
Tuning Performance of Spark Programs
Hong Zhang

Department of Computer Science
University of Central Florida
hzhang1982@knights.ucf.edu

Zixia Liu
Department of Computer Science

University of Central Florida
zixia@knights.ucf.edu

Liqiang Wang
Department of Computer Science

University of Central Florida
lwang@cs.ucf.edu

Abstract—Along with the explosive growth of data, there is a
great demand to speedup the ability to process them. Although
there are several platforms such as Spark that have made
analysis easier to developers, the performance tuning for such
platforms meanwhile becomes complex. In this paper, we propose
an efficient performance optimization engine called Hedgehog
to evaluate the performance based on “Law of Diminishing
Marginal Utility” and give an optimal configuration setting. The
initial experiments show that our optimization can gain 19.6%
performance improvement compared to the naive configuration
by tuning only 3 parameters.

I. INTRODUCTION

With the exponential growth of data generated by human
and machine daily, people increasingly realize the importance
in speeding up the performance of data analysis and process.
There already exist several excellent commercial platforms
such as Hadoop, Spark and Flink. Spark is an open source
general-purpose processing framework for big data applica-
tions. In-memory storage design makes it run up to 100
times faster than Hadoop. It also supports more convenient
operations that make it easy to use, and simple to program.

However, there are over 150 configuration parameters in
Spark, which makes tuning performance very complicated,
even for Spark experts with rich practical experience. And
there exists no default configuration set suitable for every
kind of application. Another major problem is how to collect
enough profile information during execution for efficient fine-
grained Spark tuning. Even Spark already collects some basic
knowledge for applications, it is still short of a great amount
of fine-grained information such as task and operation details.
Because of such information shortage, existing application
optimization techniques have a few shortcomings such as:

• Since there is no record for the duration of each operation,
we cannot know vital operations to determine how to do
code level optimization.

• Due to the lack of data throughput information, it is
hard to understand data transferring relationship for each
operation, especially for some general-purpose operations
like “mapPartitions”.

• Spark does not collect the resource usage information
such as CPU and memory usage for each task, users
cannot tune the resource allocation and parallelism in a
correct way.

• Due to the lack of specific profiling for different memory
types, it is impossible to know the optimal proportion of
every memory type.

The models used to diagnose the performance for Spark can
be categorized into two types: white box and black box. A
white-box performance model requires necessary information
extraction which utilizes instrumentation for application pro-
filing and should understand the internal application structure
and process; whereas a black-box model does not require
the comprehension of the internal structure but analyzing
the performance and behavior transparently. Sometimes, it
may be impossible to analyze the performance behavior by
a white box, since the application structure is too complex
and the relationship among modules is hard to diagnose. The
drawback of the black box is also apparent in lacking measure
for investigating the root cause of a performance problem.
Starfish [1] is a white-box performance model for Hadoop,
which instruments the application and builds the relationship
between execution performance and configurations by formu-
las. However, the overhead of the instrumentation method
is too expensive, furthermore, its covering for wide-range
applications and formalization makes it inaccurate for some
types of applications. There are other existing researches to
analyze the performance model but typically not focus on the
internal structure and comprehensive process analysis [2? –6].

In this study, we propose an efficient 3-level sampling
performance model, called Hedgehog, and focus on the re-
lationship between resource and performance. This design
is a brand new white-box model for Spark, which is more
complex and challenging than Hadoop. In our tool, we employ
a Java bytecode manipulation and analysis framework called
ASM [7] to reduce the profiling overhead dramatically. Our
contributions are summarized as follows:

• We design an end-to-end performance model for Spark
that contains resource monitor, ASM based profiler, log
collector and analyzer, performance evaluator, workflow
analyzer, and optimizer, which is easy to use with low
overhead.

• Instead of sampling all elements in each RDD, we use
3-level sampling model to sample the test application in
input data level, task level, and element level. These 3-
level sampling help us reduce the overhead dramatically,
and avoid inaccuracy introduced by the profiling process.

• We also introduce a new white box performance model
which focuses on the most influential parameters, most
of which are related to the resource allocation and
parallelism. Our small but rigorous performance model



captures the essential process in Spark, and avoids trivial
analysis that contributes less to the performance improve-
ment.

• We employ an important economic law, “Law of Di-
minishing Marginal Utility”, to design our optimizer for
evaluating the performance benefit of each unit resource
allocation, and determine the optimal memory proposition
to make fully use of every type of resource.

• Our performance model not only gives an optimal con-
figuration set, but also helps user determine the cluster
size in a public cloud, who can seek suitable cluster size
at lower cost.

II. BACKGROUND

Spark is a distributed computing framework to process big
data across cluster. Instead of keeping intermediate data on
disk like Hadoop, Spark tries to encourage user to keep them
in memory. In addition to “Map” and “Reduce” stages in
Hadoop introduced by MapReduce model, which limits the
workflow of user’s application, Spark supports multiple stages
and offers over 80 high-level operators like “filter”, “join”,
and so on. Users can write applications not only in Java,
but also in Python and Scala. However, these fancy features
make the design and analysis for its performance model more
complicated and intricate.

A. Spark 5-Level Architecture

A Spark program includes 5 hierarchical levels: application,
job, stage, task, and operation, which is shown in Figure 1.
Instead of having job as the highest level in Hadoop, the
highest level for Spark is application, which is submitted
by a client to the resource manager and is launched in an
ApplicationMaster container. An application can contain more
than one jobs, the number of which depends on the number
of actions, i.e., each action is executed by a job. On the
application level, all jobs are merged into one package, which
makes it easier to design and more efficient to execute a
recursive application such as machine learning application.
Each job is triggered by one action, which always returns the
result to the driver. In each job, due to the number of shuffling
operations, it can be divided into many stages. Spark must
shuffle data between two neighboring stages, which is also
called wide dependency. A stage may contain multiple tasks,
each of which handles one partition of data. Each RDD usually
consists of many partitions, thus multiple tasks in each stage
may run in parallel on compute nodes. For each task, it still
executes several narrow dependent operations, which indicates
that operations are executed like pipelining without network
shuffling. The lowest level is operation. In general, the lower
the level is, the less execution information Spark collects since
the overhead is more expensive.

B. Memory Structure

Ever since Apache Spark version 1.6.0, Spark memory is
divided into three regions to manage: user memory, storage
memory, and execution memory [8], as shown in Figure

RDD 0 RDD 1 RDD 2

Stage 0 Stage 1

Job 0

Task 0

Task 1

Task 2

Task 3

Job 1, … …

Application

Shuffle

Fig. 1. 5-Level Structure for Spark Application.

sp
ar

k.
m

e
m

o
ry

.f
ra

ct
io

n
6

0
%

Storage 
Memory

Execution 
Memory

User Managed Memory

Spark Managed Memory

spark.memory.storageFraction
(50%)

Fig. 2. Memory Structure in Spark 1.6+.

2. User memory completely depends on the user-defined
function. The quality and feature of the user code has direct
effection on this part of memory usage. Storage Memory is
used for both cached data and “broadcast” variables. This
type of memory is related to data reusing and broadcasting.
Execution Memory stores the intermediate shuffling data on
both Map side and Reduce side. The boundary between the
storage memory and the execution is not fixed, which means if
one kind of memory is insufficient, it can borrow space from
the other. How to decide the memory fraction for each memory
region is a very challenging problem since the memory usage
is totally case by case, and there are so many influencing
factors making it hard to analyze.

III. MOTIVATION

Before input dataset is uploaded and processed by Spark,
it is usually stored in a distributed file system such as HDFS
and divided into blocks across clustered computers. Normally,
each task in the first stage selects one block locally to
process, consequently the number of tasks in the first stage is
determined by the number of blocks in distributed file system.
For the subsequent stages, the “repartition” function can be
used to increase or decrease the number of partitions. However,
there exists a big challenge for users to decide how much
memory and CPU resource to be allocated for each task, and



whether repartition is applied when shuffling data between
adjacent stages.

When a Spark user submits an application, three major
resource allocation parameters need to be considered: the
number of cores per executor, memory size per executor, and
the number of executors. How to configure these parameters
relies on the user’s experience. For instance, considering
a case where a cluster contains 10 DataNodes, and each
DataNode has 16 cores and 128 GB memory together, we
first reserve 1 core and 8 GB memory for OS, Hadoop and
Spark. Consequently there are 15 cores and 120 GB per node
left to allocate. Then the user can determine how many cores
be assigned to each task by “spark.task.cpus”, which is 1 by
default. We assume 1 core for each task is reasonable for the
user’s application so that the user can execute 15 tasks in
parallel in each DataNode. Therefore we can easily calculate
how much memory assigned to each task (120 / 15 = 8 GB),
however we also need to consider other overheads, so 7 GB per
task makes more sense. If 7 GB is not enough for each task, an
“out of memory” error will occur, and the user must increase
the memory size per task and recalculate the number of tasks
per DataNode. Here we assume 7 GB per task is large enough,
then decide how many tasks are executed in each executor.
Tasks executed in the same executor can share memory and
other resource, but too many tasks being processed in the same
jvm could lead to poor performance. Here we assume 5 cores
per executor is a reasonable configuration. Since we have 15
cores available in each DataNode, 15 / 5 = 3 executors can be
allocated in each node, and each executor contains 5×7 = 35
GB memory.

From analysis above, it is apparent that this configuration
depends on too many assumptions we made, which may not
make sense or even are wrong in reality, such as 1 core for
each task.

IV. DESIGN AND IMPLEMENTATION

A. Hedgehog Structure

Figure 3 shows the detailed architecture of our perfor-
mance optimization engine, called Hedgehog. Hedgehog is a
comprehensive performance tuning measure for Spark, which
profiles the fine-grained executing information from Spark
system, collects necessary information from Spark original
logs, analyzes the workflow of Spark application, employs
Detective Marginal Utility Model (DMU) to tune ratios among
different memory categories, and optimize the performance
by reasonable resource allocation. Hedgehog contains several
components to coordinate the optimization for Spark.

1) Dynamic Resource Monitor: To monitor the system
resource, including CPU usage, memory usage per task dy-
namically, our resource monitor records CPU usage and Java
heap size for each Spark operation, including transformation,
and action. The major difference between our monitor and
others is that it can monitor the whole life cycle of each
operation to exactly tell the resource utilization for each
operation and identify the most influential operations in every
stage.

Log Analyzer

Spark Platform

Config. Collector

Hedgehog

Evaluator

Optimizer

Client
Submit

Visualizer
Workflow Analyzer

Resource Monitor

Profiler

Fig. 3. System Architecture of Hedgehog.

2) Profiler: As aforementioned, Spark application contains
5-level structure; however, the current execution profiling in
Spark is far from being sufficient for more advanced perfor-
mance model. We design a fine-grained profiler to collect more
information to help users understand what is happening, pro-
vide higher prediction accuracy, and improve job performance,
such as real-time data flow, data locality status, container
status.

3) Configuration Collector: Even being solely insufficient
to our performance model, in reality, Spark already col-
lects lots of useful information about the application, such
as job, stage, task duration, and sub-phases like serializa-
tion/deserialization time and shuffle read/write time. This
collector helps us collect all logs generated by Spark into a
user-defined directory. Together with information collected by
our profiler, we are able to collect all information from the
fine-grained level to highest level.

4) Log Analyzer: We design a log analyzer to extract
necessary information, and organize them with the application
structure by logs of Spark and our profiler.

5) Evaluator: Based on the information collected, we
design a brand-new resource-based performance model to
predict application duration. Since Spark utilizes in-memory
processing, which keeps data in-memory as much as possible
to improve the performance, the influence of the resource
especially the memory is very important. A reasonable re-
source allocation and configuration not only improves the
performance of each task, but also optimizes the parallelism
to speed up the execution for each stage.

6) Workflow Analyzer: The major functionality of the
workflow analyzer is to detect recursive structures in the
application. Each stage has a description to describe its major
operations, invoked class and code line number. Stages with
same description reveal the executing of same task. With
scanning all stages in ascending order, we use the stage
description as key, the latest stage ID as value, and calculate
the stage interval between the neighboring stages with the
same key. Then we calculate iterations for this application to
simplify the evaluation process.



7) Optimizer: With the knowledge obtained from the eval-
uator and workflow analyzer, the optimizer employs “Law of
Diminishing Marginal Utility” to allocate the memory resource
properly. The major configuration problem for user is to
configure the executor size (CPU cores, and memory size).
Our optimizer can analyze the real CPU usage and memory
usage for different phases to improve the resource utilization
ratio.

B. Performance Model

Since there are over 150 parameters in Spark. we cannot
determine their affection exhaustively. Some parameters have
significant impact on performance, some of them depend on
the job characteristics. Some of them must be set before
running a job, some could be changed after a job launches but
before the task runs, and some of them could be reset while
the task is running. Hence, figuring out the affection and types
of these parameters is very important for our performance
model and tuning mechanism. In our performance model,
we only consider those general, important, but tricky-tuning
parameters, especially related to memory.

tapp =

n∑
i=1

tijob =

n∑
i=1

im∑
j=1

tijstage (1)

The total execution time tapp can be calculated by Equation
1, tijob denotes the duration of job i, and the duration of stage
j in job i is symbolized by tijstage. The execution time of each
stage can be calculated by Equation 2. The whole stage is
divided into 3 sub-phases: read, run, and write, their durations
are tread, trun, and twrite, respectively. Spark needs to spill
the intermediate data into disk and merge them later if the
data are too large. Thus the sub-phases of read and write
contain spill and merge processes, which are related to the
execution memory. The read sub-phase also needs to load data
from the previous stage or from file system, therefore it has
load process, which is tied with the storage memory. The
user memory affects the duration of the garbage collection
process tgc, which belongs to the run sub-phase. Because of
the limitation of space, we omit details here.ch

tstage = tread + trun + twrite

= trload + trspill + trmerge

+ texact + tgc + twspill + twmerge

(2)

V. INITIAL RESULTS

We evaluated Hedgehog on a cluster containing 10 nodes,
1 NameNode and 9 DataNode. Each node has an Intel(R)
Xeon(R) CPU E5-2620 v3 with 6 cores, and 32 GB mem-
ory. Our Spark cluster is based on CentOS Linux Server 7,
JDK version 1.8, Apache Hadoop version 2.7 and Apache
Spark 2.1. We build a very simple performance model which
only bound 3 configuration parameters: “executor-memory”,
“executor-cores”, and “num-executors”. The results show that
our optimizer can gain 19.6% performance improvement com-
pared to the naive configuration.

VI. CONCLUSIONS

In this paper, we design an end-to-end performance model
for Spark, and use 3-level sampling model to sample the
test application, i.e., input data level, task level, and element
level. We also introduce a new white box performance model
to evaluate the performance based on “Law of Diminishing
Marginal Utility”. Initial results show that our optimization
can gain 19.6% performance improvement compared to the
naive configuration, even by tuning only 3 parameters.

VII. ACKNOWLEDGEMENT

This work was supported in part by NSF-1622292.

REFERENCES

[1] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. Cetin, and S. Babu. Starfish: A self-tuning system for
big data analytics. In CIDR, volume 11, 2011.

[2] K. Wang and M. Khan. Performance prediction for
apache spark platform. In HPCC. IEEE, 2015.

[3] H. Zhang, Z. Sun, Z. Liu, C. Xu, and L. Wang. Dart: A
geographic information system on Hadoop. In CLOUD,
pages 90–97. IEEE, 2015.

[4] L. Xu, M. Li, L. Zhang, A. Butt, Y. Wang, and Z. Hu.
Memtune: Dynamic memory management for in-memory
data analytic platforms. In IPDPS. IEEE, 2016.

[5] A. Paul, W. Zhuang, L. Xu, M. Li, M. Rafique, and
A. Butt. Chopper: Optimizing data partitioning for in-
memory data analytics frameworks. In CLUSTER, pages
110–119. IEEE, 2016.

[6] H. Zhang, H. Huang, and L. Wang. Mrapid: An efficient
short job optimizer on Hadoop. In IPDPS. IEEE, 2017.

[7] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: a
code manipulation tool to implement adaptable systems.
Adaptable and extensible component sys, 30:19, 2002.

[8] Spark management website. https://0x0fff.com/spark-
memory-management/.

[9] S. Diersen, E. Lee, D. Spears, P. Chen, and L. Wang.
Classification of seismic windows using artificial neural
networks. Procedia computer science, 2011.

[10] P. Guo, H. Huang, Q. Chen, L. Wang, E. Lee, and
P. Chen. A model-driven partitioning and auto-tuning
integrated framework for sparse matrix-vector multipli-
cation on gpus. In Proceedings of the 2011 TeraGrid
Conference: Extreme Digital Discovery. ACM, 2011.

[11] H. Zhang, L. Wang, and H. Huang. Smarth: Enabling
multi-pipeline data transfer in HDFS. In ICPP, pages
30–39. IEEE, 2014.

[12] H. Huang, L. Wang, E. Lee, and P. Chen. An mpi-
cuda implementation and optimization for parallel sparse
equations and least squares (lsqr). Procedia Computer
Science, 9:76–85, 2012.

[13] H. Huang, J. M. Dennis, L. Wang, and P. Chen. A
scalable parallel lsqr algorithm for solving large-scale
linear system for tomographic problems: a case study
in seismic tomography. Procedia Computer Science,
18:581–590, 2013.


