Dart: A Geographic Information System on Hadoop

Hong Zhang*, Zhibo Sun*, Zixia Liu*, Chen Xu' and Ligiang Wang*
*Department of Computer Science, University of Wyoming, USA
TDepartment of Geography, University of Wyoming, USA
Email: {hzhang12,zsunl,zliu5,cxu3,lwang7} @uwyo.edu

Abstract—In the field of big data research, analytics on spatio-
temporal data from social media is one of the fastest growing
areas and poses a major challenge on research and application.
An efficient and flexible computing and storage platform is
needed for users to analyze spatio-temporal patterns in huge
amount of social media data. This paper introduces a scalable and
distributed geographic information system, called Dart, based on
Hadoop and HBase. Dart provides a hybrid table schema to store
spatial data in HBase so that the Reduce process can be omitted
for operations like calculating the mean center and the median
center. It employs reasonable pre-splitting and hash techniques to
avoid data imbalance and hot region problems. It also supports
massive spatial data analysis like K-Nearest Neighbors (KNN)
and Geometric Median Distribution. In our experiments, we
evaluate the performance of Dart by processing 160 GB Twitter
data on an Amazon EC2 cluster. The experimental results show
that Dart is very scalable and efficient.

Index Terms—Social Network; GIS; Hadoop; Hbase; Mean
Center; Median Center; KNN

I. INTRODUCTION

Social media increasingly becomes popular, as they build
social relations among people, which enable people to ex-
change ideas and share activities. Twitter is one of the most
popular social media, which has more than 500 million users
by December 2014 and generates hundreds of GB data per
day[1]. As tweets capture snapshots of Twitter users’ social
networking activities, their analysis potentially provides a
lens for understanding human society. The magnitude of
data collection at such a broad scale with so many minute
details is unprecedented. Hence, the processing and analyzing
of such a large amount of data brings the big challenge.
As most social media data contain either an explicit (e.g.,
GPS coordinates) or an implicit (e.g., place names) location
component, their analysis can benefit from leveraging the
spatial analysis functions of geographic information systems
(GIS). However, processing and analyzing big spatial data
poses a major challenge for traditional GIS[?]. As the size of
dataset grows exponentially beyond the capacity of standalone
computers, on which traditional GIS are based, there are
urgencies as well as opportunities for reshaping GIS to fit the
emerging new computing models, such as cloud computing
and nontraditional database systems. This study presents a
systematic design for improving spatial analysis performance
in dealing with the huge amount of point-based Twitter data.

Apache Hadoop[2][3] is a popular open-source implemen-
tation of the MapReduce programming model. Hadoop hides
the complex details of parallelization, fault tolerance, data
distribution, and load balancing from users. It has two main

components: MapReduce and Hadoop Distributed File System
(HDFS). MapReduce paradigm is composed of a map function
that performs filtering and sorting of input data and a reduce
function that performs a summary operation. HDFS is a
distributed, scalable, and portable file system written in Java
for the Hadoop framework, which provides high availability
by replicating data blocks on multiple nodes.

Apache HBase[4] is an open-source, distributed, column-
oriented database on top of HDFS, providing BigTable-like
capabilities. It provides a fault-tolerant way and ability of
quick accessing to large scale sparse data. Tables in HBase
can serve as the input and output for MapReduce jobs, and be
accessed through Java API. An HBase system comprises a set
of tables. Each table contains rows and columns, much like a
traditional database, but each row must have a primary key,
which is used to access HBase tables.

In big data computing, Hadoop-based systems have advan-
tages in processing social media data[5]. In this study, we use
two geographic measures, the mean center and the median
center, to summarize the spatial distribution patterns of points,
which are popular measurements in geography[6]. The method
has been used in a previous study to provide an illustration
of social media users’ awareness about geographic places[7].
The mean center is calculated by averaging the x- and y-
coordinates of all points and indicates a social media user’s
daily activity space. However, it is sensitive to outliers, which
represent a user’s occasional travels to distant places. The
median center provides a more robust indicator of a user’s
daily activity space by calculating a point from which the
overall distance to all involved points is minimized. Therefore,
the median center calculation is far more computing intensive.
One social media user’s activity space comprises geographic
areas in which he/she carries out daily activities such as
working or living. The median center thus shows a gravity
center of that person’s daily life.

We design a spatial analyzing system, called Dart, on
top of Hadoop and HBase in purpose of solving spatial
tasks like K-nearest neighbors (KNN) and geometric median
distribution for social media analytics. Its major advantages
lie in: (1) Dart provides a computing and storage platform
that is optimized for storing social media data like Twitter
data. It employs a hybrid table design in HBase that stores
geographic information into a flat-wide table and text data into
a tall-narrow table, respectively. Thus, Dart can get rid of the
unnecessary reduce stage for some spatial operations like cal-
culating mean and median centers. Such a design not only cuts

down users’ development expenditures, but also significantly
improves computing performance. In addition, Dart avoids
load imbalance and hot region problems by using pre-splitting
technique and uniform hashes for row keys. (2) Dart can
conduct complex spatial operations like the mean center and
median center calculations very efficiently. Its methodology
layer is a completely flexible and totally extensible module,
which provides a better support to the upper analysis layer.
(3) Dart provides a platform to help users analyze spatial data
efficiently and effectively. Advanced users also can develop
their own analysis methods for information exploration.

We evaluate the performance of Dart on Amazon EC2[§]
with a cluster of 10 m3.large nodes. We demonstrate that our
grid algorithm for the calculation of median center is signif-
icantly faster than the algorithm implemented by traditional
GIS, and we can gain an improvement of 7 times on a 160
GB Twitter dataset and 9 to 11 times on a synthetic dataset.
For instance, it costs 1 minute to compute the mean or the
median center for 1 million users.

The rest of this paper is organized as follows. Section II dis-
cusses the architecture of Dart, and describes its optimizations
based on Hadoop and HBase. We then describe algorithms
for calculating the geographic mean, midpoint, and median
center in Section III. Section IV details two data analysis
methods: KNN and geometric median distribution. Section V
shows the experiment results. Section VI provides a review of
related works. Conclusions and future work are summarized
in Section VII.

II. SYSTEM ARCHITECTURE

Figure 1 shows an outline of our spatial analyzing system
Dart for social network. Our system can automatically harvest
Twitter data and upload them into HBase. It decomposes data
into two components: the geographic information, and the text
information, then insert them into tall-narrow and flat-wide
tables, respectively. Our system targets two types of users:
GIS engineers and GIS users. GIS engineers can make use
of our system to develop new methods and functions, and
design additional spatial modules to provide more complex
data analysis; GIS users can build complicated data analysis
models based on current spatial data and methods for tasks
such as analyzing the geographic mean and median centers.
All input and output data are stored in HBase to provide easy
and efficient search. It also supports a spatio-temporal search
for fine-grained data analysis.

Dart consists of four layers: computing layer, storage layer,
methodology layer, and data analysis layer. The computing
layer offers a MapReduce computing model based on Hadoop.
The storage layers employs a NoSQL database, HBase, to store
spatio-temporal data. We design a hybrid table schema for
data storage, and use pre-splitting and uniform hashes to avoid
data imbalance and hot region problems. Our implementation
on Hadoop and HBase has been optimized to process spatial
data from social media like Twitter. The methodology layer is
to carry out complex spatial operations such as figuring out
the geographic median or facilitate some statistical treatments

iDart
i
3 . | Application
: (GIS Applications)
GIS User '
1
1
) S Methodology
| (GIS Technology and Methods)
GIS Engineer

MapReduce
(Distributed Computing Framework)

Data File

Geographic | |Fat-Wide Table

Information 1 "

’ all-Narrow Table
Information '

1

|

1

1

1

HBase (Column DB)

HDFS
(Hadoop Distributed File System)

Fig. 1. System architecture of Dart.

Key Qualifier Value

ul Q1 a
Key Qi Q2 Q3

ul Q3 b
Null b

<
s
o

u2 Q2 c
u2 Null c Null

u3 Q2 b
u3 Null b a

u3 Q3 a
ud b Null Null

ud Q1 b

Fig. 2. Representations of Horizontal table and Vertical table.

to support the upper data analysis layer. In the data analysis
layer, Dart supports specific analytics like KNN and geometric
median distribution from customers.

A. Horizontal v.s. Vertical

Efficient management of social media data is important in
designing data schema. There are two choices when using
NoSQL database: tall-narrow, or flat-wide[9]. The tall-narrow
paradigm is to design a table with few columns but many rows,
while the flat-wide paradigm is to store data in a table with
many columns but few rows. Figure 2 shows a tall-narrow
table and its corresponding realization in the flat-wide format.

For a flat-wide schema, it is easy to extract a single user’s
entire information in a single row, which can easily fit into
a MapReduce program. For a tall-narrow table, each row
contains a single record of a user’s entire information to avoid
data imbalance layout and too much data stored in just a single
row.

For sparse data, the tall-narrow table is a common way and
can support e-commerce type of applications very well[10].
In addition, HBase only splits at row boundaries, which also
contributes to the users’ choice of tall-narrow tables[9]. Using
a flat-wide table, if a single row outgrows the maximum of a
region size, HBase cannot split it automatically, which makes
data stored in that row overloaded.

In our system, we employ a hybrid schema, in which we
store geographic data by a flat-wide table, and store other data
like text data by a tall-narrow table. Since numerical location
information is significantly smaller than text data, each user’s
location data can easily fit into a region size (256M by default).
Our design can make complex geographic operations more
efficient due to removing the reduce stage from a MapReduce
job.

B. Pre-splitting

Usually HBase handles the splitting of regions automati-
cally. That means if a region reaches the maximum size, it
will be splitted into two halves so that each new region can
handle its own data. This default behavior is sufficient for
most applications, but we need to execute insert operation
frequently. For example, in social media data, it is unavoidable
to have some hot regions, especially when the distribution of
data is skewed. In our system, we firstly pre-split the table
into 12 regions (the size depends on the scale of cluster)
by HexStringSplit. The format of a HexStringSplit region
boundary is the ASCII representation of a MDS5 checksum.
Then we employ a hash function on the row key, extract the
first eight characters as a prefix to the original row key. In this
way, we could make data distribution uniform and avoid the
data imbalance problem.

In order to make spatial analysis more efficient on Dart,
we also investigate optimizations of system parameters. As
shown in [?], the number of maps is usually determined by
the block size in HDFS, and it also has a significant effect
on the performance of a MapReduce job. Smaller block size
usually makes system launch more maps, which costs more
time and resources. If a Hadoop cluster does not have enough
resources, some of the maps have to wait until resources
are released, which may degrade the performance further.
In contrast, a large block size could decrease the number
of maps and parallelization. In addition, each map needs
to process more data and could be overloaded. Moreover,
failure is an unavoidable situation. If the block size is large,
we need longer time to recover it, especially for straggler
situation. Furthermore, too big block size may cause data
layout imbalance. According to the performance measurement
in our experiments, we decide to set the block size to 256 MB
instead of the default one (64MB) because the performance
with larger size (than 256 MB) does not increase obviously.
The region size of HBase is also 256 MB, which makes
accessing to the data faster. In the map stage, the sort and spill
phase costs more time than other phases. So it is necessary
to configure a proper setting in this phase. Since the sort and
spill phase happens in the container memory, according to
our job features, setting a larger minimum JVM heap size and
sort buffer size could affect performance remarkably. Since we
need to analyze hundreds of GB data and our EC2 instances
has 7.5 GB memory, we set our JVM heap size to 1GB instead
of 200MB through “mapred.child.java.opts” and set the buffer
size to 512 MB through “mapreduce.task.io.sort.mb”, thus we
could allocate more resources for this phase.

III. METHODOLOGY

In this section, we describe how to calculate the geo-
graphic mean, midpoint, and median. We present a brand-
new algorithm for the geometric median calculation that (1)
starts the iteration with a more precise initial point and (2)
imposes a grid framework to the process to reduces the total
iteration steps. These three geographic indicators are important
estimators for summarizing location distribution patterns in
GIS. For example, it could help us estimate a person’s activity
space more accurately.

Lat = Zlati/n

i;l (1)
Lon = Zloni/n

i=1

A. Geographic mean

The main idea of the geographic mean is to calculate an
average latitude and longitude point for all locations. The
projection effect in mean center calculation has been ignored
in this study because the areas of daily activity space of Twitter
users are normally small. Equation 1 shows basic calculation
steps. The main problem here is how to handle points near or
on both sides of the International Date Line. When the distance
between two locations is less than 250 miles (400 km), mean
is approximate to the true midpoint[11].

B. Geographic midpoint

The geographic midpoint (also known as the geographic
center, or center of gravity) is the average coordinate for a
set of points on a spherical earth. If a number of points are
marked on a world globe, the geographic midpoint is at the
geographic center among these points.

Initially, latitude and longitude of each location are con-
verted into three dimensional cartesian coordinates after
changing unit to radians. We then compute the weighted
arithmetic mean of cartesian coordinates of all locations (use
1 as weight by default). After that, the three dimensional
average coordinate is changed back to latitude and longitude
in degrees.

C. Geographic Median

To calculate the geographic median of a set of points, we
need to find a point that minimizes the total distance to all
other points. A typical problem here is the Optimal Meeting
Point (OMP) problem that has considerably practical signifi-
cance. The implementation of this algorithm is more complex
than the geographic mean and the geographic midpoint since
the optimal point is approached iteratively.

Algorithm 1 The original algorithm for median

Algorithm 2 The improved algorithm for greographic median

Input: Location set S = {(laty,lon),......, (lat,,lon,)}
Output: Coordinates of the geographic median

1: Let CurrentPoint be the geographic midpoint
: MinimumDistance =

total Distances(CurrentPoint, S)

3: for : =1ton do
4: distance = total Distances(location;, S)
5 if (distance < MinimumDistance) then
6: CurrentPoint = location;
7
8
9

(3]

MinimumDistance = distance
end if
: end for
10: Let TestStep be diagonal length of the district
11: while (TestStep < 2 x 1078) do
122 updateCurrentPoint(CurrentPoint, TestStep)
13: end while
14: return CurrentPoint

Input: Location set S = {(laty,lony),, (laty,, lon,)}
Output: Coordinates of the geographic median
1: Let CurrentPoint be the geographic midpoint;
2: MinimumDistance =
total Distances(CurrentPoint, S)
3: Divide the district into grids;
4: Calculate the center coordinates for each grid and count
the number of locations distributed in each grid as weight;
5: Calculate the total weighted distance between center of
each grid to centers of other grids;
6: If any center has a smaller distance than CurrentPoint’s,
replace it with this center, and update;
7: Let TestStep be diagonal length of grid divided by 2;
8: while (TestStep < 2 x 1078) do
9: updateCurrentPoint(CurrentPoint, TestStep)
10: end while
11: return CurrentPoint

1) The Original Method: Figure 1 shows the general steps
of the original algorithm. Let CurrentPoint be the geo-
graphic midpoint computed above as the initial point, and
let MinimumDistance be the sum of all distances from
CurrentPoint to all other points. In order to find a relatively
precise initial iteration point, we count the total distance from
each place to other places; if any of these places has a smaller
distance than CurrentPoint, replace CurrentPoint by it
and update MinimumDistance. Let TestStep be PI/2
radians as the initial step size, then generate eight test points in
all cardinal and intermediate directions of the Current Point.
That is, to the north, northeast, east, southeast, south, south-
west, west and northwest of the CurrentPoint with the same
distance of T'estStep. If any of these eight points has a smaller
total distance than MinimumDistance, make this point as
CurrentPoint and update MinimumDistance. Otherwise,
reduce T'estStep by half, and continue searching another eight
points around CurrentPoint by the new TestStep until
TestStep meet the precision (2 x 1078 radians by default).

We can compute the distance using the spherical law of
cosines. If distances between each pair of points are small, we
then use distance of spatial straight line between two points
to replace circular arc. The equation of the spherical law of
cosines is shown as follows.

distance = arcsin(sin(lat;) * sin(latz)+ 2

cos(laty) * cos(lats) * cos(lons — lony))

2) Improved Method: We observe that in order to select
a better initial iteration point, the original algorithm has to
compute distances between every couple of points. The time
complexity of such selection procedure is O(n?). In fact, if we
remove this procedure (from line 3 to line 9 in Algorithm 1),
the time complexity for finding the initial point will be reduced
to O(n). It shows a significant improvement for total running
time of calculating Geographic Median in our experiments
compared to the original algorithm, especially when the point
set is large (more than 100 points).

The time cost of the initial point detection procedure in
the original algorithm outruns its performance improvement,
which is the reason why it should be omitted. However, a
good initial point selection schema can potentially decrease
the number of iterations and ameliorate total performance.
Thus, we design a brand-new algorithm that employs grid
segmentation to decrease the cost of searching a proper initial
point, which can also reduce the initial step size at the
same time. Its efficiency and performance improvement are
demonstrated by our experiments. As shown in Algorithm
2, after computing the geographic midpoint, we partition the
district into grids with the same size. Since our algorithm
reduces at least one iteration, in order to search a better initial
point, we take the expense of at most one iteration to select a
better initial point from centers of grids. We count the number
of points located in each grid as weight, and calculate the total
weighted distances from the center of each grid to centers of
other grids. If any center is better than CurrentPoint in the
sense of less total distance, replace CurrentPoint. As the
centers of eight neighbor grids of C'urrentPoint is not better
than its own, we can reduce the initial step to half of distance
between two diagonal centers.

Algorithm 3 MapReduce program for KNN
function: Map(k,v)

1I: p = context.get Point()

2: for each cell c¢ in value.rawCells() do

3 if column family is “coordinates” then

4 if qualifier is “minipoint” then

5 rowKey = crow()

6: location = c.value()

7 distance = calculateDistance(location, p)
8 end if

9: end if

10: end for

3L

11: emit (1, rowKey + “ + distance)

function: Combine, Reduce(k,v)

12: K = context.getK ()

13: for (each v; in v) do

14 (rowKey;, distance;) = v;.split(,)

15: end for

16: Sort all users by distances, and choose K smallest distance
locations to emit;

IV. DATA ANALYSIS

In this section, we introduce two common spatial appli-
cations, namely, KNN and geometric median distribution.
KNN is a method for classifying objects based on the closest
training examples according to some metrics such as Euclidean
distance or Manhattan distance. KNN is an important module
in social media analytics to help user find other nearby users.
Geometric median distribution is to count users’ distribution
in different areas, which might be useful for business to
promote products. Due to the mobility of users, the geographic
median is one of the best values to stand for users’ geographic
positions.

A. K Nearest Neighbors

Algorithm 3 shows the process of MapReduce on Hadoop.
In the map function, we extract point for KNN search and
K value from context. Then we calculate the distance from
each point to point, and send top K points to the combine
function and then the reduce function. Both of them sort users
by distances computed by the map function. The difference
between the combine function and the reduce function is that
the former sends results to the reduce task, but the later one
uploads K nearest neighbors to HBase.

B. Spatial distribution

Algorithm 4 describes how to calculate the distribution of
users in a district. In the map function, we obtain the grid
length (0.01 degree by default) from context to build a mesh
on the region of interest, and compute which grid each point
locates in. Then the key-value pair of grid index and the
number of users is sent to the combine function and afterwards
reduce function. The combine and reduce functions sum the
number of users in each grid, and finally upload results into
HBase.

(a) uniform (b) two-area (c) skew

Fig. 3. Data distributions.

Algorithm 4 MapReduce program for geometric median dis-
tribution
function: Map(k,v)

1: gridLength = context.getGridLength()

2: for each cell c¢ in value.rawCells() do

3: if column family is “coordinates” then

4 if qualifier is “minipoint” then

5: (lat,lon) = c.value()

6: latIdz = (lat — miniLat)/gridLength
7: lonldz = (lat — miniLon)/gridLength
8: end if

9: end if

10: end for

11: emit ((latldz,lonldz),1)
function: Combine, Reduce(k,v)
12: total =0

13: for (each v; in v) do

14: total += v;

15: end for

16: emit (k, total)

V. EXPERIMENTS

In this section, we describe the experiments to evaluate the
performance of Dart based on Hadoop and HBase, including
the computations on mean center, median center, KNN, and
geometric median distribution.

A. Experimental setup

Our experiments were performed on Amazon EC2 cluster
that contains one Namenode and nine Datanodes. Each node is
an Amazon EC2 m3.large instance, which provides a balance
of compute, memory, and network resources. EC2 m3.large
instance has Intel Xeon E5-2670 v2 (Ivy Bridge) processors,
7.5 GB memory, 2 vCPUs, SSD-based instance storage for fast
I/O performance, and runs CentOS v6.6. Our Hadoop cluster
is based on Apache Hadoop 2.2.0, Apache HBase 0.98.8, and
Java 6.

In our experiments, we extract Twitter data from 38 degrees
North latitude and 73 degrees West longitude to 41.5 degrees
North latitude and 77.5 degrees West longitude with a total size
of 160 GB and more than 1 million users. This area mainly
includes the metropolitan areas from New York City, Philadel-
phia, to Washington DC. In order to show the performance of
our algorithm on a single machine, we generate random points
to simulate three common scenarios shown in Figure 3: (1)

1600
1400
1200
1000
800
600

Time (Seconds

400

200 /

——

20 GB 40 GB

Data Size

80 GB 160 GB

«—=@-=mean ==@=median-original median-Dart

Fig. 5. Performance comparison between mean and median.

Uniform is a scenario where all points are scattered uniformly
in the district; (2) Two-area is that all points are clustered into
two groups, which is very common in real world. (3) Skew is
a scenario where most of points gather together but few points
scatter outside.

B. Experimental results

Figure 4 shows the time of calculating the geographic
median in three different scenarios. These experiments were
conducted on a single m3.large node in Amazon EC2 cluster,
and the number of points vary from 100 to 12800. We
evaluated three algorithms: (1) The original algorithm most
commonly used in geography[11]. (2) The algorithm without-
initial-detection, which removes the procedure of selecting a
better initial point from the original algorithm as we mentioned
in Section III-C. This algorithm reduces the time complexity
of selecting initial point from O(n?) to O(n). (3) Our own
grid algorithm, which utilizes grid technique to improve the
accuracy of initial point and reduce the step size dramatically
at a reasonable time cost. This algorithm reduces the overall
iteration number. As Figure 4 shows, when the number of
points increases from 100 to 12800, the performance of
Dart increases gradually. In all scenarios, our algorithm can
outperform the original one by 9 to 11 times when the number
of points is 3200. When the number of points is 12800, our
new algorithm in Dart gains an improvement of 38%, 26%,
and 15% compared to the without-initial-detection algorithm
in the uniform, two-area, and skew scenarios, respectively. We
find that the without-initial-detection and the grid algorithms
cost less time in the skew scenario compared to the uniform
and two-area scenarios because the midpoint is closer to the
median center.

Figure 5 shows the performance comparison of calculating
the geographic mean and geographic median on Hadoop
cluster, where the input data size varies from 20 GB to 160 GB.
When the input data size is 160GB, our algorithm achieves
an improvement of 7 times compared to the traditional one.
The calculation of geographic median consumes 30% more
time than the calculation of mean on 160 GB data since it is

60 60
250 250
g I
840 940
3 g
<30 <30
£ g
=20 =20

10 10

0 0

20GB 40GB 80GB 160 GB 20GB 40GB 80GB 160 GB
Data Size Data Size
(a) knn (b) distribution

Fig. 6. Results of KNN and Distribution.

00204 0.8 Kiometers
Lt

Fig. 7. Results of Distribution

more complex and requires more iterations to approximate the
optimal point.

Figure 6(a) measures the performance of computing KNN,
where k value is 10, when increasing the input data size from
20 GB to 160 GB. As it shows, the time does not grow linearly,
but relatively slowly. Figure 6(b) shows the performance trend
of geometric median distribution, which is similar to KNN.
We only spend 1 minute to finish KNN and geometric median
distribution on 160 GB dataset, which demonstrates that the
Dart system is quite scalable.

Figure 7 shows the median centers of all mobile Twitter
users discovered from the real tweet dataset, which covers a
geographic area from Washington, DC to New York City. The
distribution pattern of Twitter users’ daily activity locations
reveals that Twitter users are more likely to live in urban areas.

The main contribution of this study is in the development
of a system for rapid spatial data analysis. The crafting of this
system lays a solid foundation for future research that will
look into the spatio-temporal patterns as well as the socio-
economic characteristics of a massive population, which are
crucial inputs for effective urban planning or transportation
management.

. e

(a) uniform

(b) two-area

(c) skew

Fig. 4. Performance comparison of calculating mean and median.

VI. RELATED WORK

Some GIS over Hadoop and HBase have been designed
to provide convenient and efficient query processing. How-
ever, they do not support complex queries like geometric
median. A few systems employ Geographic Index like grid,
R tree, and Quad tree to improve the processing, which are,
unfortunately, not helpful for calculating geometric median
efficiently. SpatialHadoop[12] extends Hadoop and consists of
four layers: language, storage, MapReduce, and operations.
The language layer supports a SQL-like language to simplify
spatial data query. The storage layer employs a two-level
index to organize data globally and locally. The MapReduce
layer allows Hadoop programs to exploit index structure. The
operations layer provides a series of spatial operations like
range query, KNN, and join. Hadoop-GIS[13] is a spatial data
warehousing system that also supports a query engine called
REQUE, and utilizes global and local indexes to improve
performance. MD-HBase[14] is a scalable data management
system based on HBase, and employs a multi-dimensional
index structure to sustain an efficient insertion throughput and
query processing. However, these systems are incapable of
offering a good data organization structure for social network
like Twitter, and their index strategies cannot calculate the
geometric median efficiently due to an extra load on data
management, index creation and maintenance.

CG_Hadoop[15] is a suite of MapReduce algorithms, which
covers five different geometry spatial operations, namely, poly-
gon union, skyline, convex hull, farthest pair, and closest pair,
and uses the spatial index in SpatialHadoop [12] to achieve
good performance. Zhang et al. [16] implements several kinds
of spatial queries such as selection, join, and KNN using
MapReduce and proves that MapReduce is appropriate for
small scale clusters. Lu et al. [17] designs a mapping mech-
anism that exploits pruning rules to reduce both the shuffling
and computational costs for KNN. Liu et al. [18] employs the
MapReduce framework to develop a scalable solution to the
computation of a local spatial statistic (G} (d)). GISQF[19]
is another spatial query framework on SpatialHadoop [12] to
offer three types of queries, Longitude-Latitude Point queries,
Circle-Area queries, and Aggregation queries. Yet, there is no
operation or discussion for calculating geometric median on
top of Hadoop and HBase.

VII. CONCLUSION

In this paper, we introduce a novel geographic information
system named Dart for spatial data analysis and management.
Dart provides an all-in-one platform consisting of four layers:
computing layer, storage layer, methodology layer, and data
analysis layer. Using a hybrid table schema to store spatial data
in HBase, Dart can omit the Reduce process for operations
like calculating the mean center and the median center. It
also employs pre-splitting and hash techniques to avoid data
imbalance and hot region problems. In order to make spatial
analysis more efficient, we investigate the computing layer
configuration in Hadoop and the storage layer configuration
in HBase to optimize the system for spatial data storage and
calculation. As demonstrated in Section V, Dart achieves a
significant improvement in computing performance in contrast
to the performance of traditional GIS. The improvements
have been illustrated by carrying out two typical geographic
information analyses, the KNN calculation and the geometric
median calculation.

For the future work, we plan to extend Dart to implement
more spatial operations like spatial join and aggregation.
We also plan to extend Geohash or R-tree and incorporate
them into our system to speed up spatial search and prune
unnecessary location information.

VIII. ACKNOWLEDGEMENT
This work was supported in part by NSF-CAREER-1054834
and NSFC-61428201.
REFERENCES

[1] Twitter from Wikipedia website. http://en.wikipedia.org-
/wiki/Twitter.

[2] T. White. Hadoop: The Definitive Guide.
Media, 2012.

Apache Hadoop website. http://hadoop.apache.org/.

O’Reilly

Apache HBase website. http://hbase.apache.org/.
P. Russom. Big Data Analytics. TDWI Research, 2011.

D.W. Wong and J. Lee. Statistical Analysis and Modeling
of Geographic Information. John Wiley & Sons, New
York, 2005.

[7] C. Xu, D.W. Wong, and C. Yang. Evaluating the
“geographical awarenes” of individuals: an exploratory

analysis of twitter data. In CaGIS 40(2), pages 103-115,
2013.

[8] Amazon EC2 website. http://aws.amazon.com/ec2/.

[9] L. George. HBase: The Definitive Guide. O’Reilly
Media, 2011.

[10] R. Agrawal, A. Somani, and Y. Xu. Storage and querying
of e-commerce data. In VLDB Endowment, pages 149—
158, 2001.

[11] Website for calculating mean, midpoint, and center of
minimum distance. http://www.geomidpoint.com/.

[12] A. Eldawy and M. Mokbel. SpatialHadoop: towards
flexible and scalable spatial processing using mapreduce.
In the 2014 SIGMOD PhD symposium, pages 46-50,
New York, NY, USA, 2014.

[13] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang,
and J. Saltz. Hadoop-GIS: A high performance spatial
data warehousing system over mapreduce. In VLDB
Endowment, pages 1009-1020, 2013.

[14] S. Nishimura, S. Das, D. Agrawal, and A. Abbadi. MD-
HBase: A scalable multi-dimensional data infrastructure
for location aware services. In MDM, pages 7 — 16, 2011.

[15] A. Eldawy, Y. Li, M. Mokbel, and R. Janardan. CG-
Hadoop: Computational geometry in mapreduce. In
SIGSPATIAL, pages 294-303, 2013.

[16] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial
queries evaluation with mapreduce. In GCC, pages 287
- 292, 2009.

[17] W. Lu, Y. Shen, S. Chen, and B. Ooi. Efficient processing
of k nearest neighbor joins using MapReduce. In VLDB
Endowment, pages 1016-1027, 2012.

[18] Y. Liu, K. Wu, S. Wang, Y. Zhao, and Q. Huang.
A mapreduce approach to Gi*(d) spatial statistic. In
HPDGIS, pages 11-18, 2010.

[19] K. Al-Naami, S. Seker, and L. Khan. Gisqf: An efficient
spatial query processing system. In CLOUD, pages 681
— 688, 2014.

20] C. Lam. Hadoop in Action. Manning Publications, 2010.

21] E. Sammer. Hadoop Operations. O’Reilly Media, 2012.

[

[

[22] C. Bajaj. Discrete and Computational Geometry. 1988.

[23] Defination of geometric median from Wikipedia website.
http://en.wikipedia.org/wiki/Geometric_median.

[24] L. Wang, B. Chen, and Y. Liu. Distributed storage
and index of vector spatial data based on HBase. In
GEOINFORMATICS, pages 1-5, 2013.

[25] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song.
Accelerating spatial data processing with mapreduce. In
ICPADS, pages 229 — 236, 2010.

[26] P. Bajcsy, P. Nguyen, A. Vandecreme, and M. Brady. Spa-
tial computations over terabyte-sized images on hadoop
platforms. In Big Data, pages 816 — 824, 2014.

[27] L. Duan, B. Hu, and X. Zhu. Efficient interoperation of
user-generated geospatial model based on cloud comput-

ing. In GEOINFORMATICS, pages 1-8, 2012.

[28] A.Aji and F. Wang. High performance spatial query pro-
cessing for large scale scientific data. In SIGMOD/PODS,
pages 9-14, 2012.

[29] C. Zhang, F. Li, and J. Jestes. Efficient parallel kNN

joins for large data in mapreduce. In EDBT, pages 38—

49, 2012.

Y. Zhong, X. Zhu, and J. Fang. Elastic and effective

spatio-temporal query processing scheme on Hadoop. In

BigSpatial, pages 33-42, 2012.

L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel.

Tareeg: A mapreduce-based web service for extracting

spatial data from openstreetmap. In SIGMOD, pages

897-900, 2014.

M. Trad, A. Joly, and N. Boujemaa. Distributed knn-

graph approximation via hashing. In ICMR, 2012.

Y. Vardi and C. Zhang. The multivariate L1-median and

associated data depth. In National Academy of Sciences

of the United States of America, 1997.

S. Khetarpaul, S. K. Gupta, L. Subramaniam, and

U. Nambiar. Mining GPS traces to recommend common

meeting points. In IDEAS, 2012.

D.Jiang, B.C.Ooi, L.Shi, and S.Wu. The performance of

mapreduce: An in-depth study. In PVLDB, 2010.

