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Abstract. The reality of multi-core hardware has made concurrent pro-
grams pervasive. Unfortunately, writing correct concurrent programs is
difficult. Atomicity violation, which is caused by concurrently executing
code unexpectedly violating the atomicity of a code segment, is one of
the most common concurrency errors. However, atomicity violations are
hard to find using traditional testing and debugging techniques.

This paper presents a hybrid approach that integrates static and dy-
namic analyses to attack this problem. We first perform static analysis
to obtain summaries of synchronizations and accesses to shared vari-
ables. The static summaries are then instantiated with runtime values
during dynamic executions to speculatively approximate the behaviors
of branches that are not taken. Compared to dynamic analysis, the hy-
brid approach is able to detect atomicity violations in unexecuted parts
of the code. Compared to static analysis, the hybrid approach produces
fewer false alarms. We implemented this hybrid analysis in a tool called
HAVE that detects atomicity violations in multi-threaded Java programs.
Experiments on several benchmarks and real-world applications demon-
strate promising results.

1 Introduction

Today, multi-core hardware has become ubiquitous, which puts us at a funda-
mental turning point in software development. In order for software applications
to benefit from the continued exponential throughput advances in new proces-
sors, the applications will need to be well-written multi-threaded programs. How-
ever, writing correct multi-threaded programs is difficult, because concurrency
can introduce subtle errors that do not exist in sequential programs, if concurrent
accesses to shared data are not properly synchronized.
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Two of the most common concurrency errors are data races and atomicity
violations. A data race occurs when two concurrent threads perform conflicting
accesses (i.e., accesses to the same shared variable and at least one access is
a write) and the threads use no explicit mechanism to prevent the accesses
from being simultaneous. In Program 1 of Figure 1, conflicting accesses to the
shared variable bal can happen simultaneously without any protecting lock,
hence a data race occurs. An atomicity violation occurs when an interleaved
execution of a set of code blocks (expected to be atomic) by multiple threads
is not equivalent to any serial execution of the same code blocks. Program 2 in
Figure 1 eliminates the data race in Program 1 by adding a lock o. However,
Program 2 is still incorrect if the deposit method is required to be atomic. An
atomicity violation occurs in Program 2 when the two synchronization blocks in
thread 2 execute between the two synchronization blocks in thread 1.

Program 1
Thread 1
deposit(int val){

int tmp = bal;
tmp = tmp + val;
bal = tmp;

}

Thread 2
deposit(int val){

int tmp = bal;
tmp = tmp + val;
bal = tmp;

}

Program 2
Thread 1
deposit(int val){

synchronized(o){
int tmp = bal;
tmp = tmp + val;

}
synchronized(o){
bal = tmp;

}
}

Thread 2
deposit(int val){

synchronized(o){
int tmp = bal;
tmp = tmp + val;

}
synchronized(o){
bal = tmp;

}
}

Fig. 1. Examples in Java demonstrating data races and atomicity violations.

Most existing approaches to detect atomicity violations are either purely dy-
namic (e.g. [6, 21, 20, 19]) or purely static (e.g. [9, 7]). The strength of static anal-
ysis is that it can consider all possible behaviors of a program. However, it may
produce false positives (i.e., false alarms), because some aspects of a program’s
behavior, such as alias relationships, values of array indices, and happens-before
relationships, are very difficult to analyze statically. Moreover, many static anal-
yses, such as the type system for atomicity in [9], require either manual annota-
tion of the program or rewriting of the program into a special language. Dynamic
analysis observes and analyzes the actual behaviors of a program by executing
it. Generally, dynamic analysis is unsound compared to static analysis, because
it does not analyze unobserved behaviors of programs. On the positive side, it
generally produces much fewer false positives. Furthermore, dynamic analysis
generally does not require manual annotation of code that is often required in
static analysis; this is a significant practical advantage.

In order to exploit the complementary benefits of static and dynamic anal-
yses, we propose a hybrid approach to detect atomicity violations. In our ap-
proach, we perform a conservative intraprocedural static analysis to generate
a summary for each method in the program. Our runtime system tracks and
records the values of reference variables during execution. When we observe an



unexecuted branch during dynamic analysis, the static summary of that unex-
plored branch is retrieved and instantiated using the recorded values. Thus, the
instantiated summary speculatively approximates what would have happened if
the branch had been executed.

We implemented the hybrid approach in a tool called Hybrid Atomicity Viola-
tion Explorer (HAVE) for detecting atomicity violations in multi-threaded Java
programs and evaluated it on several benchmarks and real-world applications.
The experiments show that the hybrid approach reports fewer false positives
than the previous static approaches [9, 1], and fewer false negatives (i.e., missed
errors) than the previous dynamic approaches [6, 20, 19].

The rest of this paper is organized as follows. Section 2 formally defines atom-
icity violations. Section 3 presents the architecture of our tool HAVE. Section 4
introduces the conflict-edge algorithm. Section 5 describes some optimizations.
Section 6 presents the experimental results. Section 7 reviews the related work.
Section 8 discusses the conclusions and future work.

2 Atomicity Violations

An execution σ = 〈s1, . . . , sn〉 is a sequence of accesses to shared variables, lock
acquire, lock release, thread start, thread join, and barrier synchronization
operations.

A transactional unit (or transaction) is an execution of a code block expected
to be atomic. A non-transactional unit is an execution of a code block not ex-
pected to be atomic. For an event or transaction x, let th(x) be the thread that
performed x. As in [19], we assume that transaction boundaries are chosen so
that thread start and join operations and barrier operations occur at transac-
tion boundaries, not in the middle of transactions. Thus, thread and barrier
operations induce a partial order on transactions: given an execution σ, and
two transactional or non-transactional units u1 and u2, u1 happens-before u2,
denoted u1 <H u2, if (1) th(u1) = th(u2) and u1 is executed before u2, or (2)
th(u1) 6= th(u2) and (2a) th(u1) starts thread th(u2) after executing u1 or (2b)
th(u2) joins on th(u1) before executing u2, or (3) ∃ui : (u1 <H ui)∧ (ui <H u2).
From monitoring an execution, we extract a set T of transactions, a set A of
non-transactional units, and a happens-before relation <H .

Given 〈T,A,<H〉, a trace of 〈T,A,<H〉 is an interleaving of events from units
in T∪A that is consistent with the happens-before relation <H (i.e., if u1 <H u2,
then all events in u1 precede all events in u2) and respects locking (i.e., for every
matching pair of acquire and release operations that belong to the same thread,
no acquire or release of the same lock by other threads happens between them).

Traces π1 and π2 for 〈T,A,<H〉 are equivalent if (1) they contain the same
events, and (2) for each pair of conflicting accesses, the two accesses appear in
the same order in both traces.

A trace of 〈T,A,<H〉 is serial if the events of each transaction in T form
a contiguous subsequence of the trace. 〈T,A,<H〉 is atomic if every trace of
〈T,A,<H〉 has an equivalent serial trace of 〈T,A,<H〉.



For example, consider Program 2 in Figure 1. Suppose the method deposit
is expected to be atomic. The program has only two serial executions, [t1.R(bal)
t1.W (bal) t2.R(bal) t2.W (bal)] and [t2.R(bal) t2.W (bal) t1.R(bal) t1.W (bal)],
where t.A(x) denotes that thread t performs action A on variable x. The inter-
leaved execution [t1.R(bal) t2.R(bal) t2.W (bal) t1.W (bal)] is not equivalent to
any serial trace, hence, the execution of method deposit is not atomic.

This notion of atomicity is also called conflict atomicity [19]. In [19], we also
explored another notion of atomicity, called view atomicity. We do not consider
view atomicity in this paper because checking it is more expensive and gives the
same results as checking conflict atomicity in our experiments [19].

In this paper, we assume that the program does not have potential for dead-
lock (i.e., some trace of the program may end in deadlock). This assumption is
needed because a trace that ends in deadlock with some thread in the middle of
a transaction is not equivalent to any serial trace. Potential for deadlock can be
checked using our approach in [2].

3 Integrating Dynamic and Static Analyses

This section gives an overview of our hybrid approach to check atomicity viola-
tions. Figure 2 shows the architecture of our tool, HAVE, which consists of five
components.
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Fig. 2. The architecture of the tool HAVE.

1. A static analyzer, which parses the source code to generate static summary
trees (SSTs).

2. An instrumentation tool, which inserts event interception code.
3. A dynamic monitor, which intercepts events and builds dynamic trees during

execution.
4. A speculator, which generates speculations for the unexecuted branches from

SSTs and combines them with dynamic trees to form hybrid trees.
5. A detector, which analyzes the hybrid trees for atomicity violations using

the hybrid conflict-edge algorithm described in Section 4.



3.1 The Static Analyzer

The static analyzer parses source code to construct static summary trees (SSTs).
Each SST corresponds to a method in a certain class. Specifically, a static tree
may contain nodes representing: (1) read/write to non-final and non-volatile
fields; or (2) entrance and exit of synchronized blocks, including synchronized
methods (which represent lock acquire and release operations); or (3) control-
flow structures, namely, if, for/while, and switch/case; or (4) assignments
to reference variables, which are used to speculate reference changes for the
unexecuted code blocks. SSTs do not contain interprocedural information, i.e.,
method calls are ignored. Unlike the dynamic monitor, the static analyzer ignores
thread start, join and barrier synchronizations. Accesses to array elements are
ignored in this paper due to the difficulty of statically resolving the indices of
array elements. Figure 3 shows an example of a code block and its SST.

class Account {
int checking, saving;

public void withdraw(int w) {
if ((this.checking + this.saving) < w)

print("Not enough balance");
else if (this.checking >= w)

synchronized(this)
this.checking -= w;

else
synchronized(this) {

this.saving -= w - this.checking;
this.checking = 0;

}
}

}

The corresponding SST

withdraw

THEN ELSE

IF

Synchronized
(Account)

IF

THEN ELSE

Synchronized
(Account)

R
Account.c

R
Account.s

R
Account.s

R
Account.c

cond

R
Account.c

cond

R
Account.c

W
Account.c

W
Account.c

W
Account.s

Fig. 3. An example of a static summary tree (SST), where Account.c and Account.s

denote Account.checking and Account.saving, and “R” or “W” denotes that the node
is a read or write, respectively.

3.2 Instrumentation

The instrumentation component instruments source code in order to intercept
specific events during execution. The intercepted events include program control-
flow structures, reads and writes to non-final and non-volatile fields, synchro-
nization (including lock acquire and release, barrier operation, thread start
and join), assignments to reference variables, and transaction boundaries.

Similar to [19], executions of the following code fragments are considered as
transactions by default because their executions are often expected to be atomic



by programmers: non-private methods, synchronized private methods, and syn-
chronized blocks inside non-synchronized private methods. With exceptions, the
executions of the main() method in which the program starts and the execu-
tions of run() methods of classes that implement Runnable are not considered as
transactions, because these executions represent the entire executions of threads
and are often not expected to be atomic. Moreover, start, join and barrier
operations are treated as boundaries, i.e., they separate the preceding events
and following events into different units, and are not contained in any unit. We
adopt this heuristic because execution fragments containing these operations are
typically not atomic and hence are not expected to be transactions. The events
not in transactions form non-transactional units. Note that for nested transac-
tions, we check atomicity only for the outmost transactions, since they contain
the inner transactions. The defaults can be overridden using a configuration file.

3.3 The Dynamic Monitor and Speculator

When an instrumented program runs, the dynamic monitor receives events is-
sued by the instrumented code. The events of each unit (including transactional
and non-transactional units) are stored in a structure called a hybrid tree, which
consists of events observed in the execution and speculations based on static
summary trees. Each leaf node represents a read or write to a shared vari-
able and contains the runtime identifier for the shared variable. For example,
R(320.checking) denotes a read to the field “checking” of an object identi-
fied by its hashcode 320. Each non-leaf node except for the root represents a
lock-based synchronization block or control-flow structure (e.g. if/then/else,
for/while loop, switch/case). Each synchronization node contains the run-
time identifier for the current lock (i.e., synchronization object). The root node
simply identifies the unit.

For each unexecuted branch in the unit, we instantiate the corresponding part
of the method’s SST by simulating its execution using the runtime context at
the associated branch point, and add the resulting concrete events (e.g. synchro-
nization nodes, reads and writes) to the hybrid trees. We instantiate symbolic
names in the SST by querying binding tables. A binding table is maintained for
each object; it stores the mappings between symbolic names and runtime val-
ues of all reference fields and local reference variables under the context of the
object. A binding table is maintained for each class with static reference fields.
Binding tables are updated when assignments to reference variables are exe-
cuted. During speculative execution, assignments to reference variables in SSTs
trigger updates on temporary copies of binding tables, instead of the original
ones. Since there might be unresolved symbolic names left during speculation,
the speculation may be not as accurate as its runtime equivalent observed in the
dynamic analysis if it can be executed. This speculative technique may lead to
false positives. Our experiments show that such kind of false positives are very
rare in practice.

Our speculative execution also constructs subtrees corresponding to specu-
lative iterations of loop bodies. According to Theorem 3 in Section 4.3, if all



iterations of a loop perform the same accesses, then at most two iterations are
needed to detect atomicity violations. We use this as a heuristic, without at-
tempting to verify the hypothesis of the theorem. Specifically, when the control
flow reaches a loop, if the execution contains no iterations of the loop at that
point, we add two speculative iterations; if the execution contains only one iter-
ation of the loop at that point, we add one speculative iteration.
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Fig. 4. An example of hybrid trees. Tree (a) corresponds to an execution of withdraw
in Figure 3 when the else if is executed; tree (b) corresponds to the scenario when
the first then is executed. The grey nodes are generated from the real executions; all
the other nodes are speculated. The dotted lines denote conflict-edges introduced in
Section 4. Only partial conflict-edges are marked out.

Two examples of hybrid trees are shown in Figure 4. Tree (a) and Tree (b)
are generated by two threads of an execution that call the method withdraw()
in Figure 3. The hashcode of the instance of Account is assumed to be 320.

4 The Conflict-Edge Algorithm

This section presents the conflict-edge algorithm that detects atomicity viola-
tions based on hybrid trees. The algorithm adds edges, called conflict-edges,
between hybrid trees, to connect two conflicting nodes (which is discussed in
details in Section 4.1). The algorithm then generates all valid pairs of conflict-
edges; informally, “valid” means that all nodes involved in the pair can coexist
in some execution. The algorithm detects and reports atomicity violations by
analyzing each valid conflict-edge pair. Note that the conflict-edge algorithm
does not merely look for violations of atomicity in the observed execution, but
also determines whether atomicity violations exist in feasible permutations of
the observed execution.



4.1 Building Conflict-Edges Between Hybrid Trees

Two nodes n1 and n2 conflict if (1) they are in different hybrid trees, and (2) they
represent accesses to the same variable and at least one of them is a write, and
(3) thread start, join, and barrier operations do not induce a happens-before
relation on them (i.e., do not prevent them from occurring simultaneously). Let
held(ni) denote the set of locks held when ni is executed, which is determined
by the synchronization nodes that are ancestors of ni in the tree.

For each pair (n1, n2) of conflicting nodes, if held(n1)∩held(n2) = ∅, we add
a conflict-edge between n1 and n2; otherwise, we add a conflict-edge between the
highest ancestors of n1 and n2 that are synchronization nodes for the same lock.
The highest synchronization nodes represent the outmost common lock held
during the executions of n1 and n2. The conflict-edge reflects the granularity
at which the code blocks containing conflicting accesses can be interleaved. For
example, Figure 4 shows partial conflict-edges between the two hybrid trees.

4.2 Detecting Atomicity violations

A hybrid tree t represents a set [[t]] of possible (transactional or non-transactional)
execution units, corresponding to different choices of the branches of the if,
switch, and loop statements that appear in it. For simplicity, our speculative
analysis assumes that each branch could be taken, independently of other choices;
in other words, the conditions guarding the branches are ignored. Given a set
T = {t1, . . . , tn} of hybrid trees representing transactions, a set A = {a1, . . . , am}
of hybrid trees representing non-transactional units, and a happens-before re-
lation <H on these trees, 〈T,A,<H〉 is atomic if, for all t′1 ∈ [[t1]] , . . . , t′n ∈
[[tn]] , a′1 ∈ [[a1]] , . . . , a′m ∈ [[am]], 〈{t′1, . . . , t′n}, {a′1, . . . , a′m}, <′H〉 is atomic, where
two execution units are related by <′H iff the hybrid trees they were generated
from are related by <H .

Conflict-edges e and e′ are incompatible if one end node of e and one end
node of e′ appear in mutually exclusive branches of a hybrid tree, such as then
and else branches of the same if statement, or different cases of a switch
statement; otherwise, conflict-edges e and e′ are compatible.

Conflict-edge e is an ancestor of conflict-edge e′ in hybrid tree t if an endpoint
of e is an ancestor of an endpoint of e′ in t. A pair (e, e′) of conflict-edges is valid
for hybrid tree t, if (1) e and e′ are compatible, (2) e is not an ancestor of e′ in t,
and vice versa, and (3) e and e′ are incident on different nodes of t. In the rest of
the paper, all pairs mentioned are valid by default if without explicit indication.

We have the following theorem to determine atomicity for a transactional
hybrid tree. Let Fσ be a hybrid forest generated from an execution σ. Given a
transactional hybrid tree t contained in Fσ, let Fσ \{t} be the set of all the other
units.

Theorem 1. Suppose a hybrid forest Fσ has no potential for deadlock. If t has
no valid pair in Fπ, 〈{t}, Fσ \ {t}, <H〉 is atomic.



CheckAtomicityViolations() {
AV Scenarios := ∅;
for each transactional hybrid tree t do

for each valid conflict-edge pair (e, e′) of t do
if only two hybrid trees including t are connected by e and e′ then

/* find an atomicity violation scenario */

AVScenarios := AVScenarios ∪{(e, e′)};
else

if ∃ a valid cycle c of conflict-edges involving (e, e′) then
AVScenario := AVScenario ∪{c};

}

Fig. 5. The conflict-edge algorithm to detect atomicity violations

Proof Sketch: If t does not have valid pairs in Fπ, for every trace of 〈{t}, Fσ \
{t}, <H〉, there are only two possible cases: (1) t has at most one node with an
incident conflict-edge; or (2) t has a set S of nodes with incident conflict-edges,
and for all n1, n2 ∈ S, n1 is an ancestor or descendant of n2. In the first case, for
each non-serial trace, we can construct an equivalent serial trace by commuting
all events in t to the position of that node. In the second case, we can construct
an equivalent serial trace by commuting all events in t to the position of the
lowest node in S. Hence, 〈{t}, Fσ \ {t}, <H〉 is atomic. �

Given a valid pair of conflict-edges (e, e′), a sequence of conflict-edges in-
volving e and e′ may form into a cycle, where two conflict-edges connected to
the same tree are considered linked. A cycle involving (e, e′) is valid if (1) nei-
ther e nor e′ is an ancestor of the other; and (2) all conflict-edges on the cycle
are compatible; and (3) for each node n on the cycle, held(n) ∩ held(nte) = ∅∧
held(n) ∩ held(nte′) = ∅, where nte and nte′ are the end nodes of e and e′ in t,
respectively; and (4) all involved transactional and non-transactional units are
concurrent (i.e., the happens-before relation enforces no order on them). We
have the following theorems to check atomicity violations.

Theorem 2. Suppose a hybrid forest Fσ has no potential for deadlock. If a valid
pair of conflict-edges (e, e′) on a transactional hybrid tree t is involved in a valid
cycle of Fσ, then t has an atomicity violation with the scenario indicated by the
cycle.

Proof Sketch: Suppose the valid cycle consists of conflict-edges e0, e1, . . . , en,
where e0 = e and en = e′. Let ui and ui+1 be the execution units containing the
endpoints of ei, for i = 0..n. Note that u0 = t and un+1 = t. The conditions in
the definition of valid cycle imply that u0, . . . , un are distinct and there exist u′0 ∈
[[u0]] , . . . , u′n ∈ [[un]] and an interleaving σ′ for 〈T ′, A′, <′H〉 that contains events in
the order 〈endpoint(e0, t), endpoint(e0, u1), endpoint(e1, u1), endpoint(e1, u2), . . . ,
endpoint(en, un), endpoint(en, t)〉 (i.e., all of the other nodes on the cycle occur
between the two nodes of t on the cycle), where T ′ and A′ contain the transac-
tional and non-transactional units, respectively, in {u′0, . . . , u′n}, and u′i <

′
H u′j

iff ui <H uj . Because the two endpoints of a conflict-edge represent conflict-



ing accesses to a shared variable, all executions equivalent to σ must preserve
the order of t, u1, . . . , un, t. Thus, there is no serial execution (in particular, no
execution in which t occurs serially) equivalent to σ, so the cycle indicates an
atomicity violation. �

Corollary 1. Suppose a hybrid forest has no potential for deadlock. If a valid
pair of conflict-edges on a transactional hybrid tree t is incident to only two
transactions (including t), then t has an atomicity violation with the scenario
indicated by the pair.

Proof Sketch: The valid pair forms into a cycle. Thus, the conclusion is simply
implied by Theorem 2. �

For each hybrid tree t, we detect atomicity violations by checking valid pairs
of conflict-edges as shown by CheckAtomicityViolations() in Figure 5. Given
a valid pair (e, e′) of t, if e and e′ involve only two hybrid trees, this pair implies
an atomicity violation by Corollary 1. If e and e′ involve three hybrid trees (recall
that e and e′ are already incident to t), we check atomicity violations based on
Theorem 2. Our current implementation does not use Theorem 1, because our
system looks for potential atomicity violations; it does not try to verify atomicity.
Corollary 1 is applied first because it is cheaper.

For example, in Figure 4, an atomicity violation is revealed by a valid pair
(< a.W(320.c), b.R(320.c) >,< a.W(320.s), b.R(320.s) >). The atomicity viola-
tion cannot be discovered by a purely dynamic approach because the valid pair
connects a speculative branch in tree a with an executed branch in tree b.

Let S (mnemonic for Size of trees) denote the maximum number of nodes in
any hybrid tree. Note that the number of trees is |T ∪ A|. The worst-case time
complexity of constructing conflict-edges is O((|T ∪A|×S)2). Let nc denote the
maximum number of conflict-edges incident on any hybrid tree. Usually nc is
much less than |T ∪ A| × S2. Theorem 2 requires finding a valid cycle, which is
O((|T∪A|×nc)2). The total number of valid pairs is O(T×n2

c). Hence, the worst-
case time complexity of checking atomicity violations is O(|T | × |T ∪A|2 × n4

c).

4.3 Unwrap Loops

The following theorem shows that executing a loop twice is sufficient to find
atomicity violations, if all iterations perform the same accesses.

Consider a loop such that every iteration contains the same sequence of access
events. Let σ2 denote an execution in which, at some point, a thread performs
exactly two iterations of the loop. Let t2 be the corresponding transaction con-
taining the two iterations. Let σm be an execution that differs from σ2 only in
that, at the same point, the thread performs more than two iterations. Let tm
be the corresponding transaction containing the m iterations. Suppose t2 and
tm differ only on the number of iterations.

Theorem 3. 〈t2, A,<H〉 is not atomic iff 〈tm, A,<H〉 is not atomic.



Proof Sketch: “⇒”: it is obvious.
“⇐”: We prove the contrapositive, i.e., if 〈t2, A,<H〉 is atomic, then 〈tm, A,<H

〉 is atomic. Given any trace πm of 〈tm, A,<H〉, it must have a corresponding
trace π2 of 〈t2, A,<H〉, where πm and π2 differ only on the number of iterations
for the loop. Because there must exist a way to swap π2 into an equivalent serial
trace, the events in πm can be swapped in the same way. Specifically, if there is
an event in πm to prevent from swapping, an event in π2 with the same proper-
ties (i.e., accesses the same variable, holds the same lock, and observes the same
happens-before relation) must exist to prevent π2 from being serializable. Hence
πm has an equivalent serial trace, i.e., 〈tm, A,<H〉 is atomic. �

5 Optimization: Dynamic Sharing Analysis

To reduce the runtime overhead of monitoring, we restrict monitoring to shared
variables. Before an object becomes shared (i.e., escapes from the thread that
created it), all events involving it can be ignored. We designed and implemented
dynamic sharing analysis to accurately determine the sharing property of each
variable. This analysis extends our previous dynamic escape analysis [20] and
introduces an additional execution on the same input before the atomicity anal-
ysis.

The first execution is used to determine whether each field of every class
ever becomes shared during the entire run. Note that we do not construct and
analyze hybrid trees during this execution. Each field of a class is processed
independently, since some fields might be always accessed by a single thread
even if the owner object is shared by multiple threads. Specifically, for each
field, if that field in some instance has ever been accessed by multiple threads, the
field of the corresponding class is marked as shared; otherwise, it is considered
unshared.

During the second execution with the same input, we keep track of when
an object (instead of field) becomes shared while constructing hybrid trees and
analyzing atomicity violations. Fields classified as unshared from the first ex-
ecution are not monitored. When an object becomes shared, all its monitored
fields are marked as shared. To indicate whether an object has escaped from its
creating thread, we add a boolean instance field to every class with the initial
value false. We use Java reflection mechanism to dynamically update the field.
An object o becomes shared in the following scenarios: (1) o is stored in a static
field or a field of a shared object; (2) o is an instance of a thread and the thread
is started; (3) o is referenced by a field of another object o′, and o′ becomes
shared (this leads to cascading sharing); (4) o is passed as an argument to a
native method that may cause it to be shared.

The dynamic sharing analysis is based on an assumption that given the same
input, the sharings of a variable are the same during different executions, which is
true in our experiment of Section 6. The dynamic sharing analysis has improved
performance significantly. For example, it reduces the overall runtime by 40%



on the benchmarks Tsp and Jigsaw compared to the executions without the
dynamic sharing analysis.

Another optimization is that, for access nodes with the same parent node,
we preserve only the first two accesses in the same type (read or write) to each
shared variable, because the first two accesses can represent all discarded accesses
for checking atomicity. This is justified by Theorem 7.1 in [19].

6 Experiments

Program LOC Threads Base Dummy Purely Dynamic Hybrid

Time Time
Elevator 339 3 0.1 0.2 0.5 18 0-2-0 1 18 0-2-0 89.2%
Tsp 519 3 0.4 3.5 14 28 2-0-0 66.9 54 2-0-0 79.7%

8253 3 0.8 1.2 1.6 0 0-0-0 3.1 0 0-0-0 74.9%
4267 3 0.3 0.4 0.5 7 1-0-0 0.6 7 1-0-0 35.1%

Jigsaw 100846 68 1.4 1.7 2.7 3 1-0-0 118.3 24 2-0-0 8.1%
Tomcat 168297 3 3.3 4.1 7.7 10 0-2-0 38.5 18 1-2-0 13.7%
Vector1.4 383 2 0.1 0.2 0.6 10 4-4-0 0.8 10 4-4-0 69.2%
Stack1.4 418 2 0.1 0.2 0.7 10 3-4-0 0.8 10 3-4-0 85.7%
HashTable1.4 597 2 0.2 0.3 0.6 4 0-4-0 0.9 4 0-4-0 47.5%

Code 
Coverage

nAV
NA 

methods nAV
NA 

methods

Sor
Hedc

Fig. 6. Comparison of the purely dynamic commit node algorithm and the hybrid
conflict-edge algorithm in performance and accuracy. The column “nAV” denotes the
number of atomicity violations, which are counted based on the places in source code
where the events involved in atomicity violations appear. The column “NA-methods”
denotes the number of non-atomic methods with the categories being bug - benign -
false positive. All times are measured in seconds.

We tested our tool on the following programs: Elevator, Tsp, Sor, and Hedc
from [15], Jigsaw 2.2.6 from [11], Apache tomcat 6.0.16, and Vector, Stack,
and Hashtable from JDK 1.4.2.

We performed the experiments on a machine with 1.8 GHz Intel dual-core
CPU, 2GiB memory, Windows XP SP3, and Sun JDK 1.6.

Figure 6 compares the running time and results of our hybrid algorithm with
the purely dynamic commit node algorithm for conflict-atomicity in [19]. “Base”
is the original program’s running time without instrumentation. “Dummy” is the
instrumented program’s running time without analyzing atomicity violations
(i.e., analysis is not performed after intercepting the events). “Purely Dynamic”
is the instrumented program’s running time using the purely dynamic commit
node algorithm in [19]. “Hybrid” is the running time of our hybrid algorithm.
“Code Coverage” is the coverage of statements in the current execution, which
is obtained using an Eclipse plugin EclEmma.



For Tsp, HAVE discovers more potential atomicity violations because of spec-
ulation. For example, we found that an atomicity violation involves a read on
the static field TspSolver.MinTourLen in the speculative branch in the method
split tour and two writes on the same field in the executed code of the method
set best called by the method recursive solve.

For Jigsaw, HAVE also reveals more atomicity violations than the purely dy-
namic approach. HAVE reports that the non-atomic method perform in httpd.java
has multiple atomicity violations regarding several fields such as the instance
field LRUNode.next and the instance field ResourceStoreImpl.resources. The
previous purely dynamic approach missed this because some field accesses occur
in speculatively executed branches.

For Tomcat, the static field StringCache.accessCount in the method toString
(ByteChunk bc) of StringCache.java has the potential for atomicity violation
when at least two threads find StringCache.bcCache != null and speculate
the else branch. The same risk exists for the static field StringCache.hitCount
in the same method, if both threads fail the condition test before it. We clas-
sify this atomicity violation as a bug, because it may cause the statistics to be
inaccurate, even though this inaccuracy does not cause other incorrect behavior.

7 Related Work

The most closely related work is our commit-node algorithm in [19], which is
purely dynamic. The main contribution of this paper is to extend it to a hybrid
algorithm that combines static and dynamic analyses. This paper also presents
a new optimization to the algorithm.

Dynamic algorithms to detect atomicity violations can be classified into two
categories, based on whether they aim to detect potential atomicity violations
(i.e., whether any feasible permutation of an observed trace is unserializable),
or actual atomicity violations (i.e., whether an observed trace is unserializable).
The algorithms to detect potential atomicity violations include this paper, Wang
and Stoller’s reduction-based, block-based algorithms, commit-node algorithms,
[17, 20, 19], and Flanagan and Freund’s reduction-based algorithm [6], which is
similar to Wang and Stoller’s reduction-based algorithm. Xu et al. infer compu-
tation units (subcomputations that the programmer might expect to be atomic)
based on data and control dependencies and report an atomicity violation when
an unserializable write by another thread is interleaved in a computation unit
[21]. Lu et al.’s AVIO system learns access interleaving invariants as indications
of programmers’ likely expectations about atomicity and reports an atomicity
violation when an observed interleaving violates an access interleaving invariant
[12]. Flanagan et al. developed a sound and complete atomicity violation de-
tector based on analysis of exact dependencies between operations [8]. Farzan
and Madhusudan developed a space-efficient algorithm for detecting atomicity
violations [4]. Park and Sen propose a randomized dynamic analysis technique
that greatly increases the probability that a special class of potential atomicity
violations will manifest as actual atomicity violations [13].



Static analyses have been developed to infer or verify atomicity of code seg-
ments, e.g., [16, 9, 7, 18]. Static analysis gives stronger guarantees, because it
considers all possible behaviors of a program, but is typically more restrictive
or reports more false alarms than dynamic analysis. Model checking can also be
used to check atomicity [5, 10, 4]. Model checking also provides strong guarantees
but is feasible only for programs with relatively small state spaces.

Static and dynamic analyses can be combined in various ways for atom-
icity checking. Agarwal, Sasturkar, Wang, and Stoller used static analysis to
reduce the overhead of the reduction-based algorithm [14] and the block-based
algorithm [1]. JPredictor uses static analysis to improve the accuracy of the de-
pendency relation used in dynamic checking for potential concurrency errors,
including atomicity violations [3]. Those techniques, in contrast to ours, do not
use speculative execution.

8 Conclusions and Future Work

This paper describes a new approach to enhance dynamic analysis with results
from static analysis to make the dynamic analysis more effective at finding subtle
atomicity violations, by augmenting the dynamic analysis to consider some of
the behavior of unexecuted branches in the program. This is significant because
software testing rarely achieves full code coverage in practice.

In our experiments, our hybrid conflict-edge algorithm scales almost as well
as our previous dynamic algorithm [19]. Comparing our results in Figure 6 with
results for those benchmarks in other papers [19, 20, 9, 6, 4, 8], our system detects
all the atomicity violations detected by the purely dynamic algorithms described
in those other papers and, for some benchmarks, detects additional atomicity
violations.

Directions for future work include extending the static analysis to be inter-
procedural, taking the predicates guarding branches into account, incorporating
more sophisticated approaches to identify transaction boundaries, and using a
testcase generator to generate inputs that lead to execution of speculative events
involved in atomicity violations to verify that they are not false alarms.
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