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Abstract

LSQR (Sparse Equations and Least Squares) is a widely used Krylov subspace method to solve large-scale linear
systems in seismic tomography. This paper presents a parallel MPI-CUDA implementation for LSQR solver. On
CUDA level, our contributions include: (1) utilize CUBLAS and CUSPARSE to compute major steps in LSQR; (2)
optimize memory copy between host memory and device memory; (3) develop a CUDA kernel to perform transpose
SpMV without transposing the matrix in memory or preserving additional copy. On MPI level, our contributions
include: (1) decompose both matrix and vector to increase parallelism; (2) design a static load balancing strategy.

In our experiment, the single GPU code achieves up to 17.6x speedup with 15.7 GFlops in single precision and
15.2x speedup with 12.0 GFlops in double precision compared with the original serial CPU code. The MPI-GPU
code achieves up to 3.7x speedup with 268 GFlops in single precision and 3.8x speedup with 223 GFlops in double
precision on 135 MPI tasks compared with the corresponding MPI-CPU code. The MPI-GPU code scales on both
strong and weak scaling tests. In addition, our parallel implementations have better performance than the LSQR
subroutine in PETSc library.
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1. Introduction

Sparse Equations and Least Squares (LSQR), proposed by Paige and Sanders [1], is a numerical method for
solving linear equation problems in an iterative way. As one of the most widely used inversion methods in seismic
tomography, LSQR method is highly efficient on solving different types of linear systems (e.g. overdetermined, un-
derdertermined, or both) for large linearized inverse problems [2]. As LSQR method is based on conjugate gradient
method, the estimated solution usually converges fast. In general, LSQR algorithm is well suited to tomographic
inversion problems that usually involve sparse matrices during inversion.
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It is very challenging to apply LSQR to real-world problems in seismic tomography. First, the problem size can
be huge. The matrix, which represents the coefficients of the equations, is usually very large. In a typical real-
world application, the number of rows in the matrix can be hundreds of millions, the number of columns can be tens
of millions, and the matrix may be hundreds of gigabytes even in compressed format. Such huge data cannot be
computed without parallelism because of both execution time and memory limits. Another issue is that the nonzero
elements in the matrix can be very sparse and their distribution is highly uneven. The number of nonzero elements in
different rows can range from tens of thousands to several. Therefore, a naive data decomposition strategy will not
work well.

To address the above challenges, we design and implement a parallel LSQR implementation using MPI and
CUDA. To the best of our knowledge, our MPI-CUDA code is the first implementation of LSQR with multiple GPUs
for large-scale dataset in seismology. Our major contributions include:

• To accelerate LSQR, we use CUBLAS to accelerate vector operations, and use CUSPARSE to accelerate sparse
matrix vector multiplication (SpMV), which is the most compute-intensive part of LSQR. However, CUS-
PARSE is efficient only on handling regular SpMV in Compressed Sparse Row (CSR) format, but inefficient
on SpMV with matrix transpose. We design two approaches to handle transpose SpMV with trade-off on mem-
ory versus performance. The first approach utilizes a different matrix format, i.e., Compressed Sparse Column
(CSC) for transpose SpMV. Although its performance is much better than using CUSPARSE directly, it requires
storing two copies of the matrix. As an alternative way, we design the second approach to support both regular
and transpose SpMV and avoid storing additional matrix transpose. It has the almost same performance as the
first approach on NVIDIA C2050 GPU, but is slower on NVIDIA M2070.

• To optimize memory copy between host memory and GPU device memory, we utilize a “register-copy” tech-
nique to successfully speed up the performance of copy between host memory and device memory by 20%.
In addition, we minimize CPU operations by porting all matrix and vector based operations into GPU. Dur-
ing computation, the intermediate results reside on device memory, and only a small amount of data is copied
between host and device memories for MPI communication.

• To increase parallelism, we decompose both matrix and vector. To obtain good load balance, we decompose
the matrix in row-wise order and distribute rows according to the number of nonzero elements. We use MPI-IO
to allow multiple MPI tasks to load data simultaneously.

2. Related Work

In our implementation, matrix is stored in Compressed Sparse Row (CSR) format, which only preserves values of
nonzero elements as well as their positions. CSR is one of the most popular formats used for SpMV due to its space-
efficiency and data alignment. The CSR format consists of three arrays: ptr, indices, and data. The integer array ptr
stores row pointers to the offset of each row. The integer array indices stores the column indices of the nonzeros. The
array data stores the values of nonzeros. CSR is not sensitive to the distribution of nonzeros. It is efficient when being
accessed in row-wise order. Our parallel scheme utilizes this feature, so we partition matrix based on row. We also
use Compressed Sparse Column (CSC) to store matrix transpose. CSC follows the same principle as CSR except that
it stores matrix by column. It also has three arrays: ptr storing the offset of each column, indices storing row indices,
and data storing nonzero values.

SpMV is the most compute-intensive part in LSQR. Different GPU-based approaches have been investigated to
speed it up. Bolz et al. [3] first applied GPU computing to SpMV. Baskaran and Bordawekar [4] implemented a few
optimized SpMV kernels in CUDA. Bell and Garland [5] implemented SpMV kernel in CUDA for different sparse
matrix formats, including DIA, ELLPACK, CSR, COO, and a hybrid ELL/COO format. Choi et al. [6] proposed
and implemented a blocked ELLPACK (BELLPACK) storage formats and a performance model. In [7], we designed
a novel framework to partition sparse matrix and store in different formats based on the fact that different storage
formats of sparse matrix can significantly affect the performance of SpMV.

There are several CPU-based implementations of parallelized LSQR. Baur and Austen [8] presented a parallel
implementation of LSQR by means of repeated vector-vector operations. PETSc [9] also contains an optimized
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implementation. Liu et. al [10] proposed a parallel LSQR algorithm for seismic tomography. They decompose the
matrix by row. Their approach computes SpMV and tranpose SpMV in parallel based on distributed storage, and
requires reduction on two vectors in each iteration. This approach limits the scalability and involves much more
communication if the two vectors are very large.
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Figure 1: (a) The workflow of LSQR in CPU version; (b) the workflow of LSQR in GPU version, where the green steps are executed on CPU and
the yellow steps are executed on GPU.

3. Introduction to LSQR

LSQR algorithm aims to solve linear systems like A × x = b in an iterative way, where A is a sparse matrix for
coefficients of a linear systems, b is a constant vector, and x is the variable vector to be solved.

Figure 1 (a) shows the workflow of LSQR algorithm. Here x and y are intermediate vectors during computation.
x’s initial value is zeros, y’s initial value is derived from vector b. The green procedures denote the algorithm’s
initialization steps including loading the metadata and real values and initializing variables. The yellow procedures
are the major iterative steps including:

1. Scale operation on vector y.
2. An SpMV and a vector addition ( y← y + A × x).
3. Norm of vector y.
4. Scale operations on vector y and vector x based on y’s norm value.
5. Another SpMV and a vector addition ( x← x + AT × y). Note that the matrix is in its transpose format.
6. Norm and scale operations on vector x.
7. Check convergence condition. If satisfied, the algorithm terminates, x’s derived value is the final solution of

the linear systems; otherwise the algorithm continues the next iteration. The whole execution may converge till
after hundreds or thousands of iterations, depending on matrix A.

The most compute-intensive portions are y← y + A× x and x← x + AT × y, which usually take up more than 70%
of the execution time. Both norm and scale operations totally take up about 20% in the whole execution time. In this
paper, we focus on parallelizing and optimizing these four components.



/ Procedia Computer Science 00 (2012) 1–10 4

Table 1: Summary of our CPU and four GPU implementations for LSQR. The third and fourth columns indicate “kernel name (input matrix
format)”. “csrmv” is the subroutine name in CUSPARSE, which means matrix vector multiplication in CSR format.

Implementation Matrix storage format y← y + A × x kernel x← x + AT × y kernel
CPU one copy of CSR our own csrmv (CSR) our own csrmv trans (CSR)

GPU-I one copy of CSR CUSPARSE csrmv (CSR) CUSPARSE csrmv trans (CSR)
GPU-II one copy of CSC CUSPARSE csrmv trans (CSC) CUSPARSE csrmv (CSC)
GPU-III one copy of CSR, one copy of CSC CUSPARSE csrmv (CSR) CUSPARSE csrmv (CSC)
GPU-IV one copy of CSR CUSPARSE csrmv (CSR) our own csrmv trans (CSR)

4. Single GPU Approach

Figure 1 (b) shows the workflow of LSQR GPU version. All iterative steps in yellow are ported to GPU. The
initialization steps are exactly the same as the CPU version. After initialization, both matrix and vectors are copied
to device memory from host memory. Compared with Figure 1 (a), the scale and norm operations in Figure 1 (b) are
computed using CUBLAS; and SpMVs, i.e., y ← y + A × x and x ← x + AT × y, are computed using CUSPARSE.
CUBLAS also contains subroutines to perform matrix vector multiplication, but CUSPARSE is specially optimized
for sparse matrix. In our implementation, the matrix and vector reside in device memory during computation in order
to avoid frequent memory copy between host and device. After the algorithm converges, the solution vector is copied
back to host memory from device.

4.1. Selecting the Best GPU Kernel for SpMV
SpMV is the most time-consuming and memory-consuming part in LSQR. We investigate several GPU imple-

mentations of SpMV for y← y + A× x and x← x + AT × y and compare their performance in our application. Table 1
summarizes our CPU implementation and four types of GPU implementations of LSQR using different SpMV kernels.
Figure 2 compares the performance of these implementations.

4.1.1. GPU Implementation I (GPU-I)

Implementation y← y + A × x x← x + AT × y
CPU 60.766 75.567

GPU-I 6.008 121.289
GPU-II 553.721 11.285
GPU-III 5.907 10.949
GPU-IV 5.956 10.415

Figure 2: Execution time comparison of the four single-GPU imple-
mentations with the CPU serial implementation in single precision on
NVIDIA Tesla C2050 (Fermi). The execution is based on a sample
dataset and measured in seconds.

The CUSPARSE library provides subroutines
for SpMV. We use cusparseXcsrmv (cusparseHandle t

handle, cusparseOperation t transA, ...) to
calculate y ← y + A × x and x ← x + AT × y,
where X could be S for single, D for double, C
for complex, or Z for double complex. Here A
must be stored in CSR format. transA is set to
CUSPARSE OPERATION NON TRANSPOSE for A× x and
CUSPARSE OPERATION TRANSPOSE for AT × y. GPU-
I is a straight forward approach. From Figure 2 , we
can see that the GPU-I is even slower than the CPU
serial implementation on x ← x + AT × y, because
AT × y requires additional time and space to transpose
the matrix. However, the performance of y ← y + A × x is improved dramatically compared with the CPU serial
implementation.

4.1.2. GPU Implementation II (GPU-II)
The CUSPARSE library supports matrix format conversion between different storage formats, e.g., CSR to CSC,

and CSR to Coordinate Storage (COO). We utilize this feature to convert matrix from CSR to CSC format. Note that,
we need to do conversion only once at the first iteration, then the CSC matrix is stored in GPU memory for future
iterations because matrix A keeps unchanged during iterations. As we introduced in Section 2, CSR is a row-wise
compressed format, while CSC is similar but in column-wise. In the GPU-II code, we first convert the original matrix
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in CSR to CSC format. Then a CSC matrix can be treated as a CSR matrix, i.e., refer column pointer of CSC as
row pointer of CSR, and the row indices of CSC as column indices of CSR. Therefore, the converted CSC matrix
is equivalent to the transpose of original matrix in CSR format. Hence, we can assign CUSPARSE OPERATION NON

TRANSPOSE to cusparseXcsrmv() to perform AT × y, and assign CUSPARSE OPERATION TRANSPOSE to perform
A × x.

Compared with the serial CPU implementation, the performance of the GPU-II code is slower on y ← y + A × x,
due to transpose inside the function, but faster on x← x + AT × y because no transpose is required in this case.

4.1.3. GPU Implementation III (GPU-III)
Both GPU-I and GPU-II have drawbacks. GPU-I requires additional time and space to transpose the matrix in

CSR format in order to perform AT × y. GPU-II requires additional time and space to transpose the matrix in CSC
format in order to perform A × x.

GPU-III is the combination of GPU-I and GPU-II that avoids the drawbacks we mentioned above. Specifically,
we store two copies of matrix A in device memory, one is in CSR format, and the other is in CSC format. We use
CUSPARSE cusparseXcsrmv() in CSR format to compute y← y+A×x, and CSC format to compute x← x+AT×y.
As Figure 2 indicates, GPU-III combines the advantages of GPU-I on y← y + A × x and GPU-II on x← x + AT × y.
So its overall performance is much better than the serial CPU code. However, this implementation requires to store
two copies of A, i.e., one copy in CSR and the other copy in CSC.

4.1.4. GPU Implementation IV (GPU-IV): Avoiding Matrix Transpose (Optimization-1)

__global__ void spmvGPUCSRTrans(int numRow, int ptr[], int idx[],

float val[], float y[], float x[]){

// global thread index

int thread_id = BLOCK_SIZE * blockIdx.x + threadIdx.x;

// thread index within the warp

int thread_lane = threadIdx.x & (WARP_SIZE-1);

// global warp index

int warp_id = thread_id / WARP_SIZE;

// total number of active warps

int num_warps = (BLOCK_SIZE / WARP_SIZE) * gridDim.x;

for( row=warp_id; row < numRow; row+=num_warps){

int row_start = ptr[row];

int row_end = ptr[row+1];

for (i=row_start+thread_lane; i < row_end;i+=WARP_SIZE)

atomicAdd(x+idx[i], val[i] * y[row]);

}

}

Figure 3: Transpose SpMV GPU implementation that avoids matrix transpose in CSR
format.

Because matrix A could be huge, its
memory consumption dramatically lim-
its the problem size while two copies of
matrix are stored in memory.

We can calculate AT × y in another
way without actually transposing the
matrix. In the matrix transpose, every
element in a column of the transposed
matrix multiplies the corresponding el-
ement in the vector. For example, ele-
ments in the first column of the matrix
transpose multiply the first element in
the vector and produce an intermediate
vector, and so on. Finally we sum up
all the intermediate vectors and yield the
same result as the traditional way.

For such an approach to avoid trans-
pose, its CPU implementation is sim-
ple. However, its GPU implementation
is challenging. Our CUDA kernel im-
plementation is shown in Figure 3, which is an extension of [5]. Our code uses one warp to calculate the whole
row of the matrix, so memory accesses are coalesced. Specifically, a row is processed using the whole warp (32
GPU threads) in parallel. All nonzero elements in a row are multiplied with the same element in the vector (i.e.,
y[row]). Each result is added to the corresponding element in vector x. The memory accesses in such a parallel
multiplication are coalesced because consecutive threads access consecutive elements. The addition to x cannot be
coalesced because the result elements from the multiplication could be inconsecutive. An important technique in this
CUDA kernel is the usage of “atomicAdd”. Without it, different GPU threads may add values to the same element
of x simultaneously, which incurs a race condition. “atomicAdd” makes the add operation (including read and write)
uninterrupted, thus race conditions can be avoided. CUDA 4.0 inherently supports “atomicAdd” in single precision
for GPU devices with compute capability 2.x. but not for double precision. We implemented it using “atomicCAS”
for double precision. Figure 2 indicates that this approach has similar performance with the GPU-III on NVIDIA
Fermi C2050. However, on NVIDIA Fermi M2070, GPU-IV is slower than GPU-III because of atomic operations in
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x← x + AT × y. In that situation, we have two options: the GPU-IV code is more memory-efficient, the GPU-III code
is more computation-efficient.

4.2. Accelerating Memory Copy (Optimization-2)

Memory copy between host and device is very expensive. We investigated several techniques to improve it.
Since CUDA 2.2, CUDA allows host memory to be mapped into device memory, also called pinned mem-

ory, using “cudaHostAlloc()” and “cudaHostFree()” to allocate and free page-locked host memory. It elim-
inates the need to copy data from host to device memory. CUDA 4.0 introduces “cudaHostRegister()” and
“cudaHostUnregister()” that can register or unregister memory allocated by “malloc()” in host memory. Hence
GPU kernel can access registered host memory directly. In the above two zero-copy mechanisms, the CUDA kernel
operates directly on the host memory, which slows down the kernel. The reason is that the PCI express bus that
bridges between host and device memory has lower bandwidth and higher latency than device memory. Since our
CUDA kernels frequently access the mapped host memory and cannot tolerate long latencies, these approaches are
not suitable for our application.

We use a “register-copy” approach to speed up memory copy. We first allocate the array in host memory, and
register the allocated memory using cudaHostRegister(). Then we use cudaMemcpy() to copy between host memory
and device memory. This is based on the observation that “cudaHostRegister()” speeds up memory copy between
host and device. For example, in our experiment, “register-copy” reduces memory copy from 10.878s to 8.391s,
which is more than 20% improvement. This is because GPU can directly access registered memory, hence has much
higher bandwidth than unregistered memory.

5. Multiple GPUs (MPI-CUDA) Approach

Our MPI-CUDA implementation of LSQR is based on the hybrid MPI and CUDA programming model. It works
as follows.

Based on the metadata, a load balancing strategy is used to make data evenly distributed among MPI tasks. Each
MPI task loads its own piece of data independently and simultaneously. Then each MPI task copies its data from host
memory to GPU’s device memory.

During computation, SpMV and vector-based operations are executed on GPUs in parallel. At the end of each
iteration, an MPI collective communication MPI Allreduce is called to obtain a complete copy of vector x. In order
to perform MPI Allreduce among multiple GPUs, the partial values of x located on each individual GPU are copied
back to host memory from device memory. After MPI Allreduce is done, the reduced result x is copied back to
device memory. The decomposed matrix A and vector y always stay in device memory.

5.1. Data Layout and Decomposition

Before discussing the decomposition method, we first introduce the characteristic of seismic data. The upper part
of sparse matrix A is kernel component and the lower part is damping & smoothing component (called “damping”
for short in the rest of the paper). The kernel component of matrix A is stored in row-wise. The vast majority of
nonzeros of the matrix are located at kernel component. Every row of kernel is stored in a separated file with its name
indicating its row index. Actually, the order of rows of the matrix does not affect computation result as long as the
order of elements in vector b is adjusted accordingly. The data file for a row only stores the values of nonzeros and
column indices. The damping component usually has much more rows than the kernel and is much sparser with only
one to four nonzeros per row. Every damping file stores multiple rows of damping data. When loading the matrix, the
damping data is appended below the kernel data.

Our decomposition method is based on MPI programming model and the layout of seismic data. As we mentioned
before, LSQR mainly conducts two operations x ← x + AT × y and y ← y + A × x in an iterative way. Every MPI
task keeps a portion of matrix A, a portion of vector y, and a complete copy of vector x. We decompose only vector y
because the size of vector y is much larger than that of vector x.
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5.2. Static Load Balancing Strategy (Optimization-3)

To obtain good load balance, we evenly partition and distribute the data according to the number of nonzeros in
every MPI task. When LSQR starts, the master MPI task (rank=0) first loads the metadata that contains a list of names
of kernel row files and their number of nonzeros sorted in descending order. The master MPI task is responsible for
sending the file names of kernel dataset to the appropriate compute MPI tasks. We maintain a counter for every MPI
task to keep the current total number of nonzeros already allocated to that MPI task. Then we search all MPI tasks to
find the one with the least load according to the number of nonzeros. Thus, at the end of allocating, every compute
MPI task has similar amount of nonzero elements. Once receiving kernel data file names, the individual MPI task
loads its assigned kernel rows independently and simultaneously using MPI-IO.

Because the damping data is evenly divided into a series of files according to the number of MPI tasks. These files
are assigned to the MPI tasks according to MPI rank number. The partitions of kernel and damping data are all stored
in CSR format in memory.

As the row order of kernel data has been changed for load balancing, the order of corresponding elements in
vector b also needs to be adjusted accordingly. We distribute partitions of vector b according to the allocation of their
corresponding kernel data partition.

5.3. Parallel Computation (Optimization-4)

Our parallelized computation is based on data decomposition, where the communication between MPI tasks is
just one MPI Allreduce during each iteration. The most time-consuming operations in every iteration are SpMV,
i.e., y← y + A × x and x← x + AT × y, which are computed in parallel.

=+ + +

GPU

CPU

(a) (b)

Figure 4: Reduction on the result of AT × y. A vertical bar represents a
vector x copy in an MPI task. (a) Vector x′ is copied from device (GPU)
memory to host (CPU) memory, and reduction is performed across net-
work. (b) After reduction, the reduced vector x′′ is copied from host
memory to device memory.

During calculating y ← y + A × x, every MPI task
computes the multiplication of a portion of matrix A
and a complete vector x and yields a portion of vector
y. Then it adds the new value to the previous portion
of vector y. All of these operations are performed on
GPU.

Calculating x← x + AT × y involves multiplying a
portion of matrix transpose of A with a portion of vec-
tor y in GPU. Each MPI task computes x← x + AT × y
simultaneously. This calculation works as follows.

1. Temporal vector x′ is copied to host memory
from device memory as shown in Figure 4 (a).

2. MPI Allreduce is performed to sum all vectors
x′ over different MPI tasks and broadcast the re-
duced vector x′′ to all MPI tasks as shown in
Figure 4 (a) and (b).

3. The reduced vector x′′ is copied to device mem-
ory from host memory, as shown in Figure 4 (b).

4. The reduced vector x′′ is added to the previous
vector x in GPU.

5.3.1. Vector Based Operation
The vector based operations are scale and norm. When performing scale operation on x or y, the scale value is

sent to every MPI task for local computation on GPU without synchronization. When performing norm operation
on y, every MPI task computes a partial norm value based on its local part of vector y, and the master MPI task is
responsible for collecting partial norm value from all MPI tasks and computing the overall norm value. Thus, we
eliminate reconstructing a complete vector y in local MPI task and avoid memory copy between host and device.
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6. Experimental Result

Our experiments are conducted at Keeneland [11] CPU-GPU cluster at National Institute for Computational Sci-
ences (NICS). Keeneland is equipped with 2.8 GHz Intel Westmere hex-core CPUs, NVIDIA 6GB Fermi M2070
GPUs, and Qlogic QDR InfiniBand switches. The softwares we use are OpenMPI 1.4.3, CUDA 4.0 RC2 and PETSc
3.1.

6.1. Single GPU Experiments

Table 2: The four seismic datasets for experiments.

data name #row #column #nonzero nonzero ratio (%)
China CN200801ker 2000 444346 90,076,905 10.14

China CN2008ker 9000 444346 165,768,180 4.15
S CA DEC5 1,914,215 302,940 53,909,209 9.2 × 10−3

S CA DEC3 8,881,087 1,351,680 210,709,885 1.755 × 10−3

We test our serial CPU code and two single GPU codes (GPU-III and GPU-IV) on four real-world seismic datasets
in single precision and double precision. The datasets are listed in Table 2. The first two China datasets are denser
than the two Southern California datasets. To simplify the performance comparison, the number of iterations is fixed
to 100 for all tests.

Table 3: The execution time (in seconds) for datasets in single precision (SP). CPU’s execution time is set as the baseline. “≈” indicates that
GPU-III has almost the same performance with GPU-IV. “x” indicates that the memory is not enough to load the dataset. The speedup is calculated
by Tcpu ÷ Tgpu, where Tcpu is the execution time on CPU and Tgpu is the execution time on GPU.

data function # called CPU(SP) GPU-IV(SP) Speedup GPU-III(SP) Speedup
CN 200801ker LSQR main iteration 1 38.617 3.726 10.4 2.369 16.30

norm 200 0.171 0.022 7.8 ≈ ≈

scal 400 0.088 0.002 44.0 ≈ ≈

y← y + A × x 100 17.54 1.08 16.2 ≈ ≈

x← x + AT × y 100 21.037 2.85 7.4 1.533 13.72
CN 2008ker LSQR main iteration 1 74.964 7.008 10.7 4.27 17.56

norm 200 0.177 0.022 8.0 ≈ ≈

scal 400 0.093 0.002 46.5 ≈ ≈

y← y + A × x 100 34.541 2.133 16.2 ≈ ≈

x← x + AT × y 100 40.567 5.29 7.7 2.546 15.93
S CA DEC5 LSQR main iteration 1 26.786 5.798 4.6 2.795 9.58

norm 200 1.079 0.032 33.7 ≈ ≈

scal 400 0.461 0.002 230.5 ≈ ≈

y← y + A × x 100 11.863 1.913 6.2 ≈ ≈

x← x + AT × y 100 13.496 3.97 3.4 0.94 14.36
S CA DEC3 LSQR main iteration 1 106.461 24.357 4.4 x x

norm 200 4.934 0.076 64.9 x x
scal 400 2.245 0.002 1122.5 x x

y← y + A × x 100 46.875 9.079 5.2 x x
x← x + AT × y 100 52.788 15.63 3.4 x x

Tables 3 shows the execution time of major parts of the code in single precision (SP). In single precision, we
achieve 4x to 10x speedup with 3.7 to 9.9 GFlops in the transpose-free GPU-IV code, and 9x to 17x speedup with 8.2
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to 15.7 GFlops in the GPU-III code on single GPU compared to the serial CPU code. We also do the same experiment
on double precision (DP), which is not shown in this paper because of page limit. In double precision, we achieve
2.4x to 3.0x speedup with 1.7 GFlops to 2.4 GFlops in the transpose-free GPU-IV code, and 9.1x to 15.2x speedup
with 6.5 to 12.0 GFlops in the GPU-III code on single GPU compared to the serial CPU code. Table 4 summarizes
the overall performance in single and double precision.

The GPU-III code has better performance than the GPU-IV on single GPU for both single and double precisions
on M2070 GPU because atomicAdd is involved in the GPU-IV. Note that they have the almost same performance on
C2050 GPU, as shown in Figure 2. The performance degradation of GPU-IV from single precision to double precision
is more obvious than that of GPU-III. For example, as shown in the second row of Table 4, GPU-IV degrades from
9.915 GFlops (SP) to 2.36 GFlops (DP) while GPU-III degrades from 15.488 GFlops (SP) to 11.96 GFlops (DP).
The reason is that CUDA 4.0 natively supports int and float but not double version of atomicAdd. But GPU-IV
uses less memory than GPU-III, e.g., all datasets can be loaded in GPU-IV but not in GPU-III, as indicated by “x” in
the table. Therefore, GPU-III is more efficient but uses more memory, whereas GPU-IV is less efficient but uses less
memory. There is a trade-off between performance and memory usage.

The two China datasets have higher speedup on both single precision and double precision than two Southern
California datasets due to its higher nonzero ratio, because the CUDA kernel in CSR format has higher memory
access efficiency when nonzero ratio is higher.

Table 4: Performance (GFlops) of different datasets for CPU and GPU in single precision (SP) and double precision (DP). “x” indicates that the
memory is not enough to load the dataset.

data CPU(SP) GPU-IV(SP) GPU-III(SP) CPU(DP) GPU-IV(DP) GPU-III(DP)
CN 200801ker 0.844 9.915 15.488 0.7 2.36 11.96

CN 2008ker 0.796 9.567 15.701 0.719 2.359 x
S CA DEC5 0.765 3.962 8.218 0.642 1.74 6.54
S CA DEC3 0.754 3.721 x 0.617 1.806 x

6.2. Multi GPUs (MPI-CUDA) Experiments

We use one MPI task residing on one CPU core to control one GPU. To keep the MPI communication cost the
same, we compare the performance of same number of CPU cores with same number of GPUs.

Strong scalability defines how the execution time varies with the number of cores for a fixed problem size. We
tested strong scalability of MPI-CPU code, MPI-GPU code, and PETSc code using CN2008ker dataset with the num-
ber of CPU cores or GPUs ranging from 1 to 60. We do not test more CPU cores or GPUs, because the decomposed
problem size is too small for each core or GPU, which cannot fully exploit the computing power of CPU or GPU.
Figure 5 (a) illustrates the performance of MPI-CPU, MPI-GPU-IV, MPI-GPU-III, and PETSc. The result on one
GPU in double precision is missed because the dataset is so large that it cannot be loaded into a single GPU. The
results of PETSc on three or less CPU cores are also missed because of the same reason. Both our MPI-CPU and
MPI-GPU implementations have better performance than PETSc and scale as the number of CPU cores or GPUs in-
creases from 1 to 60. The best performance of CPU is 29.9 GFlops using 60 CPU cores in single precision, 37x faster
than single core; for double precision, the performance of MPI-CPU is 21.1 GFlops using 60 CPU cores, 27x faster
than single core. MPI-GPU-III is faster than MPI-GPU-IV in all cases. For single precision, the highest performance
of MPI-GPU-III is 55.2 GFlops using 60 GPUs, 1.8x faster than 60 CPU cores; for double precision, it is 43.6 GFlops
for 60 GPUs, 2x faster than 60 CPU cores.

Weak scalability shows how the execution time varies with the number of cores for a fixed problem size per core.
We tested weak scalability from 15 to 135 CPU cores or GPUs by duplicating China 2008ker dataset to make every
core or GPU has roughly the same volume of data. For instance, the dataset used by 135 CPU cores (or GPUs) is 9x
as large as the dataset used by 15 CPU cores (or GPUs). Figure 5 (b) shows the experimental result of MPI-CPU,
MPI-GPU-III, and PETSc. In this experiment, we use GPU-III as the representative of GPU since it is the fastest GPU
version. As Figure5 (b) shows, both performances of MPI-CPU and MPI-GPU-III increase as the number of CPU
cores or GPUs increases. MPI-GPU-III is around 3x to 4x faster than the MPI-CPU code with the same number of
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Figure 5: (a) Strong and (b) weak scaling test of MPI-CPU, MPI-GPU and PETSc implementations on CN2008ker dataset.

CPU cores in single precision and double precision. The MPI-GPU-III code achieves 268 GFlops in single precision
and 223 GFlops in double precision on 135 MPI tasks. The degradation from single precision to double precision is
20-30% for both MPI-CPU and MPI-GPU-III. Our implementations of MPI-CPU and MPI-GPU-III are faster than
PETSc in double precision.

7. Conclusions and Future Work

We design and implement an MPI-CUDA based parallel approach for LSQR solver. Both our single GPU and
MPI-GPU codes achieve considerable speedup compared with CPU code. The MPI-GPU code scales on both weak
and strong scaling tests, and is faster than PETSc. Our future work will focus on reducing the network communication
between MPI tasks to further increase the scalability on very large number of GPUs. We will redesign the parallel
computing part of the algorithm based on a new data decomposition approach in order to minimize the communication
traffic. Another optimization technique is to utilize GPUDirect technology to speed up data communication between
different GPUs when it is fully supported.
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