
Rapid Processing of Synthetic Seismograms Using Windows Azure Cloud∗

Vedaprakash Subramanian and Liqiang Wang
Department of Computer Science

University of Wyoming
{vsubrama, wang}@cs.uwyo.edu

En-Jui Lee and Po Chen
Department of Geology and Geophysics

University of Wyoming
{elee8, pchen}@uwyo.edu

Abstract

Currently, numerically simulated synthetic seismograms
are widely used by seismologists for seismological infer-
ences. The generation of these synthetic seismograms re-
quires large amount of computing resources, and the main-
tenance of these observed seismograms requires massive
storage. Traditional high-performance computing plat-
forms is inefficient to handle these applications because
rapid computations are needed and large-scale datasets
should be maintained. The emerging cloud computing plat-
form provides an efficient substitute. In this paper, we intro-
duce our experience on implementing a computational plat-
form for rapidly computing and delivering synthetic seis-
mograms on Windows Azure. Our experiment shows that
cloud computing is an ideal platform for such kind of appli-
cations.

1 Introduction

Seismic waves generated by natural and/or manmade
seismic sources propagate through the interior of the Earth
and cause motions of the ground. A seismogram is a record
of the ground shaking recorded by a seismometer. Proper
interpretation of seismograms allows seismologists to map
the Earth’s internal structures, and locate and measure the
size of different seismic sources. Since the emergence of
modern instruments using electronic sensors, amplifiers and
recording devices in the early 1900s, seismograms have
been systematically collected and archived at seismic data
centers distributed around the world. An important exam-
ple of seismic data centers is the Incorporated Research In-
stitutions for Seismology (IRIS) [1] in the United States.
Founded in 1984 with support from NSF, it now collects and
archives seismograms from a network of hundreds of seis-
mometers around the world and plays an essential role in
scientific investigations of seismic sources and Earth prop-

∗This work was supported in part by NSF under Grant 0941735.

erties worldwide.
Recent advances in computational technology and nu-

merical methods have opened up the possibility to simu-
late the generation and propagation of seismic waves in
three-dimensional complex geological media by explic-
itly solving the seismic wave-equation using numerical
techniques such as finite-difference, finite-element, and
spectral-element methods, thereby allowing seismologists
to incorporate numerically simulated seismograms (i.e.,
synthetic seismograms) into their research. The capability
of conducting simulation-based predictions has initiated an
inference cycle in which the simulation-based predictions
(i.e., synthetic seismograms) are validated against actual
observations (i.e., real observed seismograms collected and
archived at seismic data centers). Where the seismological
models (i.e., the geological models of the Earth’s interior
and/or the rupture models of the seismic sources) are defi-
cient, data assimilation techniques commonly used in atmo-
spheric sciences and oceanography are adopted to improve
the seismological model and reinitiate the inference cycle at
a higher level.

The purpose of this study is to establish a cloud-based
computational platform for rapidly computing and deliver-
ing synthetic seismograms to seismologists worldwide to
facilitate simulation-based seismological inferences. This
platform allows seismologists to download synthetic seis-
mograms through their web browsers from our cloud-based
data collection for any types of seismic source models in a
manner similar to downloading observed seismograms from
various seismic data centers such as IRIS. Such data cen-
ters are usually implemented using large-scale clusters. Al-
though the dedicated clusters are desirable, they are cost-
ineffective. In addition, large-scale high-performance com-
puting systems shared by multiple users, such as TeraGrid,
are inappropriate, where the applications often suffer from
long delay on acquiring computation resources. Cloud com-
puting is an ideal emerging platform for rapidly comput-
ing and delivering synthetic seismograms, as it allows users
to acquire and release resources on-demand with very low
scheduling overhead.

1

The underlying theoretical foundation for our platform
is the “reciprocity principle” in seismology, which basi-
cally states that the seismogram generated by a seismic
source and recorded at a seismometer is the same if we ex-
change the locations of the seismometer and the source. By
using the seismometers as virtual sources and conducting
wave-propagation simulations in realistic three-dimensional
Earth models, we have established a database for Southern
California, an earthquake-prone region with high seismic
risk. Synthetic seismograms for any types of earthquakes in
Southern California can now be generated on the fly based
on user queries and delivered in real-time. We expect that
our system will be useful for seismological research in gen-
eral and seismic hazard assessment in particular.

Our system for analyzing synthetic seismograms is based
on Microsoft Windows Azure [3]. This paper makes the
following contributions: (1) To the best of our knowledge,
it is the first system that utilizes cloud computing for such
kind of applications. (2) Several innovative optimization
techniques for performance and storage are designed and
implemented on Windows Azure. We use the concept of
multi-threading and .NET Task Parallel Library to decrease
the total computation time. We develop an innovative way
to store the data corresponding to the latitude and longitude.
A data query algorithm is designed to speed up the search-
ing.

The rest of the paper is organized as follows. Section 2
introduces cloud computing and Windows Azure. Section 3
discusses the general workflow of the application. Section
4 presents the design and implementation details of our sys-
tem. The experiments are presented in Section 5. Sections
6 and 7 give related work and conclusions, respectively.

2 Cloud Computing and Windows Azure

2.1 Cloud Computing

Recently, cloud computing has increasingly gained at-
tention, as it provides a flexible, on-demand computing in-
frastructure. According to the definition given by the Na-
tional Institute of Standards and Technology (NIST) [14],
cloud computing has the following essential characteristics:
(1) On-demand self-service: the computing resources are
requested on demand without interaction with the service
provider. (2) Broad network access: resources are available
over Internet and can accessed by any platforms. (3) Re-
source pooling: the computing resources are pooled by the
provider through multi-tenant model to various consumers
on demand. (4) Rapid elasticity: capability can be quickly
scaled in and out. (5) Measured Service: Resource usage
can be monitored, then transparently controlled.

Based on the aforementioned features of cloud, it will
be an ideal platform to deploy the system to compute and

deliver synthetic seismograms with rapid and scalable per-
formance. It is a cost-effective substitute for the traditional
dedicated computing cluster or grid.

2.2 Windows Azure

The Windows Azure [3] is a Platform as a Service (PaaS)
running in Microsoft data centers. The platform consists
of a highly scalable (elastic) cloud operating system and a
data storage system. The services are supported by physi-
cal or logical (virtualized) Windows Server instances. On
Windows Azure, users can deploy their applications (cre-
ated using Visual studio IDE and Windows Azure SDK)
onto the cloud infrastructure but do not have to manage the
underlying cloud infrastructures such as network, servers,
operating system, and storage. Users have control over the
application and its environment configurations. This helps
us focus on the application rather than manage the cloud in-
frastructure. Windows Azure platform comes with a geo-
locate feature which enables selecting the data center on
which the service is provided. Since our application focuses
on maintaining datasets for Southern California, we choose
the geo-location on Azure to be the Central America which
has better performance and bandwidth towards all the user
queries. Moreover, Context delivery Network (CDN) fea-
ture enables caching the blobs across the 20 Azure CDN
locations in order to provide better bandwidth and perfor-
mance.

Azure service [10] consists of two major roles, namely
web role and worker role, as virtual machines (VM). A web
role is customized for web application and acts as a user
interface which responds to the user input. A worker role is
for generalized development, and may perform background
processing for a web role. These roles execute on Microsoft
.NET framework.

Azure provides four kinds of data structures for design-
ing cloud applications: blob, table, queue, and drive.

Azure Blob provides a simple interface for storing files
along with metadata. A blob container groups a set of blobs.
A storage account can have multiple containers. Sharing
is based on the container level, i.e., a container can be set
to private or public. When a container is public, all its
contents can be read by anyone without requiring authen-
tication. When a container is private, authentication is
required to access the blobs in that container. Containers
can have metadata associated with them. Metadata is in
the form of <name, value> pair and can be up to 8KB
per container. The blob metadata can be set and retrieved
separately from the blob data. Azure supports two types
of blobs, namely block blobs and page blobs. Each block
blob consists of a sequence/list of blocks, which can size
up to 4MB and the block blob can size up to 200GB. The
block blob is mainly targeted at streaming workloads. Page

2

blob also consists of a sequence/list of pages, where each
page is in fixed size (512 bytes), so all writes must be 512
byte aligned. The page blob is mainly targeted at random
write workloads. Since our system’s datasets remain con-
stant throughout the service and can be accessed in stream
based on user queries, hence we use block blobs to store
datasets.

Azure Table contains a set of entities. An application
may create multiple tables within a storage account. Each
entity can hold up to 255 properties, within which there
are two basic properties, partition key and row key, as the
unique key for the entity. We use the partition key to auto-
matically distribute and balance the load of the table’s enti-
ties over many servers. The row key is the unique identifier
of the entity within the partition it belongs to. Every entity
has a version maintained by the system for optimistic con-
currency. A single index system is used for Azure tables,
where all entities in a table are sorted by the partition key
and then the row key. Azure table does not follow any nam-
ing schema, so all of the properties are stored as <name,
typed value> pairs. Thus entities in the same table can have
very different properties. In our application, the table stor-
age is used for maintaining a list of geographic regions for
querying seismograms.

Azure Queue is used to store messages or small datasets.
The queue name is scoped inside the storage account. There
is no limit on the number of messages stored in a queue (the
only limit is the 100TB size limit on a storage account).
A message is stored for at most a week. Queues can also
have metadata associated with them, which is in the form
of <name, value> pair. Messages in queues are relatively
small in size (up to 8KB). To store larger datasets, one can
store the data in Azure Blob or Azure Table, and then store
the blob/entity name in a message. In our application, the
queues are used for communication between the roles.

Azure Drive acts as a local NTFS volume that is
mounted on the server’s file system and is accessible to
code running in any role (web or worker). The data writ-
ten to a Azure drive is stored in a page blob defined within
the Windows Azure Blob service, and cached on the local
file system. The size of the drive ranges from 16MB to
1TB. Drives can be uploaded or downloaded via the Win-
dows Azure Blob interface. Since the data written to the
drive are stored in a page blob, the data are kept even if the
role instance is recycled (i.e., deleted and restarted). For
this reason, Azure drive can be used to run an application
requiring non-volatile state, such as a third-party database
application. Our system does not use Azure drives.

3 Introduction to the Application

The application starts with a web site which acts as a user
interface where users can request the generation of synthetic

−120˚ −119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

36˚

Chino Hills

STG

PDE

BOR

DSC

SPG2

SLA

0

30

60

90

120

N
um

be
r

of
 S

ei
sm

og
ra

m
s

0 2 4 6 8 10 12 14 16
Waveform misfit

25th
percentile Median

3D 0.61 0.97
1D 1.43 2.07

0 20 40

STG−Z

STG−R

STG−T

20 40
Time (s)

PDE−Z

PDE−R

PDE−T

20 40 60

BOR−Z

BOR−R

BOR−T

40 60 80
Time (s)

DSC−Z

DSC−R

DSC−T

40 60 80 100

SPG2−Z

SPG2−R

SPG2−T

40 60 80 100
Time (s)

SLA−Z

SLA−R

SLA−T

Figure 1. Waveform comparison for the 2008
Chino Hills earthquake at 153 stations with
good signal-to-noise ratios. In the box, the his-
tograms show the distributions of waveform misfits
of SoCaL model (gray area) and CVM4SI2 (area in-
cluded by red line). Black solid lines: observed seis-
mograms; red solid lines: synthetic seismograms cal-
culated using the finite-difference code. In each pair,
the red line above is synthetic seismogram computed
using CVM4SI2 and the red line below is the one
computed using SoCaL. Star: epicenter of the earth-
quake; blue triangles: station locations of waveform
comparison examples. The beachball shows the focal
mechanism used for computing the synthetics.

seismograms based on 3D velocity model by entering lo-
cations of earthquakes, stations, and earthquake source pa-
rameters, such as longitude, latitude, and depth for earth-
quake location and strike, dip and rake for source parame-
ters. To increase the efficiency of generating synthetic seis-
mograms, we store the receiver green tensors (RGTs), the
strain fields generated by three orthogonal unit impulsive
point forces acting at the receiver locations, for the 3D ve-
locity model [17]. By applying the reciprocity principle [2],
it can be shown that the RGTs provide exact Frchet deriva-
tives of the seismograms at the receiver locations with re-
spect to the moment tensor at any point in the modeling
volume. The synthetic waveforms based on 3D velocity
model are usually more accurate than synthetic waveforms
based on 1D multiple layers velocity model. Figure 1 shows
waveform comparisons of the Chino Hills earthquake on 29
July 2008 with Mw 5.4 among observed seismograms, syn-
thetic seismograms based on updated 3D velocity model,

3

Web + Worker Role Service Model

U
se
r

Request Queue

Computation
Input Queue

Windows Azure Storage (Blob, Table, Queue)

Computation
Output Queue

Figure 2. The architecture of our synthetic seismogram processing system implemented on Windows
Azure.

CVM4SI2 [12], and 1D multiple layers velocity model So-
CaL [6]. The synthetic seismograms can be used for dif-
ferent purposes such as seismic hazard analysis. Especially,
the improvements in waveforms and arrival times of surface
waves (e.g.SPG2 and DSC stations on Figure 1) may play
essential roles for source inversion in low frequency band.

The web site runs as a service at virtual machines on
Windows Azure cloud. User requests along with the pa-
rameters are then passed to the computation code running
on another virtual machine on Azure cloud. Based on the
location, the computation code requests the files from the
datasets maintained on the Azure storage. We have imple-
mented an efficient data localization algorithm to request
files from the Azure storage according to the given location.
Once the computation code gets its requested files, it does
a computation on the data in parallel among all CPU cores
of the virtual machine. At the end of the computation, the
synthetic seismograms are generated and provided to users
through the web interface.

4 Implementation

4.1 Overview of the System

Figure 2 shows the architecture of our synthetic seismo-
gram processing system implemented on Windows Azure,
which consists of four components: (1) Web role, which
acts as an interface to users. (2) Job manager, which co-
ordinates the work among the instances of the computation
worker role and monitors the execution status of the sys-
tem. (3) Computation worker role, which processes the
work in parallel. (4) Three Azure queues, namely request
queue, computation-input queue, and computation-output
queue, where the request queue acts as a communication
interface between the web role and the job manager, and
the computation-input and computation-output queues act

as the interfaces between the job manager and the computa-
tion worker role.

The web role and job manager utilize medium sized (as
defined in Azure) virtual machines, and the computation
worker role utilizes extra large sized (as defined in Azure)
virtual machines. The medium sized virtual machine has 2
CPU cores, 3GB memory, and 500GB disk space storage,
and the extra large sized virtual machine has 8 CPU cores,
15GB memory, and 2000GB disk space storage.

4.2 Job Manager

Job manager serves the following two purposes:

1. Coordinate the computation. The web role places user
requests as messages into a request queue. When a
message is retrieved, the jobs indicated by the mes-
sage will be retrieved. Then these jobs are scheduled
depending on the number of CPU cores on the corre-
sponding VM. All jobs scheduled on the same CPU
are sent to an instance of computation worker role as
a message in the computation-input queue. For a CPU
with 8 cores, each instance of the computation worker
role processes the 8 sub-jobs in parallel using .NET
4.0 Task Parallel Library (TPL). The result is stored in
a blob storage, and is accessible to all instances. Thus,
a significant performance is gained by a factor of 8
* Num of VM instances using such a parallelization
technique.

2. Monitor system response. The system response mon-
itor is based on the message response time in the
computation-input queue. The threshold for the re-
sponse time is 2 ms. When the response time exceeds
the threshold, a new computation VM instance is cre-
ated. A linked list is used to preserve the creation times

4

of VMs. For a VM instance that had been allocated dy-
namically during the service, if there is no message in
the computation-input queue to service and the VMs
life is greater than one hour, then the VM instance will
be removed.

Job manager performs these operations in multi-
threading. The system response monitor runs as a child
process and the coordinator of the work runs in the main
process. Figure 3 shows the algorithm. The allocation and
deallocation of a computation VM are asynchronous pro-
cesses. The job manager has no control over the dealloca-
tion process, which is managed Azure system. In order to
prevent Azure system from wrongly removing a VM that
is still processing a job, a mutual exclusive lock is utilized
between the job assignment and the deallocation of compu-
tation VM instances. Once the coordination thread obtains
the lock, the deallocation thread cannot take place. Simi-
larly, when the deallocation thread executes, the job man-
ager cannot coordinate the work among the computation
VMs.

4.3 Azure Partitioning and Load Balanc-
ing

Every data object, such as blob, table entity, and queue
message, has a partition key. Specifically, we use the fol-
lowing partition key in our implementation.

Data Type Partition Key
blob container name + blob name
entity table name + partition key
message queue name

Azure has a master system that automatically maintains
load balance across servers based upon these partitions. All
objects with the same partition key are grouped into the
same partition and are accessed from the same partition
server. Grouping objects into partitions allows them to eas-
ily perform atomic operations across objects in the same
partition. In addition, objects are also cached automatically
based on the locality of data access.

4.4 Azure CDN

Azure Content Delivery Network (CDN) is used to de-
liver high-bandwidth blob content. Azure CDN currently
has 20 locations globally and continues to expand. Azure
CDN caches Azure blobs at strategically placed locations
to provide maximum bandwidth. When CDN access is en-
abled for a storage account, the Azure portal provides two
URLs, i.e., Azure Blob URL and Azure CDN URL. Users

Thread-1: the thread that coordinate computation.

CloudQueueMessage msg = request queue.GetMessage();
if (msg) {

lock(); // for synchronization
// read the work and split it
while (num jobs to process > 0) {

if (num jobs to process > num CPU cores) {
num jobs to schedule currentVM = num CPU cores;
} else {

num jobs to schedule currentVM = num jobs to process;
}
CloudQueueMessage message = new CloudQueueMessage();
message.data = Job.getData(num jobs to schedule currentVM);
computation input queue.AddMessage(message);
num jobs to process = num jobs to process −

num jobs to schedule currentVM;
}
unlock();
}

Thread-2: the thread that monitors system response time, then
allocates and deallocates VMs.

// peek the last message in the queue
inputMsg = computation input queue.PeekMessage(last);
if (inputMsg) {

inputMsg ResponseTime =
CurrentTime − inputMsg InsertionTime;

if (inputMsg ResponseTime > 2 ms) {
AllocateVM();
create a new record in VM LinkedList;
record.VM AllocatedTime = CurrentTime;
}
}

if (No inputMsg) {
lock(); // to provide synchronization
record = VM LinkedList.getFirst();
while (record) {

if (CurrentTime - record.VM AllocatedTime > 1 hour) {
while (the VM is processing some job) {

thread 2.sleep(200 ms); // wait if any VM is running;
}
deleteVM();
delete the record from the VM LinkedList;
wait for deallocation of VM to complete;
}

record = VM LinkedList.getNext();
}
unlock();
}

Figure 3. The algorithm for Job Manager.

5

can use either of the URLs to access the blob in the con-
tainer. When a request is made using the Azure Blob service
URL, the blob is read directly from the Azure Blob service.
When a request is made using the Azure CDN URL, the
request is redirected to the CDN endpoint closest to the lo-
cation from which the request was made. If the blob is not
found at that endpoint, then it is retrieved from the Blob ser-
vice and cached at the endpoint, where a time-to-live (TTL)
setting is maintained for the cached blob. The TTL speci-
fies how long the blob should be cached in the CDN till it
is refreshed by the Blob service. The CDN attempts to re-
fresh the blob from Azure Blob service once the TTL has
elapsed. The default TTL is 72 hours. This provides per-
formance improvement by caching the most frequently ac-
cessed blobs during their TTL periods.

4.5 Data Storage

The seismic data are stored in the form of blobs. Each
blob represents a data file recorded by a seismometer, which
is identified by its latitude and longitude. In order to group
the blobs, the entire region of California is divided into
several smaller groups called blocks based on the seismic
wave observation stations. Currently, there are 4096 sta-
tions presenting in the entire region of California. Hence
the whole region is divided into 4096 blocks. Even though
these blocks are in irregular shapes, each block is charac-
terized by its ranges of latitude and longitude. The ranges
of latitude and longitude are used to form the identification
number for the block. For example, the identification num-
ber for a block whose range of latitude is from 35 ◦25′N
to 34 ◦51′N and range of longitude is from 119 ◦3′W to
116 ◦47′W , is given by 3525-3451-1193-11647. This iden-
tification number is used as the container name for the
block. All blobs whose data under the given block are
stored in its corresponding container. This helps in grouping
the blobs in a better way. The unique container name and
the blob name form a unique partition key, which will help
Azure balance the workload among their servers. Moreover,
Azure CDN has been enabled for the data storage. The TTL
for the blobs is set to 1 hour.

4.6 Data Query

Data query requires locating the blob corresponding to
the given point (latitude and longitude). The straightfor-
ward approach is to maintain a table storage that contains
all the points within the entire region of California and their
corresponding blobs. This table storage uses a linear search
to look for the given point and locates its corresponding
blob. The time complexity of this linear search is O(N),
where N is the number of points. As the entire region of
California has around 100 million points, thus such a lin-

Data Query Algorithm

Point

41’43’’N, 124’6’’W 41’43’’N, 120’43’’W

39’11’’N, 120’43’’W39’11’’N, 124’6’’W

40’27’’N, 124’6’’W

39’11’’N, 122’52’’W

40’27’’N, 122’52’’W40’27’’N, 123’56’’W

40’85’’N, 122’52’’W

40’85’’N, 123’56’’W

40’59’’N, 122’7’’W

Figure 4. Bounding box based test to search
the corresponding blob stored in Azure for a
given point.

ear search would incur long time of searching. Hence this
approach is inefficient.

Given a point (latitude and longitude), to locate the cor-
responding blob, we design an efficient algorithm by testing
bounding box to narrow down the search. For California re-
gion, there are 4096 stations, which means there are totally
4096 blocks. We have 16 Azure tables to preserve the iden-
tifiers for these blocks. According to the identifiers, we can
reach a blob directly. Each of the 16 Azure tables corre-
sponds to a bounding box areas, which is a specific region
(1/16 of the whole area shown in Figure 4). Given a point
(40 ◦59′N, 122 ◦7′W), we test 4 one-level bounding boxes
as shown in Figure 4. We find that the point is inside the
upper-left subarea. Then we divide the area into four quad-
rants along its mid points. We continue such test on the
second-level bounding box regions. Thus we narrow down
the search to a specific region. Then we use a linear search
in the corresponding Azure table to find the container name
for the given point. The blob name is known by the latitude
and longitude of the given point. According to the container
name and the blob name, the corresponding blob is located
for a given point.

5 Experiment

We evaluated the execution performance of our sys-
tem on various configurations and numbers of virtual ma-
chine instances. The experiment has been conducted on the
datasets for different number of seismic wave observation
stations, i.e., 10, 100, 500 and 1000 stations. Figure 5 shows
the total execution time of the program under various con-
figurations. Each computing job involves all available sta-
tions.

Firstly, the experiment shows that the .NET 4.0 Task
Parallel Library (TPL) helps decrease the execution time.

6

Performance Measurement –
Execution Time

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

Single Worker (4 core)

Four Worker (4 core)

Single worker (4 core) +
TPL
Four Worker (4 core) +
TPL
Two worker (8 core) + TPL

Number of stations

Ex
ec
ut
io
n
Ti
m
e

Figure 5. The execution time on performance
measurement.

The total execution time for 1000 stations performed by a
single worker role without TPL (i.e., using one CPU core,
thus totally 1 thread) is 985.06 seconds, whereas the execu-
tion time with TPL (i.e., a single worker role using 4 CPU
cores, thus totally 4 threads using the same CPU) is 365.91
seconds. The same experiment conducted on four worker
roles shows that the total execution time without TPL (i.e.,
totally four threads using 4 different CPUs) is 484.04 sec-
onds, whereas the execution time with TPL (i.e., totally 16
threads, 4 threads on each CPU) is 125.42 seconds.

The experiment conducted on two worker roles with TPL
on 8-core CPU machines (i.e., totally 16 threads, 8 threads
on each CPU) shows that the total execution time of com-
putation of data from 1000 stations is 95.97 seconds. The
execution time on a single worker role with TPL on 8-core
CPU machine (i.e., totally 8 threads on the same CPU) is
134.37 seconds. Thus, a single worker role using 8-core
machine is almost equal to four cored worker roles where
each uses a 4-core machines. The reason is due to the de-
crease on the number of queue messages to process. For
the former case, the job manager sends two messages in the
queue; whereas for the latter case, the job manager sends
four separate messages. Hence the number of messages is
twice.

We conclude that the number of messages significantly
affects on the total execution time. To increase the perfor-
mance, it is better to utilize all cores on the same CPU.

6 Related Work

Traditionally, seismic wave processing utilizes cluster
and grid computing. CyberShake [13] is a scientific work-
flow on grid computing which is used for Probabilistic Seis-
mic Hazard Analysis (PSHA). CyberShake has been exe-
cuted on grid-based computing environment at the South-
ern California Earthquake Center (SCEC) . Their analysis

shows that the grid-based environment is an ideal option
for CyberShake workflows and its data management. How-
ever, the grid-based environment will have its limit when
the computational demands increase.

Applying cloud computing to seismic processing is a rel-
atively new research area. Juve et al. study the performance
of Amazon EC2 cloud for a memory-intensive seismic ap-
plication [11]. The experiment shows that the performance
of the cloud is nearly the same to that of NCSA’s Abe cluster
[15], a typical high performance computing (HPC) system.

Cloud computing has been widely used to execute sci-
entific workflows. Hoffa et al. [9] apply cloud computing
to a widely used astronomy application-Montage. Accord-
ing to their experiment, the virtual environment can sustain
good compute time but the whole execution time can suffer
from resource scheduling delays and wide area communica-
tions. We [4] implement a high performance workflow sys-
tem called MRGIS based on MapReduce cloud computing
platform to execute GIS applications efficiently. The exper-
iment demonstrates that MRGIS can significantly improve
the performance of GIS workflow execution. Vecchiola et
al. [16] study the role of cloud in scientific computing. As
an example of scientific computing on cloud, a preliminary
case study on using Aneka [5] is presented for the classifi-
cation of gene expression data and the execution of fMRI
brain imaging workflow. To compare the performance of
cloud (e.g.Amazon EC2) with a dedicated HPC system, He
et al. [7] show that the virtualization technology adds a lit-
tle performance overhead and the poor network-capabilities
of the public cloud decreases the performance of applica-
tion. But clouds with better network-capabilities may im-
prove the performance of HPC applications.

Specifically, Hill et al. [8] discuss the performance ex-
periments conducted on Windows Azure. Through their
experiments, it has concluded that Windows Azure mech-
anisms provides good performance. They have also recom-
mended some experience while developing scientific appli-
cations to optimize the Azure storage services. They have
also suggested that dynamically adding VMs to a deploy-
ment at runtime is a useful feature of Azure by enabling
dynamic load matching.

7 Conclusions

In this paper we have implemented a system for process-
ing synthetic seismograms on Windows Azure. We also
propose and implement several optimization techniques
such as job manager, data storage and data query algorithm.
We evaluate the system on various configurations of vir-
tual machines offered by Windows Azure and compare the
execution time for our different optimization approaches.
Different optimization techniques affects the system per-
formance dramatically. The experiment shows that cloud

7

computing is an ideal platform for the rapid generation and
delivery of synthetic seismograms.

References

[1] Incorporated Research Institutions for Seismology
(IRIS), 2010. http://www.iris.edu.

[2] K. Aki and P. Richards. Quantitative Seismology. Uni-
versity Science Books Sausalito, California, 2002.

[3] Microsoft Azure. http://www.microsoft.com/windowsazure/.

[4] Q. Chen, L. Wang, and Z. Shang. MRGIS: A
MapReduce-Enabled high performance workflow sys-
tem for GIS. In the 3rd International Workshop on Sci-
entific Workflows and Business Workflow Standards in
e-Science (SWBES). IEEE Press, december 2008.

[5] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and
R. Buyya. Aneka: Next-generation enterprise grid
platform for e-science and e-business applications. In
E-SCIENCE ’07: Proceedings of the Third IEEE In-
ternational Conference on e-Science and Grid Com-
puting, pages 151–159, Washington, DC, USA, 2007.
IEEE Computer Society.

[6] D. Hadley and H. Kanamori. Seismic structure of the
transverse ranges, california. Geological Society of
America Bulletin, 88:1469–1478, 1977.

[7] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McG-
lynn. Case study for running hpc applications in pub-
lic clouds. In the 1st Workshop on Scientific Cloud
Computing (ScienceCloud 2010). ACM, 2010.

[8] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and
M. Humphrey. Early observations on the performance
of windows azure. In the 1st Workshop on Scientific
Cloud Computing (ScienceCloud 2010). ACM, 2010.

[9] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Kea-
hey, B. Berriman, and J. Good. On the use of cloud
computing for scientific workflows. In the 3rd Inter-
national Workshop on Scientific Workflows and Busi-
ness Workflow Standards in e-Science (SWBES), pages
640–645, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[10] R. Jennings. Cloud Computing with the Windows
Azure Platform. Wiley Publishing, 2009.

[11] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berri-
man, B. P. Berman, and P. Maechling. Scientific work-
flow applications on amazon EC2. In Workshop on
Cloud-based Services and Applications in conjunction
with 5th IEEE Internation Conference on e-Science (e-
Science 2009). IEEE Press, 2009.

[12] E. Lee, P. Chen, T. H. Jordan, P. J. Maechling, M. De-
nolle, and G. Beroza. Full-3d waveform tomography
for southern california. Eos Trans. AGU, 91(26), 2010.

[13] P. Maechling, E. Deelman, L. Zhao, R. Graves,
G. Mehta, N. Gupta, J. Mehringer, C. Kesselman,
S. Callaghan, D. Okaya, H. Francoeur, V. Gupta,
Y. Cui, K. Vahi, T. Jordan, and E. Field. SCEC
cybershake workflows automating probabilistic seis-
mic hazard analysis calculations. In Workflows for e-
Science, pages 143–163. Springer-Verlag, 2007.

[14] P. Mell and T. Grance. The NIST
definition of cloud computing, 2010.
http://csrc.nist.gov/groups/SNS/cloud-computing/.

[15] National Center for Supercomputing Applications.
http://www.ncsa.illinois.edu/UserInfo/Resources/
Hardware/Intel64Cluster/.

[16] C. Vecchiola, S. Pandey, and R. Buyya. High-
performance cloud computing: A view of scientific
applications. In ISPAN ’09: Proceedings of the 2009
10th International Symposium on Pervasive Systems,
Algorithms, and Networks, pages 4–16. IEEE Com-
puter Society, 2009.

[17] L. Zhao, P. Chen, and T. H. Jordan. Strain green’s
tensors, reciprocity and their applications to seismic
source and structure studies. Bulletin of the Seismo-
logical Society of America, 96(5):1753–1763, 2006.

8

