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Abstract—Cloud computing has drawn increasing attention
from the scientific computing community due to its ease of use,
elasticity, and relatively low cost. Because a high-performance
computing (HPC) application is usually resource demanding,
without careful planning, it can incur a high monetary expense
even in Cloud. We design a tool called CAP3 (Cloud Auto-
Provisioning framework for Parallel Processing) to help a user
minimize the expense of running an HPC application in Cloud,
while meeting the user-specified job deadline. Given an HPC
application, CAP3 automatically profiles the application, builds
a model to predict its performance, and infers a proper cluster
size that can finish the job within its deadline while minimizing
the total cost. To further reduce the cost, CAP3 intelligently
chooses the Cloud’s reliable on-demand instances or low-cost
spot instances, depending on whether the remaining time is tight
in meeting the application’s deadline. Experiments on Amazon
EC2 show that the execution strategy given by CAP3 is cost-
effective, by choosing a proper cluster size and a proper instance
type (on-demand or spot).

Index Terms—Cloud computing; provisioning; virtual cluster;
parallel scientific application; spot instance

I. INTRODUCTION

Parallel scientific applications require massive computing
resources. Traditionally, such applications run on dedicated
high performance computing (HPC) clusters located at re-
search institutes or government agencies. The recent advances
of Cloud Computing has made computing resources widely
available as a utility. Infrastructure-as-a-service (IaaS) Cloud
such as Amazon EC2 [1] makes it possible to run HPC
applications in a pay-as-you-go fashion.

Many HPC cluster users constantly feel the pain of waiting
in a queue for dedicated computing resources to become avail-
able. Moreover, it is difficult to have a customized software
environment because users have no administrator privilege.
Virtual clusters in Cloud solve both problems. A user can
easily construct a virtual cluster at any time by renting virtual
machines (VMs) from the Cloud provider. The user has full
control over the virtual cluster and can configure a customized
software environment for his/her application.

In most cases, the performance of a virtual cluster in Cloud
is still inferior to a dedicated HPC cluster, due to low network

bandwidth and high virtualization overhead. Nevertheless, vir-
tual clusters are sufficient and ideal for many loosely coupled
HPC applications. For a university or enterprise department,
a virtual cluster is a good alternative to a small physical
cluster. For an HPC developer, the ease of use in obtaining a
virtual cluster greatly improves productivity. Even for produc-
tion HPC workloads, a virtual cluster can provide additional
capacity when the local dedicated cluster runs out resources.

Cloud providers usually offer various types of VM in-
stances at different prices, with varying compute, network,
and storage capabilities. (We simply refer to a VM instance as
instance.) Cloud providers also offer different pricing models.
E.g., Amazon EC2 provides on-demand, reserved, and spot
instances. On-Demand instances charge users for compute
capacity by hour without long-term commitment. Reserved
instances provide the option of making a one-time discount
payment for long-term use. Spot instances allow users to name
their own price to bid on spare Amazon EC2 instances. Spot
prices are often much cheaper than on-demand prices for the
same EC2 instance types. However, the user runs the risk
of not getting the compute resources his/she needs, if the
bid price is too low. In this paper, we focus on on-demand
instances and spot instances, which is preferred by users who
do not want to make long-term commitment.

This paper studies how to run HPC applications in Cloud
in a cost-effective manner. If customers want to use virtual
clusters for the purpose of development and debugging, a small
number of low-end instances is often sufficient. If customers
want to use virtual cluster for production workloads, both
performance and cost are important. However, it is hard for
customers to determine the proper number of VMs that can
meet the job deadline while minimizing the cost. We refer
to this as sizing problem. On the one hand, using a smaller
cluster may not finish the job in time. On the other hand, using
an unnecessarily large cluster may incur a high cost without
proportionally reducing the execution time, because an HPC
application usually does not scale beyond a certain cluster size.

In this paper, we propose the CAP3 Cloud auto-provisioning
framework for HPC applications. Given a task specification,
CAP3 automatically determines the proper virtual cluster size



and the instance type (on-demand or spot). The task specifica-
tion includes the application itself, small datasets for profiling
runs, large datasets for production runs, and the user-specified
upper bounds of cost and execution time.

We make the following contributions in this paper:
• CAP3 infers a proper virtual cluster size (i.e., the num-

ber of VMs) that minimize the cost while meeting the
deadline and budget constraints.

• CAP3 automatically chooses on-demand instances or spot
instances to further reduce cost, depending on whether
the remaining time is tight in meeting the applications
deadline.

• CAP3 automates the entire procedure of running HPC
applications in Cloud. A customer only needs to provide
the task specification, while CAP3 solves the sizing
problem and automatically runs the job.

• We implemente CAP3 on top of Amazon EC2 and our
experiments show promising results.

II. DESIGN OF CAP3

A. CAP3 Overall Architecture

The end goal of CAP3 tool is to facilitate the execution
of scientific parallel applications in the Cloud by automating
the entire process of cluster set-up and running in a cost-
efficient way. In order to achieve this goal, we have designed
CAP3, which consists of two modules - estimation module
and scheduling module. The estimation module is responsible
for generating performance and cost estimates based on the
given application specifications submitted by the user. The
estimation process includes application profiling, model con-
struction and plan generation. The output specifies the proper
VM sizes suggested by the estimation module. Section II-B
provides more details. The scheduling module takes the output
from estimation module as input and plans scheduling based
on the desired deadline and budget. In our CAP3 framework,
scheduling implies the decision of whether and how to use
the on-demand or spot instances. Then, it carries out the
task of actual cluster provisioning in the target Cloud and
coordinates the execution of the scientific application. Details
of the scheduling module is presented in Section II-C.

These overall process of CAP3 is illustrated in Figure 1,
which includes the following steps.

1) A customer first submits task specifications to CAP3.
The task specification contains configuration information
for the target application including time limits, cost
limit, Cloud storage ID and pointer to the customer’s
application and datasets.

2) The estimation module receives the task specification.
3) A profiler component within the estimation module

prepares a small-sized virtual cluster and performs the
sample runs using small training datasets for profiling.
Application runtime features are extracted from this
profiling run. Application runtime features vary for
applications, which are described in more details in
Section II-B2.

4) A model construction component takes these profiles to
build performance models, which are used to predict the
execution time of the application for a large dataset on
a large-sized cluster.

5) The planning component combines Cloud-specific infor-
mation and the prediction results, and then determines
the most appropriate cluster size.

6) The estimation module outputs the desired size and
estimated execution time as annotated task specification
to the scheduling module.

7) Based on the results from the estimation module and
deadline constraints, the scheduling module invokes ap-
propriate agents who are responsible for interacting with
the Cloud and running the application. For example,
one agent may primarily focus on handling on-demand
instances while the other agents handle spot instances.

8) Once an agent is selected, it creates actual VM instances,
sets up the application and data, and runs the task.

B. Estimation Module

The estimation module has three components: profiler,
model construction and planning.

1) Profiler Component: We use TAU (Tuning and Analysis
Utilities) [2] as a profiling tool in CAP3. TAU is a portable
profiling and tracing toolkit in wide use for performance
analysis of parallel scientific applications. It is capable of
collecting performance-related information such as function
invocation statistics, communication patterns and aggregated
node/thread specific information via instrumentation.

The profiler module in CAP3 utilizes TAU in the following
way. Profiler first generates a script for application profiling
based on the customer’s task specification. According to the
script, TAU automatically instruments the application code
prior to the profiling run. Then, the profiling run is per-
formed using small sample datasets on small size of virtual
clusters. During profiling run, TAU-instrumented codes gather
performance-related information, and the profiler uses the
parser to analyze and extract mean time of each function
and loop in the application code. Then, it classifies these
information into communication time (i.e., time spent on MPI
function calls) and computation time (i.e., time spent on code
section excluding communication). Such information serves as
inputs to the model construction component.

2) Model Construction Component: We apply linear regres-
sion (LR) technique to predict the execution time for the given
application. We use two input data for the LR: CPU time spent
for computation and network time from MPI communication.
This is based on our assumption that the total execution time
of scientific applications are the sequence of CPU time and
delays from network communications.

CPU computation time is expressed as:

TC = c0 +

r∑
j=1

(cj · xj) + c(r+1) · P (1)

where TC is the execution time, cj is the coefficients, P is the
number of MPI processes, xj is the application-specific feature
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Fig. 1. The workflow of CAP3.

Benchmark Feature Variables
CG no. of rows, no of nonzeros

no. of iterations, eigenvalue shift
EP no of random-number pairs
FT grid size: x× y × z, no. of iterations
IS no. of keys, key max value

MG grid size: x× y × z, no. of iterations
BT write interval, Gbytes written
LU grid size: x× y × z, no. of iterations, time step
SP grid size: x× y × z, no. of iterations, time step

TABLE I
FEATURE VARIABLES FOR DIFFERENT APPLICATIONS. THE NUMBER OF
PROCESSES IS A FEATURE COMMON TO ALL APPLICATIONS, AND HENCE

OMITTED IN THIS TABLE.

variables and r is the number of feature variables. P and xj

are independent variables, and TC is a dependent variable. The
number of application-specific feature variables are different
from application to application. Table I describes the features
we have used for some benchmarks. Following [3], we take the
logarithm of Equation 1 to increase the accuracy as follows.

log TC = c0 +

r∑
j=1

(cj · log xj) + c(r+1) · logP (2)

To construct the LR model for the network delay, we assume
that the MPI collective communication cost is proportional to
either p · log(p) or log(p) as reported in [4]. They also specify
which proportion should be used for each of the MPI function.
We adopt their results. We substitute P in Equation 2 with term
p · log(p) or log(p) and yield Equation 3 or 4.

log TN = c0 +

r∑
j=1

(cj · log xj) + c(r+1) · log (logP ) (3)

log TN = c0 +

r∑
j=1

(cj · log xj) + c(r+1) · log (P · logP ) (4)

where TN denotes the network delay caused by the MPI
function calls during the execution.

Using small dataset, the profiler component generates series
of training data (T ′C , P

′, x′1, x
′
2, x
′
3, ...) for the CPU execution

time and (T ′N , P ′, x′1, x
′
2, x
′
3, ...) for the network delay due

to MPI function calls. They are plugged into the appropriate
equations among Equation 2, 3 or 4 and the least square
method is used to determine the model parameter cj .

3) Planning Component: The planning component is re-
sponsible for computing approximate cost and assist to deter-
mine the number of instances used for real execution.

The cost of executing a task is determined by the number of
instances, unit price of the instance type, and execution time,
which is expressed in Equation 5.

costtask = cunit × d
num proc

ppn
e × dTC + TNe (5)

where cunit is the unit price of the type of instance used for
execution, num proc is the number of MPI processes, ppn
is the number of processes per instance and num proc

ppn is the
number of instances used for the task.

Given the deadline and budget, the planning component
iterates over the predefined range of num proc, and calls
the model construction component and Equation 5 to find out
the estimated time and cost. Then it chooses num proc with
the minimal time that satisfies both timelimit and costlimit.
Finally the planning component annotates optimal num proc
and its corresponding estimated time into the task specifica-
tion, which is used as input for the scheduling module.

C. Scheduling Module

The scheduling module takes an annotated task specification
as input, and schedules the task to appropriate virtual clusters
to run. The module tries to complete a task within the deadline
under the budget. We first introduce the task priority rate (PR)
as in Equation 6,

PR =
Tdeadline − Tnow − Test − Tlatency

Test
(6)

where Tdeadline is the deadline specified by customer, Tnow is
the current wall clock time, Test is the estimated time running
on certain number of instances suggested by the estimation
module, Tlatency is the latency to set up instances (e.g., initiate
instance, submit job to the queue, and tear-down instance).
PR describes the priority of a task. If PR is negative, the
task cannot meet the deadline. When PR tends to be a small
positive number, the task can be finished before deadline, but
the remaining time is very limited. So the task is considered
to be in high priority. When PR tends to be a large positive
number, the task is in lower priority, and the remaining time
for the task is sufficient. The scheduling module first attempts
to run the lower priority task on some low cost instances at the
risk of failure. Note that PR is changing as the time elapses. A
lower priority task can become a higher priority task if the task



Agent Cluster PR
range

Explanation

framework
agent
AG

N/A all update and check task’s
PR, distribute tasks to ap-
propriate cluster agent

aghi high priority on-
demand instance
cluster

PR <
th1

run high priority task on
on-demand instances

agme medium priority
spot instance
cluster

th1 ≤
PR ≤
th2

run medium priority tasks
on spot instances, bid at
relatively high price

aglo low priority spot
instance cluster

PR >
th2

run tasks with low prior-
ity on spot instances, bid
relatively low price

TABLE II
DIFFERENT AGENTS IN THE AUTO-SCHEDULING MODULE. th1 AND th2

ARE THRESHOLD VALUES, AND th1 < th2 .

does not make much progress in lower priority phase along
time elapses.

We maintain one framework agent AG and three cluster
agents: high priority agent aghi, medium priority agent agme

and low priority agent aglo that correspond to three different
virtual clusters described in Table II.

• The framework AG takes all kinds of tasks as input.
It does not manage a virtual cluster directly. Instead, it
works as a coordinator for assigning tasks to appropriate
agents and for receiving expired task notification from
cluster agents.

• High priority agent aghi accepts high priority tasks and
maintains an on-demand cluster. All the instances in
aghi’s virtual cluster are from Amazon EC2 on-demand
instances. aghi offers the highest price with the most
reliable service. aghi is used for executing emergent tasks
with high priority (PR is very small) at relatively higher
cost. aghi only accepts emergent tasks with PR < th1.
Thresholds are set by administrator based on prior expe-
rience. In the experiment, we set th1 = 1.0, which indi-
cates that the task can only be run at most once with the
current remaining time. When aghi accepts an emergent
task, it applies certain number of on-demand instances
according to num proc in annotated task specification.
The high priority task is scheduled to run immediately
when on-demand instance cluster is ready.

• Medium priority agent agme is in charge of maintain-
ing medium priority spot instance. agme bids relatively
high compared with aglo. The bidding policy can use
sophisticated strategies as discussed in Section IV. In the
experiment, our bid price is set based on the current spot
price, average historical spot price during the past 30 days
and on-demand price. agme is intended to run medium
priority task that is going to become high priority in the
near future but still take advantage of spot instance’s low
price. agme accepts tasks with PR range from th1 to th2.
We set th2 = 2.0 in the experiment. A task with medium
priority within thresholds 1.0 and 2.0 indicates that it can
run twice before the deadline. On the one hand, bidding

Fig. 2. Cluster state transition diagram.

at higher price improves the reliability because it reduces
the possibility of interruption by Amazon when spot price
rises. On the other hand it enjoys low spot price most of
the time. In case a task is interrupted, it is sent back to
AG to redeliver.

• Low priority agent aglo maintains low priority spot
instance cluster. aglo provides the lowest price but also
with the lowest reliability. This agent is intended to run
low priority tasks with sufficient remaining time at the
lowest cost. aglo accepts tasks with PR > th2 where
th2 = 2.0. It indicates that there are enough remaining
time to run at least three times, implying that the task
has multiple chances to try low price spot instances at
the risk of interruption. To take advantage of spot price,
aglo bids at a very low price. It is possible that a task
may be interrupted during execution by Amazon, and sent
back to AG. Since the remaining time of the task is still
abundant, AG can either reschedule the task to run in
aglo next time or deliver to other higher priority agents.

We next describe the behaviors of these agents. We refer
task to working unit in the agent, and refer job to task
submitted to cluster’s queuing system, e.g., PBS or Sun Grid
Engine.

Framework agent AG stays in an infinite loop to accept
incoming tasks. AG initially takes all tasks into its list,
and updates each task’s PR. Then it compares a task’s PR
with predefined threshold values, and delivers the task to an
appropriate cluster agent.

Algorithm 1 describes the common behaviors of cluster
agent. Figure 2 shows cluster’s state transition when agent is
working. When an agent receives an assigned task, the agent
becomes active and its corresponding virtual cluster is set to
be closed initially. The agent first checks spot history price
and determines the bid price if the agent is a medium or low
priority agent (line 3 to 6). Then the agent starts the cluster
and sets its state to be initializing (line 7 to 8). For on-demand
instances, the agent waits until cluster state becomes started.
For spot instance, the agent has to wait until spot price drops
below the bid price. The wait could be potentially very long,
and if the current task’s priority does not satisfy during the
wait, the agent sends the task back to framework agent to be
redelivered to higher priority agent. The above behaviors are



Algorithm 1 The algorithm executed by cluster agent ag. ag
can be any one of aghi, agme, andaglo
.

1: a new task t is coming
2: set cluster state cst = closed
3: if ag is agme or aglo then
4: check spot price history
5: determine bid price
6: end if
7: start a new cluster, setup master node
8: set cst = initializing
9: while TRUE do

10: if cst == initializing then
11: update t.PR
12: if cluster is ready then set cst = started
13: else if t.PR does not satisfy current ag then . handle

PR expired
14: send task t to AG
15: set cst = finished
16: else wait an interval
17: end if
18: else if cst == started then
19: add new instances to cluster as compute nodes
20: submit t as a job to cluster queuing system
21: set cst = running
22: else if cst == running then
23: if (ag is agme or aglo) and cluster is interrupted then
24: set t.state = false
25: set cst = interrupted
26: else if job is done then
27: set t.state = true
28: set cst = finished
29: else wait an interval
30: end if
31: else if cst == interrupted then . handle interruption
32: send task t to AG
33: set cst = finished
34: else if cst == finished then
35: remove idle instances
36: terminate cluster
37: set cst = closed
38: else if cst == closed then break
39: end if
40: end while

described in line 10 to 17. Once cluster gets started (line 18
to 21), the agent adds new instances to cluster according to
the number of MPI processes required by the task, and then
submits the task as a job to the cluster’s scheduler. Cluster state
is set to running after these actions. When the job is running,
the agent checks its state periodically (line 23 to 30). If the
job is done, cluster state is set to finished. For spot instances,
if out of bid happens during job running, cluster state is set
to interrupted. When cluster is in interrupted state (line 31 to
33), the job’s corresponding task is sent back to framework
agent for rescheduling, and cluster is set to finished. Finally,
if cluster is in finished state, the agent terminates the cluster
and becomes idle again (line 34 to 37).

III. EVALUATION

We evaluated CAP3 on Amazon EC2. We chose StarCluster
0.93.3 [5] to configure and manage virtual cluster on Ama-

Instance
Type Name

Memory CU PPN On-
demand
Price

Price
Per CU

small
(m1.small)

1.7 GB 1 1 $0.06 $0.06

medium
(m1.medium)

3.75 GB 2 1 $0.12 $0.06

large
(m1.large)

7.5 GB 4 2 $0.24 $0.06

cluster
(cc1.4xlarge)

23 GB 33.5 16 $1.30 $0.039

TABLE III
CONFIGURATIONS AND PRICES OF DIFFERENT AMAZON INSTANCE TYPES.
CU: COMPUTE UNIT DEFINED BY AMAZON. PPN: THE NUMBER OF MPI

PROCESSES RUNNING ON EACH INSTANCE.

zon EC2. CAP3’s application profiler invoked TAU 2.22 to
extract performance information of applications. CAP3 was
programmed in Python 2.7 with NumPy 1.6.2 library. We
used eight MPI C or MPI Fortran benchmarks from NAS
Parallel Benchmarks (NPB) 3.3.1. These benchmarks represent
a wide spectrum of parallel scientific applications. The eight
benchmarks are:
• CG: conjugate gradient, irregular memory access and

communication
• FT: discrete 3D FFTs, all-to-all communication
• MG: multi-grid on a sequence of meshes, long- and short-

distance communication, memory intensive
• EP: embarrassingly parallel
• IS: integer sort, random memory access
• BT: block tri-diagonal solver
• SP: scalar penta-diagonal solver
• LU: lower-upper Gauss Seidel [6]
Amazon EC2 provides dozens of optional instance types

classified by different compute capacities or usage purposes.
Table III lists attributes of four typical instance types: small,
medium, and large instance from the 1st generation standard
instance that are the most commonly used instance types,
and quadruple extra large cluster compute instance that is
designed for high performance computing with better IO and
network. Compute Unit (CU) is Amazon defined metric to
measure compute capability of VM. Larger CU indicates
higher compute capability. The last column shows price per
CU for each type. According to Table III, cluster instance is
cheaper than other standard instances in terms of price per CU.
Hence, we recommend to run parallel scientific applications
using cluster instance type as it is the most efficient type.

We verified our recommendation by comparing the costs
of different instance type runs with 25 or 32 1MPI processes
for different tasks shown in Figure 3. Only IS showed benefit
using medium instance. For the other seven tasks, using cluster
is no worse than other standard types. If we run more pro-
cesses, the advantage of using cluster instance is more obvious
because of faster interconnection between cluster instances.

1Some applications require number of processes must be square number,
some applications require power of two, and some applications accept
arbitrary number.
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Fig. 3. Cost comparison using different instance types for different tasks.
Each task runs 25 or 32 MPI processes. The y-axis shows the ratio of the
real cost of a task using a specific instance type to the minimal cost of the
task among all instance types.

App CAP3 #proc customer #proc priority instance type
CG 16 64 medium cluster
EP 96 48 high cluster
FT 16 32 high cluster
IS 16 32 high medium

MG 16 32 low cluster
BT 16 25 low cluster
LU 128 64 low cluster
SP 16 25 medium cluster

TABLE IV
COMPARISON OF THE CONFIGURATION PROVIDED BY CAP3 AND THAT

PROVIDED BY A COST-IGNORANT CUSTOMER.

A. Constraints Satisfaction and Cost Comparison of On-
demand Instance

CAP3 first ran the estimation module to give appropriate
cluster size used for executing large dataset. The estimation
module ran small training dataset for each task. The course of
training each task is within one hour. Note that the training
only needs to be run once. After the first run, the training
dataset was saved and can be reused for future usage. In
this experiment, each task specification provided 4 or 5 small
training dataset. The estimation module profiled each dataset
from 2 to up to 32 processes. Then the estimation module
estimated the proper size of each task listed in the second
column of Table IV. The third column is the size used by
cost-ignorant customer (referred as customer for short) as
comparison. From the table, the estimation module tended to
give a smaller size (16 processes) for 6 out of 8 tasks, while the
customer tended to use a reasonable large size based on his/her
prior experiences on HPC clusters. Many of parallel scientific
applications require intensive communication. Smaller size
provided by CAP3 indicated lower communications between
instances made applications’ scalability different from HPC
cluster.

Next, CAP3’s scheduling module applied for certain number
of instances according to the size provided by the estimation
module in the second column of Table IV, and ran tasks
with large dataset at virtual cluster. We first checked if CAP3

can meet deadline and budget and compared it with a cost-

CG EP FT IS MG BT LU SP sum
CAP3 dl X X X X X X X X 8
Cus dl X X X X X X X 7

CAP3 bd X X X X X X 6
Cus bd X X X X X 5

TABLE V
DEADLINE AND BUDGET SATISFACTION. A CHECK MARK MEANS THE

TASK MEETS THE DEADLINE OR BUDGET. CAP3 DL: CAP3 DEADLINE.
CUS DL: CUSTOMER DEADLINE. CAP3 BD: CAP3 BUDGET. CUS BD:

CUSTOMER BUDGET. LAST COLUMN INDICATES TOTAL NUMBER OF TASKS
THAT MEET DEADLINE OR BUDGET FOR CAP3 OR CUSTOMER.
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CG EP FT IS MG BT LU SP

CAP3 customer

Fig. 4. Cost comparison between CAP3-provided cluster size and customer-
provided cluster size. The y-axis is the ratio of the actual cost to the minimal
cost of CAP3 and customer .

ignorant customer in Table V. CAP3 met all deadline, while
the customer missed one deadline. Six out of eight tasks using
CAP3 were within budget, while five were within budget for
customer. CAP3 can meet deadline and budget in most cases,
and is better than the customer.

Then we compared the actual cost using the sizes provided
by CAP3 and customer in Figure 4. To simplify cost com-
parison, we calculate cost based on on-demand instance price.
Five (CG, FT, MG, BT, SP) of tasks using CAP3 costed less
than the customers solution, one (IS) task costed the same, and
two (EP, LU) tasks costed more. On average, CAP3’s solution
costs less than the customer’s solution.

We further investigated LU, which used a fairly large size
provided by the tool and costed three times more expensive
than using customer provided size. The reason behind the false
size was that, the tool only ran up to 32 processes for profiling
in the estimation module. LU was very scalable from 2 to 32
processes. So the tool gave a fairly large size to run large
dataset. However, by doing expanded experiments, we found
LU is not scalable at larger number of processes. We can solve
this problem by running training dataset with larger number of
processes at the expense of higher cost and longer time. The
tool should learn that LU is not scalable after certain number
of processes and therefore give a reasonable smaller size.

B. Cost Comparison of Spot Instance

One of the features of CAP3 is that it can intelligently
choose between on-demand instance and spot instance for
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Fig. 5. Cost comparison between on-demand instance and spot instance. The
symbols (medium) and (low) represent different cluster agents. The y-axis is
the ratio of the actual cost to the minimal cost of on-demand and spot.

each task according to remaining time. In the 4th column of
Table IV, CG and SP used medium priority agent to bid at
higher price for spot instance, and MG, BT, LU used low
priority agent to bid at lower price for spot instances. The
other three tasks (EP, FT and IS) used on-demand instances.
The on-demand price for cluster instance is $1.30. During the
experiment, the tool bided at $1.15 for the medium agent,
and bided at $0.21 for low priority agent. Figure 5 compared
cost between on-demand and spot instances for tasks that used
medium or low priority agent. The cost was computed by
assuming that spot instances were charged at bid price. In
fact, spot instances were charged at real-time spot price, which
is lower than bid price if spot instances are fulfilled. So the
actual cost was equal or lower than the cost in the figure. Thus,
by automatically choosing spot instance, the cost was further
reduced significantly.

The risk of using spot instance is the potential interruption
during execution. We did not apply any recovering mechanism
to handle the runtime failure. We simply deliver the failed task
to framework agent, and framework agent will reassign the
failed task to appropriate cluster agent. The low priority agent
faces the higher risk of interruption because of low bid price.
E.g., during the first run in experiment, BT was interrupted
after running for one hour twenty minutes. BT was redelivered
by freamwork agent to low priority agent to rerun the task. At
the second time, BT was lucky and ran for four hours until
finished. According to Amazon’s spot instance policy, it does
not charge the last partial hour interrupted due to rising spot
price. So for this task, Amazon total charged for five hours.
The total cost was $1.05 (0.21× 5), but was still much lower
than on demand cost which was $5.2 (1.30×4). In most cases,
task in low priority agent has enough time to run multiple
times. Such task usually bids less than 30% of on-demand
price. So it is still less expensive than using on-demand price if
interruption happens. In some rare cases, using spot instances
could be more expensive than on-demand instances. Either
because spot price keeps in high price or there is not too
much remaining time. An interrupted task may be delayed till
it has to be delivered to high priority agent using on-demand

price. Statistically, CAP3 is less expensive than solely using
on-demand instances.

Compared with using pure on-demand instance, CAP3 can
save significant cost by using spot instances. Compared with
using pure spot instance, CAP3 is more reliable, because some
high priority tasks (EP, FT and IS) using spot instance could
potentially miss the deadline if interruption happens.

IV. RELATED WORK

In HPC community, significant effort has been put in de-
veloping approaches for performance modeling and prediction
of application running on traditional clusters. Approaches of
performance modeling or prediction fall into three categories:
analytics based, simulation based and regression based.

Analytical models such as LogP [7], LogGP [8], PLogP
[9], and LoPC [10] use mathematical methods to charac-
terize behaviors of application during execution. Analytical
performance models can capture high level of performance or
scalability trend, but are intrinsically difficult to predict the
application running time accurately.

Simulation based modeling relies on either profiling tools
such as TAU [2] or tracing tools such as Vampir [11] and
Paraver [12]. [13] gives a comprehensive survey of HPC
performance modelling and prediction tools. Dimemas [14]
performs instruction based simulation by replaying of trace
obtained by Paraver during runtime. Estimation of different
machine sizes requires rerunning the program to generate new
traces. PSINS [15] collects event traces during application
execution (PSINS Tracer), and simulates event traces (PSINS
Simulator) on target HPC systems. WARPP [16] performs
post-execution analysis on trace-based profiles that combines
running capture of call-graph with computation timings.

Regression based approaches correlate parallel application
execution time with various input parameters. In [3], several
program executions were used on a small subset of the proces-
sors to predict execution time on larger number of processors.
An improved focused regression approach is proposed in [17]
to study time-constrained scaling of scientific applications.

Since spot instance is the first Cloud service based on supply
and demand in the market, it draws significant research interest
during the last three years. From customer’s perspective, a
good bidding strategy is necessary in order to save cost and sat-
isfy application requirement. Sophisticated bidding strategies
has been proposed by various researchers. Ben-Yehuda et al.
[18] construct a model that generates consistent price with spot
price by analyzing spot price history of Amazon. Tang et al.
[19] model bidding problem as Constrained Markov Decision
Process (CMDP). Their “AMAZING” tool can intelligently
adapt the bid from detected state pattern. Zafer et al. [20]
study dynamic bidding policy for spot instances in the context
of deadline constrained jobs. Mattess et al. [21] investigate the
strategies of extending local cluster using spot instances in an
economic way when peak load coming.

Spot instances are suitable for MapReduce because of its
massive scalability and fault tolerance. In [22], spot instances
are used as accelerator to reduce runtime of MapReduce



jobs. New technique is devised to handle the adverse effect
of interruption. Kambatla et al. [23] improve MapReduce
provisioning by taking resource consumption statistics of jobs
into account.

Unlike MapReduce applications, parallel scientific applica-
tions usually require lots of inter-task communication. Also, it
is difficult to scale up and down during execution as MapRe-
duce. In addition, using fault tolerance in such applications is
costly. Thus, it is more challenging to apply spot instances to
parallel scientific applications. Voorsluys et al. [24] propose
a resources allocation policy for running deadline constrained
compute-intensive jobs on spot instances based on job runtime
estimation. Their later research employs fault tolerance such as
checkpointing, task duplication, and migration [25]. SpotMPI
[26] facilitates execution of MPI applications on auction-based
Cloud platforms based on adjusted optimal checkpoint-restart
(CPR) intervals. Their tookit can automate checkpointing at
bidding price and restart application after interruption.

V. CONCLUSION AND FUTURE WORK

We proposed CAP3, an auto-provisioning framework for
HPC applications in Cloud. CAP3 helps a Cloud user to
apply for instances and run applications without the users
interference. It reduces the monetary expense by automatically
choosing the proper number of instances and the right instance
type (on-demand or spot). Experiments showed that CAP3 was
effective on Amazon EC2.

For future work, CAP3 can be improved along multiple
directions. It can benefit from a more sophisticated and more
accurate performance estimation module, as the current model
is relatively simple. It can also intergarte sophisticated bidding
strategies to save cost, and recovering mechnisum to handle
runtime interruption. Another limitation is that the current
scheduling module only supports one task per customer. We
plan to extend it to handle multiple tasks for multiple cus-
tomers in the future.
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