluster balanced.

B. Global Optimization for Data Transmission

Traditional HDFS represents a network topology as a tree

structure [2]. When the client requests a list of datanodes for

storing a data block, the namenode chooses the target nodes

according to this network topology tree, e.g., to optimize for

performance and to maximize data fault tolerance. However,

it cannot accurately capture the real-time network condition

as this information is usually not directly correlated with the

network topology.

In SMARTH, client records the transmission speed of

data blocks to all the first datanodes in transfer pipeline

that it had communicated before and sends these records

to the namenode every three seconds by remote procedure

calls (RPCs), following the default heartbeat mechanism in

Hadoop. When the client subsequently requests datanodes

to place additional data blocks, the namenode utilizes this

information to choose a set of best performing datanodes in

the cluster according to our global optimization algorithm

shown below.

Algorithm 1 describes SMARTH namenode’s global op-

timization algorithm for choosing datanodes. When the

namenode receives a request to upload files from a client,

it calculates the maximum number of pipelines allowed for

the client, and assign it to a variable n. Our design selects

a datanode randomly from the n best performing nodes for

this client as the first datanode so that we can guarantee

the bandwidth between the client and the first datanode

is relatively higher in the pipeline. The second replica is

selected from a different rack and the third replica is placed

on the same rack as the second.

C. Local Optimization for Data Transmission

Since network status varies all the time, we utilize a

local optimization algorithm to sort the datanodes order in

pipeline by the newly records and give a chance to test
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Algorithm 1 Algorithm for global optimization

1: num = the number of active datanodes

2: repli = the number of replica factor

3: n = num / repli // the maximum pipeline size

4: if (namenode has transmission records for the client)

then

5: TopN = top n datamodes in terms of transfer speed

6: // the number of datanodes we have choosen

7: results = 0

8: while (results != repli) do

9: if (results == 0) then

10: targets[0] = randomDatanode(TopN )

11: else if (results == 1) then

12: targets[1] = randomRemoteRackNode()

13: else if (results == 2) then

14: targets[2] = nodeOnSameRack(targets[1])

15: else

16: targets[results] = randomDatanode()

17: end if

18: results++

19: end while

20: else

21: targets = employ the original HDFS method to

select datanodes

22: end if

the bandwidth performance of nodes with poor performance

previously.

Algorithm 2 Algorithm for local optimization

1: repli = the number of replica factor

2: TransSpeedV ector = the transmission speed of every

nodes in targets
3: sort targets in descending order by

TransSpeedV ector
4: r = a random number between 0 to 1

5: if (r ¿ threshold) then

6: //the target index to switch the first datanode

7: index = a random integer between 1 to repli− 1
8: swap(targets[0], targets[index])

9: end if

Algorithm 2 shows details of local optimization algorithm

executes in the client node. We use block transfer records

locally to calculate the transmission speed for each datan-

odes assigned to TransSpeed, and employ sort algorithm

to reorder the targets set. We calculate a random number r
between 0 to 1 to decide whether to swap the first datanode

with another datanode in pipeline so that we can update

the transmission records of that node. In this way, we may

keep transmission information for all datanodes updated

occasionally. In our algorithm, if r is greater than threshold
that is assigned to 0.8, we use another random integer index

to choose which datanode to switch with the first one.

D. Cost-Benefit Analysis

To pinpoint how SMARTH outperforms HDFS, we ana-

lyze a file write operation in details and compare the two

designs step by step. Data transfer between a client and

datanodes for the original HDFS is shown in Figure 3. When

the number of replica is greater than one, datanodes will

forward each packet to the next datanode along the pipeline

until the last datanode receives it. Client will wait for ACKs

from all datanodes in the pipeline before it can start sending

the next data block.
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Figure 3. Data Transmission of HDFS

Assume that data file size is D, block size is B, and

data file size is greater than one block, the file is split

into �D/B� blocks. Assume that the packet size is P , the

number of packets transferred is �D/P�. Let Tn denote

the communication time between client and namenode for

each block. Let Tc denote the average production time (read

data from local file, compute the checksum and append

the data and checksum to a packet) for a packet by the

client. When the datanode receives a packet, it verifys the

checksum and writes the packet to the local disk that takes

Tw on average. Let Bmin represent the minimum bandwidth

between client and the first datanode and amongst adjacent

datanodes. Since the size of ACK packets is smaller than

the data packets, and the time of transferring ACKs and the

time of sending data packets overlaps, we only need to take

the packet transmission time into account.

As the production and the transmission of packets are

executed by different threads, there is an overlap between the

production time and the transmission time of packets. If the

average production time of packets is greater than or equal

to the average packet transmission time along the pipeline,
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there is no packet waiting for sending on data queue. The

total production time for all packets is the major factor to

the whole importing time. In this scenario, Tc >= P/Bmin,

and the total time consuming is shown in Formula (1).

However, even in the small instance, to produce a packet

is very fast compared with the speed to send a packet in our

experiments.

T = Tn ∗ �D/B�+ (Tc + Tw) ∗ �D/P� (1)

If the packet production time is less than the packet

transmission time, there must exist blocking on data queue.

So the total cost relies on the minimum bandwidth amongst

client and datanodes. In this scenario, Tc < P/Bmin, and

Formula (2) shows the total time consuming.

T = Tn ∗ �D/B�+ (P/Bmin + Tw) ∗ �D/P� (2)

From the analysis above, we know that the time of

importing file is determined by the production time or the

transmission time of packets, depending on which is larger.
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Figure 4. Data transmission of SMARTH

Figure 4 shows the process of data transmission for

SMARTH. When the first datanode receives all packets of a

block, it sends a FNFA back to the client, and the client can

then create a new pipeline to prepare for transmitting the

next block. Assume the bandwidth between the client and

the first datanode is Bmax. If the average production time of

packets is greater than or equal to the packet average transfer

time from the client to the first datanode (Tc >= P/Bmax),

the speed of seeding a packet is slower than the speed of

producing a packet. Then there is no blocking in data queue,

and the total time consuming is as Formula (1) shown. If the

average production time of packets is less than the packet

average transfer time from the client to the first datanode

(Tc < P/Bmax), the total cost relies on the bandwidth

between the client to the first datanode as Formula (3) shows.

T = Tn ∗ �D/B�+ (P/Bmax + Tw) ∗ �D/P� (3)

It is obvious that Bmax is greater than or equal to Bmin.

So our improved HDFS is more efficient than the existing

one. We can also find out that idle time waiting for ACK is

reduced when we compare Figure 3 with Figure 4.

IV. FAULT TOLERANCE

A. Fault Tolerance For Original HDFS

Since Hadoop is often deployed on a large cluster of

commodity nodes, being able to automatically handle faults

is a crucial part of its design. This section provides an

overview of the fault tolerance mechanism in original HDFS

and then discusses our own fault tolerance approach for the

multi-pipeline design in SMARTH.

Algorithm 3 Algorithm for fault tolerance of HDFS

1: checks the validity of parameters

2: close all streams related to the block

3: moves all packets in ACK queue back to data queue

4: success = false

5: while (!success) do

6: if (targets is not empty) then

7: return an exception

8: else

9: primaryNode = the first datanode in targets
10: add new datanodes to replace error nodes in

targets
11: success=recoverBlock(primaryNode, targets)

12: if (!success) then

13: remove primaryNode from targets
14: end if

15: recreate block streams

16: end if

17: end while

18: recreate ResponseProcessor thread

Algorithm 3 shows how a typical process handles errors

during uploading files to HDFS. When the client catches an

error in the process of transmitting a block, it first checks the

validity of parameters, and closes all streams related to the

block. Then it moves all packets in ACK queue back to data

queue. It picks the primary datanode from active datanodes

in pipeline, and uses it to recover the other datanodes. If

fails, picks another primary datanode and recover again until

recovering the block successfully or throwing an exception.

At the end, the client recreates the ResponseProcessor

thread for receiving remaining ACKs.
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B. Fault Tolerance for Multi-Pipelines

Since we employ an asynchronous multi-pipeline design,

we need to replace the original fault tolerance mechanism

with a new design.

Algorithm 4 Algorithm for fault tolerance of SMARTH

1: stop the current block transfer

2: moves all packets in ACK queue back to data queue

3: while (errorP ipelineSet is not empty) do

4: recover one error pipeline as Algorithm 3

5: remove the error pipeline from errorP ipelineSet
6: end while

7: start transferring the interrupted block

Algorithm 4 shows our approach to handle the multi-

pipeline fault tolerance. When an error occurs in a pipeline,

SMARTH adds the error pipeline into an error pipeline set. It

firstly stops the current block sending, and starts a recovery

process to recover error pipelines in this set. Each pipeline’s

recovery process is similar to the original single pipeline

recovery of HDFS. If the error pipeline is recovered, we

delete the error pipeline from the error pipeline set. We

continue recovering error pipeline until the error pipeline

set is empty, then the client restart sending the interrupted

block.

C. Buffer Overflow Problem

In SMARTH, since we employ global optimization and

local optimization, the first data node is always a high

bandwidth node compared with other datanodes. So the

client can send data to the first datanode quickly, but the

first datanode cannot send packets quickly to the second

datanode. Therefore it is possible that the buffer in the first

datanode overflows. When the size of data file is large, and

the bandwidth varies considerably from node to node, the

buffer of the high bandwidth nodes has higher chance for

overflow.

We limit the pipeline size to a maximum number ( the

cluster size / the number of replica), and if a datanode is

already in a pipeline, it cannot be added into other pipelines

created by the same client. Then each datanode belongs to

only one pipeline, and its buffer is set to be 64 MB, i.e., the

default size of block, for each client.

V. EXPERIMENTS

A. Experiment Setup

The study was conducted using Amazon EC2’s compute

instances. Amazon EC2 supports servers of different types

such as small, medium, and large instances. These instances

differ in the number of cores, the memory allocated to them,

bandwidth, and price (see Table I). An Elastic Compute Unit

(ECU) is an EC2-specific unit to express the computational

Instance Type Memory ECUs Network

Small 1.7 GB 1 ≈ 216Mbps

Medium 3.75 GB 2 ≈ 376Mbps

Large 7.5 GB 4 ≈ 376Mbps

Table I
AMAZON EC2 INSTANCE TYPES

performance of a CPU core. 1 ECU is the equivalent CPU

capacity of a 1.0-1.2 GHz 2007 Opteron or Xeon processor.

We use four different clusters in our evaluations. Three

of the clusters are homogeneous consisted of one namen-

ode and nine datanodes, i.e., of small, medium, or large

instances. The other cluster is heterogeneous consisted of

3 small, 4 medium, and 3 large instance nodes, where

one medium instance is the namenode and the others are

datanodes. Each node runs CentOS Linux Server 6.2 with

kernel 2.6.32-220, and the original Apache Hadoop version

1.0.3. We use Amazon EC2 ephemeral storage to store our

data file.

B. Experimental Results

Our goal in this study is to evaluate the impact of

various network conditions on both HDFS and SMARTH.

We employ a Linux utility called tc, which is used to

control network traffic, to limit both ingress and egress

bandwidth between VMs.

1) Two-Rack Cluster Scenario: For a large cluster, a com-

mon practice is to employ its nodes across multiple racks,

or even across multiple data centers, for load balancing and

fault tolerance reasons. Network bandwidth between nodes

in the same rack is often greater than the bandwidth between

nodes across racks. To consistently simulate this behavior (as

EC2 does not expose VM’s physical location), we throttle

the network bandwidth of nodes using tc.

The default strategy of HDFS is to place the first replica

on the client node itself if the client is a datanode; otherwise,

the namenode picks nodes that are not too full or busy. The

second replica is placed on a different rack from the first

and the third is placed on the same rack as the second, but

on a different node. Although this strategy offers a good

reliability, it is at the cost of performance.

In our experiments, our file sizes vary from 1GB to 8 GB,

and we measure the time to upload the files in both original

HDFS and SMARTH using an HDFS put command. We

have performed these experiments on small, medium, and

large instances. Figure 5(a) and Figure 5(b) show that the file

size is proportional to the time consumed when importing

file to HDFS and SMARTH in small cluster without and

with bandwidth throttling of 100 Mbps between two racks.

The same conclusion can be also found in medium and large

instances from Figures 5(c) and 5(d), Figures 5(e) and 5(f).

Due to these results, we only consider the input file size
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(a) default bandwidth in small cluster (b) bandwidth throttling in small cluster

(c) default bandwidth in medium cluster (d) bandwidth throttling in medium clustere

(e) default bandwidth in large cluster (f) bandwidth throttling in large cluster

Figure 5. Comparison of uploading time on different clusters with and without network throttling.

is 8 GB in the rest of the paper when we measure the

performance of HDFS and SMARTH.

Figures 5(c) and 5(e) as well as Figures 5(d) and 5(f) also

show that the file importing performance of large cluster is

roughly the same with the performance of medium cluster.

That is because the medium cluster and large cluster have

the same networking capacity. Figures 5(a), 5(c), and 5(e)

show that there is no big gain if the cluster’s network status

is homogeneous, where network is in the default bandwidth

and without throttling.

Figure 6 shows the file write times on Hadoop and

SMARTH when we throttle the network to different band-

width in a small cluster. As Figure 6 shows, the more we

throttle the network, the better the performance of SMARTH

is compared to HDFS. The new design of SMARTH gains

an improvement of 130% when the bandwidth throttling is

at 50 Mbps; even when the bandwidth throttling is 150

Mbps, the performance can improve about 27%. We have

Figure 6. Comparison of small instances’ uploading time when throttled
bandwidth between two racks varies.

measured the file write speed in medium and large clusters

and observe similar big gains. Figure 7 and Figure 8 show

that SMARTH achieves an improvement of 225% in medium

cluster and outperforms HDFS by 245% in large cluster

when the network bandwidth is throttled to 50 Mbps.
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Figure 7. Comparison of medium instances’ uploading time when throttled
bandwidth between two racks varies.

Figure 8. Comparison of large instances’ uploading time when throttled
bandwidth between two racks varies

Figure 9 shows the relationship between how much we

throttle the network bandwidth of nodes in small, medium

and large clusters and the improvement of SMARTH. The

benefit of our design depends on the extent of bandwidth

throttling between two racks. When the network bandwidth

between nodes in the same rack is much greater than

the network bandwidth between nodes in different ranks,

SMARTH can gain more benefit. In a large cluster, where

nodes are often allocated in different data centers, network

performance between a pair of nodes can vary even more

significantly within the cluster.

2) Bandwidth Contention Scenario: In the real world,

the bandwidth between nodes in the same rack still varies

all the time, and some other procedures also can occupy

Figure 9. Relationship between bandwidth throttling and performance
improvement.

the bandwidth and contend with Hadoop program. In this

scenario, if some nodes with lower network capacity are

selected as datanodes to transfer blocks, they can degrade the

performance of file write. In SMARTH, we would select the

faster nodes as the first datanode and when the first datanode

receives the full block, the client builds a new pipeline to

continue the file write in order to avoid the idle wait time of

the client network and make the best use of the bandwidth

between the client and datanodes.

Figure 10. Comparison of small instances’ uploading time when the
number of nodes with 50Mbps throttling varies.

Figure 10 shows the time spent during file write when we

vary the number of nodes with 50 Mbps throttling from 0

to 5. As shown in Figure 10, even there is only one node

whose bandwidth is lower than other datanodes, SMARTH

can outperform the traditional Hadoop cluster by 78%. We

also can find that the more nodes with lower bandwidth, the

more improvement can be gained by SMARTH.

As we would expect, performance gain increases when

we evaluate in medium and large clusters due to the big gap

between the default bandwidth and the throttling bandwidth.

From Figure 11(a), we observe an improvement of 167%

when uploading a 8 GB data file in medium cluster, we

can find the similar result in large cluster from Figure 11(b)

when only one node’s bandwidth is limited to 50 Mbps.

The results also illustrate that the medium cluster and large

cluster have the similar performance when the bandwidth

limitation is the same.

We also test the import time when we vary the number

of nodes with bandwidth throttling of 150 Mbps in small

and large clusters. From graphs in Figure 12(a) and 12(b) ,

the benefit of SMARTH is reduced to 19% in small cluster

and 59% in medium cluster compared with the bandwidth

throttling of 50 Mbps.

3) Heterogeneous Cluster Scenario: For power, cost, and

pricing reasons, clusters are evolving towards heterogeneous

hardware. Heterogeneity also arises due to phased hardware

upgrades over years. For example, data center expansion or

upgrade will often result in multiple generations of hardware

so that network topology may vary, with some routers having

lower latency or supporting higher bandwidth than others

[3].
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(a) medium cluster (b) large cluster

Figure 11. Comparison of uploading time for medium and large clusters when the number of nodes with 50Mbps throttling varies.

(a) small cluster (b) medium cluster

Figure 12. Comparison of uploading time for small and medium clusters when the number of nodes with 150Mbps throttling varies.

Figure 13. Comparison of uploading time of different data size in a
heterogeneous cluster.

We repeat the same set of experiments in a heterogeneous

cluster consisted of a mixture of small, medium, and large

EC2 instances. Without any network throttling, Figure 13

shows that it takes 289 seconds to upload an 8 GB file in

HDFS, but SMARTH only takes 205 seconds, which is 41%

faster.

VI. RELATED WORK

Although a rich set of research has been published on

improving the performance of Apache Hadoop nowadays,

there is little work in literature to analyze and improve the

file transmission paradigm in the HDFS architecture. Xu et

al.[4] tries to figure out a cost model to describe the data

import and verify this cost model with practical evaluations.

In their approach, Instead of opening an input stream to the

local file and passing it along to the first datanode through

a socket, the original data storage can be directly accessed

by datanodes.

There are some literatures related to file write that mainly

focus on adjustments to Hadoop parameters and codes to

adapt HDFS to a specific scenario. For instance, Shafer

et al. [5] analyze the performance of HDFS, and find

out bottlenecks existing in the Hadoop implementation that

result in inefficient HDFS usage. Their paper focuses on

adjustments of Hadoop parameters to boost the overall

efficiency of MapReduce applications. CoHadoop[6] is a

lightweight extension of Hadoop that controls where data are

stored. It uses hints given by applications to locate data files

to improve efficiency. HDFS+[7] is an extended distributed

file system from existing HDFS that can accept concurrent

writes with multi data sources. In HDFS+, files are divided

into fragments not sent in a sequence order, instead, each

fragment can be written individually by a client.

A number of other research work have been proposed

to make Hadoop more efficient than the original Hadoop.

Islam et al.[8] introduce a novel design of HDFS using

Remote Direct Memory Access (RDMA) on InfiniBand. The

design is able to provide low-latency and high throughput for

HDFS write operations as it leverages the RDMA capability

of high performance network like InfiniBand. Yee et al.[9]

introduce a generic socket API called Hadoop Filesystem

383838383838



Agnostic API (HFAA) to allow Hadoop to integrate with any

distributed file system over TCP sockets. This socket API

can eliminate the demand to customize Hadoop’s Java imple-

mentation, and move the implementation responsibilities to

the file system. Hadoop-A[10] introduces a novel network-

levitated merge algorithm to merge data without repetition

and disk access to optimize data processing throughput of

Hadoop.

VII. CONCLUSIONS AND FUTURE WORK

Motivated by the increasing popularity of Hadoop ap-

plications, in this paper, we introduce an asynchronous

multi-pipeline file transfer protocol with a revised fault

tolerance mechanism instead of the HDFS’s default stop-

and-wait single-pipeline protocol. We employ global and

local optimization techniques to sort datanodes in pipelines

based on the historical data transfer speed. We conduct a

series of experiments on Amazon’s EC2 by varying the

instance type, number of instances, and network bandwidth.

Our experiments reveal significant improvement by 27-245%

compared with HDFS.

In the future, we plan to investigate SMARTH’s impact

on MapReduce jobs and tasks. We also plan to evaluate

SMARTH on different storage platforms and types such as

RAID and SSD.

ACKNOWLEDGEMENT

This work was supported in part by NSF-CAREER-

1054834.

REFERENCES

[1] Sachchidanand Singh and Nirmala Singh. Big data analytics.
In International Conference on Communication, Information
& Computing Technology, pages 1–4, Mumbai, India, 2012.

[2] Tom White. Hadoop: The Definitive Guide. O’Reilly Media,
2012.

[3] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan,
Thomas Ristenpart, Kevin D. Bowers, and Michael M. Swift.
More for your money: exploiting performance heterogeneity
in public clouds. In the Third ACM Symposium on Cloud
Computing, pages 1–14, 2012.

[4] Weijia Xu, Wei Luo, and Nicholas Woodward. Analysis
and optimization of data import with hadoop. In IEEE 26th
International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, pages 1–9, 2012.

[5] Jeffrey Shafer, Scott Rixner, and Alan L. Cox. The hadoop
distributed filesystem balancing portability and performance.
In IEEE International Symposium on Performance Analysis
of Systems & Software, pages 1–12, 2010.

[6] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Ozcan, Rainer
Gemulla, Aljoscha Krettek, and John McPherson. Cohadoop:
flexible data placement and its exploitation in hadoop. In the
VLDB Endowment, pages 575–585, 2011.

[7] Kun Lu, Dong Dai, and Mingming Sun. Hdfs+: Concurrent
writes improvements for hdfs. In the 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing,
pages 1–2, 2013.

[8] N.S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar,
H. Wang, H. Subramoni, C. Murthy, and D. K. Panda.
High performance rdma-based design of hdfs over infiniband.
In High Performance Computing, Networking, Storage and
Analysis, pages 1–12, 2012.

[9] Adam Yee and Jeffrey Shafer. Hfaa: a generic socket api for
hadoop file systems. In the 2nd Workshop on Architectures
and Systems for Big Data, pages 15–20, 2011.

[10] Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg,
and Dhiraj Sehgal. Hadoop acceleration through network
levitated merge. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages
1–10, 2011.

[11] Chuck Lam. Hadoop in Action. Manning Publications, 2010.
[12] Eric Sammer. Hadoop Operations. O’Reilly Media, 2012.
[13] Apache Hadoop website. http://hadoop.apache.org/.
[14] Amazon EC2 website. http://aws.amazon.com/ec2/.
[15] Apache Hadoop from Wikipedia website.

http://en.wikipedia.org/wiki/Apache Hadoop.
[16] Andromachi Hatzieleftheriou and Stergios V. Anastasiadis.

Improving bandwidth efficiency for consistent multistream
storage. ACM Transactions on Storage, pages 2:1–2:26, 2013.

[17] Mengwei Ding, Long Zheng, Yanchao Lu, Li Li, Song Guo,
and Minyi Guo. More convenient more overhead: the perfor-
mance evaluation of hadoop streaming. In ACM Symposium
on Research in Applied Computation, pages 307–313, 2011.

[18] Florin Dinu and T.S. Eugene Ng. Understanding the effects
and implications of compute node related failures in hadoop.
In the 21st international symposium on High-Performance
Parallel and Distributed Computing, pages 187–198, 2012.

[19] Sven Groot, Kazuo Goda, Daisaku Yokoyama, Miyuki
Nakano, and Masaru Kitsuregawa. Modeling i/o interference
for data intensive distributed applications. In the 28th Annual
ACM Symposium on Applied Computing, pages 343–350,
2013.

[20] Zhendong Cheng, Zhongzhi Luan, You Meng, Yijing Xu, De-
pei Qian, Alain Roy, Ning Zhang, and Gang Guan. Erms:an
elastic replication management system for hdfs. In IEEE
International Conference on Cluster Computing Workshops,
pages 1–9, 2012.

[21] Karthik Kambatla, Abhinav Pathak, and Himabindu Pucha.
Towards optimizing hadoop provisioning in the cloud. In the
2009 conference on Hot topics in cloud computing, pages
1–5, 2009.

[22] Shivnath Babu. Towards automatic optimization of mapre-
duce programs. In the 1st ACM symposium on Cloud
computing, pages 1–6, 2010.

[23] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplied
data processing on large clusters. In the 6th conference on
Symposium on Opearting Systems Design Implementation,
pages 1–13, 2004.

[24] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The hadoop distributed file system. In IEEE
26th Symposium on Mass Storage Systems and Technologies,
pages 1–10, 2010.

[25] Xuhui Liu, Jizhong Han, Yunqin Zhong, Chengde Han, and
Xubin He. Implementing webgis on hadoop: A case study of
improving small file io performance on hdfs. In IEEE Inter-
national Conference on Cluster Computing and Workshops,
pages 1–8, 2009.

393939393939


