
FTSGD: An Adaptive Stochastic Gradient Descent
Algorithm for Spark MLlib

Hong Zhang∗, Zixia Liu†, Hai Huang‡, Liqiang Wang§
∗†§Department of Computer Science, University of Central Florida, Orlando, FL, USA

‡IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
Email: ∗hzhang1982@knights.ucf.edu, †zixia@knights.ucf.edu, ‡haih@us.ibm.com, §lwang@cs.ucf.edu

Abstract—The proliferation of massive datasets and the surge
of interests in big data analytics have popularized a number
of novel distributed data processing platforms such as Hadoop
and Spark. Their large and growing ecosystems of libraries
enable even novice to take advantage of the latest data analytics
and machine learning algorithms. However, time-consuming data
synchronization and communications in iterative algorithms on
large-scale distributed platforms can lead to significant perfor-
mance inefficiency. MLlib is Spark’s scalable library consisting
of common machine learning algorithms, many of which employ
Stochastic Gradient Descent (SGD) to find minima or maxima by
iterations. However, the convergence can be very slow if gradient
data are synchronized on each iteration.

In this work, we optimize the current implementation of SGD
in Spark’s MLlib by reusing data partition for multiple times
within a single iteration to find better candidate weights in a
more efficient way. Whether using multiple local iterations within
each partition is dynamically decided by the 68-95-99.7 rule. We
also design a variant of momentum algorithm to optimize step
size in every iteration. This method uses a new adaptive rule
that decreases the step size whenever neighboring gradients show
differing directions of significance. Experiments show that our
adaptive algorithm is more efficient and can be 7 times faster
compared to the original MLlib’s SGD.

Index Terms—Spark; MLlib; Asynchronous Stochastic Gradi-
ent Decent; Adaptive Iterative Learning

I. INTRODUCTION

The executions of machine learning and deep learning
algorithms often span multiple machines as data or model
usually cannot fit in a single machine. Apache Hadoop [1]
[2] is an open-source framework that distributes data across
a cluster of machines and parallelizes their execution using
MapReduce programming model. Apache Spark [3] improves
upon Hadoop by keeping data in-memory in the format of
resilient distributed dataset (RDD) between Map and Reduce
iterations. It has been rapidly adopted due to its 10x to 100x
speedup over Hadoop, especially in machine learning related
applications such as classification, regression, and clustering.
Using Spark, programmers can efficiently design, deploy and
execute streaming, machine learning, and graph processing
workloads. Spark MLlib is a scalable machine learning library,
which provides RDD-based APIs to support scalable machine
learning. It consists of common machine learning algorithms,
including classification, regression, clustering, etc.

In the area of distributed machine learning, to handle
very large datasets and/or complex models, parameter server
frameworks [4–6] are proposed to store, share and update

parameters for solving large scale machine learning problems.
The framework uses synchronous and/or asynchronous data
communication between compute nodes to support parallel
computing of SGD. In the context of Spark, the driver of
a Spark application can be regarded as a specialized pa-
rameter server that updates and distributes parameters in a
synchronized way. However, unlike parameter server frame-
works that are usually implemented on highly efficient MPI,
Spark’s synchronous iterative communication pattern is based
on MapReduce between the driver and workers, which makes
it an inefficient platform for machine learning algorithms using
SGD.

Gradient descent, also known as steepest descent, is one
of the most popular methods in the field of machine learning
since it can minimize error rate by following the fastest direc-
tion. But it is difficult to decide the correct learning rate and
choose a fast convergent algorithm. Robert et al. [7] proposed
four heuristics for achieving faster rates of convergence: (1)
each parameter should have its own learning rate; (2) each
parameter learning rate should be allowed to change in each
iteration; (3) if the derivative of a parameter has the same
direction for consecutive iterations, its learning rate should be
increased, (4) otherwise, the learning rate should be decreased.
There are several implementations [8, 9] that are widely used
by the deep learning community to increase the convergence
rate through adaptive learning, but none of them considers the
root cause of oscillation when the current step overshoots the
optimum.

In this paper, we propose an adaptive fast-turn stochastic
gradient descent algorithm, called FTSGD, which works more
efficiently on the platforms that rely on iterative communica-
tion such as Spark and Hadoop to speed up the convergence
of machine learning algorithms, e.g., linear regression, logistic
regression, and SVM. Our contributions are summarized as
follows:

• We design an asynchronous parallel SGD algorithm with
iterative local search to reuse data partition multiple times
within a single global iteration. By analyzing the deriva-
tives of parameters, our algorithm gives an optimized
number of local iterations.

• We design a new adaptive learning rate algorithm on mo-
mentum that can adjust the learning rate and momentum
coefficients adaptively based on similarities between the
current and previous gradients.

• We use the 68-95-99.7 rule to check whether the param-
eters calculated by all nodes have a normal distribution,
to guard against performance degradation due to skewed
data.

• We terminate local iterations when an oscillation is de-
tected in order to reduce the execution time and avoid
amplification effect.

In our experiments, we demonstrate that FTSGD gains
an improvement of 7 times compared with the algorithms
implemented by MLlib when the input data size is 100 GB.

This paper is organized as follows. Section II gives the
background about gradient descent and the current parallel
implementation in Spark. Then we describe the details of our
design in Section III. Section IV shows experimental results.
A review of related work is presented in Section V. Section
VI gives our conclusions and future work.

II. BACKGROUND

A. Gradient Descent

Gradient descent is an iterative optimization algorithm that
minimizes an error function defined by a set of parameters.
We use the terms weight and parameter interchangeably in this
paper. There are several steps in finding a local minimum of
a function using gradient descent: (1) Initialize weights with
random values. (2) Compute the gradient, which is the first
derivative of the error function err(w), since it is the fastest
decreasing direction for the current weights. (3) Update the
weights with the negative gradients, as shown in Equation 1,
where γ is the learning rate. (4) Repeat steps 2 and 3 until the
error cannot be reduced notably or already reach the maximum
iterations.

Wt =Wt−1 − γ∇err(Wt−1) (1)

B. Stochastic Gradient Descent

However, calculating gradients over the entire training set
is often too expensive, and may have a high probability of
obtaining a partial optimal solution. Moreover, if the entire
dataset is too large to be cached in memory, performance can
degrade significantly. Stochastic gradient descent (SGD), on
the other hand, is a stochastic approximation of the gradient
descent algorithm by using a few training examples or a
minibatch from the training set to update parameters in every
iteration. It avoids the high cost of calculating gradients over
the whole training set, but is sensitive to feature scaling. It can
be denoted as follows.

Wt =Wt−1 − γ
n∑

i=1

∇erri(Wt−1)/n (2)

where n is the number of samples in a minibatch.

C. Parallel Stochastic Gradient Descent

Stochastic gradient descent is one of the most important
optimizers in Spark MLlib. Algorithm 1 shows the process
of calculating stochastic gradient descent in Spark MLlib. At
first, it broadcasts the initial weights or the weights calculated
by the previous iteration to every compute node, which may
host one or more partitions of datasets. Then the input RDD
is sampled according to the minibatch rate. After that, it
calculates gradient for each sample in every partition, and
aggregates all gradients by the driver using a multi-pass tree-
like reduce (which is called TreeAggregate). At the end of
each iteration, the weights are updated according to Equation
2. This process terminates when all iterations are executed or
when it has converged.

There are three major problems of SGD in Spark: (1) the
data uploaded are only used once in each iteration. If the
memory reserved for this application is not large enough to
cache all data, it must read data from disk or even worse from
other compute nodes. (2) treeAggregate operation reduces all
gradients by multiple stages, which is inefficient. (3) The
original learning rate updating algorithm is too simple, which
makes convergence too slow.

Algorithm 1 Parallel SGD of Original MLlib
Input: input rdd, init weights, num iterations,

minibatch rate
Output: weights

1: weights = init weights
2: for step = 1 to num iterations do
3: broadcast(weights)
4: for all partitions in input rdd parallel do
5: samples = partition.sample(minibatch rate)
6: for each sample in samples do
7: grad = computeGradient(weights, sample)
8: end for
9: end for

10: grads = tree aggregate gradients from all compute
nodes

11: weights = updateWeights(weights, grads)
12: end for
13: return weights

III. DESIGN AND IMPLEMENTATION

To overcome the problems mentioned in Section II, we
design a novel algorithm that has inner iterations within
each global iteration. An inner iteration updates local weights
multiple times without sending back the gradients before the
accumulated weights are reduced on the driver at the end of
each global iteration. This approach dramatically reduces the
amount of communication and avoid aggregating gradients in
multiple stages.

Fig. 1. Gradient Descent with Iterative Local Search.

Algorithm 2 Parallel SGD with Iterated Local Search
Input: input rdd, init weights, global iters,

minibatch rate, local iters
Output: g ws

1: g ws = init weights
2: for g = 1 to global iters do
3: broadcast(g ws)
4: for all partitions in input rdd parallel do
5: l ws = g ws
6: for l = 1 to local iters do
7: samples = partition.sample(minibatch rate)
8: l ws = computeWeights(l ws, samples)
9: end for

10: end for
11: weights = aggregate l ws from all compute nodes
12: // Test if weights satisfy 68-95-99.7 rule
13: if (g == 1 && !satisfyGaussianDist(weights))

then
14: local iters = 1
15: end if
16: g ws = averageWeights(weights)
17: end for
18: return g ws

A. Parallel SGD with iterative local search

Algorithm 2 shows the parallel SGD algorithm with local
iterations. Within each global iteration, we asynchronously
update local weights multiple times within local iterations
before updating the global weights using the new average
weights at the end of each global iteration on the driver. In
each local iteration, the calculated weights are used to compute
subsequent weights using the same partition. Let local iters
denote the number of local iterations, which is determined
by the features of input data, computational complexity of
algorithm, and capability of cluster. Roughly, we notice that
the local iters is inversely proportional to the standard devia-
tion of the weights calculated from all computers to guarantee
convergence. local iters is a hyper-parameter in our current
system. It will be our future work to investigate how to find
the optimal local iters adaptively.

In the first global iteration, we check whether the weights
calculated by all partitions fit a Gaussian distribution. If
so, our optimizations are applied; otherwise, we fallback to
the original algorithm in Spark’s MLlib due to having too
significant difference among the calculated weights on all
partitions. Note that in Algorithm 2, weights are aggregated by
the driver. However, in Algorithm 1, gradients are aggregated
by the driver. Such an optimization is based on Spark’s
intrinsic features. In the original MLlib implementation shown
in Algorithm 1, a partition is sampled once and each sample
generates a vector of gradients. All these gradients within
one global iteration are reduced to the driver based on tree-
aggregation. In our Algorithm 2, all gradients are applied to the
local weights, and only the weights are transfered at the end of
each global iteration. This approach dramatically reduces the
data to be transferred. In addition, tree-aggregation consists of
multiple stages, which may be efficient for large-scale Spark
systems, but could degrade the performance of small-scale
systems.

Because of the limit of pages, we have no space to give the
proof of convergence which depends on the distribution of the
weights.

B. 68-95-99.7 Rule

As mentioned above, we need to know the distribution of
our data to determine whether to employ aggressive local
iterative search to speedup. However, to assert the input
data as normal is more complex and time consuming, like
Kolmogorov-Smirnov test (K-S test) [10]. From the analysis
of the convergence, we found that 99.7% of vectors of weights
calculated by all compute nodes lie within 3σ, and that
σ is small enough. So we use the 68-95-99.7 rule instead
of hypothesis testing to check whether the sets of weights
collected from all compute nodes have a normal distribution.

similarity =
A •B

||A|| × ||B|| (3)

This empirical rule is the facts that 68.27%, 95.45% and
99.73% of the values in a normal distribution fall within one,
two and three standard deviations of the mean, respectively.
Since one set of weights is a vector, to simplify the process,
we employ cosine similarity [11] between each set of weights
and the mean weights to check whether the weights satisfy the
68-95-99.7 rule. Equation 3 shows the measure of similarity
between two non-zero vectors.

C. Parallel SGD with Adaptive Momentum

Spark MLlib, by default, uses a simple adaptive updater that
adjusts the learning rate by the inverse of the square root of the
number of iterations executed, as shown in Equation 4. This
algorithm does not include any heuristics proposed by [7]. It
only reduces the step size gradually to ensure the convergence
for non-convex optimization problems.

wt = wt−1 +
current step√
num steps

wt−1 (4)

As one of the heuristics indicated by [7], Momentum adds
a fraction of the previous updating vector to the current
gradients, as shown in Equation 5. If the previous updating
vector is in the same direction with the current gradient, it
increases the step size towards the target; otherwise the step
size is reduced. But this algorithm causes an overshooting
problem, i.e., the search step strides over the minima but the
next search direction does not turn round since the momentum
term is too large.

vt = αvt−1 + β∇err(w)
wt = wt−1 − vt

(5)

Swanston [7] proposes a simple adaptive momentum (SAM)
algorithm that still uses constant terms for both learning rate
and momentum, but adds a coefficient to adaptively adjust
the momentum according to the similarities between the last
gradient and the current gradient. If two adjacent gradients
have similar directions (cos(θ) > 0), it increases the influence
of the previous iteration; otherwise, it reduces the influence
and changes direction quickly. But this algorithm neither
analyzes the root cause of the oscillation nor gives a guideline
for adjusting the learning rate.

Algorithm 3 shows the steps of calculating SGD in parallel
with adaptive momentum. At the beginning of each global
iteration, we broadcast the current average weights g ws to
all compute nodes. Then for each partition, we calculate a
vector of weights by local iterations. In each local iteration,
we sample the partition randomly with the minibatch rate.
Then we calculate the gradients for each sample with the
present local weights. After that, we check cosine similarity
between the previous gradient and the current gradient. If the
cosine value is less than 0, which means the current direction
is totally different from the previous direction, there must
be overshooting for some weights. There are two potential
reasons causing this phenomenon: (1) the momentum term is
too large, so even if the learning rate is small, the current step
still strides over the target; (2) the learning rate is too large,
and the weights cross over and are on the other side. Between
the two causes, we must decide which is the dominating factor
for overshooting. Firstly, we adjust the momentum coefficient
α to 0 to check whether the momentum is the root cause. Then
we update the local weights, and start the next local iteration. If
there is no oscillation in the next iteration, then it indicates that
momentum being too large caused this oscillation. Otherwise,
the oscillation must be caused by the learning rate being too
fast.

We do not adjust the learning rate between local iterations,
but simply terminate local iterations if oscillation is detected.
Here we use vibrate last to store whether or not there is
an oscillation in the previous iteration. To summarize, if
oscillation occurs, we first adjust the momentum coefficient
to 0; and if two consecutive oscillations occur, we reduce the
learning rate by half.

vt = α(1 + cos(θ))vt−1 + (β/2)∇err(w)
wt = wt−1 − vt

(6)

Algorithm 3 Parallel SGD with Adaptive Momentum
Input: input rdd, l ws, old grad, local iters, α, β,

minibatch rate
Output: g ws

1: g ws = init weights;
2: for g = 1 to global iters do
3: broadcast(g ws)
4: for all parts in input rdd parallel do
5: oscillation = 0
6: vibrate last = false
7: for l = 1 to local iters do
8: samples = part.sample(minibatch rate)
9: new grad = computeGrad(l ws, samples);

10: similarity = cosθ(old grad, new grad)
11: if (similarity < 0) then
12: if (vibrate last) then
13: oscillation = 1
14: break
15: else
16: vibrate last = true
17: l ws = momentum(0, β, old grad, new grad)
18: end if
19: else
20: vibrate last = false
21: l ws = momentum(α, β, old grad, new grad)
22: end if
23: end for
24: end for
25: num oscils = aggregate oscillation from all nodes
26: if (num oscils/num parts >= 0.5) then
27: β = β/2.0
28: end if
29: weights = aggregate l ws from all compute nodes
30: if (g == 1 && !satisfyGaussianDist(weights))

then
31: local iters = 1
32: end if
33: g ws = averageWeights(weights)
34: end for
35: return g ws

IV. EXPERIMENTS

A. Experimental Setup

Our experiments were performed on a cluster consisting of
1 NameNode and 6 DataNodes. Each node has an Intel(R)
Xeon(R) CPU E5-2620 v3 with 6 cores, and 32 GB memory.
Our Spark cluster is based on CentOS Linux Server 7, JDK
version 1.8, Apache Hadoop version 2.7 and Apache Spark
2.1. We use a representative gradient descent method, Linear
Regression, as benchmark to test the performance of FTSGD.

Fig. 2. Accuracy of different numbers of local iterations in every global
iteration.

B. Experiments without Adaptive Learning Rate

We first compare the performance between the original SGD
in MLlib and Algorithm 2 without considering the effect of
the optimization of adaptive learning rate.

Figure 2 shows the accuracy of different number of local
iterations, which is evaluated by mean squared error (MSE).
In this experiment, the total input data size is 50 GB, which
are generated by LinearDataGenerator class in MLlib
package. Each sample has 100 features, and the scaling factor ε
is 0.1. The initial learning rate is 1.0. When the local iteration
is 1, our algorithm is the same as MLlib’s SGD. When the
number of local iterations is 6, we find that the accuracy is
the best. It only use two global iterations to converge MSE
to a very small value (1.029), which is even better than the
accuracy of MLlib’s SGD with 15 iterations.

Figure 3 indicates the performance of different number
of local iterations with the same configuration in Figure 2.
Although each global iteration in our algorithm is slower than
MLlib’s SGD, the performance of our algorithm is still better.
This is because the convergence of our algorithm is fast, and
we avoid the communication time of tree aggregation. When
the number of local iterations is 5, the performance of our
algorithm is best, which is 6.5 times faster than MLlib SGD
with the same MSE. Although FTSGD with 6 local iterations
is more accurate than with 5 iterations using the same global
iteration, the longer execution time for each global iteration
undermines the performance improvement.

Figure 4 demonstrates the input datasets with different ε
scaling factor. The ε scaling factor is used to add white Gaus-
sian noise to a full linear dataset. Figure 4(b) is the dataset with
scaling factor 0.2, which is wider than the dataset in Figure
4(a) with scaling factor 0.1. Figure 5 shows the convergence
with datasets of different scaling factor. We find that even with
a large scaling factor 0.5, our algorithm with 3 local iterations
is still convergent. This means if the distribution of data is an
uniform normal distribution, our algorithm can converge, even
the standard deviation is a little bigger. It is reasonable that
the larger scaling factor dataset has larger MSE.

Fig. 3. Performance of different numbers of local iterations.

(a) Scaling factor: 0.1 (b) Scaling factor: 0.2

Fig. 4. Data distributions with different scaling factor.

Fig. 5. Accuracy of different scaling factor

C. Experiments with Adaptive Learning Rate

In this experiment part, we discuss the performance of our
algorithm with adaptive learning rate (i.e., Algorithm 3 or
FTSGD).

Figure 6 compares the performance between Algorithm 2
and Algorithm 3. We find that when the number of global
iterations is 5, the accuracy of FTSGD is better than Algorithm
2 that uses the learning rate updating algorithm in Equation
6. Another is that the MSE difference between two adjacent
iterations is very small after 10 global iterations (less than
0.00001), which means that FTSGD is convergent when the
global iteration is 10, and FTSGD can terminate earlier than
Algorithm 2 without learning rate optimization.

Figure 7 shows the performance of FTSGD with different
input data sizes. We vary the input data size from 25 GB to 100
GB. When the input data size is 25 GB and 50 GB, FTSGD
can outperform the original SGD by about 4.3 times and 3.6

Fig. 6. Performance with and without adaptive learning rate.

Fig. 7. Performance of different input data sizes.

times, respectively. When the input data size is larger than 50
GB, the cost increases exponentially. This is due to data size
exceeding memory size, which forces disk I/Os because data
cannot be cached in memory. There are three kinds of tasks:
(1) process local, where the data are cached in local memory;
(2) node local, where the data are stored in local disk; (3) rack
local, where the data must be fetched from a remote node in
the same rack. We have 100 GB memory in our cluster, and
50% is reserved for OS and Spark system. If input is larger
than 50 GB, Spark has to read data from disk (node local)
or remotely (rack local). It is very common that input data
are too large to be cached entirely into memory. That is why
we reuse the data loaded in memory to do an asynchronous
updating to save execution time. Figure 7 demonstrates that
when the input data size is 100 GB, FTSGD only spends 198
seconds to converge and gives a better accuracy compared to
MLlib’s SGD that takes 1401 seconds.

Figure 8 shows the performance of FTSGD with the initial
learning rate varied from 0.01 to 1.0. We notice that FTSGD
with initial learning rate 1.0 gains more performance improve-
ment. From Figure 8, the initial learning rate cannot be too
small since a small rate may cause too many steps towards the
optimal target. However, the initial learning rate cannot be too
large since a large value will cause overshooting problem, even
non-convergence. Because FTSGD can reduce the learning
rate quickly if there exists oscillation, we can set the initial
learning rate slightly larger, which also can detect more area

Fig. 8. Performance of different initial learning rate

Fig. 9. Performance of different minibatch rate.

to avoid stepping into local optimum.
Figure 9 demonstrates the effect of the minibatch rate. It

is obvious that the larger the minibatch rate is, the longer it
takes for one global iteration. For 50 GB input data size, it
takes 22 seconds to calculate one global iteration when setting
minibatch 0.2, but 42 seconds for minibatch 0.8, which almost
doubles cost. But the accuracy is similar since the input data
is very uniform.

In order to test the performance when the input data is
non-uniform, we generate a data set which contains two data
distributions, as shown in Figure 10. We vary the ratio of the
number of samples in two datasets, and the results are shown
in Table I for 15 iterations. In Table I, we calculate mean
and standard deviation, and check if the parameters satisfy
the 68-95-99.7 rule. We compare the performance of MLlib’s
SGD and FTSGD with 5 local iterations. The results shows
that if the data is not a normal distribution, only the dataset
satisfying the 68-95-99.7 rule can outperform the original
SGD algorithm in MLlib. Even the data size ratio between
two datasets is large such as 20:1, MLlib’s SGD still shows
better performance than FTSGD if the 68-95-99.7 rule is
not satisfied. However, when the data size ratio between two
datasets reaches 100:0.3, the 68-95-99.7 rule is satisfied and
our algorithm finally outperforms MLlib’s SGD.

D. Experiments with Different Size of Partitions

In this experiment, we measure the performance of input
datasets with different number of partitions. We vary the
number of partitions of 50 GB data from 500 to 2000, then the

TABLE I
PERFORMANCE OF TWO DATA SET WITH DIFFERENT RATIOS

1:1 2:1 3:1 4:1 5:1 10:1 20:1 100:0.3
Mean 0 0.004329004 0.00654233 0.007792208 0.008658009 0.010625738 0.011750155 0.012909324

STDEV 0.012987013 0.012244273 0.011218753 0.01038961 0.009679948 0.007467007 0.005531399 0.001418401
68-95-99.7 Rule No No No No No No No yes

MSE (MLlib) 1.763563134 1.593385182 1.507113571 1.451839211 1.414957992 1.344010868 1.293488292 1.258641468
MSE (5 Local Iters) 1.829216647 1.615403542 1.518092382 1.458397027 1.418999539 1.345111833 1.293792029 1.258606695

Fig. 10. Two datasets with different distributions.

Fig. 11. Performance of different number of partitions with the same data
size.

partition size is changed from 120 MB to 30 MB. As shown
by Figure 11, we notice that the larger the partition size is,
the better the performance is, because the large partition size
can reduce the total number of tasks, and then decrease the
overhead of task setup and cleanup. The maximum partition
size is bounded by the block size in HDFS (128 MB in our
cluster).

V. RELATED WORK

Designing asynchronous parallel stochastic gradient descent
algorithms with or without lock is an active area in recent
years. Liu et al. [12] introduce an asynchronous parallel
stochastic descent algorithm that achieves a linear convergence
rate and almost linear speedup on a multicore system. But
it requires the cost function that satisfies an essential strong
convexity property. AsySVRG [13] is an asynchronous SGD
variant (SVRG) that adopts a lock-free strategy and convergent

with a linear convergence rate. But this algorithm is only
designed for multicore systems, which has some limitations
to deploy on clusters of multiple machines. HOGWILD!
[14] implements SGD in parallel that allows processors to
overwrite each other’s work without locking, but the gradient
updates only modify small parts of the weights to avoid
conflicts. Zinkevich et al. [15] present a novel data-parallel
stochastic gradient descent algorithm to reduce I/O overhead
but must place every sample on every machine. However,
these algorithms cannot be applied to Spark because Spark
collects parameters from all compute nodes using low-frequent
synchronous methods like reduce and aggregate rather than
the high-frequent pushing and pulling mechanism used by the
aforementioned algorithms.

A few approaches have been proposed to improve the
performance of calculating SGD based on model parallelism
and data parallelism. Zhang et al. [16] design an asynchronous
SGD system on multiple GPUs working together to calculate
gradients and update the global model parameters. However,
when extending it to a multi-server multi-GPU architecture,
the performance becomes poor due to the network bottleneck.
DistBelief [4] is a software framework that introduces two
algorithms, Downpour SGD and Sandblaster, for large-scale
distributed training using tens of thousands of CPU cores. GPU
A-SGD [17] is a new system that makes use of both model
parallelism and data parallelism which is similar to DistBelief
[4] but with GPUs to speed up training of convolutional
neural networks. However, none of these system is compatible
with Spark framework because all of them need intensive
communications through a centralized parameter server, which
is hard to be implemented efficiently on Spark.

To improve the training efficiency of gradient descent,
there are several projects to develop adaptive learning rate
techniques. Jacobs [7] analyzes why the steepest descent is
slow to converge and propose four heuristics to speed up
the convergence. Simple adaptive momentum (SAM) [18] dy-
namically adjusts the momentum-coefficient by the similarities
between the current weights and previous weights to reduce
the negative effect of overshooting the target. [19] introduces
a fast convergent algorithm based on Fletcher-Reeves update
by adaptively changing the gradient search direction. Unfortu-
nately, none of them is implemented distributively on a cluster,
and have no guarantee of the convergence.

There are also some papers to discuss the optimizations
based on platforms like Hadoop and Spark or some specific
hardwares [20, 21]. Zhang et al. [22] employ a caching

technique to avoid disk I/O for short jobs. HogWild++ [23]
is a novel decentralized asynchronous SGD algorithm which
replaces the global model vector with a set of local model
vectors on top of multi-socket NUMA systems. [24] and [25]
discuss how to build a computing framework to support Large-
scale applications like Logistic Regression and Linear Support
Vector Machines.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we design an asynchronous parallel SGD
algorithm with iterative local search, called FTSGD, by
reusing data partition multiple times within a single global
iteration. We also design a variant of momentum algorithm
to find the optimal step size on every iteration, which uses
a new adaptive rule to decrease the step size whenever the
neighboring gradients have been shown in different directions.
The experiments show that our algorithm is more efficient and
reaches convergence faster than the MLlib library.

For the future work, we plan to compare the performance
of FTSGD with some state-of-the-art SGD optimization algo-
rithms like Adadelta and Adam [8, 9]. We also plan to do more
experiments on other benchmarks such as Logistic Regression
and Linear SVM.

VII. ACKNOWLEDGEMENT

This work was supported in part by NSF-CAREER-1622292
and NSF-1741431.

REFERENCES

[1] H. Zhang, L. Wang, and H. Huang. Smarth: Enabling
multi-pipeline data transfer in hdfs. In ICPP, 2014.

[2] http://hadoop.apache.org/. Apache Hadoop website.
[3] https://spark.apache.org/. Apache Spark website.
[4] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,

Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Y. Ng. Large scale distributed deep
networks. In NIPS, 2012.

[5] M. Li, D. G. Andersen, J. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B. Su. Scaling
distributed machine learning with the parameter server.
In OSDI, 2014.

[6] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen,
and A. Smola. Parameter server for distributed machine
learning. In NIPS, 2013.

[7] R. A. Jacobs. Increased rates of convergence through
learning rate adaptation. In Neural Networks:Volume 1,
Issue 4, 1988.

[8] M. D. Zeiler. Adadelta: An adaptive learning rate
method. In arXiv:1212.5701, 2012.

[9] D. P. Kingma and J. Ba. Adam: a method for stochastic
optimization. In 3rd International Conference for Learn-
ing Representations, 2015.

[10] Wikipedia for kolmogorov-smirnov test.
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov test.

[11] Wikipedia website for cosine similarity.
https://en.wikipedia.org/wiki/Cosine similarity.

[12] J. Liu, S. J. Wright, C. R, V. Bittorf, and S. Sridhar.
An asynchronous parallel stochastic coordinate descent
algorithm. In Machine Learning Research 16, 1988.

[13] S. Zhao and W. Li. Fast asynchronous parallel stochastic
gradient descent: A lock-free approach with convergence
guarantee. In AAAI-16, 2016.

[14] F. Niu, B. Recht, C. Re, and S. Wright. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent.
In NIPS, 2011.

[15] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li.
Parallelized stochastic gradient descent. In NIPS, 2010.

[16] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu. Asyn-
chronous stochastic gradient descent for dnn training. In
ICASSP, 2013.

[17] T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang. Gpu
asynchronous stochastic gradient descent to speed up
neural network training. In CVPR, 2013.

[18] D. J. Swanston, J. M. Bishop, and R. J. Mitchell. Simple
adaptive momentum: new algorithm for training multi-
layer perceptrons. In Electronics Letters, 1994.

[19] N. M. Nawi, R. S. Ransing, and M. R. Ransing. An
improved conjugate gradient based learning algorithm
for back propagation neural networks. In International
Journal of Computational Intelligence 4, 2008.

[20] P. Guo, H. Huang, Q. Chen, L. Wang, E. Lee, and
P. Chen. A model-driven partitioning and auto-tuning
integrated framework for sparse matrix-vector multipli-
cation on gpus. In Proceedings of the 2011 TeraGrid
Conference: Extreme Digital Discovery. ACM, 2011.

[21] H. Huang, J. Dennis, L. Wang, and P. Chen. A scalable
parallel lsqr algorithm for solving large-scale linear sys-
tem for tomographic problems: a case study in seismic
tomography. Procedia Computer Science, 18, 2013.

[22] H. Zhang, H. Huang, and L. Wang. Mrapid: An efficient
short job optimizer on hadoop. In IPDPS, 2017.

[23] H. Zhang, C. Hsieh, and V. Akella. Hogwild++: A new
mechanism for decentralized asynchronous stochastic
gradient descent. In ICDM, 2016.

[24] C. Lin, C. Tsai, C. Lee, and C. Lin. Large-scale
logistic regression and linear support vector machines
using spark. In IEEE Big Data, 2014.

[25] Z. Liu, H. Zhang, , and L. Wang. Hierarchical spark:
A multi-cluster big data computing framework. In IEEE
Cloud, 2017.

[26] H. Zhang, Z. Sun, Z. Liu, C. Xu, and L. Wang. Dart:
A geographic information system on hadoop. In IEEE:
Cloud, 2015.

[27] Wikipedia for the 68-95-99.7 rule.
https://en.wikipedia.org/wiki/68-95-99.7 rule.

[28] S. Gupta, W. Zhang, and F. Wang. Model accuracy
and runtime tradeoff in distributed deep learning: A
systematic study. In ICDM, 2016.

[29] Z. Huo and H. Huang. Asynchronous mini-batch gradient
descent with variance reduction for non-convex optimiza-
tion. In AAAI, 2017.

