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SUMMARY

This paper presents an integrated analytical and profile-based cross-architecture performance modeling tool
to specifically provide inter-architecture performance prediction for Sparse Matrix-Vector Multiplication
(SpMV) on NVIDIA GPU architectures. To design and construct the tool, we investigate the inter-
architecture relative performance for multiple SpMV kernels. For a sparse matrix, based on its SpMV
kernel performance measured on a reference architecture, our cross-architecture performance modeling tool
can accurately predict its SpMV kernel performance on a target architecture. The prediction results can
effectively assist researchers in making choice of an appropriate architecture that best fits their needs from a
wide range of available computing architectures. We evaluate our tool with 14 widely-used sparse matrices
on four GPU architectures: NVIDIA Tesla C2050, Tesla M2090, Tesla K20m, and GeForce GTX 295. In
our experiments, Tesla C2050 works as the reference architecture, the other three are used as the target
architectures. For Tesla M2090, the average performance differences between the predicted and measured
SpMV kernel execution times for CSR, ELL, COO, and HYB SpMV kernels are 3.1%, 5.1%, 1.6%, and
5.6%, respectively. For Tesla K20m, they are 6.9%, 5.9%, 4.0%, and 6.6% on the average, respectively. For
GeForce GTX 295, they are 5.9%, 5.8%, 3.8%, and 5.9% on the average, respectively.
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1. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an essential operation in solving linear systems and
partial differential equations. In our previous research work [1], we proposed an integrated analytical
and profile-based performance modeling tool to accurately predict SpMV kernel execution time on a
Graphics Processing Unit (GPU) architecture. However, for users who have options to use different
GPU architectures, if they intend to achieve SpMV kernel performance on multiple different GPU
architectures in a low-cost way, or further, if they intend to choose an appropriate one from a
wide range of available GPU architectures, they are facing a challenging issue to do large amount
of profiling work by following our traditional modeling approach [1]. This paper addresses this
problem by proposing an enhanced analytical and profile-based performance modeling tool to
predict cross-architecture SpMV kernel performance with much less user’s effort. According to
the known performance measured on a reference GPU architecture, the proposed approach can
accurately predict SpMV kernel performance on a target architecture based on the performance
relationships between different GPU architectures. Such a tool can effectively assist researchers
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in making choice of an appropriate architecture that best fits their needs from different available
computing architectures. However, this prediction goal cannot be reached via a naive approach
trying to multiply the known reference performance by theoretical peak performance ratio of
these two architectures because the real performance ratios are significantly deviant from the peak
performance ratios for different applications performed with different SpMV kernels.

Our performance modeling approach combines both profile-based technique and analytical
technique. It follows the profile-based technique to divide the modeling into two phases:
instrumenting and modeling. In the phase of instrumenting, some benchmark matrices are generated
and their corresponding SpMV computations are conducted. The properties of the benchmark
matrices and their SpMV kernel execution times are recorded as the input in the phase of modeling.
In the phase of modeling, SpMV kernel execution time for a target sparse matrix is estimated. In our
approach, the analytical technique is adopted for instructing the generation of benchmark matrices
and constructing parameterized performance models.

We evaluate our tool with 14 matrices on four GPU architectures: NVIDIA Tesla C2050, Tesla
M2090, Tesla K20m, and GeForce GTX 295. The SpMV kernels we used in our tool, which
are Compressed Sparse Row (CSR), ELLPACK/ITPACK (ELL), Coordinate (COO), and Hybrid
(HYB), are based on Bell and Garland’s [2] work. In our experiments, NVIDIA Tesla C2050 is used
as the reference architecture, the other three are used as the target architectures. For NVIDIA Tesla
M2090, the average performance differences between the predicted and measured SpMV kernel
execution times for CSR, ELL, COO, and HYB SpMV kernels are 3.1%, 5.1%, 1.6%, and 5.6%,
respectively. For Tesla K20m, they are 6.9%, 5.9%, 4.0%, and 6.6% on the average, respectively.
For GeForce GTX 295, they are 5.9%, 5.8%, 3.8%, and 5.9% on the average, respectively.

The rest of this paper is organized as follows: Section 2 surveys the related work about SpMV and
the recent modeling techniques. Section 3 briefly introduces the major contents of our baseline tool.
Section 4 presents the details of our cross-architecture SpMV performance modeling tool. Section 5
evaluates the accuracy of our performance modeling tool and gives the analysis of our experimental
results. Section 6 gives the conclusions.

2. RELATED WORK

This paper extends our previous work [1] to support cross-architecture SpMV performance
prediction. Specifically, our previous modeling approach proposed in [1] can accurately predict
SpMV performance on a GPU architecture. However, it needs much effort when applying it to
predict performance on multiple different GPU architectures due to a series of benchmark matrices
required to be generated on each GPU architecture to instantiate the models. The modeling approach
proposed in this paper addresses the challenging issue. It can significantly reduce the amount of
profiling work while keeping the accuracy of the performance modeling tool.

Bolz et al. [3] first implemented SpMV computing on GPUs. Bell and Garland [2] implemented
Compute Unified Device Architecture (CUDA)-based SpMV kernels for some well-known sparse
matrix formats, i.e., CSR, ELL, COO, and HYB. Our modeling approach utilizes their kernels.

The research work on SpMV optimization and tuning includes [4, 5, 6, 7, 8, 9, 10, 11]. Vazquez
et al. [4] proposed a new format, called ELLR-T, which is a variant of ELL, to achieve high
performance on GPUs. Monakov et al. [5] proposed a sliced ELL (SELL) format and used auto-
tuning to find the optimal configuration, e.g., the number of rows in a slice, to improve SpMV
performance on GPUs. Dang and Schmidt [6] presented a new format called sliced COO (SCOO)
and an efficient CUDA implementation to optimize SpMV on the GPU. Sun et al. [7] proposed
a new storage format for diagonal sparse matrices, defined as Compressed Row Segment with
Diagonal-pattern (CRSD), to speed up SpMV performance on GPUs. We [8] proposed an auto-
tuning framework that can automatically compute and select the parameters of SpMV kernels to
obtain the optimal performance on specific GPUs. Kubota and Takahashi [9] proposed an SpMV
auto-selection algorithm on GPUs to automatically select the optimal storage scheme for the given
sparse matrices. Baskaran and Bordawekar [10] proposed optimizations including: synchronization-
free parallelism, optimized thread mapping, optimized off-chip memory access, and data reuse, to
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speed up SpMV kernel. Pichel et al. [11] explored the SpMV performance optimization on GPUs
using reordering techniques.

Some performance models focusing on optimizing performance have been proposed. Sim et al.
[12] presented a performance analysis framework to precisely predict the performance and predict
the potential performance benefits. Choi et al. [13] designed a blocked ELLPACK (BELLPACK)
format and proposed a performance model to predict matrix-dependent tuning parameters. Karakasis
et al. [14] presented a performance model that can accurately select the most suitable blocking
sparse matrix storage format and its proper configuration. Zhang and Owens [15] adopted a
microbenchmark-based approach to develop a throughput model for three major components of
GPU execution time: instruction pipeline, shared memory access, and global memory access. We
[16] presented a modeling and auto-tuning integrated framework to speed up SpMV on GPUs. Xu et
al. [17] proposed the optimized SpMV based on ELL format and a performance model. Resios [18]
proposed a GPU parametrized analytical model to estimate execution time and identify potential
bottlenecks in their programs. Besides prediction, their tool can also suggest values for parameters
that influence performance. Jia et al. [19] presented GPURoofline, an empirical model for guiding
optimizations on GPUs. Cui et al. [20] presented a performance model to optimize control flow
divergence, further, to improve application performance.

Also, there are some performance models focusing on predicting execution times. Dinkins
[21] proposed a model for predicting SpMV performance using memory bandwidth requirements
and data locality. Baghsorkhi et al. presented a string-based [22] analytical model and a work
flow graph (WFG)-based [23] analytical model to predict the performance of GPU applications.
Kothapalli et al. [24] presented a performance model by combining several known models of parallel
computation: BSP, PRAM, and QRQW. Yang et al. [25] presented a cross-platform performance
prediction approach for parallel application based on inter-platform relative performance and partial
execution. Marin and Mellor-Crummey [26] proposed a modeling tool for semi-automatically
measuring and modeling static and dynamic characteristics of applications in an architecture-neutral
fashion. Hong and Kim [27] proposed a simple analytical GPU model to estimate the execution time
of massively parallel programs. Their model estimated the number of parallel memory requests by
taking into account the number of running threads and memory bandwidth. We [28] proposed a
performance modeling and optimization analysis tool to predict and optimize SpMV performance
on GPUs. Schaa et al. [29] designed a methodology to accurately predict the execution time for
GPU applications while varying the number and configuration of the GPUs, and the size of the
input data set. Liu et al. [30] identified several key factors that determine the performance of GPU-
based applications and proposed performance models for them.

3. BASELINE SPMV PERFORMANCE MODELING TOOL

Our cross-architecture performance modeling tool is based on our previous modeling tool [1], which
is referred as the baseline tool in this paper. This section briefly introduces some important contents
of the baseline tool, which are related to our cross-architecture modeling tool. More detailed
descriptions can be found in [1].

(1) The size of matrix strip: A strip is a maximum submatrix that can be handled by a GPU
with a full load of thread blocks within one iteration [13]. For a large matrix, it may need multiple
iterations to handle the whole matrix. Thus, a matrix may contain multiple strips. The size of matrix
strip, denoted by S, is represented as follows:

S =


SCSR, for CSR kernel
SELL, for ELL kernel
SCOO, for COO kernel

S is determined by the physical limitations of a GPU and the specific SpMV kernels [1]. For CSR
and ELL SpMV kernels, SCSR and SELL represent the number of rows in a matrix strip; For COO
kernel, SCOO represents the total number of non-zero elements in a matrix strip. They are computed
as follows:
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• SCSR = NSM ×Warps/Multiprocessor
• SELL = SCOO = NSM × Threads/Multiprocessor

where,

⋄ NSM represents the number of streaming multiprocessors (SMs).
⋄ Warps/Multiprocessor represents the number of warps per SM.
⋄ Threads/Multiprocessor represents the number of threads per SM.

(2) The benchmark matrices: To obtain accurate performance models, we generate a series of
benchmark matrices according to the following criteria:

• The number of rows (R): R = S × I and I ∈ N
where,

⋄ I represents the number of matrix strips.
⋄ N represents the set of natural numbers.

• The number of non-zero elements per row (PNZ BM ):

– CSR: PNZ BM ∈ [1, GM−sizeof(int)×(R+1)
(sizeof(float)+sizeof(int))×R )

– ELL: PNZ BM ∈ [1, GM

(sizeof(float)+sizeof(int))×R )

– COO: PNZ BM ∈ [1, GM

(sizeof(float)+2×sizeof(int))×R )

where,

⋄ GM represents the size (bytes) of GPU global memory.
⋄ The non-zero elements in the above equations are in single-precision (float). For double-

precision, the equations are similar, just replacing float with double.

Assume that each row of a benchmark matrix has the same number of non-zero elements.
The maximum PNZ BM is derived according to the maximum non-zero elements that can be
stored in the GPU global memory in the corresponding sparse matrix format [2]. Specifically,
for CSR, ELL, and COO, the maximum PNZ BM can be derived from the following equations,
respectively:

– CSR: sizeof(ptr) + sizeof(indices) + sizeof(data) < GM

– ELL: sizeof(indices) + sizeof(data) < GM

– COO: sizeof(row) + sizeof(indices) + sizeof(data) < GM

where,

⋄ ptr represents an array storing row pointers.
⋄ indices represents an array storing column indices of non-zero elements.
⋄ data represents an array storing values of non-zero elements.
⋄ row represents an array storing row indices of non-zero elements.
⋄ sizeof(ptr) = sizeof(int)× (R+ 1)
⋄ sizeof(indices) = sizeof(int)×R× PNZ BM

⋄ sizeof(data) = sizeof(float)×R× PNZ BM

⋄ sizeof(row) = sizeof(int)×R× PNZ BM

• The number of columns (C): C > PNZ BM is required. Since the sparse matrices are stored
in compressed formats, the value of C does not affect the performance.

• The value of each non-zero element: random value.

(3) The target matrix: Let D be a set consisting of the number of non-zero elements in each row
of a target matrix. The PNZ value of the target matrix can be estimated as follows:

• CSR: PNZ CSR is set to be the mode (in statistics) of a set D.
• ELL: PNZ ELL is set to be the maximum value of a set D.

(4) The linear relationships: The baseline tool estimates the SpMV kernel execution time of a
target matrix according to the relationships established between the number of strips, the number of
non-zero elements per row, and the execution times of the benchmark matrices.
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4. CROSS-ARCHITECTURE SPMV PERFORMANCE PREDICTION

We refer to a GPU architecture, on which we have more knowledge about SpMV performance, as
the reference architecture. Correspondingly, we refer to a GPU architecture, on which we intend to
predict SpMV performance, as the target architecture.

Assume that, TRef , the SpMV kernel execution time of a sparse matrix A measured on the
reference architecture, is known. Our goal is to predict TTar, the SpMV kernel execution time of
matrix A on the target architecture. For different SpMV kernels, i.e., CSR, ELL, COO, and HYB
kernels, TRef and TTar represent the execution times of the specific SpMV kernels.

The absolute performance on the target architecture is predicted by using the following equation:

TTar = TInit Tar + PTar Ref ∗ (TRef − TInit Ref )

where PTar Ref , the relative performance between the target and the reference architectures, is
represented as follows:

PTar Ref =


PCSR, for CSR kernel
PELL, for ELL kernel
PCOO, for COO kernel
PHYB , for HYB kernel

TInit Ref and TInit Tar, the initialization time of the reference and target architectures,
respectively, are represented as follows:

TInit Ref =


TInit Ref CSR, for CSR kernel
TInit Ref ELL, for ELL kernel
TInit Ref COO, for COO kernel
TInit Ref HY B , for HYB kernel

TInit Tar =


TInit Tar CSR, for CSR kernel
TInit Tar ELL, for ELL kernel
TInit Tar COO, for COO kernel
TInit Tar HY B , for HYB kernel

4.1. CSR Kernel

4.1.1. Benchmark Matrices We generate nine benchmark matrices on the target architecture
according to the criteria we proposed for the baseline tool. Among the nine benchmark matrices, five
benchmark matrices are generated with the same number of matrix strips, denoted by I0, but with
different PNZ BM values. Let M0 denote the benchmark matrix with the minimal PNZ BM value.
Let X00 denote this minimal PNZ BM value and T0 Tar 0 denote the execution time of matrix M0.
Additionally, two more benchmark matrices are generated with X00 as the PNZ BM value, but with
different number of matrix strips, denoted by I1 and I2, respectively. The two matrices, together with
matrix M0, are used to estimate C2 Tar CSR LT , the coefficient of the linear relationship established
between the number of matrix strips and the execution times of the three benchmark matrices. After
comparing the values of I0, I1, and I2, the benchmark matrix with the minimal number of strips is
denoted by M1. Let T10 denote the execution time of matrix M1.

Among the five benchmark matrices, it is required that there exists a benchmark matrix N0

with PNZ BM = TAR CSR THD and a benchmark matrix N1 with PNZ BM = REF CSR THD,
where TAR CSR THD and REF CSR THD denote CSR threshold [1] of the target and reference
GPU architectures, respectively. The CSR threshold is the value of max threads per block,
which is determined by the physical limitations of a GPU architecture. Corresponding to X00,
T0 Tar 0, C2 Tar CSR LT , and T10, for matrix N0, their counterparts, denoted by X01, T0 Tar 1,
C2 Tar CSR RT , and T11, respectively, can be known in a similar way. Similarly, for matrix N1,
X02, T0 Tar 2, and T12 can also be achieved. The three benchmark matrices, whose PNZ BM values
are less than or equal to TAR CSR THD, are used to estimate C1 Tar CSR LT . Corresponding, the
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three benchmark matrices, whose PNZ BM values are greater than or equal to TAR CSR THD, are
used to estimate C1 Tar CSR RT . Divided by TAR CSR THD, C1 Tar CSR LT and C1 Tar CSR RT

represent two specific coefficients of two linear relationships both established between PNZ BM

and the execution times of the three benchmark matrices. Although, theoretically, we can
estimate C1 Tar CSR LT , C1 Tar CSR RT , C2 Tar CSR LT , and C2 Tar CSR RT using two benchmark
matrices, respectively. To enhance accuracy, we generate three benchmark matrices.

4.1.2. Relative Performance According to our modeling algorithm for CSR SpMV kernel in the
baseline tool, the execution time of matrix A, represented by E, is computed by the equation: E =

E0 × E1, where E0 =
T1 Ref

T0 Ref
and E1 = ERef CSR(IRef CSR). ERef CSR represents the equation

of the linear relationship established between the number of matrix strips and the execution times
of the benchmark matrices generated on the reference architecture. IRef CSR, the number of
matrix strips of matrix A computed for the reference architecture, is calculated by the equation:
IRef CSR = ⌈ NR

SRef CSR
⌉, where NR represents the number of rows of matrix A and the notation ⌈ ⌉

represents the rounding computation. Let P1 and P2 denote the relative performance for these two
parts, respectively. Thus, the relative performance PCSR is approximately estimated by:

PCSR = P1 × P2

where,

P1 =
C1 Tar CSR

C1 Ref CSR
× T0 Ref

T0 Tar
× (1− T0 Ref

T1 Ref
) +

T0 Ref

T1 Ref

and
P2 =

C2 Tar CSR

C2 Ref CSR
× SRef CSR

STar CSR

T0 Ref and T1 Ref are computed as follows:

T0 Ref = C1 Ref CSR ×X0 +B0

T1 Ref = C1 Ref CSR × PNZ CSR +B0

Since there exists CSR threshold, which is the value of max threads per block, C1 Tar CSR,
C2 Tar CSR, T0 Tar, X0, and B0 are represented as follows:

C1 Tar CSR =

{
C1 Tar CSR LT , if PNZ CSR ≤ TAR CSR THD
C1 Tar CSR RT , if PNZ CSR ≥ TAR CSR THD

C2 Tar CSR =

{
C2 Tar CSR LT , if PNZ CSR ≤ TAR CSR THD
C2 Tar CSR RT , if PNZ CSR ≥ TAR CSR THD

T0 Tar =


T0 Tar 0, Case 1: if PNZ CSR ≤ TAR CSR THD
T0 Tar 1, Case 2: if PNZ CSR ∈ [ TAR CSR THD , REF CSR THD ]

T0 Tar 2, Case 3: if PNZ CSR ≥ REF CSR THD

X0 =


X00, Case 1: if PNZ CSR ≤ TAR CSR THD
X01, Case 2: if PNZ CSR ∈ [ TAR CSR THD , REF CSR THD ]

X02, Case 3: if PNZ CSR ≥ REF CSR THD

B0 =

{
B0 LT , if PNZ CSR ≤ REF CSR THD
B0 RT , if PNZ CSR ≥ REF CSR THD

Some parameters and their corresponding relationships are illustrated in Figure 1. After
considering the reference GPU architecture we used in the modeling, i.e., NVIDIA Tesla C2050,
and all existing NVIDIA GPU architectures so far, whose maximum value of compute capability is
3.5, we exclude the possibility of TAR CSR THD > REF CSR THD since it does not exist.
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0 X00 X01 (TAR_CSR_THD) X02 (REF_CSR_THD) PNZ_CSR

Y = C1_Ref_CSR_RT X + B0_RT

Y = C1_Ref_CSR_LT X + B0_LT

PNZ_CSR PNZ_CSR

T0_Ref

T1_Ref

Case 2
T0_Tar

Case 1 Case 3

(a) TAR CSR THD < REF CSR THD

0 X00 X01 /X02 (TAR_CSR_THD / REF_CSR_THD) PNZ_CSR

Y = C1_Ref_CSR_RT X + B0_RT

Y = C1_Ref_CSR_LT X + B0_LT

PNZ_CSR

T0_Ref

T1_Ref

Cases 1&2
T0_Tar

Case 3

(b) TAR CSR THD = REF CSR THD

Figure 1. Number of non-zero elements per row (X axis) vs execution time (Y axis). The black and red lines
represent the established and assumed relationships for the reference and target architectures, respectively.

C1 Ref CSR and C2 Ref CSR are represented by the equations which are similar to that of
C1 Tar CSR and C2 Tar CSR, respectively, and their corresponding values can be known from
the parameterized baseline tool, which is instantiated by the benchmark matrices generated on
the reference architecture. STar CSR is computed according to the method we proposed for the
baseline tool in Section 3. SRef CSR can be known from the parameterized baseline tool, which is
instantiated by the physical limitations of the reference architecture.

4.1.3. Initialization Time The initialization time of CSR kernel for the reference and the target
architectures are computed as follows:

TInit Ref CSR =


T00, if PNZ CSR ≤ TAR CSR THD
T01, if PNZ CSR ∈ [ TAR CSR THD , REF CSR THD ]

T02, if PNZ CSR ≥ REF CSR THD

TInit Tar CSR =


T10, if PNZ CSR ≤ TAR CSR THD
T11, if PNZ CSR ∈ [ TAR CSR THD , REF CSR THD ]

T12, if PNZ CSR ≥ REF CSR THD

Similar to T10, T11, and T12, T00, T01, and T02 represent the execution times of the corresponding
benchmark matrices generated on the reference architecture, which are the counterparts of the
benchmark matrices M1, N0, and N1, respectively.

4.2. ELL Kernel

4.2.1. Benchmark Matrices We generate five benchmark matrices on the target architecture
according to the criteria we proposed for the baseline tool. Among the five benchmark matrices,
three benchmark matrices generated with the same number of matrix strips, denoted by I0, but with
different PNZ BM values, are used for estimating CTar ELL, the coefficient of the linear relationship
established between PNZ BM and the execution times of the three benchmark matrices. Let M2

denote the benchmark matrix with the minimal PNZ BM value. Let X1 denote this minimal PNZ BM

value. Additionally, two more benchmark matrices are generated with the same PNZ BM value, i.e.,
X1, but with different number of matrix strips, denoted by I1 and I2, respectively. The two matrices,
together with matrix M2, are used for estimating ETar ELL, the equation of the linear relationship
established between the number of matrix strips and the execution times of the three benchmark
matrices. Although, theoretically, we can estimate CTar ELL and ETar ELL, using two benchmark
matrices, respectively. To enhance accuracy, we generate three benchmark matrices.

4.2.2. Relative Performance According to our modeling algorithm for ELL SpMV kernel in the
baseline tool, knowing the number of matrix strips of matrix A, the coefficient of the linear
relationship-1 established between PNZ BM and the execution time of the benchmark matrices
can be estimated. Then, the intercept of the linear relationship-1 can be estimated by the linear
relationship-2 established between the number of matrix strips and the execution time when the
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unknown number of matrix strips is assigned as the specific value of matrix A. Finally, the
execution time of matrix A can be estimated by replacing unknown PNZ BM in linear relationship-
1 with the specific PNZ ELL value of matrix A. For cross-architecture prediction, assume that
two linear relationships, i.e., relationship-1, which are established for the benchmark matrices
generated on the reference and target architecture, are represented by Y = CRef ELL ×X +B1

and Y = CTar ELL ×X +B2, respectively. Thus, the relative performance PELL is approximately
estimated by:

PELL =
CTar ELL

CRef ELL
× SRef ELL

STar ELL

STar ELL is computed according to the method we proposed for the baseline tool in Section 3.
SRef ELL and CRef ELL can be known from the parameterized baseline tool, which is instantiated
by the physical limitations of the reference architecture and the benchmark matrices generated on
the reference architecture, respectively.

4.2.3. Initialization Time The initialization time of ELL kernel for the reference and the target
architectures are computed as follows:

TInit Ref ELL = B1

TInit Tar ELL = B2

B1 and B2 are the intercepts of the linear relationship-1 established for the benchmark matrices
generated on the reference and target architecture, respectively. B2 is computed as follows:

B2 = ETar ELL(ITar ELL)− CTar ELL ×X1 × ITar ELL

ITar ELL is the number of matrix strips of matrix A computed for the target architecture, which
can be calculated by:

ITar ELL = ⌈ NR

STar ELL
⌉

where NR represents the number of rows of matrix A and the notation ⌈ ⌉ represents the rounding
computation.

The method to compute B1 is similar to that of B2, just replacing ETar ELL and CTar ELL

with ERef ELL and CRef ELL, respectively, where ERef ELL and CRef ELL can be known from
the parameterized baseline tool, which is instantiated by the benchmark matrices generated on the
reference architecture.

4.3. COO Kernel

4.3.1. Benchmark Matrices We generate three benchmark matrices on the target architecture for
estimating CTar COO, the coefficient of the linear relationship established between the number of
matrix strips and the execution times of the three benchmark matrices, according to the criteria we
proposed for the baseline tool. Let T1 denote the execution time of the benchmark matrix generated
with the minimal number of matrix strips. Although, theoretically, we can estimate CTar COO, using
two benchmark matrices. To enhance accuracy, we generate three benchmark matrices.

4.3.2. Relative Performance According to our modeling algorithm for COO SpMV kernel in the
baseline tool, knowing the number of matrix strips, the execution time of matrix A can be estimated
by the linear relationship established between the number of matrix strips and the execution time
of the benchmark matrices. For cross-architecture prediction, assume that two linear relationships,
which are established for the benchmark matrices generated on the reference architecture and the
target architecture, are represented by Y = CRef COO ×X +BRef COO and Y = CTar COO ×
X +BTar COO, respectively. Thus, the relative performance PCOO is approximately estimated by:

PCOO =
CTar COO

CRef COO
× SRef COO

STar COO

STar COO is computed according to the method we proposed for the baseline tool in Section 3.
SRef COO and CRef COO can be known from the parameterized baseline tool, which is instantiated
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by the physical limitations of the reference architecture and the benchmark matrices generated on
the reference architecture, respectively.

4.3.3. Initialization Time The initialization time of COO kernel for the reference and the target
architectures are computed as follows:

TInit Ref COO = T0

TInit Tar COO = T1

Similar to T1, T0 represents the execution time of the benchmark matrix generated on the
reference architecture, whose number of matrix strips is minimal among three benchmark matrices.

4.4. HYB Kernel

4.4.1. Benchmark Matrices Since HYB kernel is the combination of ELL and COO kernels, the
benchmarks matrices generated for modeling ELL and COO kernels can be reused. We do not need
to generate any additional benchmark matrix for modeling HYB kernel.

4.4.2. Relative Performance According to our modeling algorithm for HYB SpMV kernel in the
baseline tool, the execution time of matrix A equals to the sum of the execution time of ELL part
of matrix A and that of COO part of matrix A, where ELL part and COO part of matrix A are
divided by HYB threshold [2], denoted by HYB THD. Thus, the relative performance PHYB is
approximately estimated by:

PHYB =


PELL, if HYB THD = PNZ ELL

PCOO, if HYB THD = 0
PELL, if HYB THD ∈ (0, PNZ ELL)

According to the above equation, PHYB is estimated according to three cases. Case 1: no part of
matrix A is in COO part, thus, PHYB = PELL. Case 2: no part of matrix A is in ELL part, thus,
PHYB = PCOO. Case 3: matrix A is in both ELL and COO parts, thus, PHYB = PELL.

4.4.3. Initialization Time The initialization time of HYB kernel for the reference and the target
architectures are computed as follows:

TInit Ref HY B =


TInit Ref ELL, if HYB THD = PNZ ELL

TInit Ref COO, if HYB THD = 0
TInit Ref ELL + PCOO

PELL
× TInit Ref COO, if HYB THD ∈ (0, PNZ ELL)

TInit Tar HY B =


TInit Tar ELL, if HYB THD = PNZ ELL

TInit Tar COO, if HYB THD = 0
TInit Tar ELL + TInit Tar COO, if HYB THD ∈ (0, PNZ ELL)

5. EXPERIMENTAL EVALUATION

5.1. Experimental Architectures

Our experiments are performed on four architectures: NVIDIA Tesla C2050, Tesla M2090,
Tesla K20m, and GeForce GTX 295, whose global memory are 3GB, 5GB, 5GB, and 1GB,
respectively. In our experiments, NVIDIA Tesla C2050 is used as the reference architecture, the
other three are used as the target architectures. The physical limitations of four architectures are
summarized in Table I. The parameters and their specific values used in Section 4, derived from the
parameterized baseline tool instantiated by the reference architecture, are listed in Table II, where
S′(M ′(0.011, I ′), 0.062) represents 0.011× IRef ELL + 0.062 and IRef ELL = ⌈ NR

SRef ELL
⌉ (Refer

to Section 4.2.3).
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Table I. Experimental architectures used in our experimental evaluation.

Architectures # SM Warps / SM Threads / SM Max. Threads / Block Capability
Tesla C2050 14 48 1536 1024 2.0
Tesla M2090 16 48 1536 1024 2.0
Tesla K20m 13 64 2048 1024 3.5

GeForce GTX 295 30 32 1024 512 1.3

Table II. Parameters and their specific values known from the baseline tool.

Parameters Values Parameters Values Parameters Values
C1 Ref CSR LT 0.00027 C1 Ref CSR RT 0.00029 SRef CSR 672
C2 Ref CSR LT 0.0061 C2 Ref CSR RT 0.06 SRef ELL 21504

B0 LT 0.078 B0 LT 0.066 SRef COO 21504
CRef ELL 0.002 CRef COO 0.0084 ERef ELL S′(M ′(0.011, I ′), 0.062)

Table III. Sparse matrices used in our experimental evaluation.

Matrix Dimensions NZs Matrix Dimensions NZs
Dense 2K*2K 4.0 M FEM/Harbor 47K*47K 2.37 M
Protein 36K*36K 4.3 M QCD 49K*49K 1.90 M

FEM/Spheres 83K*83K 6.0 M FEM/Ship 141K*141K 7.81 M
FEM/Cantilever 62K*62K 4.0 M Epidemiology 526K*526K 2.1 M

Transport 1.6M*1.6M 23.5 M CurlCurl 4 2.38M*2.38M 26.52 M
af shell1 505K*505K 17.59 M hood 221K*221K 10.77 M

BenElechi1 246K*246K 13.15 M msdoor 416K*416K 20.24 M

5.2. Experimental Sparse Matrices

The sparse matrices used in our experiments are shown in Table III, where NZs represents
the total number of non-zero elements. They are from widely-used sparse matrices collection
[31, 32]. Our experimental evaluation does not adopt the rest 6 matrices (“Wind Tunnel”,
“Economics”, “FEM/Accelerator”, “Circuit”, “Webbase”, and “LP”) in [32] since NVIDIA’s SpMV
implementations cannot execute ELL SpMV kernel on the reference architecture because of the
limitation of “num cols per row”.

5.3. Experimental Environment

In our experiments, the version numbers of CUDA libraries installed on NVIDIA Tesla C2050, Tesla
M2090, Tesla K20m, and GeForce GTX 295 are 4.1, 5.0, 5.0, and 4.1, respectively. Although, SpMV
performance can be slightly affected by different CUDA versions, the accuracy of performance
modeling tool is not affected. For a specific GPU architecture, we only evaluate whether the
predicted and measured SpMV execution times on every sparse matrix can match well.

5.4. Accuracy of Performance Modeling Tool

For a sparse matrix, assume that its SpMV kernel execution times measured on a reference GPU
architecture, NVIDIA Tesla C2050, are known. Our cross-architecture performance modeling tool
can report its predicted SpMV kernel execution times on a target GPU architectures, e.g., NVIDIA
Tesla M2090, Tesla K20m, and GeForce GTX 295. The SpMV kernels used in our modeling tool
for performance prediction include CSR, ELL, COO, and HYB. Figures 2, 3, and 4 compare the
measured SpMV kernel execution times for CSR, ELL, COO, and HYB kernels, represented by
black bars, and the predicted kernel execution times by our modeling tool, represented by gray
bars, on the target GPU architectures NVIDIA Tesla M2090, Tesla K20m, and GeForce GTX
295, respectively. For NVIDIA Tesla M2090, the average performance differences between the
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Figure 2. Performance modeling evaluation on NVIDIA Tesla M2090.

predicted and measured SpMV kernel execution times for CSR, ELL, COO, and HYB SpMV
kernels are 3.1%, 5.1%, 1.6%, and 5.6%, respectively. For Tesla K20m, they are 6.9%, 5.9%,
4.0%, and 6.6% on the average, respectively. For GeForce GTX 295, they are 5.9%, 5.8%, 3.8%,
and 5.9% on the average, respectively. In our experiments, the measured kernel execution times,
obtained by averaging the total 500 times of executions of the SpMV kernel, are relative stable and
accurate. Note that, the warm up times of the GPUs are excluded. For each SpMV kernel, we first
compute the performance differences between predicted and measured kernel execution times for 14
experimental matrices. Then, for each kernel, we average the performance differences in percentage
on 14 experimental matrices. Thus, it is reasonable to claim accuracy to 0.1%.

5.5. Analysis of Experimental Results

Given a sparse matrix and a GPU architecture, it is straightforward to select an optimal SpMV
storage format and corresponding SpMV kernel by comparing the performance shown in Figures
2, 3, and 4. However, given a sparse matrix and an SpMV storage format, when choosing an
appropriate GPU architecture, many important factors (e.g., the performance, the cost, the memory
size, and the power consumption) may be considered by researchers to make their choice. Our
modeling tool can offer support for performance prediction in an accurate and easy way. For some
applications with small size, their execution times on different GPUs are similar. However, for some
others, the advantage of a new-generation GPU is more obvious. An older GPU with competitive
lower price is good enough for researchers if it can satisfy the memory requirement of an application
and offer similar performance as a high-end GPU. Otherwise, researchers may consider to purchase
a new-generation GPU. For example, when performing ELL SpMV kernel computation with matrix
“FEM/Spheres”, after comparing the performance on all our experimental GPU architectures, we
show that GeForce GTX 295 is good enough. However, Tesla K20m might be a better choice when
performing the same kernel computation with matrix “CurlCurl 4”.
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Figure 3. Performance modeling evaluation on NVIDIA Tesla K20m.

6. CONCLUSIONS

In this paper, we propose an integrated analytical and profile-based cross-architecture performance
modeling tool to specifically provide inter-architecture SpMV performance prediction on NVIDIA
GPU architectures. Our tool includes four performance models, i.e., CSR, ELL, COO, and HYB
models. For a sparse matrix, knowing its SpMV kernel performance measured on the reference GPU
architecture, our tool can accurately predict its performance on the target GPU architectures. The
prediction results can effectively assist researchers in making choice of an appropriate architecture
that best fits their needs from a wide range of available computing architectures.
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