
Symbolic Analysis of Concurrency Errors in OpenMP Programs

Hongyi Ma1, Steve R. Diersen1, Liqiang Wang1, Chunhua Liao2, Daniel Quinlan2, and Zijiang Yang3

1Department of Computer Science, University of Wyoming. {hma3, sdiersen, lwang7}@uwyo.edu
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory. {liao6, dquinlan}@llnl.gov

3Department of Computer Science, Western Michigan University. {zijiang.yang}@wmich.edu

Abstract—In this paper we present the OpenMP Analysis
Toolkit (OAT), which uses Satisfiability Modulo Theories
(SMT) solver based symbolic analysis to detect data races
and deadlocks in OpenMP codes. Our approach approximately
simulates real executions of an OpenMP program through
schedule permutation. We conducted experiments on real-
world OpenMP benchmarks and student homework assign-
ments by comparing our OAT tool with two commercial
dynamic analysis tools: Intel Thread Checker and Sun Thread
Analyzer, and one commercial static analysis tool: Viva64
PVS Studio. The experiments show that our symbolic analysis
approach is more accurate than static analysis and more
efficient and scalable than dynamic analysis tools with less
false positives and negatives.

I. INTRODUCTION

OpenMP is a portable parallel programming model used
to create parallel C/C++ and Fortran multithreaded pro-
grams on shared-memory computing platforms. Developing
OpenMP programs is prone to concurrency errors, such as
data race and deadlock. A data race occurs when two or
more threads perform conflicting data accesses (i.e., accesses
to the same variables and at least one access is a write)
without using an explicit mechanism to prevent the accesses
from happening simultaneously. Figure 1 is an example of a
data race in OpenMP. In this example, there is no data race if
only considering the for loop. However, some threads that
finish iterations early will execute errors = dt[9]+1
while another thread may still be simultaneously executing
the for worksharing region by writing to d[9], which may
cause a data race.

A deadlock in OpenMP is usually introduced by improper
use of the omp barrier directive or the lock routines
in OpenMP runtime library. The omp barrier direc-
tive forces a thread to wait at a barrier until all other
threads have reached the same barrier. The example in
Figure 2 shows a deadlock scenario from [1]. By default,
the two #pragma omp section are executed by two
different threads. Since every #pragma omp section

This work was supported in part by NSF under Grant 1118059 and the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344

#pragma omp parallel shared(b) private(errors) {
#pragma omp for nowait

for(i = 0; i < 10; i++)
dt[i] = b + dt[i]*5;

errors = dt[9] + 1;
}

Figure 1. Examples of race condition in OpenMP programs.

void print_results(float array[N], int section) {
#pragma omp critical {

int tid = omp_get_thread_num();
printf("The results are in section %d.\n", section);
for (i = 0; i < N; i++)

printf("%e ",array[i]);
} /* end of critical */
#pragma omp barrier
printf("Thread %d is done.\n", tid);

}
#pragma omp sections {

#pragma omp section
print_results(c, 1);

#pragma omp section
print_results(c, 2);

} /* end of parallel section */

Figure 2. Example of deadlock in OpenMP programs.

construct contains a barrier directive in the function call
print_results(), each thread would execute a different
barrier directive. This is a deadlock because each thread
would wait for the other to reach its own barrier, which
will never happen.

Traditionally, data races and deadlocks are detected using
either dynamic analysis (e.g.[7], [15]) or static analysis
(e.g.[6]). Static analysis is able to consider all possible
behaviors without actually executing a program. However,
it may produce false positives due to dynamic behaviors,
such as aliases and pointers, which are impossible to obtain
precisely. Furthermore, static analysis usually cannot report
witnesses in terms of a trace leading to detected errors.
Therefore, significant manual effort is required to confirm
each detected error. Dynamic analysis, on the other hand, can
miss errors because not all possible program behaviors can
be observed during executions. In addition, the approaches
are inappropriate for large-scale applications since the over-

head is usually prohibitively high.

Symbolic execution [5] attempts to explore all program
paths under symbolic values. By encoding the current ex-
ecution into first-order logic formula, predicative analysis
[14] is able to predict errors accurately even under correct
executions. The common method among these symbolic
approaches is program encoding, followed by Satisfiability
Modulo Theories (SMT) based solving, such as [8]. In
order to achieve scalability, encoding must be carefully
designed and optimized based on domain knowledge. In
[10], we presented the preliminary results on integrating
symbolic analysis and dynamic analysis for the detection
of concurrency errors in OpenMP programs. In this paper,
we propose a symbolic approach to detect race conditions
and deadlocks in OpenMP programs; a more thorough and
accurate approach of symbolic execution without requir-
ing dynamic analysis. Our tool, called OpenMP Analysis
Toolkit (OAT), is able to automatically detect data races and
deadlocks accurately and efficiently. Specifically, our paper
makes the following contributions:

• We present a novel encoding algorithm specialized for
OpenMP programs. Although there exist algorithms
that encode various systems, including parallel pro-
grams, none of them can be directly applied to OpenMP
programs. In particular, we encode every parallel code
region of an OpenMP program into formulae suitable
for off-the-shelf SMT-solvers such as Yices [3].

• By interpreting the solution reported by Yices, we
are able to reproduce a feasible execution trace that
reveals the errors. This evidence-based approach not
only improves the accuracy of error detection, but is
also very useful in debugging programs and fixing
problems.

Satisfiability Modulo Theories (SMT) solvers are logical
deciders for problems ranging from basic boolean satisfi-
ability problems to problems involving uninterpreted func-
tions. SMT solvers utilize first-order logic and conjunc-
tive normal form for the determination of the satisfiability
of specific constraint satisfaction problems. OAT encodes
OpenMP code regions into first-order logic constructs. These
constructs are then simulated symbolically with Yices [3]
to prove their satisfiability with regard to data race and
deadlock errors.

II. SYMBOLIC ENCODING ALGORITHMS

Static Single Assignment (SSA) is used to track variable
updating by renaming variables with an increasing subscript
for each write operation on the variable. Figure 3 shows
the encoding of basic statements into logical formulae. We
assume that the subscript of every SSA variable starts at 0.

int k, i = 0; k0 = i0 = 0
int a[2] = {0,0}; → ∧a0[0] = a0[1] = 0
a[0] = i * k; ∧a1[0] = i0 × k0
i++; ∧i1 = i0 + 1

Figure 3. Encoding of OpenMP basic statements

Branch statements require the possible merging of variable
definitions after the branch. Figure 4 shows a typical condi-
tional statement with two possible execution paths. ite is
a keyword in Yices, which denotes an if-then-else
formula. Within the then branch variables j and k are
modified, and variable i is modified in the else branch.
To ensure the same SSA value for each variable following
the if-then-else statement, instead of using Φ function,
we will create dummy operations in each branch for those
variables that were not originally coded into the branch. For
example, we add the assignment i1 = i0 in the then branch
and j1 = j0∧k1 = k0 to the else branch. By inserting these
assignments, the subscripts for an assigned variable after the
branch will not depend upon the branch taken. This means
any reads of the variables following the if-then-else
statement will refer to the same SSA value. In the following
paragraphs we will describe the intuition behind the other
construct encodings.

if (i > 0){ ite(i0 > 0
j = i * 10; ∧j1 = i0 × 10
k = j - i; → ∧k1 = j1 − i0

} ∧i1 = i0)
else{ ∨(i0 <= 0
i = j + k; ∧i1 = j0 + k0

} ∧j1 = j0 ∧ k1 = k0)

Figure 4. Encoding of OpenMP branches.

OpenMP Parallel Region: Parallel regions can include both
iterative and non-iterative segments. By default, the number
of forked threads is determined by the number of processor
or CPU cores. Since OpenMP provides functions to fork a
given number of threads, our approach is general and can
handle any number of threads. OpenMP usually runs in the
SPMD (single program, multiple data) way, i.e., every thread
runs the same code but different dataset.

Worksharing Construct: Within OpenMP for loop and
section regions, an access by one thread to a shared
variable may conflict with accesses from other threads to
the same variable. SSA encoding handles most variable
situations; however, arrays are a special case. Although
different loop scheduling policies are allowed, we assume
the static scheduling policy for omp for loops. As shown
in Figures 5 and 6, we use a superscript to identify the
accessing thread ID. The line numbers are encoded into
formulae in order to locate the reported problems in the
source code. Note that we intentionally assume that there is

only one thread in Figures 3 and 4 and omit thread ID for
simplicity.

Multi-dimensional arrays need to be translated into one-
dimensional arrays. For example, in Figure 6, there is a
two-dimension array[1D][2D], each element array[i][j] is
translated to be array[i∗2D+j]. We use i[itnm] and j[jtnk] to
represent the value of loop index i and j, where itnm and jtnk
mean the timing order of i and j in the loop, respectively. N
denotes the total number of execution threads and n denotes
the thread ID number.

99 #pragma omp sections {
100 #pragma omp section {
101 array[i+1]=array[i]+1;
102 } }

→
omp.sectionsbegin = 99
∧omp.sectionbegin = 100 ∧ omp.par = T
∧array[i[itn1] + 1][arraytn

1] = array[i[itn0]][arraytn
0] + 1

∧omp.sectionend = 102 ∧ tn = n ∧ n ∈ [0, ..., N − 1]
∧itn1 > itn0 ∧ itn1 = arraytn

1

∧itn0 = arraytn
0 ∧ omp.sectionsend = 102

Figure 5. Encoding of OpenMP section construct, where itn0 , itn1 ,
arraytn0 , and arraytn1 indicate the timing orders of i and array. Only
one thread executes the section.

99 int array[1D][2D];
100 #pragma omp for
101 for(int i=lb;i<ub;i++) {
102 for(int j = lb; j < ub; j++) {
103 array[i+1][j]=array[i][j]+1;
104 }
105 }

→
omp.forbegin = 100 ∧ omp.par = T
∧i[itnm] ∈ [lb+ d(ub− lb)/N ∗ n, lb+ d(ub− lb)/N ∗ (n+ 1))
∧j[jtnk] ∈ [lb, ub)
∧array[(i[itn1] + 1) ∗ 2D + j[jtn1]][arraytn

1] =
array[i[itn0] ∗ 2D + j[jtn0]][arraytn

0] + 1
∧tn ∈ [0, 1, 2, ..., N − 1] ∧ omp.forend = 105

Figure 6. Encoding of OpenMP for construct.

Without Loop Bound: OAT can analyze loops in two ways:
without loop bound or with loop bound. Analyzing without
loop bound requires loop abstraction to avoid loop unrolling,
as in [17]. We use the range of the index value to construct
constraints for two types of data race: over-write conflict
and write-read conflict. Without-loop-bound uses the index
range to determine if it is possible for different threads to
gain accesses to the same array element. In this way, we do
not need to consider the timing order. The only constraint
we need to construct is the index range of the array for each
thread.

The following constraints together with the encoding in Fig-
ure 6 are used to check the write-read conflict in array[i+

1][j] = array[i][j] + 1 (line 103). A solution reported by
the SMT-solver indicates a data race in a feasible execution
trace. For example, if there is no barrier to synchronize
threads, one thread may read an array element after another
thread updates it, which incurs a non-deterministic result.
A data race is detected if there exists an overlap between
the range of i + 1 in array[i + 1][j] and the range of i in
array[i][j]. The overlap of it1 + 1 range and it2 range can
be easily determined by solving the constraints.

it1 ∈ [lb, (lb+ ub)/2) ∧ it2 ∈ [(lb+ ub)/2, ub)
∧jt1 ∈ [lb, ub) ∧ jt2 ∈ [lb, ub)
∧(it1 + 1) ∗ 2D + jt1 = it2 ∗ 2D + jt2

With Loop Bound: is used to detect data races that depend
upon the number of iterations in a for loop. This is
accomplished through symbolic execution of a loop, as in
[11], and tracking the timing order of variables within the
loop. For a loop m, let Maxm denote the maximum number
of iterations, and LoopBoundm denote the loop bound
during symbolic execution, then LoopBoundm ≤ Maxm.
If the loop bound value cannot be obtained by analyzing
loop structures (i.e., there is a symbolic value in the loop
condition), then OAT uses a default value for the loop bound.

Tracking the timing order requires more constraints. For
example, in Figure 6, when the nested loop index j[jtnk]
is beyond the bound (i.e., j >= ub), the index value i[itnm]
would be incremented by i++, and j[jtnk] would be set to
the initial value in its loop.

Another worksharing directive, single, dictates that only
one thread may enter and execute the enclosed parallel
region. Access to a single region is encoded by tn =
n ∧ n ∈ [0, 1, 2, ..., N − 1]. This ensures that n is a known
thread ID and that only thread tn can simulate this code
section.

Data Clauses: are used to define the properties of data-
sharing and other specific operations. OAT can encode:
private, firstprivate, lastprivate, shared,
default, and reduction. As shown in Figure 7, for
example, reduction specifies that one or more variables
that are private to each thread are the subject of a reduction
operation at the end of the parallel region. Assume we have
the data-sharing attribute variable reduction(sum). We
use sum =

∑
sum[sumtn

1] to represent the reduction
directive. Yices does not support

∑
directly; we use the

ROSE [9] compiler to call the Yices C API to implement∑
with a loop. Without loop bound uses the range of the

loop index i; with loop bound uses the timing order itnk and
i[itnk] = i[ik−1

tn] + 1 is encoded for the increment i++.

Synchronization Directives are used to synchronize

100 int sum = 0;
101 #pragma omp parallel shared(n,x) {
102 #pragma omp for private(i) reduction(+:sum)
103 for(i = 0; i <ub; i++)
104 sum = sum + x[i];
105 }

→
sum0 = 0 ∧ omp.parbegin = 103 ∧ omp.par = T
∧omp.forbegin = 101
∧i[itnk] ∈ [0 + dub/Ne ∗ (tn), 0 + dub/Ne ∗ (tn + 1))
∧sum[sumtn

1] = sum[sumtn
0] + x[i[itn0]][xtn

0]
∧sum =

∑
sum[sumtn

1] ∧ sumtn
1 > sumtn

0 ∧ xtn
0 = itn0

∧sumtn
0 > xtn

0 ∧ omp.forend = 104 ∧ omp.parend = 105
∧tn ∈ [0, 1, 2, ..., N − 1]
∧{sumtn

1 , sumtn
0 , xtn

0 , itn0 } ∈ [0, 1, 2, ..., 3N − 1]

Figure 7. Encoding of data clauses (without using loop bound).

100 #pragma omp parallel {
101 #pragma omp critical
102 block1
103 #pragma omp master
104 block2
105 #pragma omp atomic
106 block3
107 #pragma omp flush (data)
108 block4
109 }

→
omp.parbegin = 100 ∧ omp.par = T
∧omp.criticalbegin = 101 ∧ F(block1) ∧ omp.criticalend = 102
∧omp.masterbegin = 103 ∧ F(block2) ∧ omp.masterend = 104
∧omp.barrier = T ∧ omp.atomicbegin = 105 ∧ F(block3)
∧omp.atomicend = 106 ∧ omp.f lushbegin = 107
∧data[datatn

k] = data[datatn
k − 1] ∧ F(block4)

∧omp.f lushend = 108 ∧ omp.parend = 109

Figure 8. Encoding of synchronization directives.

threads. OAT handles the synchronization directives re-
lated to race conditions and deadlocks, including master,
critical, barrier, atomic, and ordered. The
synchronization directives manage the timing order of
each thread. Given an OpenMP construct block, we use
omp.master, omp.critical, omp.atomic, omp.ordered to
indicate that block is within a parallel region enforced by the
synchronization directives, master, critical, atomic,
and ordered, respectively. The beginning and ending of
these synchronization directives determine what kinds of
threads will execute the code in the block. Figure 8 shows
an example of encoding synchronization directives, where
F(block) indicates the entire formulae of block. In Figure
8, the translation of data[datatnk] = data[datatnk −1] shows
that the variable data in different threads at execution point
datatnk would be its latest updated value. If one variable
is updated in memory by some threads, but the remaining
threads symbolically do not receive that update, it can cause
non-deterministic results and an error will be reported.

Pointers, Aliases, and Function Calls: An alias for a
variable can be created through pointers or references. For
example, formal parameters for functions are considered
aliases for actual variables when those parameters are point-
ers or references. We use intra-procedural alias and pointer
analysis to determine all aliases for each variable. Then we
encode each alias as its corresponding variable. In Figure 9,
variables *p and *q are aliases for a, and b is an alias for
c. After the initial setup, all references to *p and *q are
encoded as a with the appropriate SSA value; b is treated
the same, for c.

int *p, *q;
int a = 0; p = &a; q = &a;
*p = *p + 2; *q = *q + 1;
int c;
int &b = c;
a = b + 1; →
a0 = 0 ∧ p.pointer = a0address ∧ q.pointer = a0address
∧a1 = a0 + 2 ∧ a2 = a1 + 1
∧b0address = c0address ∧ a3 = c0 + 1

Figure 9. Encoding of alias and pointers.

For function calls in OpenMP constructs, we do a basic
inlining operation. When multiple scopes are involved, vari-
ables with the same name, but in different scopes, need
to be distinguishable. To accomplish this we prepend a
scope number to the variable t: nt indicates that variable
t is in scope n. Our tool cannot fully handle recursion
now. However recursive functions can also be inlined and
processed by setting a recursion bound.

III. DETECTING CONCURRENCY ERRORS

A. Data Race

According to the OpenMP programming model, an OpenMP
program is partitioned into segments that are a sequence of
instructions ending with a synchronization instruction. We
use event e to represent a write or a read instruction on a
variable. Let π(s) = {e1, ..., en} be a concrete timing order
for a segment s, where each variable has an SSA form.
We define the variable value read by an event as the value
written by the most recent write in π(s). The SMT-solver
checks whether there exists a variable v in π(s) that can
cause a non-deterministic and unexpected result. A solution
to these SMT constraints reveals a race condition.

Figure 10 illustrates the encoding of a parallel variable
update using two threads. The expression omp.par = T
indicates the current region is a parallel code region, which
is enclosed by the encodings parbegin and parend. Suppose
v is a shared variable; we use the timing order for reads and
writes to simulate operation orders from multiple threads.
A timing order ID is defined for each variable in SSA form

100 #pragma omp parallel
101 {v = v + 1;} →
omp.parbegin = 100 ∧ omp.par = T
∧v[vt11] = v[vt10] + 1 ∧ v[vt21] = v[vt20] + 1
∧v[vt10] = v[vt10 − 1] ∧ v[vt20] = v[vt20 − 1]
∧vt11 > vt10 ∧ vt21 > vt20 ∧ {v

t1
0 , vt11 , vt20 , vt21 } ∈ [0, 1, 2, 3]

∧omp.parend = 101

Figure 10. Encoding of shared variable update based on two threads.

for each thread. The encoding vtkm describes the timing order,
where v is the variable, m is the SSA subscript, and tk is the
thread. The range of vtkm is [0,1,2,...] and v[vtkm] represents
the value of v at SSA index m in thread tk.

The assignment v = v+1 is modeled by v[vt11] = v[vt10]+1
and v[vt21] = v[vt20] + 1 for threads 1 and 2, respectively.
The encoded timing orderings, vt11 > vt10 and vt21 > vt20 ,
ensure that the L-value of v in the current thread is only
updated after the R-value of v for each thread. To represent
the dependence of the R-value on the last write of v we
write v[vt10] = v[vt10 − 1] and v[vt20] = v[vt20 − 1]. The last
write on v could be from the current thread or another thread.
Using Figure 10, suppose the SMT-solver generates vt10 = 0,
vt11 = 3, vt20 = 1, and vt21 = 2. We then have v[3] =
v[0] + 1 ∧ v[2] = v[1] + 1 ∧ v[1] = v[0], which indicates
v is incremented by 1. Now, if the SMT-solver generates
vt10 = 0, vt11 = 1, vt20 = 2, and vt21 = 3, then we have
v[1] = v[0] + 1 ∧ v[3] = v[2] + 1 ∧ v[2] = v[1], which
indicates v is incremented by 2. A non-deterministic result
on shared variable v is detected and OAT will report a data
race on v.

B. Deadlock

Barrier synchronization is a common cause of deadlock in
OpenMP programs. The semantics of OpenMP require that
all threads involved in a parallel region execute the same
barrier; otherwise, a deadlock will occur. In addition,
missing lock/unlock can also create a deadlock. Figure
11 illustrates a potential deadlock with regard to lock a.
Assuming A is initially greater than B, then lock a is
acquired in the first if statement at line 101. The body of
the if statement then swaps the values of x and y. The if
statement at line 106 would evaluate to false, which means
the body of the if statement does not get executed, lock a
is never released, and a deadlock is created.

Conditional statements require analyzing if each barrier is
called by all threads or a proper subset of all threads (i.e.,
well synchronized or not well synchronized). In well syn-
chronized barriers for a conditional statement each branch
executes the same number of barriers. We determine if locks
are well synchronized by ensuring all lock variables are

99 int x = A, y = B;
100 if(x > y){
101 omp_set_lock(&lock_a);
102 x = x + y; y = x - y; x = x - y;
103 }
104 if(x > y){
105 omp_unset_lock(&lock_a);
106 }

→
x[x0

tn] = A ∧ y[y0
tn] = B ∧ ite((x[x0

tn] > y[y0
tn]

∧lock_a[0] = 1 ∧ x[x1
tm] = x[x0

tm] + y[y0
tm]

∧y[y2tm] = x[x2
tm]− y[y1

tm] ∧ x[x4
tm] = x[x3

tm]− y[y3
tm])

∨(x[x5
tm] = x[x0

tm] ∧ y[y4
tm] = y[y0

tm]
∧¬(x[x0

tn] > y[y0
tn])))∧

ite((x[x6
tm] > y[y5

tm] ∧ unlock_a[0] = 1)
∨¬(x[x6

tm] > y[y5
tm]))

∧tm = m ∧m ∈ [0, 1, 2, ..., N − 1]
∧{xk

tn , yk
tn} ∈ [0, 1, 2, ..., kn− 1]

∧tn ∈ [0, 1, 2, ..., N − 1] ∧ k ∈ [0, 1, 2, ...]

Figure 11. Example of deadlock detection.

released when some threads try to obtain them. In Figure
11, our system uses arrays lock a[] and unlock a[] to
represent the order of lock acquires and releases for lock a.
For example, for the mth lock acquire, lock a[m − 1] is
m and lock a[m] indicates the next lock acquire. Thus,
unlock a[m] = lock a[m + 1] − 1 indicates no deadlock,
whereas unlock a[m] 6= lock a[m + 1] − 1 indicates a
deadlock because the lock variable lock a is not released
after the mth lock acquire.

IV. EXPERIMENTS

A. Technical Setup

Code LOC DR OAT PVS ITC STA Code LOC DR OAT PVS ITC STA

CG 922 10 10 11 10 10 c_fft 258 1 1 1 2 1

BT 3617 1 1 1 2 1 c_pi 83 1 1 1 1 1

EP 269 2 2 2 2 2 c_Jacobi 295 1 1 1 1 1

FT 1143 0 0 1 0 0 c_quicksort 168 2 2 2 2 2

LU 3482 0 0 0 0 0 c_mandel.c 142 1 1 1 1 1

IS 707 5 5 5 6 5 Stu.1 98 3 3 3 3 3

MG 1255 2 2 2 2 2 Stu.2 109 1 1 1 1 1

SP 2986 3 3 3 2 3 Stu.3 123 2 2 2 2 2

Figure 12. Test codes used in the experiments. Code - name of test code,
LOC - lines of code, DR - number of injected data races, the columns
OAT, PVS, ITC, and STA list the number of data races detected for each
test program.

The experiments were done on a workstation with a 2.3GHz
Intel Core i5-2410M with 4GB Dual Channel DDR3 at
1333MHZ and GCC v. 4.3.1. We compared OAT with two
dynamic analysis tools, Intel Thread Checker(ITC) 3.1 [4]
and Sun Thread Analyzer(STA) in Oracle Studio 12.0 [16],
and one static analysis tool, Viva64 PVS-Studio(PVS) [2].

Both STA and PVS incorporate OpenMP features, but Intel
Thread Checker does not.

Our experiments were conducted on the NAS Parallel
OpenMP Benchmarks [12] in NPB2.3 (C version, with Class
A as standard test input), OpenMP Source Code Repository
[13], as well as student homework assignments from the
High Performance Computing course at the University of
Wyoming. Errors were injected into the NAS Parallel and
OpenMP Source Code Repository benchmarks. Data races
were injected either by flipping the data-sharing attributes of
variables or adding variable updating statements. Deadlock
errors were injected by either insertion of a lock acquire or
insertion of a #pragma omp barrier to a synchroniza-
tion or work-sharing construct. The three student homework
assignments chosen had typical race conditions already.

Figure 12 describes the test codes used in our experiments.
“CG”, “BT”, “EP”, “FT”, “LU”, “IS”, “MG”, and “SP” are
from the NAS Parallel OpenMP benchmark package, “c *”
benchmarks are from the OpenMP Source Code Repository,
and “Stu.*” are student homework assignments, used with
the permission of the students. Tests for Data Race detection
were conducted using 2, 4, 8, 16, and 32 threads. Tests for
Deadlock detection were conducted with 2 threads. For all
NAS Parallel Computing benchmarks, we used the standard
test dataset (i.e., Class A). We found that large datasets
(i.e., Class S) prevented the dynamic analysis tools from
completing execution in a timely manner (i.e., several hours
without completion).

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

CG BT FT LU IS MG SP

A
n

al
ys

is
 T

im
e

 in
 S

e
co

n
d

s

OAT 2 Threads

OAT 4 Threads

OAT 8 Threads

OAT 16 Threads

OAT 32 Threads

PVS

Figure 13. Analysis Time for OAT compared to PVS for benchmarks with
greater than 500 lines of code.

B. Data Race Analysis

We designed our data race experiments to test for accuracy,
efficiency and scalability. With regard to accuracy we were

0

2

4

6

8

10

12

14

16

18

20

2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

M
u

lt
ip

le
 o

f
O

A
T

A
n

al
ys

is
 T

im
e

OAT

PVS

ITC

STA

Figure 14. Comparison of OAT analysis time vs the other three analysis
tools (PVS, ITC, STA) for test codes with greater than 500 LOC. All
analysis times are normalized to OAT’s analysis time.

concerned with: (1) did we detect all data races (2) were
any false positives generated and (3) were any false negatives
generated? A false positive is reporting a data race where one
does not exist and a false negative is failing to detect a data
race. We found that the number of data races each analysis
tool reported was independent of the number of threads
used in the experiment because of the specific structures of
OpenMP. Both OAT and STA found all data races in each
experiment and did not produce any false positives. PVS
found all data races, but also reported two false positives.
One false positive was in the CG test and the other in the
FT test. These false positives were reported due to updating
variables outside parallel regions. In addition, PVS cannot
handle pointer operations and races related to branches and
specific number of iterations using static analysis, whereas
our symbolic analysis is able to do these. However, we did
not inject these types of errors since the current benchmarks
are relatively simple and do not contain these corner-case
structures in OpenMP regions. ITC found all data races with
one exception, for the SP test ITC produced one false nega-
tive. The false negative is because some data dependencies
in #pragma omp sections cannot be determined. ITC
also reported three false positives. We believe this is because
ITC cannot fully support #pragma omp critical.

We tested the efficiency of OAT vs. the other three analysis
tools. Since two of the tools are dynamic and the other two
are static, we believe that analysis time is the proper metric
to judge efficiency between the four analysis tools. Analysis
time is strictly the time from starting the analysis of the
code until the reporting of the results. Figure 14 depicts
analysis time comparisons between OAT and the other three
analysis tools. Figure 13 is a direct comparison with PVS for
2, 4, 8, 16, and 32 threads. With small thread counts, OAT
outperforms PVS, but as the thread count grows the size

of constraints created by OAT increases the analysis time.
This was expected due to the nature of symbolic analysis.
According to the experiments, testing two threads is enough
to give an accurate analysis of OpenMP programs, because
they often run in the SPMD mode.

Scalability has two different meanings in the context of
these experiments: (1) number of threads and (2) size of the
tested code (LOC). Scalability by the number of threads has
been addressed above. Size of the test code was partially
addressed by our experiments. As Figure 14 shows, OAT
outperformed PVS when fewer threads were used. The
analysis time of small code is not shown because the time
of I/O and parsing dominates the whole execution time.

C. Deadlock Analysis

Figure 15. Analysis time required to find injected deadlocks in the tested
codes. All tests run using 2 threads.

Our deadlock experiments were twofold: accuracy and effi-
ciency. All four analysis tools were able to detect all injected
deadlocks, without any false positives or false negatives. The
analysis times varied considerably; ranging from a minute or
less for the static analysis tools to being unable to terminate
normally during deadlock detection for the dynamic tools.
Specifically, the time comparison between OAT and PVS is
shown in Figure 15.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the OpenMP Analysis Toolkit
(OAT) for detecting data races and deadlocks in OpenMP
programs. By comparing our approach to two commercial
dynamic analysis tools and one commercial static analysis
tool, we have shown that OAT has comparable analysis time
to the commercial static analysis tool, averaging 2.4x overall
and 1.28x for test codes with greater than 500 lines of
code compared to PVS for 8 threads. At 2 threads, OAT
was 1.24x overall and 0.6x for codes with greater than 500
lines of code. OAT has faster analysis times than the two
commercial dynamic analysis tools, averaging only 0.41x
ITC analysis time and 0.32x STA analysis time for all test
codes at eight threads. At 32 threads, OAT averaged only
0.53x ITC analysis time and 0.42x STA analysis time.

There are a number of ways to improve our tool. One way
is to enhance OAT by leveraging dependence analysis and
autoscoping of ROSE. We will also optimize the analysis

of conditional statements and handle more complicated
constructs.

REFERENCES

[1] OpenMP Exercise. https://computing.llnl.gov/tutorials/
openMP/exercise.html.

[2] PVS-Studio, Static Code Analyzer for C, C++, and C++11.
http://www.viva64.com/.

[3] Yices: An SMT Solver. http://yices.csl.sri.com.
[4] Intel Thread Checker 3.1 for Linux. http://software.intel.com.
[5] J. C. King. Symbolic Execution and Program Testing.

Commun. ACM, 19(7), Jul.
[6] S. K. Lahiri, S. Qadeer, and Z. Rakamarić. Static and Precise

Detection of Concurrency Errors in Systems Code Using SMT
Solvers. In CAV ’09.

[7] L. Lamport. Time, Clocks, and the Ordering of Events in
a Distributed System. Commun. ACM, 21(7):558–565, July
1978. ISSN 0001-0782.

[8] G. Li and G. Gopalakrishnan. Scalable SMT-Based Ver-
ification of GPU Kernel Functions. In Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, pages 187–
196. ACM, New York, NY, USA, 2010.

[9] C. Liao, D. J. Quinlan, T. Panas, and B. R. de Supinski. A
rose-based openmp 3.0 research compiler supporting multiple
runtime libraries. In Proceedings of the 6th international
conference on Beyond Loop Level Parallelism in OpenMP:
accelerators, Tasking and more, IWOMP’10, pages 15–28.
Springer-Verlag, Berlin, Heidelberg, 2010.

[10] H. Ma, Q. Chen, L. Wang, C. Liao, and D. Quinlan. An
OpenMP Analyzer For Detecting Concurrency Errors (poster
paper). In ICPP 2012: Proceedings of the International
Conference on Parallel Processing. IEEE Computer Society,
2012.

[11] M. d. Michiel, A. Bonenfant, H. Cassé, and P. Sainrat. Static
Loop Bound Analysis of C Programs Based on Flow Analysis
and Abstract Interpretation. In Proceedings of the 2008 14th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA ’08, pages
161–166. IEEE Computer Society, 2008.

[12] NASA Advanced Supercomputing Division.
http://www.nas.nasa.gov/publications/npb.html/.

[13] OpenMP Source Code Repository.
http://sourceforge.net/projects/ompscr/.

[14] M. Said, C. Wang, Z. Yang, and K. Sakallah. Generating
Data Race Witnesses by an SMT-Based Analysis. In Proceed-
ings of the Third International Conference on NASA Formal
Methods, NFM’11, pages 313–327. Springer-Verlag, Berlin,
Heidelberg, 2011.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a Dynamic Data Race Detector for
Multithreaded Programs. ACM Trans. Comput. Syst., 15(4):
391–411, Nov. 1997. ISSN 0734-2071.

[16] Oracle Solaris Studio 12.3.
http://www.oracle.com/technetwork/server-storage/
solarisstudio/.

[17] Y. Zhao and S. Malik. Exact Memory Size Estimation for Ar-
ray Computations without Loop Unrolling. In Proceedings of
the 36th Annual ACM/IEEE Design Automation Conference,
DAC ’99, pages 811–816. ACM, New York, NY, USA, 1999.

