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Abstract—This paper presents an integrated analytical and
profile-based CUDA performance modeling approach to accu-
rately predict the kernel execution times of sparse matrix-vector
multiplication for CSR, ELL, COO, and HYB SpMV CUDA
kernels. Based on our experiments conducted on a collection
of 8 widely-used testing matrices on NVIDIA Tesla C2050, the
execution times predicted by our model match the measured
execution times of NVIDIA’s SpMV implementations very well.
Specifically, for 29 out of 32 test cases, the performance differ-
ences are under or around 7%. For the rest 3 test cases, the
differences are between 8% and 10%. For CSR, ELL, COO, and
HYB SpMV kernels, the differences are 4.2%, 5.2%, 1.0%, and
5.7% on the average, respectively.

Keywords—CUDA; GPU; Performance modeling; Sparse
Matrix-Vector Multiplication

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an essential
operation in solving linear systems and partial differential
equations. For many scientific and engineering applications,
the matrices can be very large and sparse. It is a challenging
problem to accurately and effectively predict the execution
time of SpMV CUDA kernel for a matrix with any scale and
sparsity. The CUDA performance modeling approach proposed
by this paper addresses this challenge.

In this paper, we propose an integrated analytical and
profile-based performance modeling approach to accurately
predict the CUDA kernel execution time of SpMV. Our
modeling approach consists of two phases: instrumenting and
modeling. In the phase of instrumenting, benchmark matrices
are generated according to a GPU’s architecture features,
then SpMV computations with these benchmark matrices are
conducted on the GPU to obtain the execution times. The
properties and the execution times of benchmark matrices are
recorded as the input in the phase of modeling. In the phase
of modeling, we instantiate our parameterized performance
models according to the experimental results of benchmark
matrices. Finally, we utilize the instantiated models to estimate
the CUDA kernel execution time of SpMV for any target
sparse matrix. In this paper, we use SpMV CUDA kernels
developed by NVIDIA [1] and NVIDIA Tesla C2050 for
our performance modeling and experiments. However, the
proposed approach is general and can be applied to any SpMV

kernel and NVIDIA GPU architecture. For different SpMV
kernels, only the execution times for benchmark matrices need
to be retested; for different GPU architectures, the benchmark
matrices also need to be regenerated. However, these changes
only occur in the phase of instrumenting. Our parameterized
performance models can be reused in the phase of modeling.

To predict the performance of SpMV for a target sparse
matrix on a GPU, we partition the target matrix into strips. A
strip is a maximum submatrix that can be handled by a GPU
within one iteration. The size of matrix strip is determined
by the physical limitations of a GPU and SpMV kernel
granularity. The CUDA kernel execution time of SpMV for a
target sparse matrix can be predicted by comparing the given
target matrix and benchmark matrices.

Our innovative approach combines two major techniques
used for performance modeling: profiling and analytics. In
our approach, dividing modeling into two phases follows the
profile-based technique; and it follows the analytical technique
to generate benchmark matrices and performance models ac-
cording to hardware properties. The integration of both analyt-
ical and profile-based modeling has the following advantages:
(1) Compared to analytical models, our model is simple and
easy to use. (2) Compared to traditional profile-based models,
which are usually inaccurate for parallel architectures [2], our
model can accurately and effectively capture the performance
effects of GPUs.

We evaluated our performance modeling on 8 matrices using
NVIDIA SpMV CUDA kernels [1]. For 29 out of 32 test cases,
the performance differences are under or around 7%. For the
rest 3 test cases, the performance differences are between 8%
and 10%. Specifically, the differences are 4.2%, 5.2%, 1.0%,
and 5.7% on the average for CSR, ELL, COO, and HYB
SpMV kernels, respectively.

The rest of this paper is organized as follows: Section II
surveys the related work about sparse matrix-vector multiplica-
tion (SpMV) and the recent performance modeling techniques.
Section III presents the details of our CUDA performance
modeling. Section IV evaluates the accuracy of our perfor-
mance modeling by comparing the measured and predicted
execution times, and the difference rates. Section V gives the
conclusion and future work.



II. RELATED WORK

Bolz et al. [3] proposed one of the first SpMV CUDA [4]
kernel implementations. Bell and Garland [1] implemented
SpMV CUDA kernels for some well-known sparse matrix
formats, i.e., DIA, CSR, ELL, COO, and HYB. Our modeling
approach utilizes their implementations. The research work on
SpMV optimization and tuning includes [5]–[11].

Choi et al. [12] designed a blocked ELLPACK format and
proposed a CUDA performance model to predict matrix-
dependent tuning parameters. Xu et al. [13] proposed the
optimized SpMV based on ELL format and a SpMV CUDA
performance model. Zhang and Owens [14] adopted a
microbenchmark-based approach to develop a throughput
model for three major components of GPU execution time: in-
struction pipeline, shared memory access, and global memory
access. Their model focuses on identifying performance bot-
tlenecks and guiding programmers for optimization; our model
focuses on predicting the execution time, which is similar to
[15]–[17]. Baghsorkhi et al. [15] presented a compiler-based
GPU performance modeling approach with accurate prediction
using program analysis and symbolic evaluation techniques.
Hong and Kim [16] proposed a simple analytical GPU model
to estimate the execution time of massively parallel programs.
Their model estimates the number of parallel memory re-
quests by taking into account the number of running threads
and memory bandwidth. Kothapalli et al. [17] presented a
performance model by combining several known models of
parallel computation: BSP, PRAM, and QRQW. However,
their proposed analytical models are based on the abstraction
of GPU architecture. Unlike these analytical performance
models, our model is based on both analytical and profile-
based modeling techniques.

III. CUDA PERFORMANCE MODELING FOR SPMV

A. The workflow of our modeling

The modeling workflows for CSR and ELL, COO SpMV
CUDA kernels are shown in Figure 1 and Figure 2, respec-
tively.

1) The phase of instrumenting:

• Compute the size of matrix strip (Section III-B).
• Generate the benchmark matrices (Section III-C).
• Test the execution times of the benchmark matrices

(Section III-D).
• Compute the number of matrix strips and non-zero ele-

ments per row (it is not applicable to COO) for a target
matrix (Section III-E).

2) The phase of modeling:

• Instantiate parameterized performance models according
to the experimental results of benchmark matrices.

• Estimate the kernel execution time of SpMV for a target
matrix using CUDA performance models (Section III-F).

The symbols used in our model are shown in Table I.
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Figure 1. The modeling workflow for CSR and ELL SpMV CUDA kernels.
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Figure 2. The modeling workflow for COO SpMV CUDA kernel.

TABLE I
SYMBOLS USED IN OUR PERFORMANCE MODELING

NSM The number of streaming multiprocessors (SMs), which is
14 in NVIDIA Tesla C2050.

R The number of rows of a benchmark matrix.

S The size of a matrix strip, which is the maximum number
of rows (for CSR and ELL) or non-zero elements (for COO)
that can be processed by a GPU within one iteration.

I The number of strips of a benchmark or target sparse matrix.

N The set of natural numbers.

C The number of columns of a benchmark matrix.

PNZ The number of non-zero elements per row of a benchmark
or target sparse matrix.

GM The size (bytes) of GPU global memory.

MR×C A benchmark matrix, where R× C indicates the dimension
of the benchmark matrix.

VC A random vector, where C indicates the dimension of the
random vector.

The execution time of matrix-vector multiplication, where
ϕ(M×V ) M indicates the benchmark matrix and V indicates the

random vector.

α, β Natural numbers, where α < β is required.

T The execution time of a benchmark matrix.

NR The number of rows of a target sparse matrix.

NNZ The number of non-zero elements of a target sparse matrix.

DS A data set consisting of the number of non-zero elements in
each row of a target matrix.



TABLE II
PHYSICAL LIMITATIONS OF GPUS WITH COMPUTE CAPABILITY 2.0

Threads / Warp 32

Warps / Multiprocessor 48

Threads / Multiprocessor 1536

TABLE III
SPMV KERNEL GRANULARITY

SpMV Kernel Granularity

CSR One warp per row

ELL One thread per row

COO One thread per non-zero element

B. The size of matrix strip (S)

• A strip is a maximum submatrix that can be handled by a
GPU within one iteration. For a large matrix, it may need
multiple iterations to handle the whole matrix. Thus, a
matrix may contain multiple strips.

• The size of matrix strip is determined by the physical
limitations of a GPU and SpMV kernel granularity, which
are shown in Table II and III, respectively. The physical
limitations of a GPU are determined by its compute
capability. Our experiments are based on NVIDIA Tesla
C2050, whose compute capability is 2.0.

1) CSR kernel:

SCSR = NSM ×Warps/Multiprocessor

2) ELL kernel:

SELL = NSM ×Warps/Multiprocessor×Threads/Warp

3) COO kernel:

SCOO = NSM × Threads/Multiprocessor

C. The benchmark matrices

1) The criteria for generating the benchmark matrices:

• The number of rows (R): R = S × I

– CSR: S = SCSR, I ∈ N
– ELL: S = SELL, I ∈ N
– COO: S = SCOO, I ∈ N

• The number of columns (C): C > PNZ is required
– The value of C does not affect the performance since

the sparse matrices are stored in compressed formats.
• The number of non-zero elements per row (PNZ):

– CSR: PNZ ∈ [1, GM−sizeof(int)×(R+1)
(sizeof(float)+sizeof(int))×R )

– ELL: PNZ ∈ [1, GM

(sizeof(float)+sizeof(int))×R )

– COO: PNZ ∈ [1, GM

(sizeof(float)+2×sizeof(int))×R )

We assume that the non-zero elements are in single-
precision (float) and each row has the same number
of non-zero elements. The maximum PNZ is derived
according to the maximum non-zero elements that can be
stored in the GPU global memory in the corresponding
sparse matrix format. The values used in our experiments
are introduced in Section III-C2.

• The value of the matrix entry: random value

2) The experimental setup: To obtain accurate performance
models, we generate a series of benchmark matrices. A bench-
mark matrix is determined by R and PNZ . Since R = S × I ,
where S is fixed, we just enumerate values of I and PNZ

according to the above criteria to obtain combinations. Each
combination indicates a benchmark matrix.

• The number of strips (I):
– CSR and ELL: Let I = 1, 2, 3...10

∗ In our experiment, the largest benchmark matrix
contains 10 strips, which is accurate enough to
measure the performance.

– COO: Let I = 1

∗ Since each non-zero element is handled by one
thread, we just need to increase the number of
non-zero elements per row for different bench-
mark matrices to duplicate strips instead of in-
creasing the values of the number of strips.

• The number of non-zero elements per row (PNZ):
– CSR and ELL: Let PNZ = 4, 16...1024, 2048...
– COO: Let PNZ = 10, 20, 30...100

D. The execution times of benchmark matrices (T )

• For each benchmark matrix, a random vector is generated
for measuring the execution time of SpMV kernel.

• We remove the effect of long initialization delay and
average the execution time of a benchmark matrix as
follows:

T =

∑β
j=1 ϕ((MR×C)×VC) −

∑α
j=1 ϕ((MR×C)×VC)

β − α

E. The target matrix

1) The number of strips (I):

• Given a target matrix with NR rows and NNZ non-
zero elements, the number of strips can be computed as
follows:

ICSR = ⌈ NR

SCSR
⌉

IELL = ⌈ NR

SELL
⌉

ICOO = ⌈ NNZ

SCOO
⌉
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Figure 3. The number of non-zero elements per row vs the execution time
when PNZ <= threshold and the number of strips is fixed (CSR).
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Figure 4. The number of non-zero elements per row vs the execution time
when PNZ >= threshold and the number of strips is fixed (CSR).

2) The number of non-zero elements per row (PNZ):

• CSR: PNZ is set to be mode (statistics) of a data set DS .
• ELL: PNZ is set to be the Max. value of a data set DS .

F. Performance Modeling and Estimating

There exists relationships between the number of strips, the
number of non-zero elements per row, and the execution times
of the benchmark matrices. Hence, we can estimate the CUDA
kernel execution time of SpMV for a target matrix according
to these relationships.

1) CSR kernel: Our method contains the following steps:

Step 1: Establish the following relationships:

• Relationship-1 (T = A ∗x+B): For a set of benchmark
matrices with the same number of strips (it can be any
arbitrary value within the range defined in Section III-C),
we establish the relationship between the number of non-
zero elements per row (x) and the execution time of the
benchmark matrices (T ).

• Relationship-2 (T ′ = C ∗y+D): For a set of benchmark
matrices with the same number of non-zero elements per
row, we establish the relationship between the number
of strips (y) and the execution time of the benchmark
matrices (T ′).
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Figure 5. The number of strips vs the execution time when PNZ <=
threshold and PNZ is fixed (CSR).
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Figure 6. The number of strips vs the execution time when PNZ >=
threshold and PNZ is fixed (CSR).

By studying the physical limitations of NVIDIA Tesla
C2050, we were surprised to discover that its number of max
threads per block, i.e.1024, is exactly a threshold: when the
number of non-zero elements per row is smaller or larger than
it, there are two different linear relationships. The two linear
equations in Relationship-1 are shown in Figure 3 and Figure
4. The two linear equations in Relationship-2 are shown in
Figure 5 and Figure 6.

Step 2: Estimate the execution time of a target matrix:

• According to the number of non-zero elements per row of
the target matrix (denoted by x0), find t0 = A ∗ x0 +B
from Relationship-1, and the execution time t1 of any
previously tested benchmark matrix M . Here, we assume
that Z is the number of non-zero elements per row of
matrix M .

• According to the number of strips of the target matrix
(denoted by y0), find t2 = C ∗ y0 + D from a cor-
responding linear equation in Relationship-2. Note that,
the number of non-zero elements per row of matrix M
(denoted by Z) is set to be the number of non-zero
elements per row in Relationship-2.

• Estimate the execution time of the target matrix by
(t0/t1) ∗ t2.

2) ELL kernel: Our method works as follows:
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Figure 7. The number of non-zero elements per row vs the execution time
when the number of strips is fixed (ELL).
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Figure 8. The number of strips vs the coefficient of linear equations (ELL).

Step 1: Establish the following relationships:

• Relationship-1 (T = f(y1) ∗ x + g(y1)): For a set of
benchmark matrices with the same number of strips
(it can be any arbitrary value within the range defined
in Section III-C and denoted by y1), we establish the
relationship between the number of non-zero elements
per row (x) and the execution time of the benchmark
matrices (T ), as shown in Figure 7.

• Relationship-2 (f(y)): For sets of benchmark matrices
with different number of strips, we establish the rela-
tionship between the number of strips of the benchmark
matrices (y) and the corresponding coefficient of the
linear equations (f ) in Relationship-1, as shown in Figure
8.

• Relationship-3 (e(y) = f(y) ∗ x1 + g(y)): For a set of
benchmark matrices with the same number of non-zero
elements per row (it can be any arbitrary value within the
range defined in Section III-C and denoted by x1), we
establish the relationship between the number of strips
(y) and the execution time of the benchmark matrices
(e), as shown in Figure 9. Thus, g(y) = e(y)−f(y)∗x1.

Step 2: Estimate the execution time of a target matrix:

• Given a target matrix, in order to estimate its execution
time, we need to obtain the coefficient f(Y ) and the
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Figure 9. The number of strips vs the execution time when PNZ is fixed
(ELL).
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Figure 10. The number of strips vs the execution time (COO).

intercept g(Y ) of the linear equation, where Y is the
number of strips of the target matrix. This can be done
as follows:

– According to the number of strips (Y ) of the target
matrix, obtain the coefficient of the linear equation
from Relationship-2, i.e., f(Y ).

– To obtain the intercept of the linear equation of
the target matrix (i.e., g(Y )), we find the execution
time (e) from Relationship-3 according to Y . Thus,
g(Y ) = e(Y )− f(Y ) ∗ Y .

• Estimate the execution time of the target matrix by f(Y )∗
X + g(Y ), where X and Y are the number of non-zero
elements per row and the number of strips of the target
matrix, respectively.

3) COO kernel: Our method contains the following steps:

Step 1: Establish the following relationships:

• Relationship-1: We establish the relationship between the
number of strips and the execution time of the benchmark
matrices, as shown in Figure 10.

Step 2: Estimate the execution time of a target matrix:

• Count the total number of non-zero elements of the target
matrix, then calculate the number of strips according to
Section III-E1.



• Estimate the execution time of the target matrix using
Relationship-1.

4) HYB kernel: Our method works as follows:

Step 1: Establish the following relationships:

• Since HYB kernel is the combination of ELL and COO
kernels, we can reuse the relationships in Sections III-F2
and III-F3.

Step 2: Estimate the execution time of a target matrix:

• Compute HYB threshold [1] to divide the target matrix
into two parts: ELL and COO.

• Calculate the number of strips of ELL and COO parts of
the target matrix, respectively.

• Use HYB threshold as the number of non-zero elements
per row of ELL part of the target matrix.

• Count the total number of non-zero elements of COO
part of the target matrix.

• Estimate the execution times of ELL and COO parts of
target matrix, respectively.

• Sum above two parts of execution times.

IV. EXPERIMENTAL EVALUATION

Our experiments are performed on NVIDIA Tesla C2050
with 3GB global memory. We evaluated our performance
models on the 14 widely-used testing matrices [18]. How-
ever, NVIDIA’s SpMV implementations [1] cannot execute
ELL SpMV kernel on 6 sparse matrices on NVIDIA Tesla
C2050 (“Wind Tunnel”, “Economics”, “FEM/Accelerator”,
“Circuit”, “Webbase”, and “LP”) because of the limitation of
“num cols per row”. Hence, we conducted experiments on
the rest 8 unstructured sparse matrices [18], as shown in Table
IV.

To show the prediction accuracy, we compare our four
performance prediction models with NVIDIA’s SpMV im-
plementations by two aspects: the execution times and the
performance difference rates.

Figure 11, 12, 13, and 14 show the comparisons between
the measured execution times of NVIDIA’s CSR, ELL, COO,
and HYB SpMV implementations and the execution times
predicted by our CSR, ELL, COO, and HYB performance
prediction models, respectively.

Figure 15 shows the performance difference rates between
the measured and predicted execution times. The experiments
evaluate CSR, ELL, COO, and HYB SpMV CUDA kernels on
a collection of 8 unstructured sparse matrices. Hence, there
are 32 test cases in total. The execution times of SpMV
CUDA kernels predicted by our model match the measured
execution times of NVIDIA’s SpMV implementations very
well. Specifically, for 29 out of 32 test cases, the performance
differences are under or around 7%. For the rest 3 test cases,
the differences are between 8% and 10%. For CSR, ELL,
COO, and HYB SpMV kernels, the differences are 4.2%,
5.2%, 1.0%, and 5.7% on the average, respectively.
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Figure 11. Performance modeling evaluation on CSR kernel.

0

0.5

1

1.5

2

2.5

3

T
h
e
E
x
e
cu
ti
o
n
T
im

e
(m

s)

Measured_ELL Predicted_ELL

Figure 12. Performance modeling evaluation on ELL kernel.
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Figure 13. Performance modeling evaluation on COO kernel.
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Figure 14. Performance modeling evaluation on HYB kernel.
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TABLE IV
SPARSE MATRICES USED IN OUR EXPERIMENTAL EVALUATION

Matrix Dimensions Nonzeros Nonzeros
/ Row

Dense 2K*2K 2000.0 4.0 M

Protein 36K*36K 119.3 4.3 M

FEM/Spheres 83K*83K 72.1 6.0 M

FEM/Cantilever 62K*62K 64.1 4.0 M

FEM/Harbor 47K*47K 50.6 2.37 M

QCD 49K*49K 39.0 1.90 M

FEM/Ship 141K*141K 55.4 7.81 M

Epidemiology 526K*526K 3.9 2.1 M

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed four CUDA kernel perfor-
mance prediction models: CSR, ELL, COO, and HYB SpMV
performance prediction models, which are based on CSR,
ELL, COO, and HYB SpMV CUDA kernels, respectively,
to accurately predict the kernel execution time of sparse
matrix-vector multiplication for a target sparse matrix. Our
proposed models utilize an integrated analytical and profile-
based CUDA performance modeling approach. Compared to
analytical models, our model is simple and easy to use;
compared to traditional profile-based models, our model can
effectively capture the performance effects of GPUs. The
experimental results show that the execution times of SpMV
kernels predicted by our models match the measured execution
times of NVIDIA’s SpMV implementations very well.

In the future, we will extend our CUDA SpMV performance
modeling to predict the execution times of other SpMV CUDA
kernels (e.g. DIA). In addition, we will also propose and design
a performance modeling to predict the execution time of dense
matrix-vector multiplication.
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