
Auto-tuning Performance of MPI Parallel Programs Using Resource
Management in Container-based Virtual Cloud

Hongyi Ma1, Liqiang Wang2, Byung Chul Tak3, Long Wang3, and Chunqiang Tang4

1University of Wyoming. {hma3}@uwyo.edu
2University of Central Florida. {lwang}@cs.ucf.edu

3IBM Thomas J. Watson Research Center. {btak, wanglo}@us.ibm.com
4Facebook, Inc. tang@fb.com

Abstract—Load imbalance problem is one of the
major obstacles to achieving optimal performance of
High Performance Computing applications. The ap-
proach of trying to distribute the problem pieces to
each node with the hope of balancing execution time
has limits since the performance depends not only on
data size but also on many other dynamic factors.
This paper describes an approach that uses adaptive
resource management enabled by the container-based
virtualization to solve the load imbalance problem of
MPI programs running in the cloud. Our techniques
dynamically adjust CPU resource allocation to MPI
processes running as container instances according
to the current program execution state and system
resource status. The resource allocation among MPI
processes is adjusted in two ways: the intra-host level,
which dynamically adjusts resources within a host; and
the inter-host level, which migrates containers together
with MPI processes from one host to another host.
We have implemented and evaluated our approach
on Amazon EC2 platform using real-world scientific
benchmarks and applications, which demonstrates that
the performance can be improved up to 31% (with an
average of 15%) when compared with the baseline.

I. INTRODUCTION

With advances of High-Performance Computing

(HPC) in scientific computing, the idea of the cloud

as a platform for HPC applications draws large

attentions since it has high potential to provide

great cost benefits and convenience for researchers

and engineers in implementing and running HPC

program tasks. Users can simply rent computing

resources in the form of a cluster of instances from

the cloud providers such as Amazon EC2 [1] ,

IBM Bluemix [2] and Microsoft Azure [7] on

demand with reasonable cost instead of owning and

maintaining physical clusters [19] [14].

However, there are still several open research

problems to be solved in order for the cloud to

see wider adoption by the HPC community such as

concerns over suboptimal performances, and concur-

rency errors [15] [16]. In the performance aspect,

one of the major contributor of the performance

degradation is known to be the load imbalance prob-

lem [21]. Load imbalance causes the nodes running

in parallel to finish unevenly in time and the overall

performance becomes the performance of the slowest

node. In the cloud, traditional way of distributing

equal-sized problem instances to each computing

node may not always be an effective way of han-

dling the load imbalance because of the dynamic

and heterogeneous nature of the cloud environments

such as hardware and virtual resource heterogeneity,

sharing of storage I/O, network connection and vary-

ing computation capacities on different nodes. Load

imbalance could be also caused by the interference

of other unknown applications in the cloud.

Contrary to the traditional methods of focusing

on balancing computing loads, such as [21], [12],

we emphasize on on-the-fly resource management in

response to the observed progress of each processing

element using operating system level virtualization.

There are two folds of benefits in using the approach

of automatic online resource adjustment. Firstly, the

approach allows us to transparently handle unpre-

dictable performance issues as we take execution

time into account as metrics in resource manage-

ment. Secondly, dynamically adjusting compute re-

sources in response to load imbalance avoids manual

code modification or code translation.

Container-based virtualization is a lightweight

virtualization technique for resource isolation and

adjustment. Each container performs and executes

exactly like a stand-alone server or an independent

operating system, which can reboot independently,

have root access to configure, and install softwares.

A container may have independent IP address, mem-

ory, processes, files system, and system libraries. We

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.76

545

can dynamically adjust compute resources, such as

CPU, memory, and I/O, allocated for each container

within a host. Compare to hypervisor-based virtual-

ization, which often has an overhead as high as 40%

the overhead of container-based virtualization is as

low as 2%, which is near native performance. In this

work we have used OpenVZ container [20] because

it supports live migration of processes and worked

for public cloud platforms such as Amazon EC2.

Other container tools, such as LXC [3] and Docker

[8], did not support live migrations very well yet.

Key idea of our approach is to periodically adjust

CPU resource allocations based on the measured

information about the MPI process execution time

in containers and the compute capacity of hosts.

Main benefit of our auto-tuning approach is the

ability to utilize the capabilities provided by the

virtualization techniques to automatically adjust sys-

tem resource allocation. Our evaluation shows that it

achieves similar or better performance compared to

these existing techniques. We conducted experiments

on Amazon EC2 using NAS, UTS, stencil2D, and

Jacob1D benchmarks and our technique could reduce

execution time by an average of 15% and up to 31%

compared to the original execution.

II. BACKGROUND AND RELATED WORK

Developers designed specific load balancing al-

gorithms according to the characteristics of data

distribution or parallel computation to improve the

performance of MPI applications [6]. These types of

load balance algorithms usually achieve good perfor-

mance, but are tightly coupled with specific applica-

tions or programming models. Various application-

independent load balancing approaches have been

proposed in response to these shortcomings. Cray-

Pat [10] has a cost model that selects the best

load balance algorithm for particular applications

based on their load balance metrics. Charm++ [4] is

a message-driven object-oriented parallel program-

ming language that provides a high-level abstraction

of parallel programs. Dynamic load balancing can be

achieved by decomposing applications into Charm++

objects, which can be mapped to and migrated across

available processors in Charm++ runtime. Adaptive

MPI (AMPI) [13] is an implementation of MPI on

top of Charm++ which provides virtual processors

for applications and allows MPI processes to be used

in Charm++ runtime. Based on Charm++ and AMPI,

Gupta et al. proposes a dynamic load balancing ap-

proach for tightly coupled iterative HPC applications

in the cloud through periodic refinement of task

Host 1
Resource Reallocation

Host Resource Coordinator

H/W
System Resource

Container
MPI Process

MPI Monitor

Container

MPI Process

MPI Monitor

H/W
System Resource

H/W
System Resource

 Resource Reallocation Resource Reallocation

Host Resource Coordinator Host Resource Coordinator

Container Container Container Container
MPI Process MPI Process MPI Process MPI Process

MPI Monitor MPI Monitor MPI Monitor MPI Monitor

Container
MPI Process

MPI Monitor

Migration

Cluster Resource
Coordinator

Host 2 Host 3

Figure 1. Architecture of our dynamic resource adjustment.

distribution [12]. The approach in [12] automatically

applies a load balancing strategy for iterative compu-

tation. The workload is calculated based on the CPU

time consumed by the tasks on VCPUs. Corbalan

et al. proposes a processor balancing approach for

hybrid OpenMP and MPI applications that can dy-

namically measure the percentage of computational

load imbalance on different processes, then assign

more CPU cores to the slow processes [9]. But this

approach only focuses on resource adjustment for

OpenMP threads within a single machine.

The main idea of our performance optimization

for HPC applications in the cloud is to dynamically

adjust CPU resource allocations based on the mea-

sured runtime information, i.e., MPI process execu-

tion time in containers and the compute capacity of

hosts. The adjustment is based on container virtual-

ization on two levels: the host level and the cluster

level. At the host level, our approach moves CPU

resource allocation from under-utilized containers

to the overloaded containers. At the cluster level,

our approach further monitors resource utilization

of physical hosts, then migrates containers from

overloaded ones to less-utilized ones. This further

reduces load imbalance across the entire cluster by

effectively reassigning overloaded jobs.

III. INTRA-HOST AUTO-TUNING RESOURCE

REALLOCATION

Our dynamic resource adjustment mechanism con-

sists of three major components: MPI monitor, re-
source coordinator, and cluster resource coordina-
tor, as illustrated in Figure 1.

MPI monitors are constructed as wrappers of the

MPI library in order to collect execution information.

At each host, a host resource coordinator runs an

546

Algorithm 1 Dynamic CPU resource adjustment

within a host
1: % k is the current MPI process ID, and K is the total

number of MPI processes.%
2: % mpiRankList is a list of MPI processes whose

interval execution times have been received.%
3: % cpuUnits[k] is the CPU share units to be assigned

to MPI process k.%
4: % exeT [k] is the accumulated interval time reported

by MPI process k in the current sliding window. %
5: % slidingWin[k] is a queue where the Max number

of synchronized MPI routine invocation are kept for
MPI process k.%

6:

7: void DynamicCPUAdjustment(){
8: while (Upon receiving a message {interval, k} from

an MPI routine call) do
9: mpiRankList.put(k);

10: slidingWin[k].enqueue(interval);
11: if (slidingWin[k].size() >=Max) then
12: slidingWin[k].dequeue();
13: end if
14: exeT [k] =

∑Max−1
i=0 slidingWin[k][i]);

15: cpuLimits[k] = 100%
16: if (mpiRankList.size()! = K) then
17: cpuUnits[k] = waitV alue;
18: else
19: % reallocate resource for the next phase %
20: for k = 0 to K − 1 do
21: cpuUnit[k] = exeT [k]/

K−1∑

i=0

exeT [i];

22: end for
23: mpiRankList.clear();
24: end if
25: end while

auto-tuning algorithm that dynamically adjusts CPU

allocations among the hosted containers (i.e., MPI

processes) to reduce load imbalances. Resource co-
ordinator takes CPU resources from under-utilized

containers and gives them to more heavily loaded

ones. In the context of this paper, each container runs

one MPI process. The cluster resource coordinator
aims to eliminate load imbalances across physical

hosts by migrating containers on the busy hosts to

these with surplus resource capacity.

A. Auto-Tuning at Host Level

The resource management algorithm within a host,

i.e., Algorithm 1, is executed whenever an interval

report message is received by the host resource

coordinator. OpenVZ supports CPU resource man-

agement for containers at the host level. It controls

the allocation of CPU resources according to the

ratio of CPU unit shares of all containing processes.

Once time intervals of all processes from MPI mon-

itors have been received, we adjust CPU unit shares

among containers according to the ratio of execution

time of all containers. If the execution time of

some MPI processes have not been received, which

indicates that the MPI processes are still running

and have not reached the current rendezvous point,

we use the elapsed wall clock time as the current

execution time for adjusting CPU shares.

In Algorithm 1, for the containers that have al-

ready finished their work in the current phase, we

release most of their CPU occupation but keep them

in busy polling by assigning to them a small value

of CPU units waitValue. At the beginning of the next

phase, for each MPI process, its accumulated execu-

tion times within the recent a few MPI invocations

(denoted by a sliding window, i.e., slidingWin)

is used to compute the CPU share units for the

next phase. Specifically, due to the design of MPI

collectives routines, even MPI processes are waiting

for the others, they would still exchange the buffer

information in order to synchronize. So, we consider

these communication time caused by the collectives

routines also belongs to the computation time.

Each MPI process is assigned with the ratio of

its accumulated execution time against the total

accumulated execution time of all the MPI processes,

i.e., cpuUnits. The larger the cpuUnits is, the more

CPU time this container will get. One serial MPI

process cannot utilize two or more physical CPU

cores. To utilize the CPU cores more efficiently

and adjust CPU allocations dynamically, we usually

affiliate multiple containers to each physical core.

In the configuration of the container, the parameter

cpuLimit indicates the CPU upper-bound percentage

that a container is allowed to use. The default CPU

limit is 100 % in our system, which indicates that

a serial MPI process can occupy at most 100% one

physical CPU core in a physical host machine.

IV. INTER-HOST AUTO-TUNING RESOURCE

REALLOCATION

A. Resource Imbalance Measurement Metrics

To determine the host-level capacities and de-

mands, we require a metric to evaluate the degree of

runtime imbalance in running MPI processes. This

metric allows us to both improve performance and

balance resources, which is then used to make appro-

priate decisions on resource allocation and container

migration. Similar to the traditional load imbalance

percentage measurement [17], we define the load

imbalance indicator as ψ.

ψp(i) = |intervalp(i)−ALM(i)| (1)

547

ALM(i) =
1

P

P−1∑

p=0

intervalp(i) (2)

LIP (i) = max(
ψp(i)

intervalp(i), p ∈ [0, P − 1]
) (3)

where intervalp(i) denotes the execution time of

interval i, p is the process ID, and P is the number

of processes. ALM(i) is the average load metric, i.e.,
average execution time of all MPI processes, under

the time interval i, ψp(i) is the difference between

ALM(i) and the execution time in process p, and

LIP (i) (Load Imbalance Percentage) indicates the

load imbalance degree. The less LIP is, the more

balance the current system obtains. When LIP is

0, then the current system is in a perfect balanced

state. LIP provides an explicit way to evaluate and

to show how load-imbalanced the application is.

Table I
TABLE OF NOTATION IN MIGRATION PLAN

container[i] container i in cluster system.
P number of hosts in cluster system.
Host[i] host i in cluster system.
Mi[t] number of containers running

inside of Host[i] at time t.
capacity[k] load capacity of host k.
vmloadi,k[t] container i load at host k

at time t.
loadk[t] load utilization at host k

at time t.
xi,j = 1 ∨ 0 1 means container j is located

in host i; 0 means not.
ui[t] resource utilization in host i

at time t.
thresU[t] average utilization for all hosts

at time t.
NumECU[k] number of ECPUs in host k.
Mig[t] = 1 ∨ 0 1 for migration at time t,

and 0 means not.
rest[k][t] the rest load utilization

in host k at time t .
Interfer[k][t] load utilization of interference

in host k at time t .

B. Container Migration Strategy

The dynamic container migration problem can

be abstracted as a variant of on-the-fly multiple-

knapsack problem (MKP) [22], which is an NP hard

problem. There is no standard or classical solver for

the problem. We designed an approximate heuristic

solution as shown in Algorithm 2.

In order to formulate our migration plan decision

algorithm, we define expressions in Table I. In gen-

eral, the capacity of a host is constrained by runtime

conditions and hardware.

(1)capacity[k] = NumECU [k]

(2)vmloadk,i[t] =
exeT [k,i]×NumECUs[k]

max(exeT [])

(3)ui[t] =
∑Mi

k=1 xi,k[t]× vmloadk,i[t]
capacity[i]

(4)averageUsage[t] =
∑P

i=1 ui[t]/P

(5)
∑Mk

k=1 xi,k[t]× vmloadk,i[t] ≤ capacity[i]

(6)loadk[t] =
Mk−1∑
j=0

vmloadj,k[t]

(7)restk[t] = capacity[k]− loadk[t]
(8)Interfer[k][t] = loadk[t]× InterferUsage[k]

totalMPIusage[k]

The above expressions are used to represent load

and resource utilization status in containers and hosts

at time t. Specifically, (1) denotes the capacity of

host k, since different hosts may have different

computing power. Thus, it is necessary to normalize

the accumulated execution time according to the

standard EC2 Computing Units (ECU). Expression

(2) is to calculate the load utilization for each

container. Equation (3) is to illustrate how to obtain

the resource utilization at each host. Equation (4)

is to obtain the average resource utilization in the

whole cluster. Inequality (5) denotes that the sum

of loads of containers on a host cannot exceed the

capacity of the host. Equation (6) denotes the load

of all containers in host k at time t. Expression

(7) represents the rest load utilization in host k. In

(8), let Interfer[k] denote the resource consumed

by interference applications in host k, which can

be obtained from host level monitoring using the

ratio of Interferusage[k] (CPU usage of interference

application in host k) to totalMPIusage[k] (total

CPU usage of MPI applications in host k) then

multiplied by the load in host k.

(1)
∑Mk

k=1 xi,k[t+ 1]× vmloadi,k[t+ 1]
+ Interfer[i][t] ≤ capacity[i]

(2)
∑P

i=1 xi,j [t+ 1] ≤ 1
(3)capacity[i] = capacity[i]

− norm(λ(xi,j [t + 1].dump))×Mig[t]

(4)|∑P
i=1 ui[t+ 1]− thresU [t+ 1]|
≤ |∑P

i=1 ui[t]− thresU [t]|
(5)

∑P
i=1(xi,j [t+ 1]− xi,j [t]) == 0

(6)
∑P

i=1 |xi,j [t+ 1]− xi,j [t]| == 2

The migration solution includes 1) the source

hosts; 2) which containers to be moved; and 3) the

destination hosts, which are subject to the above

conditions. (1) All containers’ loads in host i cannot

exceed to capacity(i) of Host i. Variable t indicates

548

the time before migration and t+1 indicates the time

after migration. (2) One container can be deployed

on only one host. (3) After each migration, the ca-

pacity of host is updated by subtracting the overhead.

The migration overhead of a container, denoted by

λ, is determined by all memory dumping size. (4)

represents that the difference between ui in all hosts

should be smaller after migration. (5) and (6) are

conditions to filter the plans of non-migration and

only the migration plans are left. For example, if we

have solutions to satisfy with these conditions on

container j, we can migrate container j from host i1
to host i2 if xi1,j [t] = 1∧ xi2,j [t+1] = 1∧ i1 �= i2.

C. Heuristic Migration Algorithm

Algorithm 2 utilizes a heuristic method to migrate

a container in the migration list to a destination host.

If host load utilization is less than averageUsage,
then we put this host into the potential destination

list that will receive migrated containers. If host load

utilization is much more than averageUsage, which

means this host has more load pressure, then we

should move out some containers until the host load

reaches the average level. These containers will be

put into the potential migration list as candidates.

The corresponding host will be also marked as

sourceHost.
Algorithm 2 also determines the migration desti-

nations of containers in the migration list. First, we

pick a host in the destination list and a container

from the migration list. If the rest capacity of the

destination host is still greater than the average level

after deducting the load of the migrated container

and the migration overhead, we put it into the mi-

gration plan and continue to check other containers.

We normalize the migration overhead to the CPU

load using function norm, which is (λ(y.dump)
/max(exeT[])) * NumECUs[k]. Thus, a migration

that is initially considered too expensive to fulfill

will become more feasible as the accumulated load

imbalance could exceed the overhead of migration

during the program’s execution. Such a migration

can help improve the performance if the load im-

balance pattern remains similar in the future. In our

experiment on EC2, the overhead is linear to the

memory dumping speed, i.e., around one second per

10MB. The memory size of a container is calcu-

lated by multiplying the OpenVZ ”oomguarpages

number” by 4KB per page. If the load imbalance

indicator ψ is greater than the migration overhead of

current container (i.e., λ(y .dump)), there could be a

potential performance improvement, hence container

Algorithm 2 Containers Migration Plan

1: %k ∈ [0, P) is the current host, P is the total number
of hosts in cluster.%

2: void migrationCandidates(migrationList, destination-
List) {

3: for i = 0 to P − 1 do
4: %sort containers on host[i] according to their loads

in an ascending order%
5: tmp[] = sort(vmload[] ∈ host[i])
6: if (ui ≤ averageUsage) then
7: %host i is relatively idle and could be a poten-

tial destination%
8: destinationList.put(host i)
9: continue

10: end if
11: if (ui ≥ averageUsage) then
12: %Continuously look for containers with the

smallest load for migration in the current host until
the rest capacity is reduced to the average level.%

13: for j = 0 to Mi − 1 ∈ host[i] do
14: %find a container to be migrated%
15: k = getID(tmp[j])
16: migrationList.put(container k)
17: k.sourceHost = i
18: end for
19: end if
20: end for
21: % for each container, find which host to migrate. %
22: for each container y in (migrationList) do
23: for each host k in (destinationList) do
24: rest[k] = capacity[k]− load[k]
25: tmpRest = rest[k] - vmload[y] -

norm(λ(y.dump))
26: avgRestCapacity =

∑P−1
i=0 rest[i]× 1

P
27: % Recall ψ is load imbalance indicator;

λ(y .dump) < ψk means that there is potential per-
formance improvement after migration.%

28: if ((tmpRest > avgRestCapacity) ∧
(λ(y .dump) < ψk)) then

29: Migrate container y to host k
30: rest[k] = tmpRest
31: break
32: end if
33: end for
34: end for
35: }

y is put into the migration plan with the destination

as k. We continue the for loop by checking con-

tainers one by one until the utilization usage of the

current host is less than the average value. Then we

start to check the next host in the destination list.

If there are still containers in the temporary migra-
tionList that have not found a destination host when

this procedure has finished, then these containers will

remain on their original hosts to avoid unnecessary

migrations. We notice that migration may change the

previous network topology that user defined, so we

549

only consider the total overhead instead of specified

extra cost caused by network topology changes.

V. EXPERIMENTS

A. System Setup

We set up a virtual cloud on Amazon EC2 using

OpenVZ to manipulate CPU resource adjustment

and container migration. This testbed has inherent

heterogeneity as it consists of two types of physical

hosts: VCPUs on C3 instances with 2.8 GHz Intel

Xeon E5-2680v2 processors, and VCPUs on M3 in-

stances with 2.5GHz Intel Xeon E5-2670 processors.

We use 8 C3 instances and 8 M3 instances total.

In our experiment setup, each container executes

only one MPI process. The numbers, e.g., 8, 16, 32,

64, 128, in the figures of this section represent the

number of containers (as well as MPI processes) in

our virtual clusters.

We refer to the first processor type as fast and

the second one as slow. By default, we assume

that each host/instance creates 8 containers to share

its CPU cores. We conduct experiments on two

different types of virtual clusters. The first type of

virtual cluster is homogeneous and built on identical

fast machines. The second type is heterogeneous

and built on a mix of fast and slow machines.

Also, we consider the effects caused by the applica-

tion interference during runtime of MPI application.

Our experiments are performanced on NAS Paral-

lel Benchmark [18], Unbalanced Tree Search [11],

Stencil2D [12], and Jacobi1D [4] open source bench-

marks.

B. Case Study on Unbalanced Tree Search

Dinan et al. describes a parallel benchmark, called

Unbalanced Tree Search (UTS) [11]. Our case study

on UTS shows that it is possible to obtain good

performance in solving an unbalanced tree search

problem using our resource reallocation techniques.

The imbalance issue is caused by the visiting depth

of the tree. The UTS benchmark counts the number

of nodes in a generated tree, as the depth and size of

the subtrees can cause imbalances while searching.

Highly unbalanced trees pose significant challenges

for parallel traversal because the workload required

for different subtrees may vary dramatically.

According to our experiments, our dynamic load

balancing method is effective. Figure 2 presents the

execution time in homogeneous and heterogeneous

systems, respectively. The performance of the intra-

host level load balance algorithm is shown in Figure

2. The average execution time reductions of the

heterogeneous and homogeneous systems are 12%

and 8%, respectively. Figure 3 shows the execution

times for scenarios without auto-tuning algorithm

(“NoLB”), using only the migration algorithm at

cluster level (“Only Migration”), using a combina-

tion of migration across hosts and dynamic adjust-

ment within hosts (“Migration Dynamic”). The “Mi-

gration” case reduces execution time in 16 contain-

ers, 32 containers, 64 containers, and 128 containers

by an average of around 10%. The best performance

improvement we obtained in the experiments is on

the testing of UTS benchmark with one million

nodes, which is 31% improvement over the baseline

using 32 containers total in the cluster.

C. Case Study on Relatively Load-Balanced Bench-
marks

We have also tested algorithms on real-world ap-

plications using NAS Parallel Benchmark, i.e., LU,

MG, SP, EP, BT, and IS with Class B size. In Figures

4, for the experiment on IS, we did not find any

performance improvements using our load balancing

approach. This is because the IS benchmark contains

only a few MPI routines which are already load

balanced. Similarly, the MG benchmark has little

load imbalance, hence, few load balance adjustments

are applied. As a result, there was not much improve-

ment in these types of benchmarks. However, when

we test other larger benchmarks with more load im-

balance and longer execution times, the performance

improvement is more obvious. Our algorithm is able

to reduce the execution time by 22% in the best

scenario. The average performance improvement is

13% on these relatively load-balanced benchmarks.

D. Comparing with State-of-the-Art Techniques of
MPI Performance Optimization

Now we compare the performance of our solution

with state-of-the-art techniques of MPI performance

optimization. Figure 5 shows the load balance im-

provements on two benchmarks, Stencil 2D and

Jacobi1D. For Stencil2D, problem size is 5000 ×
5000. For Jacobi1D, the number of steps is set to

10000 iterations while running.

Figure 5 compares the performance improvements

by our approach (auto-tuning performance algo-

rithm, or AP) and Adaptive MPI (AMPI), Charm++,

respectively. The default load balancing mode in

Charm++ uses HybridLB. For AMPI, it can auto-

matically support Charm++ features plus migration

of processes. We use the benchmarks in AMPI and

Charm++ package for our experiments in Figure

550

0

500

1000

1500

2000

2500

3000

8 16 32 64 128

NoLBHomo
DynamicHomo
NoLBHete
DynamicHete

Cluster Size

Ru
nt

im
e

(s
ec

)

Figure 2. Experiment of unbalanced
tree search on homogeneous system and
heterogeneous

Cluster Size

0

200

400

600

800

1000

1200

1400

16 32 64 128

NoLB
Only_Migration
Migration_DynamicRu

nt
im

e
(s

ec
)

Figure 3. Migration using different load
balance adjustments in different number
of containers.

0%

5%

10%

15%

20%

25%

IS MG SP BT EP LU

8

16

32

64

128

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

NASA Benchmarks

Figure 4. Experiment on NAS parallel
computing benchmarks.

5. In the experiments, our approach, AMPI, and

Charm++ achieve an average of 15%, 14% and 13%

performance improvement, respectively.

E. Performance Analysis

This section discusses several performance issues,

including scalability, load imbalance ratio, and scal-

ability. We find that the overhead increases with

the total number of containers on hosts, because

more containers incur more wrapper communication

and resource adjustment. More containers than the

number of physical cores in a host would cause

resource overcommitment, which increases resource

utilization but potentially decreases the performance

of applications. We are targeting MPI program per-

formance rather than overall resource utilization.

Figure 6 shows the load imbalance percentage for

all benchmarks. One test is called NoLB, which is

the load imbalance percentage of original bench-

mark. The other is named as LB, which is the load

imbalance percentage after applying our resource

adjustment algorithm. In the smaller benchmarks,

such as IS and MG with short execution time,

the load imbalance percentage is low because all

processes finish the jobs in a short time.

F. Interference

Interference from other applications can have an

unpredictable impact on HPC programs in a cloud

environments, where physical resources are shared.

Typically, an MPI process will exclusively occupy

a whole container. Interference generally occurs

when there are applications running on co-located

containers on the same physical host. In order to

emulate a real-world computing environment, we

run an interference program called ParMETIS [5] ,

which implements algorithms on graphs and meshes,

while executing the UTS benchmark [11] in our own

containers.

Figure 7 shows the performance improvement un-

der interference for homogeneous and heterogeneous

systems, respectively. Our algorithm can improve

performance in an average of 12% in (“Heter”)

heterogenous system without interference, and an

average of 8% in homogeneous system without in-

terference (“Homo”). The underlying reason for this

phenomenon is that there is more load imbalance

in heterogeneous system. The interference applica-

tion will influence the performance improvement

of our approach. The load imbalance is potentially

increased by interference because it takes away ex-

tra resources from MPI applications. Our algorithm

can improve performance by an average of 16%

for heterogenous system (“Hete ITFN”) and 10%

for (“Homo ITFN”) homogeneous system with the

presence of the interference application.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented both intra-host

and inter-host resource management techniques for

improving performance of MPI applications in con-

tainer based cluster, which are shown to be effective

in improving MPI program performance. We have

demonstrated that our technique works well with

various real-world benchmarks on homogeneous and

heterogeneous virtual cloud environments with or

without interference. Experimental results show that

our techniques can reduce execution time by an

average of 15% compared to the original execution

without resource management. The average perfor-

mance improvement is higher in heterogeneous en-

vironments than in homogeneous environments.

In the future, it is possible to leverage our ap-

proach for the other more general applications using

Docker containers. In addition, we can proactively

conduct resource adjustment of MPI applications

in advance based on the estimation of computation

workload.

551

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Stencil and Jacobi Benchmarks

0%

5%

10%

15%

20%

25%

30%
8 16
32 64
128

stencil
2D_AP

stencil
2D_ampi

stencil
2D_charm++

Jacobi
1D_AP

Jacobi Jacobi
2D_ampi 2D_charm++

Figure 5. Summary of performance
improvement using Stencil2D and Ja-
cobi1D.

Load Im
balance

Benchmark

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
NoLB

LB

Figure 6. Load imbalance percentage
(LIP).

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Cluster size

0%

5%

10%

15%

20%

25%

8 16 32 64 128

Hete_ITFN

Heter

Homo_ITFN

Homo

Figure 7. Execution time reduction
percentage in heterogeneous and homo-
geneous systems with interference appli-
cation.

VII. ACKNOWLEDGMENT

This work was supported in part by NSF-

CAREER-1622292.

REFERENCES

[1] Amazon EC2. http://http://aws.amazon.com/ec2/.
[2] Ibm Bluemix. http://www.ibm.com/cloud-

computing/bluemix/.
[3] Linux containner. http://www.lxc.org/.
[4] Parallel language/paradigms: Charm++ parallel ob-

jects. http://ppl.cs.illinois.edu/research/charm.
[5] Parmetis. http://en.wikipedia.org/wiki/Xen.
[6] Vampir performance optimization.

http://www.vampir.eu/.
[7] Windows Azure. https://azure.microsoft.com/en-us/.
[8] C. Boettiger. An introduction to docker for repro-

ducible research. SIGOPS Oper. Syst. Rev., 2015.
[9] J. Corbalan, A. Duran, and J. Labarta. Dynamic

load balancing of mpi+openmp applications. In
Proceedings of the 2004 International Conference
on Parallel Processing, ICPP ’04, Washington, DC,
USA. IEEE Computer Society.

[10] L. DeRose, B. Homer, and D. Johnson. Detecting
application load imbalance on high end massively
parallel systems. In Proceedings of the 13th inter-
national Euro-Par conference on Parallel Process-
ing, Euro-Par’07, pages 150–159, Berlin, Heidelberg,
2007. Springer-Verlag.

[11] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krish-
namoorthy, and J. Nieplocha. Scalable work stealing.
In Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis,
SC ’09, New York, NY, USA. ACM.

[12] A. Gupta, O. Sarood, L. V. Kal, and D. S. Milo-
jicic. Improving hpc application performance in
cloud through dynamic load balancing. In CC-
GRID, IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, pages 402–409.
IEEE Computer Society, 2013.

[13] C. Huang, G. Zheng, L. Kalé, and S. Kumar. Perfor-
mance evaluation of adaptive mpi. In Proceedings of
the Eleventh ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP
’06, New York, NY, USA, 2006. ACM.

[14] H. Huang, L. Wang, B. C. Tak, L. Wang, and
C. Tang. Cap3: A cloud auto-provisioning frame-
work for parallel processing using on-demand and
spot instances. In Proceedings of the 2013 IEEE
Sixth International Conference on Cloud Computing,
CLOUD ’13, Washington, DC, USA, 2013.

[15] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan,
and Z. Yang. Symbolic analysis of concurrency
errors in openmp programs. In Proceedings of
the 2013 42Nd International Conference on Parallel
Processing, ICPP ’13, pages 510–516, Washington,
DC, USA, 2013. IEEE Computer Society.

[16] H. Ma, L. Wang, and K. Krishnamoorthy. Detecting
thread-safety violations in hybrid openmp/mpi pro-
grams. In 2015 IEEE International Conference on
Cluster Computing, CLUSTER 2015, Chicago, IL,
USA, September 8-11, 2015.

[17] A. D. Malony, S. Biersdorff, W. Spear, and
S. Mayanglambam. An experimental approach to
performance measurement of heterogeneous parallel
applications using cuda. In Proceedings of the 24th
ACM International Conference on Supercomputing,
ICS ’10, New York, NY, USA. ACM.

[18] Nasa advanced supercomputing division.
http://www.nas.nasa.gov/publications/npb.html/.

[19] V. Subramanian, H. Ma, L. Wang, E.-J. Lee, and
P. Chen. Rapid 3d seismic source inversion using
windows azure and amazon ec2. In Proceedings
of the 2011 IEEE World Congress on Services,
SERVICES ’11, Washington, DC, USA, 2011. IEEE
Computer Society.

[20] C. Wang, J. Hill, J. Knight, and J. Davidson. Soft-
ware tamper resistance: Obstructing static analysis
of programs. Technical report, Charlottesville, VA,
USA, 2000.

[21] R. D. Williams. Performance of dynamic load bal-
ancing algorithms for unstructured mesh calculations.
Concurrency: Pract. Exper., 3(5), Oct. 1991.

[22] G. J. Woeginger and Z. Yu. On the equal-subset-
sum problem. Inf. Process. Lett., 42(6):299–302, July
1992.

552

