
Hierarchical Spark: A Multi-cluster Big Data Computing Framework

Zixia Liu, Hong Zhang, and Liqiang Wang
Department of Computer Science

University of Central Florida, Orlando, FL, USA
{zixia, hzhang1982}@knights.ucf.edu, lwang@cs.ucf.edu

Abstract—Nowadays, with the increasing burst of newly gen-
erated data everyday, as well as the vast expanding needs
for corresponding data analyses, grand challenges have been
brought to big data computing platforms. Computing resources
in a single cluster are often not able to fulfill the computing
capability needs. The requests of distributed computing resources
are dramatically arising. In addition, with increasing popularity
of cloud computing platforms, many organizations with data
security concerns are more favor to hybrid cloud, a multi-cluster
environment composed by both public cloud and private cloud in
purpose of keeping sensitive data local. All these scenarios show
great necessity of migrating big data computing to multi-cluster
environment.

In this paper, we present a hierarchical multi-cluster big data
computing framework built upon Apache Spark. Our frame-
work supports combination of heterogeneous Spark computing
clusters. With an integrated controller within the framework,
it also facilitates ability for submitting, monitoring, executing
of Spark workflow. Our experimental results show that the
proposed framework not only enables possibility of distributing
Spark workflow throughout multiple clusters, but also provides
significant performance improvement compared to single cluster
environment by optimizing utilization of multi-cluster computing
resources.

Key Words: Hybrid Cloud, Hierarchical, Multi-cluster, Big
data, Spark

I. INTRODUCTION

With the coming and on-going duration of the information
era, more and more data are generated everyday, even in an
exploding speed. These data carry lots of invaluable informa-
tion that are of great importance to human society and global
development. The necessity of analyzing such drastic amount
of big data stimulates the continuing prosperous development
of big data computing. Since the analytical process of such
data are way over the computational capability of even the
best single computing node, people spend great efforts to
develop parallel computing methods and platforms. Among
them, Apache Hadoop and Apache Spark are two of the most
popular open-source big data computing platforms. Apache
Hadoop utilizes HDFS (Hadoop Distributed File System) as
its storage layer, and uses MapReduce computing model
to provide end users a distributing computing platform that
has better reliability and scalability than traditional parallel
computing interfaces. Apache Spark further improves the per-
formance of Apache Hadoop by introducing RDD (Resilient
Distributed Dataset) object based on the in-memory technique.
Apache spark overall provides better distributed computing
performance for big data analytical workflow, which supports
much richer computational operations and more complicated
workflow structure comparing to Apache Hadoop.

Both Apache Hadoop and Apache Spark are deployed upon
the concept of cluster. All computing nodes form a cluster that
can be employed by the resource manager such as YARN to
schedule computing tasks. In this case, all internal nodes are
natively considered to have a local network connection with
other nodes in the cluster. However, distributed computing
may involve multiple geographical locations. Even if we use
the virtual private network (VPN) technique to connect these
computer into a single cluster, as the resource manager is
not able to detect and realize such heterogeneous network
structure, the cluster performance will degrade significantly. A
hybrid cloud is a good example to utilize distributed computing
on multiple geographical locations. A user may have one local
cluster initially, but then realizes the shortage of computing
resources due to data analytical demand, and decides to request
more resources from public cloud platforms such as Amazon
EC2. The user is then facing with the obstacle of how to
integrate and utilize the resources from both local private
cluster and public cloud computing recourses. On the other
aspect, with ongoing popularity of cloud computing platforms,
many organizations with data security concerns would like
to keep sensitive data local. In this scenario, it is of great
significance to enforce the isolation between multiple clusters,
in order to obey the data security standard. For example,
the data security standard may grant only the transferring of
computation generated intermediate data but not original input
data. These scenarios motivate great necessity of migrating big
data computing workflow to multi-cluster environment.

In this paper, we present a multi-cluster big data computing
framework built upon Spark. Our major contributions include:
• A framework that addresses the problem of utilizing

the computation capability provided by multiple Apache
Spark clusters, where heterogeneous clusters are also
permitted.

• A scheduling algorithm to optimize workflow execution
on our multi-cluster big data computing framework.

• An integrated controller within the framework, which
grants ability for submitting, monitoring, and finishing
of workflows.

II. RELATED WORK

MapReduce is a computational model with great popularity.
Apache Hadoop is a popular open-source implementation
of the MapReduce paradigm. There are several existing re-
search projects either providing a hierarchical level design for
the MapReduce model or even providing framework design
support for deploying MapReduce jobs to multiple cluster



environments. [17] proposes a new Map-reduce-Merge model
as an extension of the MapReduce paradigm. The new merge
phase can merge heterogeneous dataset already partitioned
and sorted by MapReduce and can express relational algebra
operators as well as join algorithms. However, it increases
system complexity and learning curve due to the introduction
of several new components. [11] classifies MapReduce jobs
into two categories based on whether they are recursively
reducible or not. It provides a solution that could support
hierarchical reduction or incremental reduction for recursively
reducible jobs, however it is only applicable to single cluster
environment. [12] introduces MRPGA (MapReduce for Par-
allel Genetic Algorithms), which additionally adds a second
reduce phase to the original MapReduce model in order to
address genetic algorithms, however, this extension is designed
for a special application and may not be suitable as a so-
lution for general MapReduce applications. The concept of
”distributed MapReduce” is introduced in [14], which is a
hierarchical design for MapReduce. However this solution is
lacking scheduling algorithm and programming model design.
[16] addresses the data analysis problem in the hybrid cluster,
which consists of a local cluster and cloud computing re-
sources, with the usage of both local and global reduce phases.
However, the solution also lacks scheduling algorithm. Luo et
al. [1],[9] presents a hierarchical MapReduce framework that
adopts the Map-Reduce-GlobalReduce model introduced in
the paper. The framework is capable of utilizing computational
resources from multiple clusters to collaboratively accomplish
MapReduce jobs, and it also provides scheduling algorithms
for compute-intensive jobs and data-intensive jobs.

However, all above solutions are targeted for MapReduce
paradigms, and are not designed for Apache Spark system.
To efficiently execute an application on hierarchical Spark
framework, deciding or estimating the computational work-
load for each component job is a significant measurement
for scheduling algorithms. In Hadoop, the component job
workload is usually propotional to its assigned input size.
However for Spark, since the distributed computation may
be entirely different, this assumption no longer holds. In this
case, a performance model is needed to provide computing
load estimation based on the jobs and cluster environment.
To the best of our knowledge, research work related to Spark
performance model is still relatively lacking. We found in total
four references [4], [5], [6], [8], which discuss topics related to
Spark performance model, it is certainly a research direction
with future potential. In this paper, we propose a performance
model to be used in our experiment.

III. ARCHITECTURE OF HIERARCHICAL SPARK

The architecture of hierarchical Spark mainly contains two
component layers, the global controller layer and the dis-
tributed layer. The global controller layer consists of the work-
flow scheduler and the global listener. The distributed layer
consists of the distributed daemons, each has job manager and
job monitor in charge of submitting and monitoring the job
allocated to corresponding cluster.

When using hierarchical Spark, users provide the following
files to the framework: (1) application files that contains
component jobs to form the overall workflow; (2) configura-
tion files that specifies application dependencies; (3) profiling
information for component jobs. If the profiling information
is absent, it can be supplemented by on-site profiling with
the original workflow and sample data. Upon receiving input,
the workflow scheduler extracts information, and then gener-
ates job allocation arrangement by our scheduling algorithm.
Once the arrangement is decided, the workflow scheduler
will utilize the global listener to distribute and start the
actual execution. The global listener is another component
of the global controller layer, based on the scheduling plan
provided by the workflow scheduler, the global listener will
deploy corresponding job to assigned clusters. It will also
communicate with distributed daemons, which manage job
submission and monitor job status. Once job finished, the
distributed daemon will notify the global listener so that the
latter will arrange transferring of the output file, submitting
other dependent jobs, or launching the final job, until the entire
workflow is finished. The architecture of hierarchical Spark is
illustrated in Figure 1.

Workflow 
Scheduler

Global
Listener

Global Controller

Workflow 
Scheduler

Global
Listener

Global Controller

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring 

is Allowed

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring 

is Allowed

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring 

is Allowed

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring 

is Allowed

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring 

is Allowed

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring 

is Allowed

Fig. 1. Architecture of Hierarchical Spark

A. Workflow Model

In hierarchical Spark, the workflow model contains three
type of components, i.e., non-dependent job, dependent job,
and final job. The non-dependent jobs are those jobs that start
from initial input files, and have no other dependencies. The
dependent jobs are those jobs that have dependencies on other
jobs, either non-dependent or dependent ones. The final job
is the last component in the entire workflow, this is fixed to
be executed on the central cluster. By dependencies, all these
component jobs form the entire workflow as the input of our
framework. Each job is a basic element that will be scheduled
to clusters for computation. Figure 2 illustrates a hierarchical
Spark workflow.

Recall in Spark, a job can be expressed as a DAG (Directed
Acyclic Graph), similarly, our framework workflow can also
be represented as a DAG. The transformation from original
spark workflow to the our framework workflow is natural.

Basically, Algorithm 1 starts by letting each stage in initial
spark DAG become a job in the framework workflow. Then,



Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Dependent 
Job

Dependent 
Job

Final Job

Fig. 2. Illustration of Hierarchical Spark Workflow

we suggest splitting jobs in the workflow into multiple ones,
or combine several jobs in the framework workflow into one
job. We recursively examine the workflow until there is no
new change. For example, in lines 3-8 of Algorithm 1, for
a job in the workflow, if its “inputsize” over “blocksize”
(equivalently the number of blocks) is very big, we suggest
split it into multiple jobs, with default suggesting splitting
number shown in algorithm. Conversely, in lines 11-18, by
looking at some job i together with its dependency jobs list
Di as a group, we can check whether using the whole group
as one job in our workflow is beneficial, then apply the change
if this will significantly lower total transit data meanwhile
not violating other constraints. We provide general default
values to thresholds in the algorithm, for example, the default
value of threshold1 is 10×(max # of executors in all clusters).
However they can also be specified by the user to customize
the suggestion engine.

Using the wordcount application as an example. When it is
used as the workflow input for our framework, Algorithm 1
will provide transformation plan from this Spark workflow to
our framework workflow. For this example, if the number of
block for the input file is larger than threshold1, we suggest
split the job into multiple ones. In this case, the split can
be accomplished by roughly repeating the unary operation
“reducebykey()” twice, with each new non-dependent job
taking care of one portion of the initial input file.

The core pesudo code for original wordcount application is
follows.

line.split(“ ”).map(word→ (word, 1)).reducebykey()

Core pesudo code for our framework wordcount application
(non-dependent jobs) is the same with the code above, which
also demonstrates that the transformation burden is little to
framework users. The core pseudo code for the final job is:

collectedresultline.map(parser(“K,V ” → (K,V )))
.reducebykey()

Algorithm 1 Spark Workflow Transformation Algorithm
1: Let each stage in Spark become a job
2: for each job i do
3: if (Di = ∅ && (β =# of clusterhasinput)>1 &&

input/blocksize > threshold1) then
4: split job to β jobs, update corresponding dependency

lists
5: end if
6: if (Di 6= ∅ && input/blocksize > threshold1) then
7: split job to input/(blocksize×threshold1) jobs, update

corresponding dependency lists
8: end if
9: end for

10: Change=true
11: while Change==true do
12: Change=false
13: for each job i do
14: if !IsNewSplittedJob(i) && total input blocks

to i <threshold1 && new output/original total
output<threshold2 && combined input exists if non-
dependent jobs are involved then

15: combine job i and Di into one job, update corre-
sponding dependency lists; Change=true;

16: end if
17: end for
18: end while

StageInput File StageInput File

StageInput File StageInput File

StageInput File StageInput File

StageInput File StageInput File

Stage

Stage

Final Stage

Non-
dependent 

Job

Combined 
Input File

Non-
dependent 

Job

Combined 
Input File

Non-
dependent 

Job

Input File

Non-
dependent 

Job

Input File

Non-
depdenden

t Job

Input File 
Split

Non-
depdenden

t Job

Input File 
Split

Dependen
t Job

Final Job

Non-
depdenden

t Job

Input File 
Split

Non-
depdenden

t Job

Input File 
Split

Spark DAG Framework Workflow DAG

Fig. 3. Illustrative Framework Workflow DAG Generation

This final job is added to act as an eventual collection
and reduce procedure for all intermediate data generated by
previous non-dependent jobs, its code is straightforward and
easy for framework users to add.

Figure 3 illustrates a more general case, by showing the
original spark DAG on the left and Framework workflow
DAG on the right. It shows that the general suggestion result
from our algorithm which may include some splitting as well
as combing, with other stages in the original DAG directly
becoming corresponding jobs in our new workflow.

IV. SCHEDULING ALGORITHM

Our framework not only aims at enabling distributing com-
ponent jobs of an entire workflow to multiple spark clusters for
cooperated computing, but is also equipped with scheduling
algorithm designed to better achieve multi-job & multi-cluster



scheduling in purpose for better performance. Our proposed
algorithm is shown in Algorithm 2.

Multi-job & multi-cluster job scheduling is a well-known
NP-hard problem. To achieve a good solution in an efficient
way, we use simulated annealing as the major heuristic algo-
rithm for solution searching. To further increase the efficiency,
we use greedy algorithm to achieve a better initial solution that
will be provided as input to the simulated annealing algorithm.

Regardless of the choice of heuristic algorithms, the core
design of our scheduling algorithm is nonetheless the evalu-
ation function that could assess the scheduling arrangement.
Since our aim is to reduce the total execution time of the
entire workflow, our evaluation function is designed to be
capable of evaluating the running time cost of a specific
scheduling arrangement. Further, the evaluation function needs
a performance model, which can provide us an estimation for
the running time of a job on a cluster.

A. Performance Model

Now, we provide the performance model that could estimate
the running time of a job on a candidate cluster. To better
introduce the entire performance function, we first introduce
the performance model for a stage in a job. Its details are as
follows:

Let l be the average computing time of a task in a stage
using its required executor. We define it in unit of second. Let
c denote the total available executors in a cluster for this job.
Let a denote the number of tasks in a RDD in a stage, we
choose the maximum number of tasks in a RDD in a stage if
RDDs in a stage have different number of tasks.

Thus, a/c represents possible waves during execution.
The performance model for a stage is defined as:

tstage = l · a/c (1)

Now, we propose the performance function that models the
execution of a job into a more detailed level as running of
stages, relevant to the stage running concept in Spark.

PF =
InputSize

SampleSize
× (
∑
stages

tstage +
∑

shuffles

ST ∗ nF ) (2)

where ST is the intermediate data shuffle time that happens
between stages. If no shuffle exists between some stages,
corresponding shuffle time equals zero. nF is the network
factor, which can reflect the different internal network speed
of cluster. Notice that we consider the possibility that the
profiling may be corresponding to a sampling data, instead
of the entire input data, so the ratio of InputSize over
SampleSize is also considered in the formula.

This performance function is currently adopted in our
framework. Nonetheless, we would like to point out that, when
applicable, depending on different coarseness of profiling data,
the performance function can certainly be replaced by even
more specially designed or more complicated performance
models suitable for certain scenarios corresponding to the
actual application.

B. Scheduling Algorithm and Evaluation Function

When designing the scheduling algorithm for our frame-
work, we have considered different options at the early stage.
The non-dependent jobs in our framework are a little special,
as each of them has no dependencies, thus all can be submitted
at the beginning of the execution. Consider these jobs as
a group, one option for scheduling is the initial optimizing
scheme designed to focus on optimizing the arrangements of
this group for better performance. As stated before, to decide
an optimized plan for all jobs in this group, we use greedy
algorithm (sort all stages with computing load in descending
order) to achieve an arrangement plan, and then an on-the-
fly arrangement plan for other jobs in the workflow in actual
submission time order. In this scheme, the arrangement plan
for all non-dependent jobs will not consider the consequences
it brought to other dependent jobs which depends on them, it
therefore can be seen as a non-forward-looking scheme.

Stimulated from this idea, but further improved, we design
a global optimizing scheme aims at providing an overall
scheduling arrangement of the entire workflow. We want to
take into consideration the consequential effect of optimizing
non-dependent jobs it may bring to the later jobs. In other
words, instead of providing current moment optimized ar-
rangement plan, we would like to take global vision, foresee
the whole picture of workflow DAG, then decide an arrange-
ment plan for each job in the workflow. Due to its more
advanced feature, we select this scheme as our framework
scheduling scheme. The entire arrangement plan will be de-
cided based on the following procedure:

Firstly, similar as proposed in the initial optimizing
scheme, we obtain arrangement plan for all non-dependent
jobs by greedy algorithm. Now, for each non-dependent
job, the scheduling plan for it will be represented as
(cluster, tstart, tfinish), where cluster is the selected cluster,
tstart is the job start time. tfinish is the job finish time
generated by the performance function.

For all dependent jobs, the tuple (cluster, tstart, tfinish)
can be filled in by first calculating jobst using equation 3:

jobst[s
′][j] = max(t′, clusterat[j]) (3)

where t′ = max
s
{tfinish of s + IMO(s, s′)|s ∈

dep set of s′}, IMO() is the intermediate output transferring
time for two jobs, clusterat[j] is the available time of cluster
j which s′ may depoly to. Equation 3 is also used for non-
dependent jobs by considering their dependency set as empty
and only use clusters that has its input.

For any job where its dependencies has been cleared, its
jobst[s

′][] times are available. All these jobs can gradually be
fit into the greedy algorithm. Once their cluster arrangements
are decided, the corresponding tstart, and tfinish components
can be filled in. Recursively, this can form an entire initial
scheduling plan for the entire workflow, this part is shown in
lines 3-33 in our proposed Algorithm 2. In fact, during this
process, we are already simulating the execution process of
the workflow together with the usage of greedy algorithms



for achieving an initial scheduling plan. The similar idea
of simulation will be used as the evaluation function in the
iteration process of the simulated annealing algorithm, where
tfinish of the final job is the eventual output of the evaluation
function.

Secondly, for simulated annealing, each time it will ran-
domly change one cluster arrangement if suitable, feed into the
evaluation function E() to simulate its execution to achieve
the new tfinish of the final job, which is the result of the
evaluation function E(). Based on its result and therefore
the result of the function P (), the simulated annealing can
decide whether to keep the current plan or to update to the
new one. The idea of the simulated annealing is that, if
the new arrangement is better than the current one, it will
always accepts it; however, if the new arrangement is worse
than the current one, it will stochastically accepts it, which
helps in jumping out of the “local” extrema. The probability
depends on the parameter αT and the evaluation difference.
At the beginning of simulated annealing, the result of exp()
function if used is very close to 1 and therefore there is much
higher chance for accepting bad arrangements. In contrary,
when nearing to the end of the algorithm, T , therefore αT ,
becomes small and the chance of accepting bad arrangement is
significantly decreased. This simulated the physical annealing
process where T act as the “temperature” in original pro-
cess. This algorithm is good at obtaining global extreme for
scheduling arrangement. Parameter α is used to make sure that
according to the range of evaluation function difference, the
initial probability to accept bad arrangement is very close to 1.
The function P () used in our simulatedAnnealing() function
is:

P (E(S), E(Snew), T ) =

{
1 IF E(snew) ≤ E(s)

exp
(
E(s)−E(snew)

αT

)
Otherwise

(4)

The SimulatedAnnealing() function is shown in lines 35-
43 in Algorithm 2. To supplement the detail, we now will
state the definition of the evaluation function E(), which is a
simulation process, as follows:

The input for the simulation engine is the set of jobs, each
with a configuration tuple (cluster, tstart). The simulation
process will then generate a simulated running for each
cluster. For each cluster, the input is the tuples with format
(job, tstart). The simulated cluster submit the job to it by
order of start time. For all jobs with tstart time undecided,
the cluster simulation will wait until its dependencies are
all cleared. Then each job on the cluster simulation will
simulate its running by result from the performance function,
with currently updated cluster information being considered.
Simulations for all clusters are processed simultaneously.
Eventually, all simulation of all clusters are finished, then
the tfinish of the final job becomes the eventual output of
the evaluation function. An illustration graph of this process
can be found in Figure 4. Now, we can formally state our
scheduling algorithm in Algorithm 2.

Clusters

Positive time direction

Time t Other awaiting dependent jobs will be 
added to corresponding execution line 

once dependencies are cleared

Non-dependent 
jobs

Dependent 
jobs

Fig. 4. Cluster Running Simulation

V. IMPLEMENTATION ISSUES

A. Global Controller and Distributed Daemon

To enable the distributing, monitoring and executing of the
big data analytical workflow, we designed global controller
and distributed daemon in our proposed multi-cluster big data
computing framework.

The global controller is composed by the workflow sched-
uler and global listener, the workflow scheduler accepts user
provided framework input, extract necessary information, and
provide the scheduling arrangement result. The global listener
is constructed as a multi-threading program, where all dis-
tributed daemon will be connected to it. Functionality of the
global listener include: Send job arrangement to corresponding
distributed daemon, order the moving of intermediate files.

The distributed daemon are composed by the job manager
and the job monitor. Upon receiving job arrangement, the
distributed daemon will submit the job to the cluster, it
will also capture the application ID after submission, using
it to monitor the job status. Once succeed, the distributed
daemon will notify the global listener about the status update
and intermediate file collection movements will be applied if
necessary.

B. File Transfer

During the execution of the workflow, there are certain
steps that contain or require intermediate data file transfer. For
example, the final job definitely relies on outputs generated
by some other jobs in the workflow. Also, when deploying
dependent jobs, it may be necessary to apply movement of
intermediate data to other clusters. In our framework, we
assume the underlying file system to be HDFS (Hadoop
Distributed File System). In order to make the file transfer
more efficient, instead of applying the HDFS to local, transfer,
then local to HDFS procedure, we use transfer command
provided by the HDFS API (hdfs distcp) to facilitate direct
and efficient parallel file transfer between source and target
HDFS system.



Algorithm 2 Scheduling Algorithm
1: Create Scheduling[], cluster available time clusterat[].

For each job i, create estimated job start time jobst[i][],
dependency list D[i][], and the wall clock time for all
jobs in dependency lists of job i, i.e., Dep-walltime[i][].
For each cluster j, create Running[j][] to record running
interval and capability usage of each job on cluster

2:
3: GreedySolution() {
4: while RemainingJob!=0 do
5: for each job i where Scheduling[i]=Null do
6: if D[i][]==Null then
7: scheduling-pool.add(job i)
8: jobst[i][]= Eqn(3) result by Dep-walltime[i][]
9: end if

10: end for
11: if All jobs in pool has same min start time then
12: Sort(scheduling-pool, computing load, descending)
13: else
14: Sort(scheduling-pool, min

j
(jobst[i][j]), descending)

15: end if
16: for each job i in scheduling-pool do
17: initialize Score[];
18: for each candidate cluster j do
19: // Using reciprocal of estimated job finishing time

as score for cluster j w.r.t job i for scheduling
20: decide cluster j capability by Running[j][] and

jobst[i][j]
21: Score[j]=1/(jobst[i][j] + PF (i, j))
22: end for
23: j=Scheduling[i]=argmax(Score[])
24: RemainingJob−−
25: jobwalltime = jobst[i][j] + PF (i, j)
26: update Running[j][]
27: if cluster j is fully occupied by submitting job i then
28: clusterat[j] = min(jobwalltime) for current jobs

on j
29: end if
30: Delete job i from all dependency lists, adding

jobwalltime to corresponding Dep-walltime[][]
31: end for
32: end while
33: return Scheduling }
34:
35: SimulatedAnnealing() {
36: for k = 0 through kmax do
37: T = 100× ( kmax

√
0.001)k

38: Scheduling’ = randomAlternation(Scheduling)
39: if P(E(Scheduling), E(Scheduling’), T) >= rand(0, 1))

then
40: Scheduling=Scheduling’
41: end if
42: end for
43: return Scheduling }

VI. EXPERIMENTS

Our experiments are done on Amazon EC2 cloud computing
platform, the Hadoop version is 2.7.3, and the Spark version
is 2.1.0. Each cluster used in the experiment utilizes at most
9 m4.xlarge computing nodes to compose cluster of different
sizes. For each cluster we mention below, the number of nodes
are referring to data nodes (computing nodes) in the cluster and
there will be an extra name node in the cluster as well. We set
one executor on each computing node that utilizes four virtual
cores. There are mainly two purposes of our experiments. First,
to show that by enabling multi-cluster collaborative execution,
we could dispatch the original workflow by component jobs
that could run on different clusters. Second, in some situations,
the distributed workflow can also outperform the original
application due to enabling of computing resources from
multiple clusters and our designed scheduling algorithm. Our
first experiment uses the WordCount application.
• WordCount: Comparing Effort of Original and Dis-

tributed workflow
In the first experiment, we run WordCount on 100GB input

file with a 6-node cluster, this will act as our execution for
the original workflow and as the comparing case for other
distributed workflows.

For comparison, we run the distributed workflow on two,
three, and four clusters (one of them is the central cluster
where the final job is on), each having 6 computing nodes,
and each deals with its proportional portion of the original
total input. We further assume all clusters have all inputs in
this experiment. The distributed component jobs are the same
as the original WordCount job, however, in the end, the output
files will be collected to the main 6 nodes cluster, and apply an
additional application which act as a global reduce process. For
100 GB input on original workflow on one single cluster with 6
computing nodes, the total execution time is 16 minutes. As an
example, in comparison, for three cluster scenarios, the 33 GB
input on 6-node cluster costs a maximum of 5.6 min execution
time, the generated output file is around 2 MB for each cluster,
gathering them to the main cluster using HDFS distcp will
cost around 20s, and the final job running time on the 6-node
main cluster will cost about 49 seconds. Due to the scale of
the workflow, other overhead caused by the architecture is
low enough to be ignored, in fact, the scheduling algorithm
can even be omitted in this special case. Therefore, the total
performance comparison is 16 minutes vs 6.8 minutes, which
yields a 2.35 times speed up. The result related to all number
of clusters is shown in Figure 5.
• WordCount: Comparing Effect of Default and Our Pro-

posed Scheduling Algorithm
In the second experiment case for WordCount, the scenario

simulates where there are four clusters, with 2, 4, 6, 8 comput-
ing nodes respectively. The 8 nodes cluster is the central clus-
ter where the final job is on. Four identical component jobs are
split from the original WordCount computing, each deal with
1/10, 1/5, 3/10, 2/5 portion of the 100G input, proportional to
the component cluster’s computing node numbers. The entire



0

2

4

6

8

10

12

14

16

18

1 Cluster 2 Clusters 3 Clusters 4 Clusters

To
ta

l E
xe

cu
ti

o
n

 T
im

e 
(m

in
u

te
)

Max component job running time

Intermediate output data transit

Final job running time

Fig. 5. Wordcount Workflow Execution Time Comparison

computation process is the same as in the first experiment. We
further assume all clusters have all inputs in this experiment.
Now, suppose we adopt the default fair scheduling algorithm
in Spark to our framework. If all workloads are in descending
order of their input size (as well as computing burden in
this case), but all cluster are in ascending order of their
number of nodes, then by fair scheduling, the heaviest task
will be arranged to the smallest cluster, etc. However, for
our scheduling algorithm, no matter what the sequence of
the workloads and clusters are, the scheduling will make the
correct decision to send corresponding component jobs to the
cluster that is proportional to its computing load. We now show
the experiment result in Table I.

Computing job with 2/5 of total input

Computing job with 3/10 of 
total input

Computing job with 
1/5 of total input

Computing 
job with 1/10 
of total input

Scheduling 
Arrangement

Fig. 6. Illustration Graph for Component Jobs and Clusters

TABLE I
COMPONENT FINISHING TIME WITH DIFFERENT SCHEDULING SCHEMES

Fair Scheduling Proposed Scheduling
Cluster Input Finish Time Input Finish Time

cluster-1 (2 nodes) 2/5 19 mins 1/10 5.0 mins
cluster-2 (4 nodes) 3/10 5.2 mins 1/5 5.2 mins
cluster-3 (6 nodes) 1/5 5.2 mins 3/10 5.2 mins
cluster-4 (8 nodes) 1/10 5.3 mins 2/5 5.3 mins

We can observe from the result that, for the default fair
scheduling scheme, the longest component job running time
is 19 minutes, whereas for our proposed scheduling algorithm,
the longest component time is 5.3 minutes, since all interme-
diate outputs from all components jobs are all very similar in
sizes (about 2 MB), and the running time for the final process

job will be very similar as well, the running time improvement
in the component jobs will greatly be reflected in the overall
execution time. Therefore, our proposed scheduling algorithm
is better than the default scheduling scheme in Spark. In fact,
for component jobs only, the maximum running time achieves
a 3.58 times speedup by scheduling arrangement improvement.
• GIS Analytical Workflow: A Practical Workflow Demon-

stration on Hierarchical Spark
In [2] and [3], some GIS (Geographical Information System)

computations have been accomplished on parallel computing
platforms, especially in [3], these computations are executed
on Apache Spark platform. Such computations include geo-
graphic mean computation, geographic median computation,
etc. Stimulated by such application, in this experiment, we try
to distribute an actual GIS workflow to multiple clusters by
our framework. The workflow uses users’ twitter sending GPS
positions with format (userID, lon, lat) as input, accumulated
by user ID, calculate their geographic mean and median,
then join the results by user ID again to achieve a tuple
for each user that could describe the geographical social
behavior center for the user for further analysis, the output
format is (userID, Geographic Mean, Geographic Median).
The definition of geographic mean and median, together with
a workflow illustration graph in Figure 7 is shown below:

Geographic Mean:

LON =

∑n

i=1
loni

n
LAT =

∑n

i=1
lati

n
(5)

Geographic Median:

Median = min
x∈space

n∑
i=1

√
(xlat − lati)2 + (xlon − loni)2 (6)

Accumulation
Input Split 

1
Accumulation

Input Split 
1

Accumulation
Input Split 

2
Accumulation

Input Split 
2

Geographic 
Median

Whole 
Input

Geographic 
Median

Whole 
Input

Geographic 
Mean

Join

Spark DAG Framework Workflow DAG

Whole 
Input

Geographic 
Median

Whole 
Input

Geographic 
Median

Whole 
Input

Geographic 
Mean

Join

Fig. 7. Illustration Graph for Spark DAG Workflow and Framework DAG
Workflow

This experiment shows a scenario with three component
clusters. The first cluster has 4 nodes and is a private cluster
with half of the whole input data, which are sensitive. The
second cluster has 4 nodes and is a public cluster with
second half of non-sensitive data. The third cluster has 8
nodes (central cluster) and is a private cluster with whole
input. In the framework workflow, since the geographic median
computation requires whole input, it is kept as one job
and deployed to third cluster. The original geographic mean
computation is firstly split into two accumulation component
jobs, with each one takes half of whole input on the first and



second cluster respectively, accumulates their GPS locations
and number of occurrence, generate output in format (userID,
accumulated lon, accumulated lat, number of occurrence).
Then, the geographic mean job in our framework workflow
which reduces the intermediate outputs from two accumulation
jobs is launched on the first cluster. Eventually, both interme-
diate outputs from geographic mean and geographic median
jobs are gathered to central cluster, where the joining of the
two intermediate results by userID is launched to achieve final
result desired.

The execution time comparison is shown in Table II. It
shows that our framework not only enables the collaborative
execution of this workflow on multiple clusters, but also
achieves performance improvement comparing to the original
single cluster execution. It is also worth mentioning that this
experiment well demonstrates the capability of our framework
in maintaining certain data security and isolation standards.

TABLE II
COMPONENT JOB FINISHING TIME AND TOTAL EXECUTION TIME OF

FRAMEWORK WORKFLOW (IN COMPARISON, TOTAL EXECUTION TIME IN
ONE CLUSTER IS 3.3 MIN)

Framework workflow Time
Accumulation 1 55 s
Accumulation 2 59 s

Geographic Mean 23 s
Geographic Median 1.5 min

Final Join 45 s
Total Execution 2.8 min

VII. CONCLUSIONS AND FUTURE WORK

We design a scheduling algorithm basing on the heuristic
simulated annealing approach. The experiments shows that,
our framework not only enables the functionality to distribute
original spark workflow to multiple clusters for collaborative
execution, it also provides great performance improvement due
to better utilization of the overall computing resources.

In the future work, we would like to focus on extending
the functionality of the framework that could support iterative
computation workflow, this shall be reflected in a more compli-
cated global controller that could coordinate inter-framework-
calling file transfer and could iteratively call framework for
each iteration.

VIII. ACKNOWLEDGEMENT

This work was supported in part by NSF-CAREER-
1622292.

REFERENCES

[1] Y. Luo, B. Plale, Z. Guo, W. Li, J. Qiu and Y. Sun,
“Hierarchical MapReduce: towards simplified crossdo-
main data processing.” Concurrency and Computation:
Practice and Experience 26.4 (2014): 878-893.

[2] Z. Hong, Z. Sun, Z. Liu, C. Xu, and L. Wang, “Dart: A
geographic information system on hadoop.” 2015 IEEE
Cloud Computing (CLOUD).

[3] Z. Sun, Z. Hong, Z. Liu, C. Xu, and L. Wang, “Migrat-
ing GIS Big Data Computing from Hadoop to Spark:
An Exemplary Study Using Twitter.” 2016 IEEE Cloud
Computing (CLOUD).

[4] K. Wang, and M.M.H. Khan, “Performance prediction
for apache spark platform.” 2015 IEEE HPCC.

[5] G.P. Gibilisco, M. Li, L. Zhang, D. Ardagna, “Stage
aware performance modeling of DAG based in mem-
ory analytic platforms.” 2016 IEEE Cloud Computing
(CLOUD).

[6] K. Wang, M.M.H. Khan, N. Nguyen, and S. Gokhale,
“Modeling Interference for Apache Spark Jobs.” 2016
IEEE Cloud Computing (CLOUD).

[7] V. Subramanian, L. Wang, E.J. Lee, and P. Chen,
“Rapid Processing of Synthetic Seismograms Using
Windows Azure Cloud”, IEEE CloudCom, 2010.

[8] G. Wang, J. Xu, and B. He. “A Novel Method for
Tuning Configuration Parameters of Spark Based on
Machine Learning.” 2016 IEEE HPCC.

[9] Y. Luo, Z. Guo, Y. Sun, B. Plale, J. Qiu, and W.W. Li,
“A hierarchical framework for cross-domain MapRe-
duce execution.” Proceedings of the second interna-
tional workshop on Emerging computational methods
for the life sciences. ACM, 2011.

[10] V. Subramanian, H. Ma, L. Wang, E.J. Lee, and P.
Chen, “Rapid 3D Seismic Source Inversion Using
Windows Azure and Amazon EC2”, IEEE SERVICES,
2011.

[11] M. Elteir, H. Lin, and W. Feng, “Enhancing mapre-
duce via asynchronous data processing.” , 2010 IEEE
Parallel and Distributed Systems (ICPADS).

[12] C. Jin, C. Vecchiola, and R. Buyya, “MRPGA: an
extension of MapReduce for parallelizing genetic al-
gorithms.” eScience, 2008. eScience’08. IEEE Fourth
International Conference on. IEEE, 2008.

[13] H. Huang, L. Wang, B.C. Tak, L. Wang, and C.
Tang, “CAP3: A Cloud Auto-Provisioning Framework
for Parallel Processing Using On-Demand and Spot
Instances”, 2013 IEEE Cloud Computing (CLOUD).

[14] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and
J. Weissman, “Exploring mapreduce efficiency with
highly-distributed data.” Proceedings of the second
international workshop on MapReduce and its appli-
cations. ACM, 2011.

[15] H. Zhang, H. Huang, and L. Wang, “MRapid: An Ef-
ficient Short Job Optimizer on Hadoop”, IEEE IPDPS
2017.

[16] T. Bicer, D. Chiu, and G. Agrawal. “A framework for
data-intensive computing with cloud bursting.” IEEE
Cluster computing, 2011.

[17] H.C. Yang, A. Dasdan, R.L. Hsiao, and D.S. Parker,
“Map-reduce-merge: simplified relational data process-
ing on large clusters.” Proceedings of the 2007 ACM
SIGMOD international conference on Management of
data. ACM, 2007.


