
Detection of deadlock
potentials in multithreaded
programs

R. Agarwal
S. Bensalem

E. Farchi
K. Havelund

Y. Nir-Buchbinder
S. D. Stoller

S. Ur
L. Wang

Concurrent programs are well known for containing errors that are
difficult to detect, reproduce, and diagnose. Deadlock is a common
concurrency error, which occurs when a set of threads are blocked,
due to each attempting to acquire a lock held by another. This paper
presents a collection of highly scalable static and dynamic techniques
for exposing potential deadlocks. The basis is a known algorithm,
which, when locks are acquired in a nested fashion, captures the
nesting order in a lock graph. A cycle in the graph indicates a
deadlock potential. We propose three extensions to this basic
algorithm to eliminate, or label as low severity, false warnings of
possible deadlocks (false positives). These false positives may be due
to cycles within one thread, cycles guarded by a gate lock
(an enclosing lock that prevents deadlocks), and cycles involving
several code fragments that cannot possibly execute in parallel.
We also present a technique that combines information from multiple
runs of the program into a single lock graph, to find deadlock
potentials that would not be revealed by analyzing one run at a time.
Finally, this paper describes the use of static analysis to automatically
reduce the overhead of dynamic checking for deadlock potentials.

Introduction
Concurrent programs are well known for containing errors
that are difficult to detect, reproduce, and diagnose. Some
common programming errors include data races and
deadlocks. A data race occurs when two or more threads
concurrently access a shared variable, at least one of the
accesses is a write, and no mechanism is used to enforce
mutual exclusion. Data races can be avoided by proper use
of locks. However, the use of locks introduces the potential
for deadlocks. Two types of deadlocks, namely, resource
deadlocks and communication deadlocks, are discussed in the
literature [1, 2]. In the case of resource deadlocks, a set of
threads are deadlocked if each thread in the set is waiting to
acquire a lock held by another thread in the set. In the case of
communication deadlocks, threads wait for messages or
signals that do not occur. In the Java** programming
language, resource deadlocks result from the use of
synchronized methods and synchronized statements.

Communication deadlocks result from the use of the wait and
notify primitives. The algorithms presented in this paper
address resource deadlocks, from now on referred to as
deadlocks, illustrated by example programs written
in Java.
Deadlocks can be analyzed using a variety of techniques,

such as model checking (using algorithms that explore
all possible behaviors of a program), dynamic analysis
(analyzing only one or just a few executions), and static
analysis (analyzing the source code without executing it).
Model checking is computationally expensive and often
impractical for large software applications. Static analysis
can guarantee that all executions of a program are deadlock
free but often yields false warnings of possible deadlocks,
also called false positives or false alarms. Dynamic analysis
generally produces fewer false alarms, which is a significant
practical advantage because diagnosing all of the warnings
from static analysis of large code bases may be time
consuming. However, dynamic analysis may still yield false
positives, as well as false negatives (missed errors), and
requires code instrumentation that results in a slow down
of the analyzed program. This paper addresses these

�Copyright 2010 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

R. AGARWAL ET AL. 3 : 1IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

0018-8646/10/$5.00 B 2010 IBM

Digital Object Identifier: 10.1147/JRD.2010.2060276

three problems related to dynamic analysis. In particular,
we discuss improving a known dynamic analysis
algorithm and the use of static analysis to reduce runtime
overhead.
The fundamental idea behind dynamic analysis is the

known result [3] that deadlock potentials can be exposed by
analyzing locking order patterns in an execution trace from a
nondeadlocking run of the program. The technique consists
of building a lock graph and searching for cycles within
the graph. Nodes in the graph are locks. The graph contains
an edge (a connection) from lock l1 to lock l2 if a thread
at some point holds l1 while acquiring l2. A cycle in the
graph (i.e., a sequence of edges that begins and ends at the
same node) indicates a deadlock potential. The algorithm
detects deadlock potentials very effectively, independently
of whether the program actually deadlocks during the
particular run that is analyzed. This is evidenced by the
comparative study documented in [4]. However, the
algorithm has three classes of shortcomings, all addressed in
this paper: false positives, false negatives, and runtime
overhead, as outlined in the following.
False positives occur when the basic algorithm reports

deadlock potentials in cases where no deadlock is possible.
This paper proposes three extensions to the basic algorithm to
identify false positives due to 1) cycles within one thread,
2) cycles guarded by a gate lock (an enclosing lock that
prevents interleaving of nested locks that could lead to
deadlock), and 3) cycles between code fragments that cannot
possibly execute in parallel due to the causality relation
defined by thread start–join relationships between threads.
Note that, in Java, a thread can start a thread t by executing
t:startðÞ, and it can wait for t to terminate by executing
t:joinðÞ. In the section BAn example,[we present an
example that illustrates these situations. Such false positives
should probably still be reported since lock graph cycles
generally are undesirable, but they can now be graded
as having lower severity, an important piece of information
in those cases where the lock order violation is
intended.
False negatives occur when existing deadlock potentials

are missed by the algorithm. The basic algorithm is
surprisingly effective but is limited by the fact that it analyzes
only one execution at a time. A technique is presented that
reduces false negatives by combining information from
multiple executions. The main challenge in accomplishing
this is to identify a correspondence between lock objects in
different executions, because the actual lock objects across
executions are different.
Runtime overhead is caused by the instrumentation needed

to intercept operations on locks and other synchronization
operations (e.g., start and join operations on threads) and to
either run the analysis algorithm (online analysis) or record
information about the operation for subsequent analysis
(offline analysis). Static analysis can be used to decrease the

runtime overhead. A type system that ensures the absence
of races and atomicity violations is extended with the
deadlock types of Boyapati et al. [5], which keep track of the
locking order and can show that parts of a program are
deadlock free. We provide an algorithm that infers deadlock
types for a given program and an algorithm that on the
basis of the result of type inference determines which lock
operations can safely be ignored (i.e., neither intercepted nor
analyzed) by the dynamic analysis.
The Visual Threads tool [3] is one of the earliest practical

systems for dynamic deadlock detection by analysis of
locking orders. The Visual Threads algorithm constructs and
analyzes lock graphs, as briefly described above. Our
GoodLock algorithm [6] improved upon the Visual Threads
algorithm by introducing the concept of gate locks to reduce
false positives. The GoodLock algorithm was based on a
different data structure, namely lock trees, which also capture
locking order but, unlike lock graphs, never contain cycles.
However, the GoodLock algorithm only detected deadlock
potentials between pairs of threads. In contrast,
the algorithm presented below is based on lock graphs, as is
the algorithm in [3], and hence can detect deadlock potentials
involving any number of threads while still handling gate
locks, and in addition using the causality relation defined by
start and join operations between threads to further reduce
false positives.
In other work, we have approached the problem of false

positives by developing techniques for checking whether
a deadlock potential can actually lead to a deadlock.
For example, in [6], a model checker is used to explore
warnings of data race and deadlock potentials produced by
dynamic analysis. The method in [7] generates a scheduler
(from deadlock potentials) that attempts to drive the
application into a deadlock. Finally, the work in [8] involves
the informing of a scheduling Bnoise maker[of deadlock
potentials. The noise maker inserts code that influences the
scheduler, avoiding the need for a special scheduler.
The false-positive-reducing algorithm presented below first

appeared in [9]; a similar algorithm appeared in [10]. The
static analysis component was introduced in [10]. The main
contributions of this paper are clearer descriptions of
the analysis techniques originally described in [9, 10],
new experimental results for the static analysis technique,
the first published description of the multitrace analysis
(which was presented at PADTAD 2005 [11], a workshop
on BParallel and Distributed Systems: Testing, Analysis,
and Debugging,[but not described in a paper), and new
experimental results for it.
This paper is organized as follows: First, we present the

dynamic analysis algorithm for reducing false positives,
focusing on the graph data structure and how it is produced
from a single execution trace and analyzed. Second, we
outline how a graph structure can be built from multiple
execution traces. Third, we describe how static analysis is

3 : 2 R. AGARWAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

used to reduce runtime monitoring overhead. Fourth,
we discuss interactions between the techniques. Finally,
we discuss implementation issues and experimental results.

Reducing false positives

An example
We use an example to illustrate the three categories of
false positives that are reported by the basic algorithm
but not by the improved algorithm. The first category,
single-threaded cycles, refers to cycles that are created by
a single thread. Guarded cycles refer to cycles that are
guarded by a gate lock acquired by involved threads Babove[
the cycle. Finally, thread segmented cycles refer to
cyclesVbetween thread segments separated by start–join
relationsVthat consequently cannot execute in parallel.
The following program illustrates these three situations and a
true positive.

Main thread:
01 : new T1ðÞ:startðÞ;
02 : new T2ðÞ:startðÞ;

Thread T1:
03 : synchronizedðGÞ f
04 : synchronizedðL1Þ f
05 : synchronizedðL2Þ fg
06 : g
07 : g;
08 : t3 ¼ new T3ðÞ;
09 : t3:startðÞ;
10 : t3:joinðÞ;
11 : synchronizedðL2Þ f
12 : synchronizedðL1Þ fg
13 : g

Thread T2:
14 : synchronizedðGÞ f
15 : synchronizedðL2Þ f
16 : synchronizedðL1Þ fg
17 : g
18 : g

Thread T3:
19 : synchronizedðL1Þ f
20 : synchronizedðL2Þ fg
21 : g

The main thread starts the two threads T1 and T2 that
subsequently run in parallel. Thread T1 acquires the locks
G, L1, and L2 in a nested manner (using the synchronized
block construct of Java) and releases these again (when
exiting the corresponding synchronization blocks). The Java
statement synchronizedðLÞfSg acquires the lock L,

executes S, and then releases L. Then, T1 starts thread T3
(which now runs in parallel with thread T2), waits for its
termination, and then, upon the termination of T3, acquires
(and releases) locks L2 and L1 in a nested manner. Hence,
threads T1 and T3 do not execute code in parallel. Threads T2
and T3 acquire and release locks and terminate.
The actual deadlock potential (true positive) exists between

threads T2 and T3, corresponding to a cyclic access pattern
on locks L1 and L2 in lines 15–16 and 19–20: The two threads
take the two locks in opposite order. This can lead to the
situation where thread T1 acquires lock L2, thread T3 acquires
lock L1, and now none of the two threads can acquire the
second lock. The three false positives are as follows: The
single-threaded cycle within thread T1 on locks L1 and L2 in
lines 04–05 and 11–12 clearly does not represent a deadlock
(since the two code sections cannot execute in parallel).
The cycle between threads T1 and T2 on locks L1 and L2 in
lines 04–05 and 15–16 cannot lead to a deadlock because
both threads acquire the lock G first (lines 03 and 14).
G is referred to as a gate lock. Finally, the cycle between
threads T1 and T3 on locks L1 and L2 in lines 11–12 and 19–20
cannot lead to a deadlock, because T3 terminates before T1
executes lines 11–12. Such a cycle is referred to as a thread
segmented cycle.
When analyzing a program for deadlock potentials,

we are interested in observing all lock acquisitions and
releases, and all thread starts and joins. That is, in addition to
the acquire and release events acquireðt; lÞ and releaseðt; lÞ
for thread t and lock l, the trace also contains events for
thread start, i.e., startðt1; t2Þ, and thread join, i.e., joinðt1; t2Þ,
meaning, respectively, that t1 starts or joins t2. The program
can be instrumented to produce a trace (finite sequence)
� ¼ e1; e2; . . . ; en of such events. Here, n is the number of
events in the trace or program run. Let T� and L� denote the
sets of threads and locks, respectively, that occur in �.
Java allows recursive acquisitions of locks by a thread: A
thread can acquire a lock and then reacquire it again without
having released it in between. However, we assume, for
convenience, that the trace is reentrant free in the sense
that a lock is never recursively acquired by a thread. This is
ensured by deleting any recursive acquisitions and the
matching releases before analysis. Alternatively, the code can
be instrumented so that it does not emit recursive acquisitions
by counting the number of acquisitions without matching
releases. For the purpose of illustration, we assume a
nondeadlocking execution trace � for this program. It does
not matter which trace is used since all nondeadlocking
traces will reveal all four cycles in the program using the
basic algorithm.

Basic cycle detection algorithm
The basic algorithm sketched in [3] works as follows:
The multithreaded program under observation is executed,
whereas only acquire and release events are observed.

R. AGARWAL ET AL. 3 : 3IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

A graph is built, where nodes are locks and where directed
edges between nodes symbolize locking orders. That is, an
edge goes from a lock l1 to a lock l2 if a thread at some point
during the execution of the program already holds lock l1
while acquiring lock l2. Any cycle in the graph signifies
potential for a deadlock. Figure 1 shows the algorithm that
constructs the lock graph GL, and subsequently the set of
cycles, denoted by cyclesðGLÞ, representing the potential
deadlock situations in the program. The following operators
are used to define the algorithms in this paper: Consider
two sets A and B. The term ½A! B� denotes the set of finite
maps from A to B. The term [] is the empty map. For a
given map M , the term M y ½e1 ! e2� denotes the map M 0,
which is equal to M , except that e1 maps to e2. That is,
M 0ðe1Þ ¼ e2. The term A� B denotes the Cartesian product
of A and B, containing all pairs of the form ða; bÞ, where
a 2 A and b 2 B. The term PðAÞ (power set) denotes the
set of subsets of A : fsjs � Ag). The usual operators are
defined for sets, such as the empty set =u, set union A [B,
and set comprehension fejpg for an expression e and a
predicate p.
The lock graph is computed (Figure 2) and stored in

the second variable in Figure 1 as a directed graph
GL : PðL� � L�Þ. GL is the minimal graph such that
ðl1; l2Þ 2 GL if at some point in the trace a thread acquires
the lock l2 while already holding the lock l1. This lock graph
is computed using a lock context, the first variable, defined as
a mapping CL : ½T� ! PðL�Þ�, from thread IDs to sets of
locks. That is, during the trace traversal, a thread ID is
mapped to the set of locks held by the thread at that position
in the trace. Each lock acquisition event acquireðt; lÞ
(thread t acquires lock l) results in the lock graph GL to be
augmented by an edge from a lock l0 to l if thread t already
holds l0 according to the lock context CL. Furthermore,

the lock context CL is updated adding l to the set of
locks held by t. Each lock release event releaseðt; lÞ
(thread t releases lock l) results in the lock context CL being
updated by removing l from the set of locks held by t.
The lock graph for the code example in the section BAn
example[is shown in Figure 2. The graph consists of the
nodes G, L1, and L2, corresponding to the locks in the
program, as well as edges between the nodes. The edges are
numbered from 1 to 8 for reference. In addition, a pair of
numbers ðx; yÞ is associated with each edge. The two
numbers indicate in what source code lines the locks were
acquired (x for the first, and y for the second). For example,
there are two edges from L1 and L2, one edge representing
the fact that a thread acquired L1 in line 4 and then L2 in
line 5, and one edge representing the fact that a thread
acquired L1 in line 19 and L2 in line 20. The graph exposes
four cycles corresponding to the four possible deadlock
potentials described in the section BAn example.[That is,
the true positive is represented by the cycle consisting of the
two edges between L1 and L2 numbered 6 and 8. The three
false positives are represented by the three cycles 5–7, 5–8,
and 6–7, respectively.

Extended cycle detection algorithm
The new algorithm will filter out false positives stemming
from single-threaded cycles, guarded cycles, and thread
segmented cycles. The extension consists in all three cases of
labeling edges with additional information and using this
information to filter out false positives. Single-threaded
cycles are detected by labeling each edge between two
locks with the ID of the thread that acquired both locks.
For a cycle to be valid, and hence regarded as a true positive,
the threads in the cycle must all differ. Guarded cycles are
detected by further labeling each edge between locks with
the set of locks held by that thread when the target

Figure 1

Basic lock graph algorithm.

Figure 2

Basic lock graph (adapted from [9], with permission).

3 : 4 R. AGARWAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

(second) lock was acquired. This set is referred to as the
guard set. For a cycle to be valid, and hence regarded as
a true positive, the guard sets in the cycle must have an
empty intersection.
Concerning thread segmented cycles, the solution requires

some additional data structures. Assume that traces now
also contain start and join events. A new directed
segmentation graph records which code segments execute
before others. The lock graph is extended with extra label
information that specifies in which segments locks are
acquired, and the definition of validity of a cycle is extended
to incorporate a check that the lock acquisitions occur in
segments that can execute in parallel (required for a deadlock
to occur). The idea of using segmentation in runtime
analysis was initially suggested in [3] to reduce the number
of false positives in data race analysis using the Eraser
algorithm [12].
More specifically, during execution, the solution is to

associate segment identifiers (natural numbers, starting
from 0) with segments of the code that are separated by
statements that start or join other threads. Figure 3 illustrates
the segmentation graph for the example program above.
For illustrative purposes, it is augmented with 1) the
statements (and their line numbers) that cause the graph to
be updated, 2) information inside relevant segments about
the order in which locks are taken in the segment, and
3) shading of the two segments that together cause a

deadlock potential. It should be interpreted as follows:
When a thread t1 (executing in some segment) starts another
thread t2, two new segments are allocated: one for t1 to
continue in, and one for t2 to start executing in. The
execution order between the segments is recorded as directed
edges in the graph: the original segment of t1 executes
before both of the two new segments. Similarly, when a
thread t1 joins another thread t2 (after waiting for its
termination), a new segment is allocated for t1 to continue in.
Again, the execution order of the previous segments of t1
and t2 relative to the new segment is recorded: they both
execute before this new segment. For example, we see that
segment 6 of thread T3 executes before segment 7 of
thread T1. Segment 6 is the one in which T3 executes lines 19
and 20, whereas segment 7 is the one in which T1 executes
lines 11 and 12.
Let R : PðN � NÞ (N stands for the natural numbers) be

such a segmentation graph. The happens-before relation
j
j

j> : PðN � NÞ is the transitive closure R� of R. That is,
given two segments s1 and s2, we say that s1 happens before s2
if s1j j

j>s2. Note that for two given segments s1 and s2,
if neither s1j j

j>s2 nor s2j j
j>s1, then we say that s1 happens

in parallel with s2.
Figure 4 presents the algorithm for constructing the

segmentation graph and lock graph from an execution trace.
The algorithm declares five variables: 1) a segmentation
counter n; 2) a segmentation context CS ; 3) a lock context

Figure 3

Segmentation graph (adapted from [9], with permission).

R. AGARWAL ET AL. 3 : 5IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

CL; 4) a segmentation graph GS ; and 5) a lock graph GL.
The segmentation context CS : ½T� ! N � maps each thread
to the segment in which it is currently executing. The
segmentation counter n represents the next available
segment. The lock context CL : ½T� ! PðL� � NÞ� maps
each thread to a set of (lock, segment) pairs. In the basic
algorithm, it was a mapping from each thread to the set of
locks held by that thread at any point during the trace
traversal. Now, we add as information the segment in
which each lock was acquired. The segmentation graph
GS : PðN � NÞ is the set of tuples ðs1; s2Þ representing
the fact that segment s1 executes before segment s2. The
happens-before relation j j

j> is the transitive closure of GS .
Finally, the lock graph GL :PðL��ðN�T��PðL�Þ�NÞ�L�Þ
defines the set of tuples ðl1; ðs1; t; g; s2Þ; l2Þ, representing an
edge from the lock l1 to the lock l2 labeled ðs1; t; g; s2Þ,
and representing the fact that thread t acquired the lock l2,
while holding all the locks in the set g, including the
lock l1. In addition, the edge is labeled with the
segments s1 and s2 in which the locks l1 and l2 were
acquired by t.
The body of the algorithm works as follows: Each lock

acquisition event acquireðt; lÞ results in the lock graph GL

being augmented by an edge from every lock l0 that t already

holds to l, each such edge labeled ðs1; t; g; s2Þ. The label is
to be interpreted as follows: Thread t already holds all the
locks in the lock set g, including l0, according to the lock
context CL; l0 was acquired in segment s1 according to CL;
and l is acquired in segment s2 according to CS . Furthermore,
the lock context CL is updated adding ðl; s2Þ to the set
of locks held by t. Each lock release event releaseðt; lÞ
(thread t releases lock l) results in the lock context CL being
updated by removing l from the set of locks held by t.
A start event startðt1; t2Þ, representing that thread t1 starts
thread t2, Ballocates[two new segments n (for t1 to continue
in) and nþ 1 (for the new t2) and updates the segmentation
graph to record that the current segment of t1 executes
before n and before nþ 1. The segmentation context CS is
updated to reflect in what segments t1 and t2 continue to
execute in. A join event joinðt1; t2Þ, representing that t1 waits
for and joins the termination of t2, causes the segmentation
graph GS to record that t1 starts in a new segment n and
that t1’s previous segment and t2’s final segment execute
before that.
For a cycle to be valid, and hence regarded as a true

positive, the threads and guard sets occurring in labels of the
cycle must be valid as explained earlier (threads must differ
and guard sets must not overlap). In addition, the segments
in which locks are acquired must allow for a deadlock to
actually happen. For example, consider a cycle between two
threads t1 and t2 on two locks l1 and l2. Assume further
that t1 acquires l1 in segment x1 and then l2 in segment x2,
whereas t2 acquires them in the opposite order, in segments
y1 and y2, respectively. Then, it must be possible for t1
and t2 to each acquire its first lock before the other
attempts to acquire its second lock for a deadlock to occur.
In other words, it should not be the case that either x2j j

j>y1
or y2j j

j>x1.
The cycle validity checks mentioned above can be

formalized as follows: Let there be defined four functions
thread, guards, seg1, and seg2 on edges such that, for any
edge " ¼ ðl1; ðs1; t; g; s2Þ; l2Þ in the lock graph, threadð"Þ ¼ t,
guardsð"Þ ¼ g, seg1ð"Þ ¼ s1, and seg2ð"Þ ¼ s2. Then, for
any two edges "1 and "2 in the cycle, 1) the threads must
differ, i.e., threadð"1Þ 6¼ threadð"2Þ; 2) guard sets must
not overlap, i.e., guardsð"1Þ \ guardsð"2Þ ¼ =u; and3) segments must not be ordered, i.e.,
:ðseg2ð"1Þ ! seg1ð"2ÞÞ.
Let us illustrate the algorithm with our example. The

segmented and guarded lock graph and the segmentation
graph are shown in Figures 5 and 3, respectively. The
lock graph contains the same number of edges as the basic
graph in Figure 2, although now labeled with additional
information. As an example, edge 5 from lock L1 to L2
annotated with line numbers 4 and 5 is now additionally
labeled with the tuple: Bh2; ðT1; fG; L1gÞ; 2i.[The
interpretation is as follows: during program execution,
thread T1 acquired lock L1 in line 4, in code segment 2

Figure 4

Extended lock graph algorithm.

3 : 6 R. AGARWAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

(leftmost 2), and subsequently, in a nested manner, acquired
lock L2 in line 5, in code segment 2 (rightmost 2).
Furthermore, when thread T1 acquired lock L2, T1 already
held the locks in the set fG;L1g, the interesting of these
being the lock G.
The segmentation graph illustrates the code segments of

which each thread consists. The main thread executes in
segment 0 until it starts thread T1 in line 01. After that, the
main thread continues in segment 1, and the newly started
thread T1 executes in segment 2. In segment 1, the main
thread furthermore starts thread T2 in line 02 and continues in
segment 3 (where it terminates). Thread T2 starts executing in
segment 4. Thread T1, in turn, while executing in segment 2,
starts thread T3 in line 09 and continues in segment 5,
whereas the newly started thread T3 executes in segment 6.
In segment 5, thread T1 waits for thread T3 to terminate.
When this happens (T1 successfully executes a join operation
on T3 in line 10), T1 continues in segment 7. The
segmentation graph describes what segments execute before
others. For example, segment 6 executes before segment 7.
False positives are now eliminated as follows: First, the

cycle with edges numbered 5 and 7 with labels, respectively,
B2, ðT1; fG; L1gÞ, 2[and B7, ðT1; fL2gÞ, 7[is eliminated
because it is not thread valid: the same thread T1 occurs on
both edges (single-threaded cycle). Second, the cycle 5–8
with labels B2, ðT1; fG; L1gÞ, 2[and B4, ðT2; fG; L2gÞ, 4[is
eliminated because of the lock G being member of both lock
sets fG; L1g and fG; L2g (guarded cycle). Finally, the cycle
6–7 with labels B7, ðT1; fL2gÞ, 7[and B6, ðT3; fL1gÞ, 6[is
eliminated since the target segment 6 of the edge numbered 6

executes before the source segment 7 of the edge numbered 7
(thread segmented cycle).
The algorithm requires that threads have access to a shared

memory space where the segment counter and segmentation
graph are stored. In our case studies, threads run in the
same memory space. If this is not the case, some form of
communication between threads and a monitor thread
maintaining the segment counter and graph is required.
Note that multicore machines typically provide shared
memory for the different CPUs. In the case where start–join
operations occur in loops, the algorithm still works, but the
segmentation graph now linearly grows with the number
of start–join calls, causing additional resource consumption
by the analysis.

Reducing false negatives

Motivation
It may happen that a test suite runs all of the code segments
involved in a deadlock potential, but no single test runs
all of those code segments [assuming that each test is
executed in a different run of the Java virtual machine
(JVM**) and generates a separate trace]. This is particularly
likely with the advent of test-driven development techniques,
which promote writing small tests, e.g., tests for a single
method. In such scenarios, if the dynamic analysis algorithm
processes the trace from each test independently, it will
miss some deadlock potentials.
The main challenge in adapting the algorithm to process

multiple traces together is that the algorithm is based on

Figure 5

Extended lock graph (adapted from [9], with permission).

R. AGARWAL ET AL. 3 : 7IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

lock identity. In Java, lock identity is the reference to the
lock object, which is typically the address of the object in
memory and has no meaning outside the scope of a single
JVM run.
Our approach to identification of locks across runs is

based on the observation that locks used in the same code
location are likely to be the same lock. This is a heuristic
motivated by taking the perspective of a programmer.
When a programmer formulates a lock discipline policy for
the programVin particular, the order in which nested locks
should be acquiredVit is normally expressed in terms of
the name of the lock variables, with possible aliasing; this is
usually equivalent to the set of locations where the lock
is used.

Algorithm
We enhance the traces described in the section BAn example[
with information about the code location of lock acquisition
and release events, i.e., acquireðcl; t; lÞ and releaseðcl; t; lÞ,
where cl is the code location. We make a first pass in which
the code locations of lock operations are grouped into
equivalence classes called lock groups.

Definition 1 (lock group)
Code locations cl1 and cl2 of lock acquire operations are
equivalent if the same lock is acquired at both locations in
some trace, i.e., if there exist a trace � and a lock object l
such that � contains the entries acquireðcl1; t1; lÞ and
acquireðcl2; t2; lÞ for some threads t1 and t2. Each
equivalence class of this equivalence relation is called a
lock group.
The algorithm in Figure 6 takes a set of traces as input

and computes a function LG that maps each lock acquire
operation (identified by its code location) to its lock group.
The algorithm also computes an auxiliary function LG0 that
maps each lock object to a lock group.
A second pass is made over the traces, running the

algorithm from the previous section, except that nodes in the

lock graph now represent lock groups rather than lock
objects; that is, the node affected by an acquire operation
acquireðcl; t; lÞ is LG½cl�. Gate locks are handled as before,
except that a gate lock is now represented by a lock group.
The identities of the lock objects (the third parameter of
acquire and release events in the traces) are ignored in
this pass. A single lock graph is created from the entire set
of traces.

Example
Consider the following number utility consisting of the
two classes, given to clients as thread safe:

public class MyFloat f
private float value;
private final Object lock ¼ new ObjectðÞ;

public MyFloatðfloat initValueÞ f
value ¼ initValue;
g

public float getðÞ f
CL1: synchronizedðlockÞ f

return value;
g
g

public void addIntðMyInt anIntÞ f
CL2: synchronizedðlockÞ f

valueþ ¼ anInt:getðÞ;
g
g
g

public class MyInt f
private int value;
private final Object lock ¼ new ObjectðÞ;

public MyIntðint initValueÞ f
value ¼ initValue;
g

public int getðÞ f
CL3: synchronizedðlockÞ f

return value;
g
g

public void setRoundðMyFloat aFloatÞ f
CL4: synchronizedðlockÞ f

value ¼ ðintÞaFloat:getðÞ;
g
g
g

Figure 6

Lock grouping algorithm.

3 : 8 R. AGARWAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

This utility has a deadlock potential, which can be seen
in the following usage example:

Main:
MyInt i1 ¼ new MyIntð5Þ;
MyFloat f1 ¼ new MyFloatð5:4fÞ;

Thread T1:
f1:addIntði1Þ;

Thread T2:
i1:setRoundðf1Þ;

Indeed, the single-trace algorithm will reveal the
deadlock potential if run on this test. Consider, however,
the following two tests:

void testAdditionðÞ f
MyFloat f ¼ new MyFloatð5:4fÞ;
MyInt i ¼ new MyIntð5Þ;
f:addIntðiÞ;
assertEqualsUpToð10:4f; f:getðÞ; 0:01fÞ;
g

void testRoundingðÞ f
MyFloat f ¼ new MyFloatð5:4fÞ;
MyInt i ¼ new MyIntð3Þ;
i:setRoundðfÞ;
assertEqualsð5; i:getðÞÞ;
g

Here, the single-trace algorithm will not reveal the
deadlock potential, regardless of whether the two tests are run
in two threads in the same JVM, in the same thread one
after another, or in two different JVM invocations, simply
because the two conflicting methods are used with different
lock objects.
The multitrace algorithm, on the other hand, will reveal

the deadlock potential, regardless of whether the two
test methods are run in two threads in the same JVM, in the
same thread one after another, or in two different JVM
invocations. It works as follows: From the trace of
testAdditionðÞ, the algorithm will deduce that locations
CL1 and CL2 are in the same lock group (e.g., lg1),
because MyFloat:getðÞ and MyFloat:addIntðÞ were
called on the same object (variable f in the test), and hence,
the two acquire operations were performed on the same
object. Similarly, from the trace of testRoundingðÞ,
the algorithm will deduce that CL3 and CL4 are in the
same lock group (e.g., lg2). Now, in the lock graph
creation phase, the trace of testAdditionðÞ will show
that lg2 is acquired when lg1 is held, and the trace of
testRoundingðÞ will show that lg1 is acquired when
lg2 is held. A cycle is detected, and a warning is given.

Mixtures
The multitrace algorithm can issue warnings not only for
cycles among lock groups but also for another situation,
called a mixture. A mixture warning is given if a thread
performs nested acquisitions of two different lock
objects in code locations belonging to the same lock
group. This is a potential deadlock in cases such as
the following:

class MySet f
private final Object lock ¼ new ObjectðÞ;
. . .

public void addElementð. . .Þ f
CL1: synchronizedðlockÞ f

. . .

g
g

public void addAllðMySetotherÞ f
CL2: synchronizedðthis:lockÞ f
CL3: synchronizedðother:lockÞ f

. . .

g
g
g
g

The addAllðÞ method is analogous to
java:util:Set:addAllðÞ. The deadlock potential is
exemplified by the following multithreaded test:

Main thread:
MySet s1, s2;

Thread T1:
s1:addAllðs2Þ;

Thread T2:
s2:addAllðs1Þ;

While the single-trace algorithm can expose the deadlock
potential when run on this test, the multitrace analysis can
expose it even on a simple test, which is single threaded and
calls addAllðÞ only once:

void testMySetðÞ f
MySet s1;
MySet s2;
. . .

CL4: s1:addElementð. . .Þ;
CL5: s2:addElementð. . .Þ;
CL6: s1:addAllðs2Þ;

. . .

g

R. AGARWAL ET AL. 3 : 9IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

The lock grouping algorithm groups CL2 together with
CL1, because both were done on the same object (s1 in
CL4 and CL6 of the test); it also groups CL3 together with
CL1, because both were done on s2 in CL5 and CL6 of the
test; hence, all three lock locations are in the same lock
group. In CL2 and CL3, locks on two different objects are
acquired nestedly in code locations in the same lock group;
thus, a warning is issued. Incidentally, note that a gate lock is
the most straightforward way to synchronize addAllðÞ
correctly:

class MySetFixed f
private final Object lock ¼ new ObjectðÞ;
private final static Object gateLock ¼
new ObjectðÞ;
. . .

public void addElementð. . .Þ f
synchronizedðlockÞ f

. . .

g
g

public void addAllðMySet otherÞ f
synchronizedðgateLockÞ f
synchronizedðthis:lockÞ f
synchronizedðother:lockÞ f

. . .

g
g
g
g
g

Discussion
The three test . . . ðÞ methods above show that the
multiple-trace technique is particularly powerful in contexts
of different tests on small fragments of the code, which is
typical of unit tests. The technique is able to combine
information from different tests, revealing the connections
between parts of the code exercised by each test, connections
that give rise to the deadlock potential.
In some rare cases, a program may choose locking objects

dynamically, and not by the lock variable name. This may
make the heuristic associating locks by location fail,
causing the multiple-trace technique to yield false positives.
We know of one valid programming pattern doing this:
in the addAllðÞ example from the section BMixtures,[
instead of using a gate lock, the order of locking can be
determined by the runtime identity of the lock objects.
This pattern is described in [13]. Eliminating this type
of false positives is probably possible with static
analysis, identifying the valid pattern, but remains as
further work.

The effectiveness of the multiple-trace algorithm is
dependent on the details of the tests. In the number utility
example, if testAdditionðÞ called f:addIntðiÞ but not
f:getðÞ, then the lock grouping phase would not Bknow[
to put CL1 and CL2 in the same lock group, and a warning
would not be given. The warning depends on f:getðÞ,
although it is not part of the deadlock. Similarly, in the set
utility example, if testMySetðÞ did not call addElementðÞ
on both sets in addition to addAllðÞ, the algorithm would
not Bknow[to put CL2 and CL3 in the same lock group, and
a warning would not be givenVthe warning depends on
addElementðÞ, which is not part of the deadlock. On a more
positive note, the examples represent natural tests of the
given code; thus, it is at least reasonably likely that these
deadlock potentials will be revealed by the multitrace
algorithm.

Reducing overhead with static analysis
Although the dynamic analysis algorithms in the previous
sections are efficient and effective, they can miss deadlock
potentials, and their runtime overhead is not negligible.
This section describes a type-based static analysis that can
prove absence of deadlocks in parts of the code and describes
how this information can be used to reduce the overhead
of dynamic analysis.

Deadlock-type system
Boyapati et al. [5] define a type system for Java that
ensures programs are deadlock free. The types, which we
call deadlock types, associate a lock level with each lock.
The typing rules ensure that threads perform nested
acquires in descending order by lock level; that is, if a thread
acquires a lock l2 (that the thread does not already hold)
while holding a lock l1, then the level of l2 level is less than
the level of l1. This ensures absence of cyclic waiting and,
therefore, absence of deadlock.
A new lock level l is declared by the statement

LockLevel l ¼ new. A partial order on lock levels is
defined by statements of the form Locklevel l2 G l1.
Lock levels are associated only with expressions that denote
objects possibly used as locks (i.e., as the target object
of a synchronized method or the argument of a
synchronized statement). These expressions are identified
using Boyapati and Rinard’s Parameterized Race-Free Java
type system [14]. We omit details of Parameterized
Race-Free Java, since it plays a limited role in the
deadlock-type system.
We focus on the basic deadlock-type system, in which

all instances of a class have the same lock level. Extensions
to the basic type systemVfor example, allowing different
instances of a class to have different lock levels and allowing
lock orderings to depend on the positions of objects in
tree-based data structuresVwould allow greater focusing
of the dynamic analysis in some cases but would also

3 : 10 R. AGARWAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

increase the complexity and running time of the static
analysis.
To enable methods to be type checked individually,

each method m is annotated with a locks clause that
contains a set S of lock levels. Method m may acquire locks
whose level is equal to or less than a level in S; this
restriction is enforced by the typing rule for synchronized
statements. At each call to m, the caller may hold only
locks whose levels are greater than all the levels in S;
this restriction is enforced by the typing rule for method
invocation statements.
It is common in Java for a method to acquire a lock already

held by the caller; this occurs, for example, when a
synchronized method calls a synchronized method of the
same class on the same object. To allow typing of such
methods, the locks clause of a method m may also contain
a lock l. The typing rules allow m to acquire l and locks
with level less than the level of l, and they allow callers
of m to hold l and locks with level greater than the
level of l.
For example, consider the Number Utility classes from

the section BExample.[Suppose we try to assign lock
level LF to all instances of MyFloat and assign lock
level LI to all instances of MyInt. The declarations
LockLevel LF ¼ new and LockLevel LI ¼ new would be
added in MyFloat and MyInt, respectively. The declaration
of method addInt would become public void
addIntðMyInt anIntÞ locks lock, LI. The inclusion of
LI in the locks clause reflects the call anInt:getðÞ, which
acquires a lock of level LI. The declarations of other methods
would also be extended with locks clauses. For type
checking of addInt to succeed, the declaration
LockLevel MyFloat:LF 9 MyInt:LI is needed, because
addInt holds a lock with level LF when it calls
anInt:getðÞ. With this lock-level ordering, the type checker
will report that MyInt:setRound is untypable, because it
acquires nested locks in increasing order with respect to
this ordering. This reflects the potential deadlock in the
program.

Type inference algorithm
This section presents a type inference algorithm for the
basic deadlock-type system. The algorithm assumes the
program is already annotated with Parameterized Race-Free
Java types [14] (e.g., by using the type inference algorithm in
[15] or [16]) to indicate which fields, methods parameters,
and local variables may refer to objects used as locks.
The algorithm produces correct deadlock typings (including
lock-level declarations, lock-level orderings, and locks

clauses) for all typable programs. It does not explicitly
determine whether the given program is typable: it infers the
best deadlock types it can, regardless of whether the program
is completely typable. This is useful for optimization of
dynamic analysis, as discussed below. A type checker for

the deadlock-type system is run after type inference to
check the inferred types. The algorithm consists of the
following steps.

Step 1VEach field, method parameter, and local variable
that may refer to an object used as a lock is initially
assigned a distinct lock level. This imposes the fewest
constraints on the program. However, some expressions
must have the same lock level for the program to be
typable. Specifically, equality constraints among lock
levels are generated based on the assignment statements
and method invocations in the program: the two
expressions in an assignment statement must have the
same lock level (just as they must have the same type),
and each argument in a method call must have the same
lock level as the corresponding formal parameter of the
method. These equality constraints are processed using
the standard union-find algorithm. All lock levels that end
up in the same set are replaced with a single lock level.
Step 2VThis step constructs a static lock graph that
captures the locking pattern of the program. The graph
contains a lock node corresponding to each
synchronized statement in the program (including the
implicit synchronized statements enclosing the bodies of
synchronized methods), a method node corresponding
to each method m, and a call node corresponding to
each method call statement. For a call node n, let calledðnÞ
be the set of method nodes corresponding to methods
possibly called by n.
The graph contains edges that represent possible

intra- and interprocedural nesting of lock acquire
operations. There is an edge from a lock node n1 to a lock
node or call node n2 if the statement corresponding to
n2 is syntactically nested within the synchronized
statement corresponding to n1, and there are no
synchronized statements between them. There is an
edge from a method node nm to the lock node for each
outermost synchronized statement in the body of m.
There is an edge from each call node n to each method
node in calledðnÞ.
We enhance this step to ignore synchronized

statements that acquire a lock already held by the
same thread. We call such synchronized statements
redundant. We conservatively identify them using simple
syntactic checks and information from race-free types [10].
Step 3VThis step computes locks clauses. To do this,
it associates a set Ln of lock levels with each node n.
These sets are the least solution to the following recursive
equations. The solution is obtained from a standard
fixed-point computation. For a lock node n, Ln is a
singleton set containing the level of the lock acquired
by n, as determined in Step 1. For a call node n,
Ln¼

S
n02calledðnÞ Ln0 . For a method node n,

Ln¼
S

n02succðnÞ Ln0 , where succðnÞ is the set of successor

R. AGARWAL ET AL. 3 : 11IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

nodes of n. For each method m, the lock levels in Ln
are included in the locks clause of m, where n is the
method node corresponding to m.
Next, for each method m, the algorithm determines

whether to include a lock in the locks clause of m.
If m contains a synchronized statement that acquires a
lock e with level l, and if m may be called with a lock
of the same level as e already held (namely, if nm is
reachable in the static lock graph from a lock node with
level l in another method), then the algorithm includes e in
the locks clause of m, because this is the only possibility
for making the program typable (if the typing rules can
verify that the caller acquires the same lock e, the program
is typable with this typing; otherwise, the program is
not typable).
Step 4VThis step computes orderings among lock
levels. For each edge from a lock node n to a lock node or
call node n0, for each lock level l in Ln and each lock
level l0 in Ln0 , add the declaration LockLevel l 9 l0.
The running time of the type inference algorithm is

typically linear in the size of the program; intuitively,
this is because the analysis basically labels method
declarations and method calls with information about locks
held when the method is called, and programs typically
hold a small number (not proportional to the program size)
of locks at each point.

Focused dynamic analysis
Deadlock types enforce a conservative strategy for
preventing deadlocks. Therefore, some deadlock-free
programs are not typable in this type system. For example,
the type system assigns the same lock level to all objects
stored in a collection; thus, a program that performs nested
acquisitions on objects from a collection is not typable,
although it may be deadlock free. Deadlock types can be
used to optimize dynamic analysis of deadlock potentials in
programs that are not (completely) typable, by eliminating
dynamic checks for parts of the program guaranteed to be
deadlock free by the type system. In other words, the
dynamic analysis is focused on parts of the program that
might have deadlocks.
Focusing of dynamic analysis is achieved as follows:

First, we find all lock levels that are in cycles in the inferred
lock-level ordering. Second, when instrumenting the program
for dynamic analysis, we instrument only synchronized

statements such that the lock level of the acquired lock is part
of a cycle in the lock-level graph. Other synchronized
statements cannot be involved in deadlock potentials.

Interactions between the techniques
The three refinements from the section BReducing false
positives[can be used in the multitrace analysis to reduce
false positives. While the guarded-cycles refinement
combines well with the multiple-trace technique, the other

two refinements are somewhat contradictory with respect to
the reasoning behind it. In the number utility example,
the warning is justified by the presumption that
MyFloat:addIntðÞ and MyInt:roundðÞ may be invoked by
two threads in parallel, although the testing may have run
the two respective test cases (testAdditionðÞ and
testRoundingðÞ) in different JVM runs. We may just as
well see them in one thread of one JVM run or in two threads
segmented by start–join; this is regarded as just a matter of
how the test framework is configured. Thus, to gain
maximum benefit from the multitrace analysis, warnings
corresponding to single-threaded cycles and segmented
cycles should usually be reported.
Without the guarded-cycles refinement, the warnings given

by the multitrace analysis (the union of cycle and mixture
warnings) are a superset of those given by the single-trace
analysis. This follows from the fact that two lock operations
performed on the same object in a given trace are classified
by the lock grouping algorithm as being in the same
lock group.
With the guarded-cycles refinement, the multitrace

analysis might omit some warnings given by the single-trace
analysis. For example, suppose MySetFixed contained the
bug that gateLock were an instance member, rather than a
static one. In this case, it does not prevent the deadlock,
because gateLock is different between the two threads that
use conflicting lock order. Indeed, the single-trace analysis
would not regard this cycle as guarded and will give a
warning. However, the multitrace analysis will consider the
acquire on gateLock to be a valid guard for the cycle,
since it is done in the same code location and, hence, on the
same lock group.
While in a trace of the multithreaded test it is easy to see

that the cycle is not guarded, in a trace of the single-threaded
test, the wrong implementation (instance member) is
indistinguishable from the correct implementation (static
member), because only one gate lock is created and used in
the trace, regardless of which implementation is used.
This suggests that guarded cycles should be given a higher
severity level in multitrace analysis than they are given in
single-trace analysis.
Static analysis and focused checking are largely orthogonal

to the techniques for reducing false positives and false
negatives, except that focused checking may reduce the
effectiveness of the gate lock technique, by eliminating
instrumentation of locks that might act as gate locks.

Implementation and experiments

Implementation
The methods described in this paper have been implemented
in two separate tools, applied to different case studies.
The single-trace analysis is implemented as described in [9],
as part of the Java PathExplorer (JPaX) system [17]. Focused

3 : 12 R. AGARWAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

dynamic analysis is incorporated in this tool, although the
deadlock-type inference algorithm is not implemented and is
manually applied. The multitrace analysis is implemented
as part of the IBM Concurrent Testing (ConTest) tool [18].
Ideally, the techniques would all be integrated in one system
and evaluated on the same case studies (preferably Breal-life[
applications); this is a direction for future work. The
integrated system would consist of four main modules. The
static analysis module analyzes the program and produces
information about which code locations need runtime
monitoring. The instrumentation module automatically
instruments these locations by inserting instructions that,
during program execution, invoke methods of the observer
module to inform it about synchronization events. The
observer module generates traces and passes them to the
trace analysis module, which analyzes the traces using the
algorithms described in previous sections. Other testing
and performance tools can be integrated into this architecture,
for example, trace analysis modules that detect data races
[12, 19] and atomicity violations [20–22]. Integration of
code coverage measurement tools is useful for identifying
synchronization statements that were not exercised by
a test suite. Exercising all of the synchronization
statements helps reduce false negatives in the dynamic
analysis.

Experiments

Dynamic analysis of single traces
The single-trace algorithm has been applied to three National
Aeronautics and Space Administration (NASA) case studies:
a planetary rover controller for a rover named K9,
programmed in 35,000 lines of C++; a 7,500 line Java
version of the K9 rover controller used in an evaluation of
Java verification tools conducted at NASA Ames Research
Center; and a planner named Europa programmed in
approximately 10,000 lines of C++. For the case studies in
C++, operations in the program were instrumented by hand
to update a log file with trace events. The instrumentation
was automatically performed for the Java program using
bytecode instrumentation. The generated log files were then
read and analyzed applying the single-trace algorithm.
The tool found one cyclic deadlock in each of these

systems. The deadlocks in the C++ applications were
unknown to the programmers. The deadlock in the Java
application was seeded as part of a broader experiment to
compare analysis tools, as described in [4]. However, in none
of these applications was there a need to reduce false
positives, and hence, the basic algorithm would have given
the same result.

Dynamic analysis of multiple traces
Results of applying the multitrace analysis to a number utility
and set utility are described in the sections BExample[and

BMixtures,[respectively. The set utility example is similar
to the implementation of sets in the standard library of
Sun for Java 1.4 (in later versions, the implementation was
fixed to prevent this deadlock). The latter is used as a case
study in [23], which presents a test case similar to the
multithreaded test of MySet in the section BMixtures,[and
shows that their analysis framework, like our single-trace
algorithm, reveals the deadlock potential from this test case.
As described in the section BMixtures,[our multitrace
algorithm reveals the deadlock potential even from a simple
single-threaded test case, which calls addAllðÞ only once.
This kind of test is more likely to be written by a
programmer, particularly if the programmer is not
specifically testing for deadlocks. More generally, one can
argue that multiple-trace analysis is particularly useful in unit
testing scenarios.
In a larger experiment, the multitrace algorithm was

applied at Telefonica, the largest telecommunications
company in the Spanish-speaking market, on a Java
component consisting of 60,000 lines of code in 246 classes,
with 312 synchronization statements. The test suite runs
between two to a few dozens of threads concurrently.
In the first round of testing, a complex cycle was revealed,
resulting from six synchronized methods in different classes
all calling each other. This problem would have been
found by the basic algorithm as well, with the given test case.
Even without analyzing whether a deadlock can actually
occur in that code (which would have been a challenging
task), the developers acknowledged that this was bad
programming and changed the locking policy of the code.
However, a second round of tests revealed that the change

was not sufficiently good. Specifically, the multitrace
analysis gave a mixture warning. This was again
acknowledged by the developers as requiring a code change.
This problem would not have been detected by the
single-trace algorithm.

Reducing overhead with static analysis
The Java version of the K9 rover controller was used to
demonstrate the utility of static analysis to reduce overhead
of dynamic analysis. The code consists of 72 classes and
runs seven threads operating on seven locks. Each lock is
acquired multiple times by the different threads via
31 synchronization statements. The type inference algorithm
was manually applied to infer deadlock types, including
orderings among lock levels. The ordering contained one
cycle, involving three classes. In the focused dynamic
analysis, lock operations on instances of other classes were
not instrumented. A small change to the code was needed for
type inference to produce this result: we duplicated the
code for one method with a Boolean argument, specialized
the copies for the two possible values of that argument,
and replaced calls to the original method with calls to the
appropriate copy (that argument is a constant at all call sites).

R. AGARWAL ET AL. 3 : 13IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

This kind of transformation, which has the effect of making
the static analysis partially context sensitive, can be
automated.
Numerous runs of the application yielded the same result,

namely, that two threads engage in three deadlock potentials.
All three are on the same two objects; the deadlock
potentials differ in the lines of code at which the locks
are acquired.
A total of 80 runs of the program were performed: 40 with

unfocused dynamic analysis and 40 with focused dynamic
analysis. Focusing reduced the overhead by approximately
two thirds; that is, on average, only 32.3% of the
synchronizations are monitored by the focused
instrumentation. For example, in one run,
44 synchronizations were executed, and only 14 were
monitored for deadlock potentials.
Focusing did not have a significant effect on effectiveness

of detection, as expected. Without focusing, no deadlock
potentials were detected in 3 runs, two deadlock potentials
(the same two) were detected in 15 runs, and all three
deadlock potentials were detected in 22 runs. With focusing,
two deadlocks potentials (again the same two) were detected
in 19 runs, and all three deadlock potentials were detected
in 21 runs.
In summary, deadlock potentials were detected in

96.25% of the runs (77 out of 80), the reported deadlock
potentials all correspond to deadlocks that can occur in some
execution of the program (i.e., none are false alarms), and
static analysis reduced the cost of the dynamic analysis by
approximately two thirds.

Acknowledgments
The work of R. Agarwal, S. D. Stoller, and L. Wang was
supported in part by the National Science Foundation under
Grants CNS-0509230 and CCF-0613913 and in part by the
Office of Naval Research under Grant N00014-07-1-0928.
Part of the work of K. Havelund was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

**Trademark, service mark, or registered trademark of Sun
Microsystems in the United States, other countries, or both.

References
1. M. Singhal, BDeadlock detection in distributed systems,[

Computer, vol. 22, no. 11, pp. 37–48, Nov. 1989.
2. E. Knapp, BDeadlock detection in distributed database

systems,[ACM Comput. Surv., vol. 19, no. 4, pp. 303–328,
Dec. 1987.

3. J. Harrow, BRuntime checking of multithreaded applications
with Visual Threads,[in Proc. SPIN Model Checking
Softw. Verification, Stanford, CA, Aug. 30–Sep. 1, 2000,
pp. 331–342.

4. G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg,
K. Havelund, M. Lowry, C. Pasareanu, W. Visser, and
R. Washington, BExperimental evaluation of verification and

validation tools on Martian rover software,[Formal Methods
Syst. Des., vol. 25, no. 2/3, pp. 167–198, Sep.–Nov. 2004.

5. C. Boyapati, R. Lee, and M. Rinard, BOwnership types for
safe programming: Preventing data races and deadlocks,[in
Proc. 17th ACM OOPSLA, Seattle, WA, Nov. 4–8, 2002,
pp. 211–230.

6. K. Havelund, BUsing runtime analysis to guide model
checking of Java programs,[in Proc. SPIN Model Checking
Softw. Verification, Stanford, CA, Aug. 30–Sep. 1, 2000,
pp. 245–264.

7. S. Bensalem, J. C. Fernandez, K. Havelund, and L. Mounier,
BConfirmation of deadlock potentials detected by runtime
analysis,[in Proc. PADTAD, Portland, ME, Jul. 17, 2006,
pp. 41–50.

8. Y. Nir-Buchbinder, R. Tzoref, and S. Ur, BDeadlocks: From
exhibiting to healing,[in Proc. RV, Budapest, Hungary,
Mar. 30, 2008, pp. 104–118.

9. S. Bensalem and K. Havelund, BDynamic deadlock analysis of
multi-threaded programs,[in Proc. PADTAD Track IBM
Verification Conf., Haifa, Israel, Nov. 13–16, 2005,
pp. 208–223.

10. R. Agarwal, L. Wang, and S. D. Stoller, BDetecting potential
deadlocks with static analysis and run-time monitoring,[in Proc.
PADTAD, Haifa, Israel, Nov. 13–16, 2005, pp. 191–207.

11. E. Farchi, Y. Nir-Buchbinder, and S. Ur, BA cross-run lock
discipline checker for Java,[presented at the Parallel
Distributed Systems: Testing Debugging (PADTAD),
Haifa, Israel, Nov. 13–16, 2005. [Online]. Available:
http://alphaworks.ibm.com/tech/contest

12. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, BEraser: A dynamic data race detector for
multithreaded programs,[ACM Trans. Comput. Syst., vol. 15,
no. 4, pp. 391–411, Nov. 1997.

13. B. Goetz, Java Concurrency in Practice. Reading, MA:
Addison-Wesley, 2006.

14. C. Boyapati and M. C. Rinard, BA parameterized type system
for race-free Java programs,[in Proc. 16th ACM Conf. OOPSLA,
Tampa Bay, FL, Oct. 14–18, 2001, pp. 56–69.

15. R. Agarwal and S. D. Stoller, BType inference for parameterized
race-free Java,[in Proc. 5th Int. Conf. Verification, Model
Checking Abstr. Interpretation, Venice, Italy, Jan. 11–13,
2004, pp. 149–160.

16. J. Rose, N. Swamy, and M. Hicks, BDynamic inference of
polymorphic lock types,[Sci. Comput. Program., vol. 58, no. 3,
pp. 366–383, Dec. 2005.

17. K. Havelund and G. Rosu, BAn overview of the runtime
verification tool Java PathExplorer,[Formal Methods Syst. Des.,
vol. 24, no. 2, pp. 189–215, Mar. 2004.

18. Y. Nir-Buchbinder and S. Ur, BConTest listeners: A
concurrency-oriented infrastructure for Java test and heal
tools,[in Proc. 4th SOQUA, Dubrovnik, Croatia, Sep. 3/4,
2007, pp. 9–16.

19. E. Bodden and K. Havelund, BRACER: Effective race detection
using AspectJ,[IEEE Trans. Softw. Eng., Extended version
of paper presented at ISSTA’08, vol. 36, no. 4, Jul./Aug. 2010.

20. C. Artho, K. Havelund, and A. Biere, BHigh-level data races,[
Softw. Testing, Verification Reliab. (STVR), vol. 13, no. 4,
pp. 207–227, Dec. 2003.

21. C. Artho, K. Havelund, and A. Biere, BUsing block-local atomicity
to detect stale-value concurrency errors,[in Proc. 2nd ATVA,
Taipei, Taiwan, Oct. 31–Nov. 3, 2004, pp. 150–164.

22. L. Wang and S. D. Stoller, BAccurate and efficient runtime
detection of atomicity errors in concurrent programs,[in Proc.
ACM SIGPLAN PPoPP, New York, Mar. 29–31, 2006,
pp. 137–146.

23. K. Sen and G. Agha, BCUTE and jCUTE: Concolic unit
testing and explicit path model-checking tools,[in Proc. CAV,
Seattle, WA, Aug. 17–20, 2006, pp. 419–423.

Received September 15, 2009; accepted for publication
October 15, 2009

3 : 14 R. AGARWAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

Rahul Agarwal Synopsys, Inc., Mountain View, CA 94043 USA
(agarwal@synopsys.com). Dr. Agarwal received a B.Tech. degree in
computer science and engineering from Indian Institute of Technology,
Delhi, in 2001, and M.S. and Ph.D. degrees in computer science
from State University of New York at Stony Brook in 2003 and 2008,
respectively. He is a Senior Research and Development Engineer at
Synopsys. Prior to joining Synopsys, he was a postdoctorate fellow
at Cadence Research Labs at Berkeley where he worked on software
verification. At Synopsys, he currently works on scaling the
performance of a chip physical verification tool. His research interests
include concurrency, software testing, and verification.

Saddek Bensalem Verimag and Joseph Fourier University,
Grenoble, France (saddek.bensalem@imag.fr). Dr. Bensalem received
M.Sc. and Ph.D. degrees in computer science in 1982 and 1985,
respectively, from Institut Polytechnique de Grenoble (INP Grenoble),
France. He is a professor at the Joseph Fourier University. He has been
a member of more than 50 conference and workshop program
committees and is the author or coauthor of 70 refereed research
publications. He has spent two years at Stanford Research Institute
(SRI International) in California and one year at the University of
Stanford as Visiting Scientist. He has broad experience with industry,
notably through joint projects with partners such as Astrium, the
European Space Agency, and GMV. His current research activities
include component-based design, modeling, and analysis of real-time
systems with a focus on correct-by-construction techniques.

Eitan Farchi IBM Research Division, Haifa Research Laboratory,
Haifa University Campus, Mount Carmel, Haifa 31905, Israel
(farchi@il.ibm.com). Dr. Farchi received B.Sc. and M.Sc. degrees in
computer science and mathematics from the Hebrew University in
Jerusalem, Israel, in 1987 and 1990, respectively, and a Ph.D. degree
in mathematics and computer science from Haifa University, Israel,
in 1999. He is the manager of the Software Testing, Verification, and
Review Methodologies in IBM Haifa Research Laboratory. Since 1993,
he has been working at the IBM Haifa Research Laboratory. He is
the author or coauthor of 32 technical papers and 13 patents, and he has
received seven IBM awards. Dr. Farchi is an IBM Senior Technical
Staff Member and a cochair of PADTAD, a workshop on testing
multithreaded applications.

Klaus Havelund Jet Propulsion Laboratory (JPL), California
Institute of Technology, Pasadena, CA 91109 USA (klaus.havelund@
jpl.nasa.gov). Dr. Havelund received a Master of Science degree and
a Ph.D. degree, both in computer science, from the University of
Copenhagen, Denmark, in 1986 and 1994, respectively. His doctoral
work was mainly conducted at École Normale Supérieure, Paris,
France. He is a Senior Research Scientist at the Laboratory for Reliable
Software (LaRS). He has been a member of more than 60 conference
and workshop program committees and is the author or coauthor of
80 refereed research publications and one book. His primary research
interests include verification of software and, in particular, runtime
verification techniques such as specification-based monitoring and
dynamic concurrency analysis. Dr. Havelund cofounded the Runtime
Verification conference.

Yarden Nir-Buchbinder IBM Research Division, Haifa
Research Laboratory, Haifa University Campus, Mount Carmel,
Haifa 31905, Israel (yarden@il.ibm.com). Mr. Nir-Buchbinder
received a B.Sc. degree in computer science from the Technion in Israel
in 2000 and an M.A. degree in philosophy from Haifa University in
2005. He is a Research Staff Member in the Code Optimization and
Quality Technologies department at the IBM Haifa Research
Laboratory. He joined IBM in 2000, where he has been working on the
research of concurrency quality and test coverage technologies. He is
the coauthor of 11 technical papers and two patents and has received
three IBM awards.

Scott D. Stoller Computer Science Department, Stony Brook
University, Stony Brook, NY 11794 USA (stoller@cs.stonybrook.edu).
Dr. Stoller received a Bachelor’s degree in physics, summa cum laude,
from Princeton University in 1990 and a Ph.D. degree in computer
science from Cornell University in 1997. He received a National
Science Foundation CAREER Award in 1999 and an ONR Young
Investigator Award in 2002. He is a member of the team that won the
NASA Turning Goals into Reality Award for Engineering Innovation in
2003. He is the author or coauthor of more than 70 refereed
research publications. His primary research interests are analysis,
optimization, testing, and verification of software.

Shmuel Ur IBM Research Division, Haifa Research Laboratory,
Haifa University Campus, Mount Carmel, Haifa 31905, Israel
(ur@il.ibm.com). Dr. Ur received B.Sc. and M.Sc. degrees in Computer
Science from the Technion, Israel in 1987 and 1990, respectively,
and a Ph.D. degree in Algorithm, Combinatorics, and Optimization
from Carnegie Mellon University in Pittsburgh in 1994. Subsequently
he joined IBM Research, where he is currently a Research Staff
Member in the Code Optimization and Quality Technologies
department at the Haifa Research Laboratory. He works in the field
of software testing and concentrates on coverage and testing of
multithreaded programs. He is the technical leader of the area of
coverage in IBM. He is the author or coauthor of 50 technical papers
and 20 patents and has received five IBM awards. Dr. Ur cofounded
PADTAD, a workshop on testing multithreaded applications, founded
the Haifa Verification Conference (HVC), and is an IBM Master
Inventor.

Liqiang Wang Department of Computer Science, University of
Wyoming, Laramie, WY 82071 USA (wang@cs.uwyo.edu). Dr. Wang
received a B.S. degree in mathematics from Hebei Normal University
of China in 1995, an M.S. degree in computer science from Sichuan
University of China in 1998, and M.S. and Ph.D. degrees in computer
science from Stony Brook University in 2003 and 2006, respectively.
He subsequently joined the University of Wyoming as an assistant
professor. His primary research interest is the design and analysis
of parallel systems, particularly on emerging platforms including
multicore CPUs and GPUs (graphics processing units).

R. AGARWAL ET AL. 3 : 15IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 3 SEPTEMBER/OCTOBER 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

