
Detecting Thread-Safety Violations in Hybrid OpenMP/MPI Programs

Hongyi Ma, Liqiang Wang, and Krishanthan Krishnamoorthy

Department of Computer Science, University of Wyoming. {hma3, lwang7, kkrishna}@uwyo.edu

Abstract—Hybrid MPI/OpenMP programming is be-
coming an increasingly popular parallel programming
model on High Performance Computing (HPC), where
multiple OpenMP threads could execute within a single
MPI process. Such a hybrid model is restricted by
several rules stated in the MPI standard for cor-
rectness. However, it is very tricky to ensure hy-
brid MPI/OpenMP programs to be thread-safe. There
are several concurrency problems happen in hybrid
MPI/OpenMP model, such as data race on source and
tag information inside of MPI calls and wrong way
to synchronize MPI calls using threads. Concurrency
errors in MPI/OpenMP model are very difficult to
debug due to the complex mixed semantics by MPI
routines and OpenMP directives. So developing an
useful and efficient tool is necessary to help users
debug errors in the hybrid MPI/OpenMP model. In
this paper, we propose an approach by integrating
static and dynamic analyses to check the potential
problems of hybrid MPI/OpenMP programs in order
to ensure correctness. In order to obtain thread level
information, we instrument monitored variables in
the MPI calls in order to obtain both thread and
process runtime information. In our approach, the
static analysis would help to reduce unnecessary code
instrumentation during runtime detection and create
the variable checklist for thread-safety checking. In
dynamic analysis, both happen-before and lockset-
based classical dynamic algorithms are used to check
concurrency problems. Static analysis firstly find the
monitored variables and MPI calls using control flow
graph, then dynamic analysis would take code in-
strumentation for verifying concurrent races in these
monitored variables, at last, our tool would merge the
concurrency reports from dynamic analysis analysis
to check whether there are violations to thread-safety
specifications. Our experimental evaluation over real-
world applications shows that our approach is accurate
and efficient. The observed average overhead is around
30% using our test experiment setup.

Keywords-Hybrid MPI/OpenMP, Concurrency, Vio-
lations, Thread-safety

I. INTRODUCTION

MPI/OpenMP are the two most popular pro-
gramming models in High-Performance Computing
(HPC). MPI is based on a distributed memory model
and supports large-scale processes across compute
nodes. OpenMP is based on a shared memory model

and usually fork multiple threads within a process. It
is not easy to write a correct program using MPI and
OpenMP due to the tricky semantics of MPI routines
and OpenMP directives.

There are two common problems for MPI pro-
grams: message race and deadlock. In MPI pro-
grams, the process communicate with each other
through message-passing and those messages may
arrive at a process in a non-deterministic order
by variations in process scheduling and network
latency. If two or more messages are sent over
communication channels on which a receive listens,
and they simultaneously in transit without guaran-
teeing the order of their arrivals, then a message
race [14] occurs in the receive event and causes
nondeterministic execution of the program. The un-
expected message race is difficult for a developer
to debug or reproduce without exploring the full
program state space. Although most message races
are benign without breaking runtime execution, some
may lead to incorrect computation and violation of
user defined assertions. Deadlock is a more common
problem for MPI programs, which is often caused by
improper usage of incompatibility of MPI semantics.
But in this paper, we only care about how to detect
these thread-safety issues instead of pure MPI errors,
since some existing work for MPI errors already
presented these issues.

The one of current major techniques to detect mes-
sage races is using dynamic model checking method
to replay all different interleavings of MPI applica-
tion, then check whether there is non-deterministic
order for messages receiving. For deadlock, the dy-
namic graph-based method is used to detect whether
there is a state circle inside of execution.

The OpenMP Specifications 3.0[17] briefly re-
views the memory consistency model in OpenMP,
which is supported by the commodity hardware have
been developed in the past few years. Hoeflinger et
al [8] presents a thorough discussion of the OpenMP
model. Sarita Adve et al [3] covers both the sequen-
tial consistency model and weak memory model in
details. These model structure make the concurrency

error happening in OpenMP. A race condition occurs
when two or more concurrent threads perform con-
flicting accesses (i.e., accesses to the same shared
variable and at least one access is a write) and
the threads use no explicit mechanism to prevent
the accesses from being simultaneous.The major
techniques to check OpenMP errors include using
happen-before dynamic analysis algorithm [16] to
analyze runtime execution order, or using symbolic
execution [13] to check whether there is a execution
trace can have nondeterministic results, like updating
with different values by at least two threads. Re-
cently, concolic execution is used to simulate inter-
leaving execution order of multithreaded programs
[4].

MPI-2 supports forking multiple threads in an
MPI process, which enables a hybrid MPI/OpenMP
programming model [6]. However, implementing
thread-safety in MPI is not easy because enforcing
proper synchronization among threads and processes
is very tricky. For example, by default, a hybrid
MPI/OpenMP program allows only the master thread
to execute within one process if there is no explicit
multi-thread specification in MPI_Init() (the cur-
rent one should MPI_Init_Thread(). In Figure
1, only MPI_Send or MPI_Recv is executed, but
not both. It is difficult to check the error because
there is no compilation errors or warning before run-
ning. Even there is no problem in the specification of
threads in MPI process, but errors may still arise due
to improper MPI communication on threads level.
For example, Figure 2 shows that two processes
are running with two threads in each process. A
deadlock may happen nondeterministically in some
executions (but not always). Such a scenario violates
the thread-safety specification, which requires that
all arrival messages within an MPI process should be
differentiated by their tags. Messages with different
tags will be handled by different threads.In the
example of Figure 2, some MPI_Recv could be
blocked because the corresponding thread does not
obtain an arrival message, as all arrival messages
are not differentiated because of the same tag value.
A common solution is to use thread ID as tag to
distinguish these messages.

In this paper, we propose a hybrid approach to
check thread-safety violations for MPI/OpenMP pro-
grams that utilizes the results from static analysis
to guide the dynamic analysis on error detection.
Specifically, our paper makes the following contri-
butions.

• Our approach uses a static analysis that

MPI_Init();
omp_set_num_threads(2);
#pragma omp parallel
{
#pragma omp sections
{

#pragma omp section
if (rank == 0)

MPI_Send(rank1);
#pragma omp section
if (rank ==0)

MPI_Recv(rank1);
}

}

Figure 1. A Hybrid MPI/OpenMP case study 1

MPI_Init_thread(0,0,MPI_THREAD_MULTIPLE, &
provided);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
int tag=0;
omp_set_num_threads(2);

#pragma omp parallel for private(i)
for(j = 0; j < 2; j++) {

if(rank==0) {
MPI_Send(&a, 1, MPI_INT, 1, tag,

MPI_COMM_WORLD);
MPI_Recv(&a, 1, MPI_INT, 1, tag,

MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

} // rank == 0
if(rank==1) {

MPI_Recv(&a, 1, MPI_INT, 0, tag,
MPI_COMM_WORLD,MPI_STATUS_IGNORE
);

MPI_Send(&a, 1, MPI_INT, 0, tag,
MPI_COMM_WORLD);

} // rank == 1
}

Figure 2. Hybrid MPI/OpenMP case study 2.

can statically detect potential unsafe hybrid
MPI/OpenMP programming styles and moni-
tored and can reduce some error-free region
checking for dynamic runtime analysis.

• Our approach uses a static analysis that can
report and statistically provide all possible code
locations that are involved in errors in Hybrid
OpenMP/MPI programs.

• This approach requires little human intervention
or annotation, imposes lightweight performance
overhead and produces more precise error re-
port than the purely static and dynamic data
race detection approaches for MPI/OpenMP.

In this paper, we summarize all concurrency errors

in hybrid MPI/OpenMP programs and categorize
them into different scenarios. We propose an ap-
proach by integrate static and dynamic program
analysis to check these concurrency errors. Specifi-
cally, we instrument monitored variables within MPI
runtime libraries to specify write operations for these
shared variable. Our approach first utilizes static
analysis to generate the control flow graph of the
source code, and to retrieve the arguments in MPI
calls inside of OpenMP parallel region, since thread-
safety violations only happen in hybrid program-
ming region of source code. We set up monitored
variable using our instrumented function to initialize
monitored variables for dynamic analysis. Second,
linking to our instrumented MPI wrapper during
the runtime execution, after getting result from dy-
namic concurrency analysis, our tool would check
monitored variables with the other thread-safety ar-
gument list to see whether they have violations in
hybrid MPI/OpenMP program. In order to show
our accuracy and efficiency, we artificially modified
several testing benchmarks from NPB-MZ hybrid
MPI/OpenMP benchmark for testing, also we run
Intel Thread Checker and Marmot for comparison
with our approach.

We build our test bed in Amazon EC2 cloud
platform [1] with 32 instance, each instance has
4 cores. Since we only monitor the variables for
issues in hybrid MPI/OpenMP,lots of variables in
computation are not covered by detection during
this study. In our approach overhead is very low
and runtime error detection is more efficient than
monitoring all writing and reading operations in
program. The highest overhead we observed is 45%
using 64 processes. Since we tested our approach
using NAS parallel benchmark [15],these well-tested
benchmarks do not have thread-safety issues men-
tioned in this paper.So we artifically implemented
several tricky errors inside of these benchmarks for
the accuracy testing in our approach. Based on the
experiments observation, our approach would detect
all the violations we constructed in the applica-
tion with less overhead, which is 50% less when
compared with the Intel Thread Checker [18] and
Marmot[6].

Our paper is organized as follows. Section II
provides existing work for detecting errors in
MPI/OpenMP. Section III provides the thread-safety
specifications in MPI and constraints for these spec-
ifications in our approach. Section IV describes the
workflow of our approach, and details the imple-
mentation of the static and dynamic analyses to

check traces for thread-safety. Section V presents our
experimental evaluation over a set of benchmarks
and real world applications. Section VI concludes
our results and provides directions for future work.

II. RELATED WORKS AND BACKGROUND

In recent years, there are several existing tools
developed for the error detections in both of MPI
and OpenMP programs. But to the best of our
knowledge, there are no tools to ensure thread-safety
in hybrid MPI/OpenMP programs which can report
violations and locate the issues in programs.

In these existing tools, both static and dynamic
methods are used to check parallel programs. When
it comes to static program analysis approaches, such
as model checking and symbolic execution, often
suffer state explosion problem due to checking com-
binatorial number of schedules or reachable states.
Like the MPI-SPIN [22], it utilizes model checking
and symbolic execution method to detect deadlock.
If a property of execution schedule is violated by
exploring reachable states of the model, then an
explicit violation example is returned to the user with
execution traces.

When it comes to dynamic analysis, we can
mention DAMPI [5], Marmot[6], Umpire[23], MPI-
CHECK [20], and MUST [7] . Umpire, Marmot
and MUST rely on a dynamic analysis of MPI
calls instrumented through the MPI profiling inter-
face (PMPI). Like, Marmot and MPI-CHECK, they
utilize a timeout approach to detect deadlock, and
MUST detects deadlock with a scheduling checking.
The timeout approach in above tools sometimes
would to produce false positives. When it comes
to DAMPI, it uses a scalable algorithm based on
Lamport Clocks (vector clocks focused on call order)
to capture possible non deterministic matches. For
each MPI collective operation, participating pro-
cesses update their clock, based on operation se-
mantics. Umpire, which relies on dependency graphs
with additional edges for collective operations to
detect deadlocks. In Marmot, an additional MPI
process performs a global analysis of function calls
and communication patterns. When it comes to MPI-
CHECK [20], it instruments the source code at
compile time adding extra arguments to MPI calls
and it allows collective verification for the full MPI
standard. For Umpire, it monitors the MPI operations
of an application by interposing itself between the
application and the MPI runtime system using the
MPI profiling, which increases the overhead in the
communication between processes.

Several research works have been proposed to ad-
dress the error detection issues in OpenMP program.
One of the earliest work is the Intel Thread checker
[2] which rewrites the program binary code with
additional intercepting instructions to monitor the
program serial execution and infer possible parallel
execution events of the program. However, it lacks
specific knowledge about the OpenMP program and
is unable to consider the happens-before relation-
ship when checking for the data race in OpenMP
programs.Young-Joo Kim et al [10] designed a prac-
tical tool utilizes the on-the-fly dynamic monitoring
to detect the data races in OpenMP programs. Mun-
Hye Kang et al [9] presents a new tool that focuses
on the detection of first data races which are conflict-
ing accesses with no explicit happen-before order in
OpenMP programs. The tool first executes the in-
strumented program in order to obtain the conflicting
accesses. Later, it refines the conflicting accesses that
are involved in the first data races, by rerunning the
program with happened-before analysis. In this paper
we show that, our approach is different from other
tools. We combine the static analysis results in order
to assist on the fly monitoring, and our experiments
reveal that the approach is scalable and efficient.

After static and dynamic analysis have been com-
bined for multi-threaded programs, Lee et la [11]
presents a similar two-phase static/dynamic inter-
procedural and inter-thread escape analysis. Our
previous approach[13] utilized symbolic execution
order for simulating the OpenMP multi-threaded
runtime behaviors, but this approach has to confront
interleaving exploration issues when many threads
are encoded in SMT solver.

Our approach performs a static analysis followed
by more accurate and faster online dynamic analysis
which integrates the information from static analysis.
Our tool combines the static analysis for reducing the
overhead and providing the check variables for dy-
namic analysis. In order to improve dynamic analysis
accuracy, and using static analysis to retrieve runtime
hybrid MPI/OpenMP information without modifica-
tion semantics on source code level. Then we utilize
classical lockset analysis and happen-before analysis
to check the concurrency of monitored variables,
after merging these concurrency reports into thread-
safety specification argument list, violations report
would be ready for generation in our tool.

III. THREAD-SAFETY IN THE HYBRID
MPI/OPENMP PROGRAMMING

The MPI standard allows using multiple threads
within an MPI process, which is restricted by
several rules stated in the MPI standard. This
was rened in the MPI-2 standard by introduc-
ing thread support. In order to support threads,
MPI should be initialized using the following
way: (1) MPI_THREAD_SINGLE indicates that
only one thread is used in MPI process; (2)
MPI_THREAD_FUNNELED means that multiple
threads can exist, but only the main thread can
call MPI routines; MPI_THREAD_SERILIZED al-
lows multiple threads, but only one thread can call
an MPI routine at a time in the current process;
(4) MPI_THREAD_MULTIPLE allows that multiple
threads call MPI routines without restriction. The
thread-safety of hybrid MPI/OpenMP programs is
vital, otherwise the performance of normal thread
behavior can show incorrect.

The correct hybrid MPI/OpenMP application
should specify a desired thread level and passes it
to the MPI implementation using appropriate above
MPI-Thread representations to return to thread level
from process level.

A. Thread-safety Properties

According to [6], the violations to thread-
safety properties of hybrid MPI/OpenMP
programs can be categorized as follows.
Totally, we have 6 violations need to detect,
which are isInitializationViolation,
isMPIFinalizationVoilation
,isConcurrentRecvVoilation ,
isConcurrentRequestViolation
, isProbeViolation and
isCollectiveCallViolation . concurrent
function is results for monitored variables from
dynamic concurrency analysis procedure using
lockset analysis and happen-before analysis. the
return value of Concurrent(a) is true, which means
a has concurrent execution issues on variable a
, otherwise, there is no concurrency issues on
variable a . In order to detect concurrency execution
issues of MPI calls at thread level, this concurrent
function is for monitoring these variables srctmp,
tagtmp, commtmp, collectivecalltmp and requesttmp
and finializetmp in MPI calls at thread level. The
monitored variable would be introduced more
clearly in the MPI wrapper implementation section,
since these are inserted into monitored MPI calls
for thread-safety violation detection.

• Initialization Violation: Executing MPI
calls within threads should follow the
specification in MPI thread initialization.
For example, if MPI_THREAD_SINGLE is
specified, omp parallel returns false. If
MPI_THREAD_SERIALIZED is specified,
it is not allowed to call MPI routines in two
concurrent threads.
isInitializationViolation =
MPI THREAD SINGLE == true ∧
ompparallel == true) ∧
(MPI THREAD SERIALIZED == true
∧ (Concurrent(srctmp) ∨
Concurrent(tagtmp) ∨
Concurrent(commtmp) ∨
Concurrent(requesttmp) ∨
Concurrent(collectivecalltmp))
∧ (MPI THREAD FUNNELED == true
∧ MPI IS THREAD MAIN() == false)

• Concurrent MPI finalizing violation:
MPI_Finalize should be called in the
main thread at each process. In addition,
prior to call MPI_Finalize, each thread
needs to finish existing MPI calls under its
own thread to make sure there is no pending
communication.
isMPIFinalizationVoilation =
MPI IS THREAD MAIN() == false ∧
mpitypetk = MPIFinialize) ∨
Concurrent(terminationtmp) ∧
timestamp(MPI Finialize()) <
timestamp(MPICalls)

• Concurrent MPI Recv violation: Each thread
within an MPI process may issue MPI calls;
however, threads are not separately addressable.
In other words, the rank of a send or receive call
identifies a process instead of threads, which
means when two threads call MPIRecev with
same tag and communicator the order is unde-
fined. In such cases, we can expect a data race.
Moreover, we can prevent such data races using
distinct communicators or tags for each thread.
isConcurrentRecvVoilation =
Concurrent(srctmp) ∧
Concurrent(tagtmp)
∧ Concurrent(commtmp)
∧mpitypet1 == MPIRecv ∧mpitypet2 ==
MPIRecv
∧ t1 6= t2

• Concurrent request violation in MPI Wait
and MPI Test: MPI does not allow that

two or more threads are concurrently
invokes MPI Wait(request) and
MPI Test(request) with the same shared
request variable.
isConcurrentRequestViolation =
Concurrent(requesttmp) ∧
(mpitypet1 == MPIWait ∨MPITest)
∧ (mpitypet2 == MPIWait ∨MPITest)
∧ (t1! = t2)

• Probe Violation in MPI Probe and
MPI IProbe: Two concurrent invocations
of MPI Probe() or MPI IProbe() from
different threads on the same communicator
should not have the same “source and “tag as
their parameters.
isProbeViolation =
Concurrent(srctmp)∧Concurrent(tagtmp)
∧ (mpitypet1 == MPIProbe,MPIIProbe)
∧ (mpitypet2 == MPIRecev) ∧ (t1 6= t2)

• Collective Call Violation: According to the MPI
requirements all processes on a given com-
municator must make the same collective call.
Furthermore, the user is required to ensure that
the same communicator is not concurrently used
by two different collective calls by threads in
the same process.
isCollectiveCallViolation =
Concurrent(collectivetmp) ∧
mpitypet1 == collectiveroutine ∧
mpitypet2 == collectiveroutine ∧ t1 6= t2
The lockset analysis and happen-before anal-
ysis help to detect concurrency for monitored
variables. Later, HOME will deliver the match-
ing rules to detect violations for thread-safety
specification.

IV. DETECTING THREAD-SAFETY VIOLATIONS
USING INTEGRATED STATIC AND DYNAMIC

ANALYSIS

This paper proposes a novel approach to detect
thread-safety violations using the integrated static
and dynamic program analysis. Dynamic analysis
reasons about behavior of a program through ob-
serving its executions. It is usually performed by
instrumenting source code or byte/ binary code and
monitoring the programs’ executions. The observed
events can be online analysis (i.e., during executions)
or offline (i.e., after executions terminate). In order to
detect concurrency errors, dynamic analysis extends
the traditional testing techniques. In other words,

it inspects potential concurrency errors by search-
ing specific patterns based on the current observed
events, even the errors do not show up in the current
execution paths. Most dynamic analysis approaches
have the same weakness on path coverage issue,
which is that they cannot detect concurrency and
logic errors in unexecuted code. Pure Static anal-
ysis makes predictions about a program’s runtime
behavior based on analyzing its source code. Static
analysis can often explore the whole code, but sac-
rifice accuracy and may report many false positives.

In order to avoid reporting false positives and high
overhead, we combine static and dynamic analysis
techniques together to utilize their advantages and
avoid their shortcomings in HOME implementation.
Specifically, we design a lightweight technique to
check thread-safety violations without sacrificing
analysis accuracy and precision. Our proposed hy-
brid program analysis speculatively approximates
the behaviors of unexecuted code by instantiating
its static summary using runtime information. In
addition, the monitoring overhead is another problem
of dynamic analysis, which usually slows down the
speed of programs by a factor of 2 to 100. Our
proposed approach significantly reduces the over-
head by using a static analysis to perform selective
monitoring.

A. Workflow

Figure 3 shows the architecture overview of our
approach HOME, which consists of two phases:
compile-time checking and runtime checking. Dur-
ing the compilation phase, we classify code sections
into correct and potentially erroneous. The correct
code sections are filtered out, and MPI routine calls
in the potentially erroneous code are instrumented.
This filtering approach avoid systematic instrumenta-
tion, thus reducing the overhead of the dynamic anal-
ysis. Since compile-time checking procedure does
not require running program, so we often call it static
analysis. In this compile-time analysis procedure,
HOME would generate the control flow graph of
this hybrid MPI/OpenMP program. In this way, each
MPI call would be represented as a node in control
flow graph. At beginning of visiting all the nodes
in the control flow graph, we first insert several
monitored variables into control flow graph at global
variable region. These variables are inserted into
MPI wrappers by our instrumented and can help to
detect the violations of MPI calls in thread level.
The reason is that, since one property in most of the
violations to thread-safety specifications in hybrid

Hybrid MPI and
OpenMP source code

MPI Wrapper with
inserted monitored

variables

Hybrid Dynamic Analysis
for concurrency detection

of monitored variables

Static Analysis for
inserting monitored

variables

Executable Binary Code

Thread-Safety
specification argument

list generation

Concurrency
Reports

 Final Reports

Happen-Before
analysis

instrumentation

Lockset analysis
instrumentation

Figure 3. The architecture of the tool HOME.

MPI/OpenMP is about at least two threads execute
the same operations at the same time, which can
be abstracted to concurrency execution by several
threads. By using the MPI wrapper designed by our
instrumented MPI library, each monitored variable is
associated to one violation to thread-safety specifi-
cation. If this monitored variable is detected to be a
concurrent operations on that, then we can say this
MPI calls are executed concurrently by associated
threads.

The way to detect the concurrent execution of
monitored variables is to combine lockset analy-
sis [21] and happen-before analysis [16], both of
these two algorithm are classical algorithm to detect
data races in multi-threaded programs. For locksets
analysis, the key idea behind it is to track lock
sets that govern access to each shared location. A
data race on monitored variable is an access to a
shared variable that is not governed by a set of
locks. The purpose of happens-before analysis is to
establish partial ordering of events across different
threads. The reason why dynamic analysis procedure
combines the algorithm of lockset analysis algorithm
and happen-before algorithm is to reduce false pos-
itive and overhead on binary code instrumentation.
Also, these two data race detection approaches do
not require errors real happen in runtime. After the
results of these monitored variables are generated
during dynamic code instrumentation analysis, then
our HOME would analyze the recorded arguments
information with the concurrency issues of moni-
tored variables in MPI calls, then match them to
determine whether there is a match to violation to
thread-safety specification in MPI standard.

B. MPI Wrapper Instrumentation

Our mechanism utilizes the concurrency execution
property of monitored variables in MPI calls at
thread level to determine whether two MPI calls
can be executed at the same time at thread level.
In order obtain the runtime information for dy-
namic analysis, we instrument MPI wrappers that
can catch runtime information in MPI call, such
as source, tag, communicator, and thread ID in-
formation, these MPI wrapper would execute the
appropriate MPI call to perform MPI function-
ality. MPI MonitorV ariableSetup is the func-
tion to For example, in Figure IV-B, our wrapper
for MPI Recv is named as HMPI Recv, when
HOME would detect Concurrent MPI Recv vio-
lation, then dynamic analysis using lockset analysis
and happen-before analysis obtains the thread ID ex-
ecution information, then it would detect the WRITE
operations on source src, tag tag and communicator
comm in MPI calls whether there are concurrent
executions happen on src, tag and comm at the same
time, if there are concurrent execution issues on
these three variables at the same time and have at
least two different thread IDs in log. Then we would
report there is a violation.

Listing 1. source code
#include<mympi.h>

MPI_MonitorVariableSetup
(srctmp, tagtmp,
terminationtmp,
requesttmp,
collectivetmp);

int main()
{
code();
return

}
void code()
{
...
HMPI_Recv(&var, count,

tag, dest)

}

Listing 2. mympi.h
#include<mpi.h>

//! different routines
has its own
monitored vairbale

//! MPI receive is not
enough for covering
all cases

int HMPI_Recv(&var,
count, src, tag,
comm)

{
int tid = getThreadID

();
tagtmp = tag;
srctmp = src;
commtmp = comm;
mpitype = receive;
StartExecLog();// to

record all the
arguments in log

MPI_Recv(var,count,src
, tag, comm);

}

Listing 3. source code
#include<mympi.h>

MPI_MonitorVariableSetup
(srctmp, tagtmp,
terminationtmp,
requesttmp,
collectivetmp,
commtmp);

int main()
{
code();
return
}
void code()
{
...
HMPI_Recv(&var, count,

tag, dest)

}

Listing 4. mympi.h
#include<mpi.h>

//! different routines
has its own
monitored vairbale

//! MPI receive is not
enough for covering
all cases

int HMPI_Wait(request)
{
int tid = getThreadID

();
mpitype = mpiwait;
requesttmp = request;
StartExecLog();// to

record all the
arguments in log

MPI_Wait(var,count,src
, tag, comm);

}

Listing 5. source code
#include<mympi.h>

MPI_MonitorVariableSetup
(srctmp, tagtmp,
terminationtmp,
requesttmp,
collectivetmp,
commtmp);

int main()
{
code();
return
}
void code()
{
...
HMPI_Recv(&var, count,

tag, dest)

}

Listing 6. mympi.h
#include<mpi.h>

//! different routines
has its own
monitored vairbale

//! MPI receive is not
enough for covering
all cases

int HMPI_Barrier(comm)
{
int tid = getThreadID

();
mpitype =

mpicollective;
commtmp = comm;
StartExecLog();// to

record all the
arguments in log

MPI_Barrier(comm);
}

C. Static Analysis

The idea of overhead reduction is to reduce the
number of monitored variables as many as possible
during runtime code instrumentation. Since the vio-
lations only happen in hybrid MPI/OpenMP region,
so non-hybrid region is guaranteed error-free region
which have no violations, when it comes to hybrid
MPI/OpenMP regions, the violation to thread-safety
specification in MPI standard would only happen
in this region, so we assume this part is potential
error region. For this concept, the static analysis
in our approach HOME utilizes the control flow
graph of the hybrid MPI/OpenMP program to help
distinguish whether the MPI call node is in omp
parallel region, which can significantly reduce the
overhead of OpenMP binary code instrumentation
during the runtime. In Algorithm 1, the node of

Algorithm 1 Static Analysis Procedure
1: % source code level pre-processing based on Control

Flow Graph %
2:
3: void StaticAnalysis(){
4: src represents the source code of Hybrid MPI/OpenMP

program
5: List srcCFG = CFGGeneration(src)
6: add MPIMonitoredV ariables() at beginning of

global region
7: While (!srcCFG.isEmpty())
8: if (srcCFG.get(i) == ompParallelBegin()) then
9: k = i;

10: While (srcCFG.get(k)!= ompParallelEnd())
11: if (srcCFG.get(k).type == MPIcalls) then
12: replace srcCFG.get(k) with our instrumented

MPI call
13: end if
14: k++;
15: it }
16: end if
17: i++;
18: }
19: }

source code CFG is put into a list srcCFG, when
static analysis procedure traverse all the node is
srcCFG, if one node is indicated as omp parallel
or omp parallel for, then the following MPI calls
after this omp parallel block would be replaced using
our MPI wrapper util it reaches the end of this
omp parallel block. The other MPI calls which are
not replaced by our MPI wrapper would be skipped
during binary code instrumentation in order to reduce
the unnecessary overhead.

D. Hybrid Dynamic Analysis

Bases on the monitored variables provided from
the static analysis, the list of variable accessed in
MPI call in hybrid MPI/OpenMP region sites are
instrumented using the tool Intel Pin [12] for mon-
itored variable concurrency detection. Then we run
the instrumented program with the dynamic lockset
analysis combining with happen-before analysis to
detect concurrency issues for monitored variables.
Since we would like to check one important property
in thread-safety specification in MPI standard, which
is whether there two MPI calls can be executed by
different threads at the same time.

Since the operations of MPI calls are not catego-
rized in READ or WRITE, so we have to leverage
variables inside of MPI calls at thread level to
represent current execution status, so HOME utilizes
monitored variables srctmp, tagtmp, commtmp, col-
lectivecalltmp and requesttmp and finializetmp for

representing concurrency status in MPI calls. That
is the most important innovation for our approach,
since the dynamic analysis would detect the concur-
rency status of these variables to determined there
is concurrent execution for MPI calls at thread level
or not. Another benefit of using lockset analysis and
happen-before analysis is that combination analysis
of them do not require these races must happen in
the runtime, then some potential violations would be
detected no matter it real happens during runtime.

The dynamic analysis techniques in HOME for
concurrency detection of monitored variables are
fully based on dynamic instrumentation. HOME
observes a stream of events generated by instrumen-
tation inserted into the program and sets up several
rules to determine concurrency happen conditions
for monitored variables. The instrumented program
would output a sequence of events to our detec-
tion approach. Since pure lockset analysis would
find more races then happens-before based tools,
but would increase the overhead. That is why we
implement happen-before analysis for this step also.
In this paper, we treat each event in sequence has
following properties:

Table I
TABLE OF NOTATION IN DYNAMIC ANALYSIS

V arNameMem(mi, ai, ti a set of events
emory access location is mi

for variable ai at thread ti.
t thread t.
ei event at step i.
(atm , btn) a vector clock

for event a and b
at thread tm and tn

LockSets a set of locks.
READ, WRITE the two possible access types

for a memory access in event.

The Lockset-based analysis approach is imple-
mented based on several hypothesis: Whenever two
different threads access a shared memory location,
and one of the accesses is a write, the two ac-
cesses are performed holding some common lock.
Formally, given an access sequence ei, dynamic
analysis procedure in HOME would maintain the
lock sets for each monitored variable before step
i by a thread t by using LockSetsi(t) for current
lockset updates, LockSetsi(t) for each live thread
t, can be efficiently maintained online as acquisition
and release events are received.
IsPotentialLockSetRace(i, j) =

ei = V arNameMem(mi, ai, ti) ∧ ej =
V arNameMem(mj , aj , tj)

∧ ti 6= tj ∧mi = mj ∧
(ai = WRITE) ∨ (aj = WRITE) ∧
LockSetsi(ti) ∩ LockSetsj(tj) = ∅

When it comes to Happens-before, which is a par-
tial order of all events of all threads in a concurrent
execution. For any single thread, events are ordered
in the order in which they occur. The happens-
before relation was first defined by Lamport as a
partial order on events occurring in a distributed
system[16]. To report the data race more accurately
and efficiently, we apply a happen-before analysis
to break down the execution of each thread into
several periods by the the synchronization events
incurred by the thread synchronization, like omp
barrier directive.

The happens-before relation can be computed on-
line using standard vector clocks, and each thread
has a vector maintainces the event order, and all the
vectors should have a global order to represent one
partial order of execution. For example, thread t1 has
event a happens before event b, then we have (at1, 0)
¡ (bt1, 0), and thread t2 has event c happens before
event d, then we have (0, ct2) ¡ (0, dt2), and we
supposed that have (at1, 0) ¡ (0, ct2), which means
event a at thread t1 happens before event c at thread
t2 , but we have no conditions for the order of event
c and b, so there is concurrency issues happen on
event c and event d, if both of c and d using the
same memory address with WRITE within different
threads, then we say there is concurrency issue. Then
we apply the lockset analysis for these two events
again.

The formal representation for
happen-before analysis is listed below.
IsPotentialHappenBeforeRace(ei, ej)
=
ei = V arNameMem(mi, ai, ti) ∧ ej =
V arNameMem(mj , aj , tj) ∧
ti 6= tj ∧mi = mj ∧
(ai = WRITE) ∨ (aj = WRITE) ∧
¬(eiti → ejtj) ∧ ¬(ejtj → eiti)

There are several challenges in the instrumentation
of the OpenMP binary programs using Intel Pin.
Since implementation API within Intel Pin only
provides memory access read/write, synchronization
wait and locking lock, unlock operations, in order to
support the OpenMP standard specifies several high-
level synchronization points in dynamic analysis,
the explicit synchronization points include #pragma
omp barrier , #pragma omp critical and implicit
synchronization include #pragma omp single should

0%

20%

40%

2 4 8 16 32 64

A
ve

rg
ag

e
 O

ve
rh

e
ad

Number of Processors

MARMOT

ITC

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 32 64

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of Processes

Base

HOME

MARMOT

ITC

Figure 4. LU-MZ hybrid MPI/OpenMP Testing

be supported.

V. EXPERIMENTS

We conducted all the experiments on real cloud
environment, Amazon EC2, to demonstrate the our
approach HOME is accuracy and efficiency and to
measure the overhead of our approach. We summa-
rize major results we observed in this section. The
overhead of HOME is ranging from 16% to 45%.
We can detect all 6 kinds of violations mentioned in
this paper using artificial inserted violations.

A. System Setup

This section discusses our experimental evaluation
of HOME over some microbenchmarks for case
study and real world applications for scalability test.
In Amazon EC2 cluster, our instance type is C3
instances with 2.8 GHz Intel Xeon E5-2680v2 . The
numbers, e.g., 8, 16, 32, 64, 128, in the figures of this
section represent the number of MPI processes in our
cloud platform. We use up to 32 C3 instances totally.
Our experiments are performanced on NPB 3.3-MZ
in NAS Parallel Benchmark, which includes BT, SP
and LU with Class C size. The number of threads is
set up to 2 by default in our experiment. Otherwise,
the overhead of Intel Thread Checker would be very
high with number increasing of threads in processes.

B. Performance Analysis and Comparison

We also compare our approach HOME with Intel
Thread Checker[19] and Marmot [6] using evalu-
ation results with injected or modified violations
in benchmark. In above Table I, it shows that we
inserted 6 violations () into source code programs.
ITC stands for Intel Thread Checker in this ex-
periment section. The first column lists benchmark
names which are LU, BT and SP in NAS-MZ [15].
The second column shows our detected results for
all these inserted 6 violations in LU, BT and SP

0%

20%

40%

2 4 8 16 32 64

A
ve

rg
ag

e
 O

ve
rh

e
ad

Number of Processors

MARMOT

ITC

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 32 64

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of Processes

Base

HOME

MARMOT

ITC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64

Ex
e

cu
ti

o
n

 T
im

e
 in

 s
e

co
n

d
s

Number of Processes

Base

HOME

MARMOT

ITC

Figure 5. BT-MZ hybrid MPI/OpenMP Testing

8 16 32 64

Number of Processes

MARMOT

ITC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8 16 32 64

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of Processes

Base

HOME

MARMOT

ITC

Figure 6. SP-MZ hybrid MPI/OpenMP Testing

benchmark, the experiment shows that our HOME
can detect all of these expected violations (termina-
tion, communication and so on). For NPB LU, the
reason why Intel Thread Checker reports 5 falses is
because it cannot recognize omp critical directives
correctly, so it would not detect violations to request
in MPI Probe. When it comes to Marmot, since their
approaches only depends on the violations which are
real happening, so some potential violations would
be ignored. There is one false positive happen in BT
test using Intel Thread Checker, since the omp criti-
cal directive can not be recognized correctly, so this
single thread execution routine would be reported
as concurrent execution using different threads. Also
both of the marmot and intel thread checker would
detect similar violations like HOME, but the over-
head in Marmot and Intel Thread Checker are much
higher than that in HOME.

Benchmarks HOME ITC Marmot
NPB-MZ LU (6) 6 5 5
NPB-MZ BT (6) 6 7 6
NPB-MZ SP (6) 6 6 5

The way we add violations

0%

20%

40%

60%

80%

100%

120%

140%

2 4 8 16 32 64

A
ve

rg
ag

e
 O

ve
rh

e
ad

Number of Processors

HOME

MARMOT

ITC

Figure 7. Overhead measurement

In Figure 4, Figure 5 and Figure 6, these figures
shows the execution runtime with inserted violations
of LU, BT and SP hybrid MPI/OpenMP bench-
marks, we only inserted MPI calls within openmp
parallel regions without any computation influence
on original benchmark semantics, so some extra
overhead would also caused by these inserted MPI
calls in thread level. The Base in the figure means
original runtime of application, and ITC represents
Intel Thread Checker. The runtime time in HOME,
Marmot and Intel Checker shown in the Figure 4, 5
and 6 includes overhead caused by instrumentation.

The problem of the Marmot error detection is that
it can only detect violations if they actually appear
in a run made with MARMOT. It would not find the
errors which is a possible violation but not happen
during checking runtime. For the MPI calls of a
hybrid application different runs may have a different
execution order of the MPI calls and it might happen
that certain MPI calls are issued by different threads.
So this approach would have false negatives on some
right execution order but has potential violations
applications.

The runtime detection for these errors with very
high overhead, since intel thread checker may mon-
itor all the thread level instructions, and the source
and tag information in MPI Probe() is not de-
tected by intel thread checker. So our approach
would have better performance and scalability on
these hybrid MPI/OpenMP error checking with less
overhead on runtime.

C. Overhead Analysis for HOME

The overhead of HOME in Figure 7 is ranging
from 16 % to 45 % based on our experimental obser-
vation. The overhead is caused by extra instructions
executed in MPI wrapper and binary code instru-
mentation for dynamic analysis. Since binary code
instrumentation is very expensive, so only monitored

variables mentioned for thread-safety specification
checking are instrumented during dynamic analysis.
The other variables or arguments lists in function
call during computation are not considered in this
approach, since lots of approaches are developed
to detect concurrency errors in pure MPI and pure
OpenMP programs.

We proved that our optimization would signif-
icantly reduce the lots of overhead. In Figure 7,
the overhead is increasing with number of processes
in MPI raises. he reason is that our approach re-
quires all the processes run the code instrumentation
during runtime, and these checking requires the
extra procedure maintenance for lockset analysis and
happen-before analysis during the runtime. With the
number of processes increasing, the overhead of
HOME is increasing also, the reason is that each
thread would have to being instrumented during
dynamic analysis, so with our observation, overhead
of HOME is ranging from around 16% to 45%, when
it comes to Marmot it is ranging from 15% to 56%,
and overhead it is much higher using Intel Thread
Checker which is up to around 200%.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a practical and scalable
error detection approach for violations to thread-
safety specification in hybrid MPI/OpenMP pro-
gram, which combines the static analysis on provid-
ing monitored variable to improve the dynamic data
race detection. Since HOME applies a static analysis
to replace MPI calls with our MPI wrappers to get a
list of variables that can be involved in the concur-
rency checking for monitored variables, which are
associate with violations in Hybrid MPI/OpenMP.
Then the dynamic analysis focus on monitoring these
variables in the runtime and apply a enhanced lockset
analysis and happen before analysis to detect the
concurrency issues on these variables more accu-
rately and efficiently, the overhead is about range
from 16% to 45% and each specified variable race
is associate with specified violations in thread-safety
specification in hybrid MPI/OpenMP application.
Our future works include testing HOME’s scalabil-
ity and accuracy on more large-scale benchmarks,
which would be incorporating with inter-procedure
analysis provided by front-end compiler to produce
more refined and precise static analysis results in
GUI, extending HOME to handle not only MPI
and OpenMP but also the other distributed and
shared memory programming model, like UPC and
PThreads Programming.

VII. ACKNOWLEDGMENT

The work was supported in part by NSF under
Grant 1118059 and CAREER 1054834.

REFERENCES

[1] Amazon EC2. http://http://aws.amazon.com/ec2/.
[2] Intel thread checker. http://software.intel.com/en-

us/intel-thread-checker/.
[3] S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. Computer, 29:66–76,
December 1996.

[4] P. Garg, F. Ivancic, G. Balakrishnan, N. Maeda, and
A. Gupta. Feedback-directed unit test generation
for c/c++ using concolic execution. In Proceedings
of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 132–141, Piscataway,
NJ, USA, 2013. IEEE Press.

[5] G. Gopalakrishnan, R. M. Kirby, S. Siegel,
R. Thakur, W. Gropp, E. Lusk, B. R. De Supinski,
M. Schulz, and G. Bronevetsky. Formal analysis
of mpi-based parallel programs. Commun. ACM,
54(12):82–91, Dec. 2011.

[6] T. Hilbrich, M. S. Müller, and B. Krammer. De-
tection of violations to the mpi standard in hybrid
openmp/mpi applications. In Proceedings of the
4th International Conference on OpenMP in a New
Era of Parallelism, IWOMP’08, pages 26–35, Berlin,
Heidelberg, 2008. Springer-Verlag.

[7] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski,
and M. S. Müller. Mpi runtime error detection
with must: Advances in deadlock detection. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[8] J. P. Hoeflinger and B. R. De Supinski. The openmp
memory model. In Proceedings of the 2005 and 2006
international conference on OpenMP shared mem-
ory parallel programming, IWOMP’05/IWOMP’06,
pages 167–177, Berlin, Heidelberg, 2008. Springer-
Verlag.

[9] M.-H. Kang, O.-K. Ha, S.-W. Jun, and Y.-K. Jun.
A tool for detecting first races in openmp programs.
In PaCT ’09: Proceedings of the 10th International
Conference on Parallel Computing Technologies,
pages 299–303, Berlin, Heidelberg, 2009. Springer-
Verlag.

[10] Y.-J. Kim, M.-Y. Park, S.-H. Park, and Y.-K. Jun.
A practical tool for detecting races in openmp pro-
grams. In PaCT, pages 321–330, 2005.

[11] K. Lee and S. P. Midkiff. A two-phase escape
analysis for parallel java programs. In PACT ’06:
Proceedings of the 15th international conference on
Parallel architectures and compilation techniques,
pages 53–62, New York, NY, USA, 2006. ACM.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI

’05, pages 190–200, New York, NY, USA, 2005.
ACM.

[13] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan,
and Z. Yang. Symbolic analysis of concurrency
errors in openmp programs. In Proceedings of
the 2013 42Nd International Conference on Parallel
Processing, ICPP ’13, pages 510–516, Washington,
DC, USA, 2013. IEEE Computer Society.

[14] R. H. B. Netzer, T. W. Brennan, and S. K.
Damodaran-Kamal. Debugging race conditions
in message-passing programs. In Proceedings of
the SIGMETRICS Symposium on Parallel and Dis-
tributed Tools, SPDT ’96, pages 31–40, New York,
NY, USA, 1996. ACM.

[15] Nasa nas parallel benchmarks, OpenMP
c versions 2.3. Available from
www.nas.nasa.gov/Software/NPB.

[16] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In Proceedings of the Ninth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’03, pages 167–178,
New York, NY, USA, 2003.

[17] OpenMP Architecture Review Board. Openmp ap-
plication program interface. Specification, 2008.

[18] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrel-
las. Accurate and efficient filtering for the intel thread
checker race detector. In ASID ’06: Proceedings
of the 1st Workshop on Architectural and System
Support for Improving Software Dependability, pages
34–41, New York, NY, USA, 2006. ACM.

[19] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrel-
las. Accurate and efficient filtering for the intel thread
checker race detector. In Proceedings of the 1st
Workshop on Architectural and System Support for
Improving Software Dependability, ASID ’06, pages
34–41, New York, NY, USA, 2006. ACM.

[20] E. Saillard, P. Carribault, and D. Barthou. Parcoach:
Combining static and dynamic validation of mpi
collective communications. Int. J. High Perform.
Comput. Appl., 28(4), Nov. 2014.

[21] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, Nov. 1997.

[22] S. F. Siegel. Verifying parallel programs with mpi-
spin. In Proceedings of the 14th European PVM/MPI
User’s Group Meeting on Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface,
pages 13–14, Berlin, Heidelberg, 2007. Springer-
Verlag.

[23] J. S. Vetter and B. R. de Supinski. Dynamic
software testing of mpi applications with umpire.
In Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing, SC ’00, Washington, DC, USA,
2000. IEEE Computer Society.

