
HEAT: An Integrated Static and Dynamic Approach for Thread Escape Analysis ∗

Qichang Chen and Liqiang Wang
Department of Computer Science

University of Wyoming
{qchen2, wang}@cs.uwyo.edu

Zijiang Yang
Department of Computer Science

Western Michigan University
zijiang.yang@wmich.edu

Abstract

Thread escape analysis, which determines whether and
when a variable becomes shared by multiple threads, is a
foundation for many other program analyses. Most existing
escape analysis tools are either purely dynamic or static.
Static analysis, which considers all possible behaviors of
a program, may produce false positives; whereas dynamic
approaches cannot analyze unobserved behaviors of a pro-
gram.

This paper presents a hybrid approach that integrates
static and dynamic analyses to address this problem. We
first perform static analysis to obtain succinct summaries
of program source code. Dynamic analysis is then used to
confirm variable sharing; for unexecuted code, we deter-
mine the sharing of variables by performing an interproce-
dural synthesis based on the runtime information and static
summaries. Compared to dynamic analysis, the hybrid ap-
proach is able to determine the escape property of variables
in unexecuted code. Compared to static analysis, the hybrid
approach produces fewer false alarms. We implemented
this hybrid escape analysis in Java. Our experiments on
several benchmarks and real-world applications show that
the hybrid approach improves accuracy of escape analysis
compared to existing approaches and significantly reduces
overhead of subsequent program analyses.

1 Introduction

Thread escape analysis, a program analysis technique
that determines which objects escape from their creating
threads (i.e., can be accessed by multiple threads), is im-
portant for subsequent program analyses. For example,
it can determine unnecessary synchronizations for thread-
local objects; it can reduce the runtime overhead when dy-
namically detecting concurrency-related errors, such as race
conditions, atomicity violations and deadlocks, since all ac-

∗The work was supported by ONR Grant N000140910740.

cesses to thread-local variables can be ignored. For object-
oriented programming, even if an object escapes from its
creating thread, some fields may never be accessed by mul-
tiple threads. In this paper, the granularity for thread escape
analysis is on the field level.

Most existing approaches for escape analysis are either
purely dynamic (e.g. [9, 7]) or purely static (e.g. [3, 11]).
Static analysis reasons over program source code without
actually executing the program. Although it can potentially
report all potential shared variables, static escape analysis
suffers a high rate of false positives (alarms). Dynamic
analysis reasons about behavior of a program through ex-
ecutions. Generally, dynamic escape analysis is more accu-
rate than static escape analysis in identifying shared vari-
ables. However, it suffers a high rate of false negatives
(i.e., some shared variables cannot be found) because the
approach cannot analyze unexplored behavior of programs.

This paper presents a novel hybrid approach that extends
a dynamic escape analysis by incorporating static analy-
sis. Our hybrid approach consists of two phases: in the
first phase, it performs static analysis on program source
code to obtain the concise static summaries about accesses
to all fields, assignments to reference variables, and method
invocations; the second phase contains a dynamic analysis
and a speculation for unexecuted code: we monitor the ac-
tual field accesses during execution and perform an inter-
procedural synthesis based on the runtime information and
the static summaries. The static summaries are instantiated
with the runtime values to speculatively approximate the be-
haviors of unexecuted code. A field escapes from the creat-
ing thread if it has ever been accessed by multiple threads
during the real execution or speculation.

We implement our analysis for Java programs in a tool
called HEAT (Hybrid Escape Analysis for Thread) and
evaluate it on several benchmarks and real-world applica-
tions. The experiment shows that the hybrid approach im-
proves accuracy of escape analysis compared to existing ap-
proaches and significantly reduces overhead of subsequent
program analyses (in our experiment, specifically, a hybrid
approach for checking atomicity violations).

1

To summarize, our paper makes the following contribu-
tions: (1) It presents an integrated static and dynamic thread
escape approach to determine whether and when a field be-
comes shared by multiple threads. The approach reports
less false positives than static analysis and less false nega-
tives than dynamic analysis. (2) Subsequent analyses can
significantly benefit from the proposed escape analysis in
reducing overhead and/or improving accuracy. (3) We im-
plement the approach in Java and evaluate it extensively.
The experiment shows that the tool reduces a large portion
of runtime overhead for several memory-intensive bench-
marks in detecting atomicity violations.

The rest of this paper is organized as follows. Section
2 introduces escape analysis. Section 3 presents the design
and implementation details. Our experiments are presented
in Section 4. Section 5 discusses related work. Section 6
gives conclusions and the future work.

2 Thread Escape Analysis

When an object o is created, all its instance fields are
owned by the creating thread. Its static fields (if there are)
are owned by all threads. A field o.f thread-escapes when it
can be accessed by two or more threads. Thread-ownership
can be transferred. The thread ownership of a field o.f is
said to be transferred from a thread t to another thread t′

if there exists a program state after which t will not ac-
cess field o.f any more, and t′ does not access o.f until
that program state. A field o.f is thread-local if it does not
have multiple thread-owner simultaneously; otherwise, it is
shared.

Most existing static escape analyses (e.g., [3, 13, 11])
apply points-to and interprocedural program analysis on
source code or byte code to identify thread-local objects and
fields. They are usually very expensive and tend to report
many false positives due to the difficulty of reconciling the
symbolic references with the actual memory locations. To
our best knowledge, none of them can deal with the con-
tainer (i.e., Collections and Maps) escape case. For exam-
ple, if a container object escapes, then all objects contained
inside this object are considered escaped by static analy-
sis, which might be false positives, since some objects may
never be accessed by other threads.

Dynamic escape analyses (e.g.[4, 7]) monitor accesses
to objects and fields during execution and identify the es-
cape objects and fields when they have been observed to be
accessed by multiple threads. This is more accurate but suf-
fers from incompleteness due to the fact that not all code
will be executed.

Figure 1 shows an example where both static and dy-
namic escape analyses are inaccurate in identifying thread-
local fields. In thread-1, two objects a1 and a2 of
Account are created and saved in a vector acctVector,

Thread-1

Initialize(){
Account a1 = new Account();
Account a2 = new Account();
acctVector.add(a1);
acctvector.add(a2);
(new Thread-2(acctVector)).start();

}

Deposit(int givenID, float val){
for(Account a: acctVector)

if (a.ID == givenID){
a.bal += val;
break;

}
}

Thread-2

Withdraw(int givenID, float val){
for(Account a: acctVector)

if (a.ID == givenID) {
if (a.bal >= val)

a.bal -= val;
break;

}
}

Figure 1. Examples in Java demonstrating escaped
objects.

then thread-2 is created and started. We assume that ev-
ery Account object has a unique identifier. Now we con-
sider how the Eraser dynamic race detector [12] is affected
by escape analysis. A static escape analysis (e.g.[11]) will
report both objects a1 and a2 escape when creating and
starting thread-2; the Eraser dynamic race detector will
check all accesses on both objects for potential race condi-
tions, even if some object is not really shared by multiple
threads. Thus, large overhead may be incurred by the high
rate of false positives in static escape analysis.

In dynamic escape analysis (e.g.[9]), if some object is
not really accessed by multiple threads, it will be consid-
ered thread-local. But a dynamic escape analysis may have
false negatives. In this example, in the method withdraw
of thread-2, if a.bal < val, the statement “a.bal
-= val” will not be executed. Thus, the Eraser dynamic
race detector may not find the race condition on the field
bal if thread-2 starts after the method deposit is
called in thread-1, because the detector is still on the
state of “shared” for the field bal.

The hybrid escape analysis proposed in the paper avoids
the above problems. It speculatively approximates the un-
executed branch in withdraw based on its static summary
and runtime information. Specifically, the symbol a in the
static summary is resolved using its current runtime identi-
fier. Thus, we can identify that the field bal is shared. The
detector will enter into the state of “shared-modified”, and
the race condition can be detected.

2

source
code

static
summary

trees (SST)

static
analyzer

instrumentation
tool

instrumented
code

dynamic
observed

information
dynamic
monitor

all
 escaped

fields

interprocedural
synthesis

detector

Figure 2. The architecture of the tool HEAT.

3 Integrated Static and Dynamic Escape
Analysis

3.1 Overview of The Hybrid Approach

Figure 2 shows the architecture of our tool HEAT, which
consists of five components: (1) A static analyzer, which
parses the source code to generate static summary trees
(SSTs); (2) An instrumentation tool, which inserts code for
intercepting events during execution. (3) A dynamic mon-
itor, which intercepts events and records them during ex-
ecution. (4) A speculator, which performs interprocedural
synthesis to combine the static summaries for unexecuted
branches and loops from SSTs and the runtime observed
information. (5) A detector, which analyzes hybrid infor-
mation to report all escaped fields.

3.2 Static Analyzer

The static analyzer parses program source code to con-
struct static summary trees (SSTs). Each SST corresponds
to a brief summary of a method in a Java class. Specifically,
a SST may contain nodes representing: (1) read/write to
non-final and non-volatile fields; (2) method invo-
cations (interprocedural information). (3) Object reference
assignment statements. (4) Control flow structures. (e.g.,
if/then/else, do/while/for/switch) (5) synchronization state-
ments. (6) field access to array object in the form of o[i].f .

Figure 3 shows an example of a code block and its cor-
responding SST.

3.3 Dynamic Monitor

HEAT uses Eclipse JDT framework to rewrite the source
code of the target program. We instrument all field accesses
(i.e., read and write) inside the program, except the accesses
on those fields whose declarations are outside the scope of
the program (i.e., field from imported library).

Withdraw(int givenID, float val) {
for(Account a: acctVector) {

if (a.ID == givenID)
if (a.bal >= val) {
beginWithdraw(val);
a.bal -= val;
break;

}
}

}

The corresponding SST
Withdraw

ELSE THEN

IF

IF

THEN ELSE

R
a.ID

cond

R
a.bal

cond

R
a.bal

W
a.bal

int:givenID float:val

parameters

beginWithdraw(val)

for
cond

R
acctVector

Figure 3. An example of a static summary tree
(SST) with its corresponding code block, where R
and W in the nodes denote “read” and “write”, respec-
tively.

3.4 Interprocedural Synthesis

We speculate every unexecuted code block with the SST
generated by the static analyzer by performing a context-
sensitive interprocedural analysis on the SST for different
calling contexts. Figure 4 shows the algorithm.

For each running thread in the program, we have a corre-
sponding monitor to observe all field accesses occurring in
that thread. For each field, we identify it using the unique
identifier of that object (hashCode of the class object for
static fields) plus the name of that field.

When we speculate an unexecuted code block based on
the corresponding SST, symbolic names in the SST are in-
stantiated by querying binding tables. A binding table is
maintained for each object; it stores the mappings between
symbolic names and runtime values of all reference fields
and local reference variables under the context of the object.
A binding table is maintained for each class with static ref-
erence fields. Binding tables are updated when assignments
to reference variables are executed. During speculative ex-
ecution, assignments to reference variables in SSTs trigger
updates on temporary copies of binding tables, instead of
the original ones. If the runtime binding of the object refer-
ence in the speculation is unable to be determined based on

3

Main() {
while (the program has not terminated) {

switch (the current executing statement) {
case access to field o.f : CheckEscape(o.f);
case object reference assignment:

update the corresponding binding table;
case branch point:

Speculate(each unexecuted branch);
}
}
}

CheckEscape(field o.f) {
if (o.fprevThread == −1) return;
else if (o.fprevThread 6= the current thread)
{ o.fprevThread = −1;}

}

Speculate(SST) {
for (each statement s in SST) {

switch (s) {
case access to field o.f :

if (o can be resolved based on the binding table)
CheckEscape(o.f);

else CheckEscape(O ∗ .f); /* O is the class name */
case object reference assignment:

update the corresponding temporary binding table;
case branch point:

Speculate(each branch);
case method call:

if (some actual arguments can be resolved) {
substitute formal parameters with actual arguments;
Speculate(method body);
}

} } }

Figure 4. The algorithm for interprocedural synthe-
sis and escaped field detection.

binding tables, we would replace the symbolic name with a
wildcard object identifier (e.g., Account *.bal).

When we reach a method call during speculation, we ex-
pand it with the SST of its declaration body and perform the
formal parameters and actual arguments substitution. This
context-sensitive approach enables us to resolve object ref-
erences in the SST for that method invocation at different
calling sites. Inside the expanded method invocation, we
use the binding table from dynamic monitor to resolve the
bindings of as many as symbolic object reference names
from the static summary tree (SST) when we perform spec-
ulation on it. This is continued for all method calls includ-
ing nested ones in SST, except that all actual arguments
with wildcards as object identifiers (i.e., the runtime bind-
ing cannot be determined). We do not process recursive
calls in the current implementation. Thus, all the informa-
tion from the static analysis is synthesized with the runtime
information in the dynamic monitor.

We skip method calls whose declaration bodies have no
corresponding SST (e.g., native methods not implemented
in Java or methods defined in the library whose source code

are not available). This does not affect our escape analy-
sis for the target programs under testing since we are only
concerned about the fields defined in the programs.

3.5 Detecting Escaped Fields

To identify the escaped fields, one straightforward ap-
proach is to collect a set of fields with object identifiers in
each thread monitor till the end of the execution and then
perform intersection over these sets from different thread
monitor. However, this approach has its drawbacks since
the set of fields recorded during execution can be over-
whelmingly large. In addition, in this approach, a field is
always monitored in the entire execution, which is unneces-
sary.

To alleviate this problem, we insert an additional shadow
field (like an accompanying shadow) for each existing field
in the corresponding class definition of program source
code. The shadow field prevThread indicates the last
thread that accesses the field. prevThread is initialized
to 0 if no thread has accessed it. To determine whether a
field has escaped, we check whether the current accessing
thread on that field is same as the prevThread when ac-
cessing the field during execution or speculation. When a
field is identified to be escaped, its accompanied shadow
field isEscaped is set to −1. Thus, we will drop all
the subsequent observations on that field, since it is already
identified to be escaped. Figure 4 shows the algorithm.

4 Experiment

We evaluated HEAT on a collection of multi-threaded
Java applications: elevator, tsp, sor, and hedc
are from [15], moldyn and raytracer are from the
Java Grande forum Multi-threaded benchmark suite [5];
Jigsaw [6] and Apache tomcat [14] are two multi-
threaded web services. We performed the experiment on a
machine with Intel dual-core CPU of 1.8 GHz, 2 GB mem-
ory, Windows XP SP3, J2SE 1.6.

Figure 5 compares the result of pure dynamic escape
analysis algorithm against our hybrid approach. “Base” is
the uninstrumented program’s running time. “Dummy” is
the instrumented program’s running time plus interception
time without performing any online/offline analysis.

We evaluate our hybrid escape analysis in two ways.
First, we compare the runtime costs between the pure dy-
namic escape analysis and the hybrid one. Second, we com-
pare the effects of the two analyses on the performance of
subsequent atomicity violation analysis.

From Figure 5, we can see that the hybrid approach re-
veals more potentially escaped fields than the dynamic ap-
proach. The running time difference between them are not

4

Program LOC Threads Base Dummy

Running time
elevator 339 3 0.1 0.2 21 0.3 17 0.8 14 0.7 1 1.8 89.2%

tsp 519 3 0.4 3.5 36 5.7 21 7.2 15 44 66.9 313.3 79.7%
8253 3 0.8 1.2 212 2 202 7.2 202 2.2 3.1 6.9 74.9%
4267 3 0.3 0.4 222 0.5 194 1.5 170 0.5 0.6 8.9 35.1%

jigsaw 100846 68 1.2 2.1 3907 2.7 3848 9.6 3727 107.2 118.3 149 8.1%
tomcat 168297 5 3 4.5 7107 4.9 7050 12 6984 37.2 38.5 79 13.7%

734 3 3.5 371.5 94 719 92 883 70 12.9 890 more than 2 hours 98.90%
852 3 4.3 377.4 64 1454 55 1468 43 2562 2962 more than 2 hours 89.60%

Total
number of

fields
Purely dynamic
escape analysis

Hybrid escape
analysis

Two-stage atomicity
violation analysis

 Atomicity
violation analysis

without escape
information

Code
coverage

Running
time

Unescaped
Fields

Running
time

Unescaped
Fields

Running time
with dynamic

escape

Running time
with hybrid

escape

sor
hedc

moldyn
raytracer

Figure 5. Comparison of the purely dynamic escape analysis algorithm and the hybrid algorithm in performance and
accuracy. All times are measured in seconds.

very significant for most of benchmarks, which indicates
that our hybrid analysis improves the accuracy and com-
pleteness of escape analysis without sacrificing much run-
time overhead. For most of the benchmarks, the memory
remains under realistic limits. The largest one has not ex-
ceeded 200 MB in contrast with the memory cost of 30 MB
for the uninstrumented version. Our approach shows that
tracking all the field accesses is not only possible in terms
of time and memory space but also very feasible for most
benchmarks.

Figure 5 also shows the performance improvement when
checking atomicity violations using escape information
against the approach without escape analysis (i.e., moni-
tor all field accesses). To facilitate checking atomicity vi-
olations with the escape information, we collect the fields
reported from the first-stage escape analysis in a trace file.
The trace file is then analyzed by our instrumentor to se-
lectively instrument the fields that are determined to be es-
caped. We perform the post-stage atomicity violation anal-
ysis after the instrumented program terminates. The results
of atomicity violation analysis remain the same for both ap-
proaches.

As indicated from Figure 5, the most obvious two bench-
marks that benefit from this approach are moldyn and
raytracer. Without the first-stage escape analysis, they
run for more than 2 hours without termination. With the
assistance of the escape information, we can easily ignore
those heavily accessed but thread-local fields when check-
ing atomicity violation, since they can not be involved in
concurrency-related errors. The overall time has reduced to
as low as 2 minutes in contrast. For the other benchmarks,
the performance improvements are not significant partially
because they are not as intensive on memory accesses as
moldyn and raytracer.

5 Related Works

J. Choi et al. [3] present a static interprocedural escape
analysis framework that incorporates both the thread-escape
and method-escape analyses. The escape analysis is based
on a connection graph which statically builds the relation-
ship between object references and objects. In [11], Rinard
et al. propose a static pointer and escape analysis that uses
parallel interaction graphs to analyze the interactions be-
tween threads and provides precise points-to, escape and
action ordering information. Our tool differs from them in
that we combine the accuracy of dynamic analysis with the
completeness of static analysis. Bogda et al. [1] and Rub
[10] propose unification-based escape analyses and apply
them to synchronization elimination.

Compared with static escape analysis, the dynamic es-
cape analysis in [4] is more expensive and more precise.
[7] introduces a dynamic analysis technique that caches all
possible escaping objects at runtime and then performs a set
intersection between cached escaping objects from different
threads to obtain the escaped objects. They also perform an
empirical study on several escape analysis techniques. The
dynamic phase of our approach is almost same to it except
that we did not adopt the caching technique but use the state
variables. [9] uses a on-the-fly read-barrier-based dynamic
escape analysis that eliminates the thread-local memory lo-
cations from being checked by the data race detector thus
improves the performance of lock-set based data race de-
tection.

Static and dynamic analyses have been combined for
multi-threaded programs. Lee [8] is the closest to HEAT
in that they present a two-phase static/dynamic interpro-
cedural and inter-thread escape analysis. Both approaches
perform an offline static analysis followed by a more accu-

5

rate and faster online dynamic analysis which integrates the
information from static analysis. However, their approach
uses the level summaries obtained from dynamic analysis to
improve the connection graph built in the offline stage and
thus improve the accuracy. Integrated static and dynamic
analysis has also been used to detect atomicity violations
[2].

6 Conclusions and Future Works

In this paper, we present a tool HEAT for integrated
static and dynamic escape analysis and demonstrate its ef-
fectiveness by evaluating it on several benchmarks and real-
world applications. HEAT combines the accuracy of dy-
namic analysis while supplementing it with the interproce-
dural static analysis. The augmentation from unexecuted
branches in the program makes the dynamic analysis more
effective at finding many subtle escape cases.

Our experiments show that the proposed hybrid approach
is more effective at finding many subtle escape case. Fur-
thermore, it can be adopted to boost the performance of sub-
sequent program analyses (e.g., detecting race conditions
and atomicity violations) and significantly lower the run-
time overhead for memory-intensive programs.

In the future work, we will extend the interprocedural
analysis to improve the approach’s accuracy and investigate
other ways to improve its performance. In addition, we will
apply it to analyze more concurrency-related program prop-
erties.

References

[1] J. Bogda and U. Hölzle. Removing unnecessary syn-
chronization in java. SIGPLAN Not., 34(10):35–46,
1999.

[2] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE:
Integrated dynamic and static analysis for atomicity
violations. In Proceedings of International Confer-
ence on Fundamental Approaches to Software Engi-
neering (FASE), volume 5503 of LNCS, pages 425–
439. Springer, 2009.

[3] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar,
and S. P. Midkiff. Stack allocation and synchroniza-
tion optimizations for java using escape analysis. ACM
Trans. Program. Lang. Syst., 25(6):876–910, 2003.

[4] M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath.
Exploiting object escape and locking information in
partial-order reductions for concurrent object-oriented
programs. Formal Methods in System Design, 25(2-
3):199–240, 2004.

[5] Java Grande Forum. Java Grande Multi-threaded
Benchmark Suite. version 1.0. Available from
http://www.javagrande.org/.

[6] Jigsaw, version 2.2.6. Available from
http://www.w3c.org.

[7] K. Lee, X. Fang, and S. P. Midkiff. Practical escape
analyses: how good are they? In VEE ’07: Proceed-
ings of the 3rd international conference on Virtual ex-
ecution environments, pages 180–190, New York, NY,
USA, 2007. ACM.

[8] K. Lee and S. P. Midkiff. A two-phase escape analysis
for parallel java programs. In PACT ’06: Proceed-
ings of the 15th international conference on Parallel
architectures and compilation techniques, pages 53–
62, New York, NY, USA, 2006. ACM.

[9] H. Nishiyama. Detecting data races using dynamic
escape analysis based on read barrier. In VM’04: Pro-
ceedings of the 3rd conference on Virtual Machine
Research And Technology Symposium, pages 10–10,
Berkeley, CA, USA, 2004. USENIX Association.

[10] E. Ruf. Effective synchronization removal for Java.
In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
208–218. ACM Press, June 2000.

[11] A. Salcianu and M. Rinard. Pointer and escape anal-
ysis for multithreaded programs. In Proc. ACM SIG-
PLAN 2001 Symposium on Principles and Practice of
Parallel Programming (PPoPP). ACM Press, 2001.

[12] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, Nov. 1997.

[13] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee,
and D. Padua. Compiler techniques for high per-
formance sequentially consistent java programs. In
Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming
(PPoPP), pages 2–13, New York, NY, USA, 2005.
ACM.

[14] Apache tomcat, version 6.0.16. Available from
http://tomcat.apache.org.

[15] C. von Praun and T. R. Gross. Object race detec-
tion. In Proc. 16th ACM Conference on Object-
Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), volume 36(11) of SIGPLAN
Notices, pages 70–82. ACM Press, Oct. 2001.

6

