
Modern Software
Engineering Concepts and
Practices:
Advanced Approaches

Ali H. Doğru
Middle East Technical University, Turkey

Veli Biçer
FZI Research Center for Information Technology, Germany

Hershey • New York
InformatIon scIence reference

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Joel Gamon
Production Coordinator: Jamie Snavely
Typesetters: Keith Glazewski & Natalie Pronio
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Modern software engineering concepts and practices : advanced approaches / Ali
H. Doğru and Veli Biçer, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book provides emerging theoretical approaches and their
practices and includes case studies and real-world practices within a range of
advanced approaches to reflect various perspectives in the discipline"--
Provided by publisher.
 ISBN 978-1-60960-215-4 (hardcover) -- ISBN 978-1-60960-217-8 (ebook) 1.
Software engineering. I. Doğru, Ali H., 1957- II. Biçer, Veli, 1980-
 QA76.758.M62 2011
 005.1--dc22
 2010051808

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

380

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Qichang Chen
University of Wyoming, USA

Liqiang Wang
University of Wyoming, USA

Ping Guo
University of Wyoming, USA

He Huang
University of Wyoming, USA

Analyzing Concurrent
Programs Title for Potential

Programming Errors

ABSTRACT

Today, multi-core/multi-processor hardware has become ubiquitous, leading to a fundamental turning
point on software development. However, developing concurrent programs is difficult. Concurrency
introduces the possibility of errors that do not exist in sequential programs. This chapter introduces the
major concurrent programming models including multithreaded programming on shared memory and
message passing programming on distributed memory. Then, the state-of-the-art research achievements
on detecting concurrency errors such as deadlock, race condition, and atomicity violation are reviewed.
Finally, the chapter surveys the widely used tools for testing and debugging concurrent programs.

DOI: 10.4018/978-1-60960-215-4.ch016

381

Analyzing Concurrent Programs Title for Potential Programming Errors

INTRODUCTION

The development in the computing chip industry
has been roughly following Moore’s law in the
past four decades. As a result, most classes of ap-
plications have enjoyed regular performance gains
even without real improvement on the applications
themselves, because the CPU manufacturers have
reliably enabled ever-faster computer systems.
However, the chip industry is now facing a num-
ber of engineering challenges associated with
power consumption, power dissipation, slower
clock-frequency growth, processor-memory
performance gap, etc. Instead of driving clock
speeds and straight-line instruction throughput
ever higher, the CPU manufacturers are instead
turning to multi-core architectures.

With the prevalence of multi-core hardware on
the market, the software community is witnessing
a dramatic shift from the traditional sequential
computing paradigm to the parallel computing
world. Parallel computing exploits the inherent
data and task parallelism and utilizes multiple
working processes or threads at the same time to
improve the overall performance and speed up
many scientific discoveries. Although threads
have certain similarities to processes, they have
fundamental differences. In particular, processes
are fully isolated from each other; threads share
heap memory and files with other threads run-
ning in the same process. The major benefits of
multithreading include faster inter-thread com-
munication and more economical creation and
context switch.

Here, we use “concurrent” and “parallel” in-
terchangeably, although there is a little difference
between them. Usually, “parallel programming”
refers to a set of tasks working at the same time
physically, whereas “concurrent programming”
has a broader meaning, i.e., the tasks can work at
the same time physically or logically.

Although for the past decade we have wit-
nessed increasingly more concurrent programs,
most applications today are still single-threaded

and can no longer benefit from the hardware
improvement without significant redesign. In
order for software applications to benefit from
the continued exponential throughput advances
in new processors, the applications will need to
be well-written concurrent software programs.

However, developing concurrent programs is
difficult. Concurrency introduces many new er-
rors that are not present in traditional sequential
programs. Recent events range from failing robots
on Mars to the year 2003 blackout in northeast-
ern United States, which were both caused by a
kind of concurrency error called race condition.
Debugging concurrent programs is also difficult.
Concurrent programs may behave differently from
one run to another because parallelism cannot
be well determined and predicted beforehand.
Existing debugging techniques that are well
adopted for sequential programs are inadequate
for concurrent programs. Specialized techniques
are needed to ensure that concurrent programs do
not have concurrency-related errors. Detecting
concurrency errors effectively and efficiently has
become a research focus of software engineering
in recent years.

In the rest of the chapter, we review the state-
of-the-art research achievements on detecting
concurrency errors as well as the corresponding
parallel programming models. Major debugging
tools are also introduced and compared with regard
to their usability and capability.

PARALLEL COMPUTING
PLATFORMS

Advances on Architecture:
Multi-Core Processor

Due to the physical limitations of the technology,
keeping up with Moore’s Law by increasing the
number of transistors on the limited chip area
has been becoming a more difficult challenge for
the CPU industry. In the past decade, we have

382

Analyzing Concurrent Programs Title for Potential Programming Errors

witnessed an increasing number of hardware ar-
chitectures that shift towards parallelism instead
of clock speed. The industry has gradually turned
to parallelism in computational architectures with
the hope of living up to Moore’s law in terms
of GFLOPS (1 GFLOPS = 109 floating-point-
operations per second) performance growth per
chip area instead of transistors growth per chip
area. The prominent CPU vendors (namely, Intel
and AMD) are packing two or more cores into
each processor unit while the clock speed no
longer grows at the rate of as Moore law dictates
the transistor density growth. The multi-core
processor architecture has become an industrial
standard and is gradually changing the way people
write programs.

In essence, a multi-core processor is a single
chip containing more than one microprocessor
core, which multiplies the potential performance
with the number of cores. Some components,
such as the bus interface and second level cache,
are shared between cores. Because the cores are
physically very close, they communicate at much
higher bandwidth and speed compared to con-
ventional discrete multiprocessor systems, which
significantly reduces the communication overhead
and improves overall system performance.

In order to fully utilize the multi-core capabil-
ity, the programmers need to explicitly migrate
their sequential code into parallel version. This
opens the door to introduce many subtle concurrent
programming errors that could be very difficult to
detect and uncover. Those concurrent program-
ming errors are introduced in details in Section 4.

Advances on Architecture:
Accelerator for General
Purpose Computing

As the scale of computing increases dramatically,
coprocessor is becoming a popular attracting tech-
nique to accelerate general purpose computing.
At this point, there are two types of widely used

accelerators, i.e., GPU (Graphic Processing Unit)
and Cell Broadband Engine (BE).

GPU is specifically designed to provide high
throughput on parallel computation using many-
core chips. Unlike conventional CPU that supports
a much larger set of general instructions, GPU
supports only graphics-related computations,
which can be adopted for general-purpose sci-
entific computations. More specifically, unlike a
conventional CPU, in a GPU, much more transis-
tors are devoted to data processing rather than data
caching and flow control, which is especially well
suited to address problems that can be expressed
as data-parallel computations, where the same
program is executed on many data elements in
parallel with high arithmetic intensity. Because
the same program is executed for multiple data
elements, there is a lower requirement for sophis-
ticated flow control; and because it is executed
on many data elements and has high arithmetic
intensity, the memory access latency can be hid-
den with calculations instead of big data caches.

Due to its high arithmetic computation power,
GPU is becoming an attractive co-processor option
for general-purpose computing. A typical GPU
(e.g., NVIDIA GeForce GTX 295) can reach a
peak processing rate of 1788 GFLOPS and a
peak memory bandwidth of 224 GB/s, which are
not possible to be achieved on a typical current-
generation CPU.

As another type of well-known accelerator, Cell
BE is a hybrid processor between conventional
desktop processors (e.g., Intel Core 2) and more
specialized high-performance processors (e.g.,
GPU). A Cell BE chip consists of a main proces-
sor called Power Processor Element (PPE), which
can run general operating systems (e.g., Linux)
and functions, and eight Synergistic Processor
Elements (SPE), which are designed to acceler-
ate data-parallel computing. The latest Cell BE,
PowerXCell 8i, supports a peak performance
of 102 GFLOPS double-precision calculations.
Cell BE accelerators have been deployed on the
supercomputer Roadrunner designed by IBM at

383

Analyzing Concurrent Programs Title for Potential Programming Errors

the Los Alamos National Laboratory, which is the
world’s first petaflops system.

Super, Cluster, Grid, and
Cloud Computing

Supercomputers are specialized computers that
rely on innovative and throughput-oriented design
in order to obtain high-performance and high-
throughput computing gain over conventional
computers. For example, the memory hierarchy in
supercomputer is carefully designed to minimize
the idle time of processors. The I/O systems are
designed to support large-scale parallel I/O op-
erations with high bandwidth. Many CPUs with
specific tuned instructions set (e.g., Complex
Instruction Set Computer/ CISC) and advanced
pipeline mechanisms have been invented for the
purpose of high-throughput computing. Vector
processor, or array processor, is such a CPU design
where the instructions can perform mathematical
operations on multiple data elements simultane-
ously. Supercomputers are usually specialized for
certain types of computation, such as numerical
calculations.

As the most popular parallel computing
platform, a computing cluster is a collection of
computers that are located physically in a small
area and are linked through very fast local area
network. Clusters are usually deployed for higher
performance and availability, while typically being
much more cost-effective than supercomputers
with the comparable speed or availability. Cluster
computing typically incorporates fault tolerance,
data redundancy, load balancing and other features
to ensure the high availability and reliability.

Grid computing is an extension of cluster
computing. Computers in grid can be geographi-
cally dispersed and do not fully trust each other.
Hence, the communication in grid may suffer
much higher latency than cluster. A grid com-
bines various compute resources from multiple
domains to solve a common scientific problem
that requires a lot of compute processing cycles

and large amount of data. It is a form of distributed
computing in practice.

As an emerging parallel computing platform,
cloud computing has recently gained wide at-
tention. A cloud encompasses the cluster of
machines as well as the system and application
software that work together to provide some kind
of service. Cloud computing is more scalable
than the classical cluster, and can typically offer
higher data availability and throughput as well as
virtualized services. These services are broadly
divided into three categories: Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS),
and Software-as-a-Service (SaaS). Amazon Web
Services is such an example of IaaS, where vir-
tual server instances are provided according to
the capacity that users purchase. Google Apps
is an example of PaaS, where users can create
their own applications based on the provider’s
platform over the Internet. In the SaaS cloud
model, services can be very broad, ranging from
Web-based email to database processing. This type
of cloud computing delivers a client-side applica-
tion through the Internet browser to thousands of
customers with much lower maintenance cost.
In addition, cloud computing is more reliable
and scalable than cluster and grid computing as
it allows redundancy and can easily incorporate
more machines, more processors, and more storage
space to improve the overall performance without
affecting the end users. All traditional and new
concurrent programming models ranging from
MPI, OpenMP, to CUDA might be adopted on
cloud computing. Specifically, cloud computing is
extremely amenable to the MapReduce concurrent
programming model as most applications running
on the cloud are data-parallel.

PARALLEL PROGRAMMING
MODELS

In order to fully utilize the power of underlying
parallel computing platforms, various parallel

384

Analyzing Concurrent Programs Title for Potential Programming Errors

programming models have been developed.
Most parallel programming models are derived
from the traditional sequential programming. The
sequential programming is embodied through an
imperative or functional program that executes on
a single processor. The behavior of the sequential
program is predictable and the outcome is ex-
pectable every time it runs. In order to improve
the performance of sequential programs, people
resort to the processor clock frequency and other
hardware optimization improvements which have
grown relatively slowly recently. Concurrent pro-
gramming models allow parts of the sequential
program to run in parallel on multiple processors
or concurrently on a single processor. The current
widely used concurrent programming models
include multithreaded programming on shared
memory and message passing programming on
distributed memory.

In multithreaded programming, multiple
threads share the memory. Synchronization
among threads is mainly enforced through lock
(mutex), semaphore, spinlock (spinmutex), and
monitor. A semaphore is an object that carries a
value and uses a blocking mechanism to enforce
the mutual exclusion among multiple threads. A
lock or mutex is a special case of semaphore (i.e.,
binary semaphore) whose values can be only true
or false. A spinlock or spinmutex is also a mutually
exclusive object that instead uses a non-blocking
mechanism to enforce the mutual exclusive prop-
erty. Spinlock differs from the usual lock in that it
utilizes busy waiting/checking without enforcing
context switches. A monitor is a mutually exclusive
code region that can be executed by one thread
at a time. It is achieved through the acquisition
and release of the lock or spinlock immediately
before the entrance and after the exit of the code
region. The major multithreaded programming
paradigms include Java/C# Threads, Pthreads,
Windows threads, OpenMP, TBB (Intel Threading
Building Block), as well as CUDA and openCL
for GPU computing.

On distributed memory, each compute node
has its own private memory. Communication and
synchronization among processes are carried out
by sending and receiving messages. The main
message passing programming model is MPI
(Message Passing Interface).

Some hybrid parallel programming models
exists. UPC is such a model which combines the
programmability advantages of the shared memory
programming paradigm and the control over data
layout of the message passing programming
paradigm.

This section introduces the major parallel
programming models for shared memory and
distributed memory, with focusing on comparing
their synchronization mechanisms.

Multithreaded Programming
on Shared Memory Model

The traditional parallel programming model on
shared memory is multiprocessing, where multiple
processes share the same memory. Compared to
forking or spawning new processes, threads require
less overhead because the system does not initialize
a new system virtual memory space and environ-
ment for the process. In addition, the overhead of
context switch on threads is also much less than
on processes. In contrast to parallel programming
paradigms such as MPI in a distributed comput-
ing environment, threads are usually limited to
a single computer system. All threads within a
process share the same address space.

Java Threads

Multithreaded execution is an essential feature of
Java platform. Multithreaded Java programs start
with the main thread, which then spawns addi-
tional threads. The conventional synchronization
mechanisms supported by Java include monitor,
wait/notify, semaphore, and barrier.

A monitor is an object implementation where
at most one thread can simultaneously execute

385

Analyzing Concurrent Programs Title for Potential Programming Errors

any of its methods (i.e., critical sections). If one
thread is inside the monitor (i.e., holding the lock
associated to the monitor), the other threads must
wait for that thread to exit the monitor (i.e., re-
lease the lock) before they can enter the monitor.
The lock of monitor in Java is reentrant, which
means that a thread holding a lock can request it
again. To use monitor, programmer can explicitly
label an entire method or a well-defined code
block inside a method as critical sections using
the keyword “synchronized”. As “synchronized”
enforces paired lock acquire and lock release,
the “Lock” class in Java allows more flexible
structuring by providing Lock.lock() and Lock.
unlock(). Algorithm 1 shows that two threads
use “synchronized” to keep the integrity of the
“balance” for a bank account.

A thread can hang itself and wait for another
thread by calling “wait”, which will release the
corresponding lock if in critical section. When
the other thread invokes “notify” to wake up the
suspended thread, it will acquire the lock and
resume its execution. Algorithm 2 shows how to
enforce the deposit/withdraw order using wait/
notify. In this case, a deposit should always occur
before a withdraw can take place.

In addition, Java introduces a few specialized
synchronization mechanisms. Java supports the
keyword “volatile”, which is used on variables
that may be modified concurrently by multiple

threads. Compiler will enforce fetching fresh
volatile variables each time, rather than caching
them in registers. Note that volatile does not
guarantee atomic access, e.g., i++. Java provides
a series of classes (such as AtomicInteger and
AtomicIntegerArray) to support atomic opera-
tions. When a thread performs an atomic operation,
the other threads see it as a single operation. The
advantage of atomic operations is that they are
relatively quick compared to locks, and do not
suffer from deadlock. The disadvantage is that
they support only a limited set of operations, and
are often not enough to synthesize complex op-
erations efficiently.

In addition, Java JDK also contains a set of
collection classes (e.g., HashTable, Vector) to
support safe concurrent modification. They may
run slightly slower than their counterparts (e.g.,
HashMap, ArrayList) that may throw exceptions
or have incorrect results when performing concur-
rent operations.

C# Threads

Threads in C# behave similarly to Java threads.
However, instead of using “synchronized”, C#
provides its own synchronization keywords. To
enforce critical sections, Monitor class can be used
to acquire a lock at the beginning of the code sec-
tion by calling Monitor.Enter(object). Any other

Algorithm 1.

synchronized(this){
this.balance += depositAmount;
}

synchronized(this){
this.balance -= withdrawAmount;
}

Algorithm 2.

synchronized(this){
this.wait();
this.balance -= withdrawAmount;
}

synchronized(this){
this.balance += depositAmount;
this.notify();
}

386

Analyzing Concurrent Programs Title for Potential Programming Errors

thread wanting to execute the same code would
need to acquire the same lock and will be paused
until the first thread releases the lock by calling
Monitor.Exit(object). Algorithm 3 illustrates the
usage of Monitor to protect the integrity of the
field “balance”.

C# also provides a keyword “lock”, a syntac-
tic shortcut for a paired call to the methods
Monitor.Enter and Monitor.Exit, which is converse
compared to Java Synchronized and Lock. Algo-
rithm 4 illustrates the similar use of lock in C# as
“synchronized” in Java.

The mutual exclusion enforced by lock and
monitor in C# is only among threads inside a
process. To enforce mutual exclusion across
multiple processes, Mutex can be used, which
works in the same way as lock inside a process.
Besides Monitor, Lock, and Mutex, C# also sup-
ports Semaphore, Barrier, Volatile, and atomic
operations (by calling System.Threading.Inter-
locked), whose meanings and usages are similar
to these in Java.

Pthreads

Pthreads stands for POSIX Threads libraries for
C/C++. Thread operations provided by Pthreads

include thread creation, termination, synchroniza-
tion, scheduling, data management, and process
interaction. Threads in the same process share
process instructions, most data, open files (descrip-
tors), signals and signal handlers, current working
directory, user and group identifies. However, each
thread has its own thread ID, set of registers, stack
pointer, stack for local variables, return addresses,
signal mask priority, and return value.

Pthreads provides three synchronization
mechanisms: join, mutex, and condition variables.
After a thread has been spawned, programmers can
perform join operation by calling pthread_join.
The calling thread will suspend its execution until
the thread to be joined has finished its execution.
This allows certain cooperation between different
tasks, for example, one thread is waiting for the
results from other threads for further execution.

Mutex is mainly used to protect memory
access thus prevent data races. A mutex vari-
able is declared by “pthread_mutex_t mutex
= PTHREAD_MUTEX_INITIALIZER”. Af-
ter a mutex variable is created, acquiring and
releasing locks can be performed by calling
pthread_mutex_lock(&mutex) and pthread_mu-
tex_unlock(&mutex), respectively.

Algorithm 3.

bool acquiredLock = false;
try{
Monitor.Enter(lockObject,
ref acquiredLock);
this.balance -= withdrawAmount;
}  finally {
if (acquiredLock)
Monitor.Exit(lockObject);
}

bool acquiredLock = false;
try{
Monitor.Enter(lockObject,
ref acquiredLock);
this.balance += depositAmount;
}  finally {
if (acquiredLock)
Monitor.Exit(lockObject);
}

Algorithm 4.

lock(this){
this.balance -= withdrawAmount;
}

lock(this){
this.balance += depositAmount;
}

387

Analyzing Concurrent Programs Title for Potential Programming Errors

A condition variable is a variable in the type
of pthread_cond_t and offers a more flexible way
for threads to suspend/resume execution than the
“join” mechanism. A condition variable should
be protected with a mutex in order to avoid race
conditions. Without mutex, the signaling thread
and the waiting thread may access the condi-
tion variable as well as other shared variables
simultaneously, which results in race conditions.
Algorithm 5 shows how to use condition variable
and mutex together.

To force the current thread to wait on a condi-
tion variable, pthread_cond_wait is called. At the
same time, the mutex currently held is also re-
leased. pthread_cond_timedwait works similarly
except for waiting for a specific time period then
resuming that thread’s execution. Other threads
can wake up a waiting thread by calling pthread_
cond_signal or pthread_cond_broadcast (which
wakes up all waiting threads). After receiving
waking up signal, the waiting thread will acquire
mutex again and resume its execution.

OpenMP

OpenMP (Open Multi-Processing) is another
multithreaded programming model that supports
C, C++, and Fortran on many platforms including
Linux and Microsoft Windows. It is composed of
a set of compiler directives, library routines, and
environment variables that influence program’s
run-time behavior.

The OpenMP compiler directives are manu-
ally inserted into programs and indicate how to
execute the code sections in parallel. For example,
consider the following loop to sum the elements

of two arrays, the directive indicates that the
iterations of the loop can be executed in parallel,
i.e., a few concurrent threads will be spawned at
runtime and each thread handles some iterations.

#pragma omp parallel for

for (i=0; i<n; i++){

   c[i] = a[i] + b[i];

}

In order to be parallelized, the loop must
obey certain patterns. OpenMP does not detect
dependencies between loop iterations, which may
incur race conditions. A way to avoid such race
conditions is to use critical introduced below.

Other widely-used OpenMP directives include
“master”, “critical” and work-sharing “for” and
“section directives.

The “master” directive specifies a region that
is to be executed only by the master thread of the
thread group. All other threads on the group skip
this section of code. The example below allows
only the master thread to initialize the counter and
other threads to skip the initialization.

#pragma omp master

int counter = 0;

The “critical” directive specifies a region of
code that must be executed by only one thread
at a time. The following example shows how
to allow multiple threads to update the variable
“balance” in a concurrent way without incurring
race conditions.

Algorithm 5.

pthread_mutex_lock(&mutex);
while (!cond)
thread_cond_wait(&cond,&mutex);
do_something();
pthread_mutex_unlock(&mutex);

pthread_mutex_lock(&mutex);
… //make condition TRUE
if (cond)
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);

388

Analyzing Concurrent Programs Title for Potential Programming Errors

#pragma omp critical

balance += depositAccount;

The work-sharing “for” directive specifies
that the iterations of the for-loop are executed in
parallel. The granularity of the parallelism can be
decided statically using a keyword “static” or run
time using the keyword “dynamic”. Optionally
one can provide a chunk size if she/he wants to
assign more than one iteration to a thread. This
following example shows an example to assign
iterations evenly among the threads in compile
time (statically).

#pragma omp for schedule static

for (i=0; i<n; i++){

   c[i] = a[i] + b[i];

}

The work-sharing “sections” directive allows
multiple threads to execute different code blocks
only once. In the example below, three threads
will execute the first, second, third block labeled
with “#pragma omp section” independently once.

#pragma omp sections

{

   #pragma omp section

   { int a = 0; }

   #pragma omp section

   { int b = 0; }

   #pragma omp section

   { int c = 0; }

}

In principle, one of advantages for the compiler
directive strategy is that the code can run as ordi-
nary sequential code if the directives are ignored.
Unfortunately, some of the OpenMP directives,
such as these managing memory consistency and
local copies of variables, affect the semantics of
the sequential code, compromising this desirable
property unless the code avoids these directives.

Intel TBB

Intel TBB (Threading Building Block) is a
runtime-based parallel programming paradigm.
It is a C++ template library that consists of data
structures and algorithms aiming to reduce the
complexity arising from the use of the more
primitive threading packages such as Pthread and
Windows threads. Like the high-level concurrency
objects in Java, TBB library simplifies thread-level
parallelism further into task-level. Programmers
only need to specify the intended parallel code
as tasks and do not need to explicitly control
the underling scheduling and synchronization
technicalities. The library’s runtime engine will
take care of the rest which prevents programmers
from making potential concurrency errors. This
offers an alternative way for developers to lever-
age multi-core processors without being an expert
on multithreading. However, this might limit the
type of applications that can be ported to TBB
since many tightly-coupled programs require more
fine-grained synchronization between threads.

Intel TBB provides mutual exclusion and
atomic operations for synchronization among
different threading blocks. TBB has several kinds
of mutex objects (spin_mutex, queuing_mutex,
spin_rw_mutex, queuing_rw_mutex, mutex) for
different performance, fairness, and reentrant,
etc. For example, a thread trying to acquire a
lock on spin_mutex is in busy wait till acquiring
the lock. A spin_mutex is appropriate when the
lock is held for a short time (e.g. a few instruc-
tions). However incorrect uses may incur huge
performance penalty. As a cheaper alternative
to mutex, atomic operations can be used. The
Class atomic<T> implements atomic operations.
It supports three popular atomic non-blocking
operations: fetch_and_store, fetch_and_add, and
compare_and_swap.

389

Analyzing Concurrent Programs Title for Potential Programming Errors

CUDA and OpenCL

GPU software development tools have evolved
rapidly with the dramatic advances of GPU
hardware. In the early stage, people struggled
with the implementation of scientific computing
using graphics primitives. Then several high-level
abstractions for streaming programming, such as
BrookGPU (Buck, et al., 2004) and Sh (McCool,
et al., 2004), were designed to hide the graphics-
specific details of GPU programming. Recently,
commercially supported GPU program toolkits,
in particularly CUDA (Cuda), RapidMind (Rapid-
Mind), and OpenCL (Open Computing Language
(OpenCL)), dramatically promote general comput-
ing on GPU and help leverage GPU capabilities
and manage data parallel computations on high-
level programming languages, such as C/C++.

NVIDIA’s CUDA is the leader of programming
interfaces for GPU computing. The CUDA soft-
ware stack is composed of several layers including
a hardware driver, an application programming
interface (API) and its runtime environment, as
well as high-level mathematical libraries. The main
synchronization mechanism in CUDA is barrier
(through calling “__syncthreads()”). CUDA also
provides atomic operations that are performed
without interference from any other threads in
order to prevent race conditions. The following
example (NCSA-CUDA) shows how to use CUDA
to conduct addition operations on two vectors.
The keyword label “__global__” declares a func-
tion to be a kernel function which is executed on
CUDA device and called from the host only. In
this case, the kernel code computes the sum of two
float vectors in parallel on the CUDA device. The
host code (the rest code in the example) allocates
the device memory and provides some essential
parameters such as the grid dimension, number of
blocks, number of thread per block when calling
the kernel function. In this case, the host code
first calls CUDA memory functions to allocate
the device memory for the two input vectors A
and B and the sum vector C and then specifies the

number of block to be 1 and the number of threads
per block to be 10 when calling the CUDA kernel
function “vecAdd”. At the end of the program,
the host code calls CUDA memory functions to
release the allocated memory.

__global__ void vecAdd(float* A,

float* B, float* C) {

 int i = threadIdx.x;

 A[i]=0;

 B[i]=i;

 C[i] = A[i] + B[i];

}

int main() {

 int N=10, SIZE=10;

 float A[SIZE], B[SIZE],

C[SIZE];

 // Kernel invocation

 float *devPtrA;

 float *devPtrB;

 float *devPtrC;

 int memsize= SIZE *

sizeof(float);

 cudaMalloc((void**)&devPtrA,

memsize);

 cudaMalloc((void**)&devPtrB,

memsize);

 cudaMalloc((void**)&devPtrC,

memsize);

 cudaMemcpy(devPtrA, A, memsize,

cudaMemcpyHostToDevice);

 cudaMemcpy(devPtrB, B, memsize,

cudaMemcpyHostToDevice);

 vecAdd<<<1, N>>>(devPtrA, devP-

trB, devPtrC);

 cudaMemcpy(C, devPtrC, memsize,

cudaMemcpyDeviceToHost);

 for (int i=0; i<SIZE; i++)

 printf(“C[%d]=%f\n”,i,C[i]);

 cudaFree(devPtrA);

390

Analyzing Concurrent Programs Title for Potential Programming Errors

 cudaFree(devPtrA);

 cudaFree(devPtrA);

 }

Another open GPGPU program interface is
OpenCL (OpenCL) which is similar to CUDA
in many aspects. OpenCL programs are a mixed
form of host code and device code. It uses key-
word labeling to express data parallelism for
device code and the host code. The execution
of an OpenCL program involves simultaneous
execution of multiple instances of a kernel on
the OpenCL devices as they are queued and con-
trolled by the host application. Each instance of
a kernel is referred to as a work-item. The data
parallelism lies in that each work item executes
the same code on different portions of the data.
Each work-item runs independently on a single
core of OpenCL device.

OpenCL supports two forms of synchroniza-
tion between work-items in the same workgroup:
barriers and memory fences. The barrier operation
barrier() allows the work-items in the same group
to have the same progress before starting the next
stage. The fence operation mem_fence() forces
all outstanding loads and stores on the OpenCL
device memory to be completed before execution
proceeds, and disallows the compiler and runtime
system from reordering any loads and stores. This
can be used to ensure that all data produced in a
work-group are flushed to global OpenCL device
memory before proceeding, which prevents other
work-groups from reading premature results.

Parallel Programming on
Distributed Memory Model: MPI

MPI (Message Passing Interface) is currently the
de facto standard programming model for high-
performance scientific computing. MPI defines the
syntax and semantics of a core of library routines
for writing portable message-passing programs.
Besides supporting distributed memory, MPI can
also utilize the shared memory for faster data

communication between processes on the same
node. MPI supports many popular languages such
as C, C++, Fortran, Python, and Java. There are
several open source implementations of MPI like
MPICH, LAM MPI, and OpenMPI, and com-
mercial implementations from Portland Group,
HP, Intel, Sun, IBM, and Microsoft.

Unlike multithreading, message passing is a
form of distributed memory programming para-
digm based on the sending and receiving messages.
In message passing, multiple processes coordinate
their progress and communicate their immediate
results by sending messages to one or more des-
ignated receivers and receiving messages from
one or more designated senders. A send/receive
can be a blocking or non-blocking operation.
A blocking operation blocks the process from
executing next instruction until it completes. A
non-blocking operation does not need to wait for
the finish of designated events, the process will
continue without suspending. For example, in MPI,
mpi_send() is a blocking send and mpi_isend() is
a non-blocking one. The blocking operations are
unsafe operations as improper use of them would
lead to deadlock and other type of concurrency
errors. The nonblocking ones can be safe but more
difficult for coding.

A send/receive can target at a specific group
of processes by specifying a communicator. A
communicator designates a group of processes
for sending/receiving message. For example, in
MPI, the macro MPI_COMM_WORLD is the ini-
tially defined universe intracommunicator for all
processes to conduct various communications. A
send/receive can also use a message tag to indicate
what kind of message it expects to send/receive.
Tags are used to distinguish different message
types a process might send/receive.

There are a number of message passing pat-
terns that are commonly used in MPI programs.
Point-to-point is the most basic communication
pattern in MPI. One process uses MPI_Send()
or its variant to send a message to a designated
receiving process which uses MPI_Recv() or

391

Analyzing Concurrent Programs Title for Potential Programming Errors

its variant to receive the message. A collective
communication is a communication pattern that
involves all the processes in a communicator. Con-
sequently, a collective communication is usually
associated with more than two processes. Barrier
is a program point where all processes in the same
communicator should reach before proceeding.

Most MPI routines also enforce some kind
of synchronization. For example, MPI_Bcast()
broadcasts a message to the whole communication
group; a node will not continue until it receives
the message. In addition, MPI explicitly provides
barrier operation to synchronize the progress of
different processes. A process that calls MPI_Bar-
rier() will block itself until all processes in the same

group have reach the barrier point. The follow-
ing example taken from (ANL MPI) shows how
to use MPI to calculate π on parallel machines.
Every process on each machine will execute the
same code except they use “myid” to distinguish
from each other. MPI_Comm_size stores the total
number of processes in the variable “numprocs”
for further use. Since MPI programs can be started
with any number of processes using the option
“-np”, it is very useful to take into account the
total number of processes in the computation as
the number may vary each time. In this program,
it asks user to provide the number of intervals
(steps) for computing π which is broadcasted to
each process from the root process. Later, each
process except the root process (process with rank
0) does its own computation and calls MPI_Reduce
to sum up their results. Finally, the root process
prints out the computed pi against a 25-digit π.

MapReduce

MapReduce (Dean 2008) is a loosely-coupled
parallel computation model that designs to handle
data-intensive computations. MapReduce derives
its name from the map and reduce combinators
from the functional programming languages. In
functional programming languages, a map takes
a function and a sequence of values as input. It
then applies the function to each value in the
sequence. A reduce combines all the elements
of a sequence using a binary operation. One ex-
ample of MapReduce is that Map takes a function
which breaks the input string into characters and
Reduce uses a ‘count’ function to count the total
number of characters in the sequence. This model
is specifically suitable for many data-intensive
applications because those applications usually
only apply simple operations on large data which
can be easily split into multiple chunks for inde-
pendent processing. (Hadoop) is a prominent
open source MapReduce implementation that
has been adopted for many data-intensive
computations.

Algorithm 6.

#include “mpi.h”
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[]){
int n, myid, numprocs, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (1) {
if (myid == 0) {
printf(“Enter the number of intervals: (0 quits) “);
scanf(“%d”,&n);
}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0)
 break;
else {
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));
}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
if (myid == 0)
printf(“pi is approximately %.16f, Error is
%.16f\n”,pi, fabs(pi - PI25DT));
}
}
MPI_Finalize();
return 0;
}

392

Analyzing Concurrent Programs Title for Potential Programming Errors

UPC

Unified Parallel C (UPC) extends C programming
language with a few additional structs to enable
Single Program Multiple Data (SPMD) parallel
computing model on large-scale machines. The
language provides a uniform and integrated pro-
gramming model for both shared and distributed
memory hardware.

UPC provides the following synchronization
mechanisms: barrier, wait/notify, lock, fence,
and spinlock. Among them, barrier, wait/notify,
and lock work similarly to other multithreaded
programming paradigms. The fence struct (i.e.,
upc_fence) in UPC ensures that all the shared
references issued ahead of the fence are complete.
Spinlock is a non-blocking alternative to lock,
which is designed for relatively fast operations on
shared variables with less performance penalty.

CONCURRENCY ERRORS

With the introduction of the above concurrent
programming models, there also come concur-
rency errors, such as deadlock, race condition,
and atomicity violation, that are not present in
traditional sequential programming. Like most
traditional programming errors such as memory
leak, buffer overrun, null pointer dereferencing,
etc. Preventing and/detecting concurrency errors
may suffer performance loss. For example, data
race can be prevented using a lock to guard every
shared variable’s access. This inevitably brings
down the performance of concurrent program as
too many lock contentions will affect the perfor-
mance dramatically.

Deadlock

Deadlock is perhaps the most common concur-
rency error that might occur in almost all parallel
programming paradigms including both shared-
memory and distributed memory. A deadlock

occurs when a chain of processes/threads are
involved in a cycle in which each process is wait-
ing for resources/locks that are held by some other
processes. When a deadlock happens, none of
the processes/threads can proceed, which in turn
causes the whole or part of the program to halt.

In shared-memory programming models, such
as Java threads and Pthreads, when programmers
use multiple locks to coordinate the accesses to
shared variables from multiple threads, it may
result in deadlock if two locks are acquired in
different orders in multiple threads. Hence, to
avoid such deadlock, successive locks should be
locked in the same order. An example of deadlock
in Java is shown in Algorithm 7.

Another kind of deadlock may occur in Pthreads
is that a thread tries to reacquire a lock that it
already owns, as shown in Algorithm 8.

Such kind of deadlock will not happen in Java
threads because both “synchronized” and “lock”
support reentrant locking. However, it is recom-
mended that locking and unlocking are performed
in the same scope. Otherwise, we should use try-
finally or try-catch to ensure that unlocking is
conducted finally, as shown below.

Lock.lock();

try {

   …

}  finally  {

   Lock.unlock();

}

Message passing programs can also be victims
of deadlock. The features of MPI (such as blocking
communication and non-deterministic schedul-
ing) and different implementations of MPI would
potentially lead to deadlock. For example, an
intuitive deadlock scenario is that some processes
are awaiting messages, but these messages may
never be sent out because the sending processes
are blocked or unable to send. This scenario causes
part of processes or even the whole MPI program
to be blocked forever.

393

Analyzing Concurrent Programs Title for Potential Programming Errors

Figure 1, which is taken from (Hilbrich et al.
2009), shows three kinds of MPI deadlocks. As
shown in the example of Figure 1(a), an MPI
deadlock would occur when two blocking receives
wait for each other, the program cannot continue.

Another example is shown in Figure 1(b).
Point-to-point blocking routines may incur dead-
lock when their executions do not succeed. Point-
to-point blocking routines, such as MPI_Send()
and MPI_Recv(), do not return to the program
until the message data have been safely stored (in
message storage or buffer). However, if some
problems arise in message storage (e.g., it is full),
this may cause some processes to infinitely wait
for messages or responses from other processes,

although such kind of MPI deadlock happens very
rarely.

Point-to-point non-blocking routines can
also lead to deadlock, although functions like
MPI_Irecv() and MPI_Isend() can return to the
program immediately without waiting the mes-
sages copying into buffers. But programmers
often have to associate a request to a non-blocking
routine and later invoke MPI_Wait(), which is also
a blocking point-to-point routine.

Many collective MPI routines, such as
MPI_Bcast() and MPI_Barrier(), can also cause
deadlock if not used correctly. For example,
programmers sometimes make mistakes like
incomplete barrier operations, which means that
not all the processes in the same communicator

Algorithm 7.

thread-1: thread-2:

synchronized(lock1){
synchronized(lock2){}
}

synchronized(lock2){
synchronized(lock1){}
}

Algorithm 8.

g() {
pthread_mutex_lock (&mutex);
…
pthread_mutex_unlock(&mutex);
}

f() {
pthread_mutex_lock (&mutex);
g();
pthread_mutex_unlock(&mutex);
}

Figure 1. Deadlock scenario for MPI programs

394

Analyzing Concurrent Programs Title for Potential Programming Errors

invoke MPI_Barrier() which leads to a deadlock
situation where the whole program can not proceed
if the “barrier” point has not been reached by all
processes in the same communicator group.

Incorrect use of wildcard receive is another
scenario leading to deadlock. As an example shown
in Figure 1(c), the labels MPI_ANY_SOURCE
and MPI_ANY_TAG allow a process to receive
any message from any source or any tag, respec-
tively, but only the first incoming message is
matched. If there is any subsequent MPI_Recv()
on a specific process whose MPI_Send() is just
matched by the previous wild card receive, then
the process is blocked.

Data Race

Data race (also called race condition) is present
only in the parallel programming models based
on shared memory. Data race happens when two
or more accesses from different threads access the
same shared variable without proper synchroniza-
tion and at least one of the accesses is a write to
the variable.

Data race may or may not affect the correct-
ness of the executing program depending on the
context in which it occurs. That is, there are two
types of data races: harmful and benign. For
example, if thread 1 and thread 2 execute “x=1;
y=x+1” and “x=2” (where x is a shared variable
by both threads), respectively, a harmful data
race may occur because the value of y depends
on which statement of “x=1” and “x=2” runs
first. A benign data race is shown below, where
a boolean variable “flag” controls the ordering
of thread 1 and thread 2. When thread 2 is done

with its task, it notifies thread 1 by setting “flag”
to be true. Thread 1 is constantly checking “flag”
to wait for thread 2. In this situation, the data race
on the variable “flag” is benign.

Similar to data race in multithreaded programs,
message race may occur on programs that utilize
message passing mechanisms such as MPI. Mes-
sage race occurs when a process receives mes-
sages from other processes at a non-deterministic
order. Due to various process schedulings and
communication latencies, messages may reach a
process at various orders, and thus incur different
schedulings and results. In the following example,
the process P2 receives its message from process
P1 and process P3. There is a message race in the
first wildcard receive of P2. Depending on the
order, P2 might receive the message from P1 with
the value 1 or receive the message from P3 with
the value of 0.

Atomicity Violation

Atomicity violation, which is caused when
concurrent execution unexpectedly violates the
atomicity of a code segment, is another kind of
common concurrency errors. Atomicity is well
known in the context of transaction processing,
where it is sometimes called serializability. An
atomicity violation occurs when an interleaved
execution of a set of code blocks (expected to
be atomic) by multiple threads is not equivalent
to any serial execution of the same code blocks.
Figure 2 illustrates two examples in Java from
(Chen et al. 2009), where Program 1 contains ob-
vious data races on the shared variable “bal”, and
Program 2 eliminates the data races in Program 1

Algorithm 9.

Thread 1
…
while(!flag){
…
}

Thread 2
…
flag = true;
…

395

Analyzing Concurrent Programs Title for Potential Programming Errors

by adding a lock o. However, it is still incorrect.
In this example, the deposit method is expected
to be atomic otherwise it would cause the bank
account balance to be inconsistent. An atomicity
violation would occur when the two synchroniza-
tion blocks in Thread 2 execute between the two
synchronization blocks in Thread 1. From this
example, we can observe that the occurrence of
atomicity violation depends on thread scheduling.

Other Concurrency-Related
Programming Errors

Starvation describes a situation where a thread is
unable to gain regular access to shared resources
and is unable to make progress. It occurs when
shared resources are made unavailable for long
periods by other “greedy” and higher priority
threads.

Livelock occurs when two or more processes/
threads are busy in responding to each other’s
request while none of them can make further
progress. Same as deadlock, it causes the whole
or part of program to block indefinitely.

Lost Wait-Notify is another kind of common
concurrency error. In multithreaded program-
ming such as Java threads, two or more threads

can use the “wait/notify/notifyAll” methods to
synchronize between each other. In Pthreads,
“pthread_cond_wait/pthread_cond_signal” are
used instead, which work similarly. If a notifying
thread calls “notify()” before the thread to be noti-
fied calls “wait()”, the signal will be missed by
the waiting thread. This may not be a problem if
there are subsequent calls to “notify()”. But if no
thread calls “notify()” again, the waiting thread
may wait forever because the waking up signal
will never be received. Such kind of error highly
depends on the thread scheduling and may not
repeat in subsequent executions.

DETECTING CONCURRENCY
ERRORS

In this section, we introduce the state-of-the-art
research progress on detecting various concur-
rency errors including deadlock, data race, and
atomicity violation. Most techniques for detecting
concurrency errors fall into some categories of
program analysis: dynamic analysis, static analy-
sis, hybrid analysis, or model checking. We first
introduce these four kinds of program analysis,

Algorithm 10.

Process 1(P1)
MPI_Isend(P2, data = 1);

Process 2(P2)
MPI_Irecv(*, x);

Process 3(P3)
MPI_Isend(P2, data = 0);

Figure 2. Examples in Java demonstrating data races and atomicity violations

396

Analyzing Concurrent Programs Title for Potential Programming Errors

then survey the detection approaches for deadlock,
race condition, and atomicity violation.

Overview of Program Analysis

Dynamic Analysis

Dynamic analysis reasons about behavior of a
program through observing its executions. It is
usually performed by instrumenting source code
(like (Wang and Stoller 2006b), bytecode (like
(O’Callahan and Choi 2003)), or binary code
(like (Savage et al. 1997)), and monitoring the
programs’ executions. The observed events can
be analyzed on-line (i.e., during executions) or
off-line (i.e., after executions terminate). To detect
concurrency errors, dynamic analysis extends the
traditional testing techniques. It tries to look for
potential concurrency errors by searching specific
patterns based on the current observed events,
even the errors do not show up in the current
execution paths. For example, to detect deadlock,
the approaches in (Havelund 2000, Bensalem and
Havelund 2005, Agarwal et al. 2005b)) search all
lock acquires and releases for a potential cyclic
chain. To detect data races, the approaches in (Sav-
age et al. 1997) keep track of common locks for
each shared variable, and a warning is issued when
the common lock becomes empty. To improve
the accuracy, the approaches in (O’Callahan and
Choi 2003, Yu et al. 2005, Ratanaworabhan et al.
2009, Flanagan and Freund 2009) integrate the
associated lock-set with happen-before relation-
ships for events. The approaches to detect race
condition on OpenMP (Kang et al. 2009] and
CUDA (Hou et al. 2009, Boyer et al. 2008)) are
very similar to the previous approach. To detect
atomicity violations, the approaches in (Flanagan
and Freund 2004a, Xu et al. 2005, Wang and Stoller
2006b, Wang and Stoller 2006a, Lu et al. 2006,
Flanagan et al. 2008, Chen et al. 2008) search all
events related with shared variable accesses and
synchronization for specified violation patterns.
Randomized dynamic program analysis (Sen

2008, Park and Sen 2008, Joshi et al. 2009) use
two stages to detect and confirm real deadlocks,
races, and atomicity violations: in the first stage,
it uses an imprecise dynamic analysis to find
potential errors; in the second stage, it controls a
random thread scheduler to create these potential
errors with high probability.

In addition, the monitoring overhead is an-
other problem of dynamic analysis, which usually
slows down the speed of programs by a factor of
2 to 100. One approach to reduce overhead is to
use random sampling (Liblit et al. 2003). This
approach works only when a large set of sample
executions are available. Another approach is to
perform selective monitoring on program region,
avoid remonitoring the same code region under the
same context. However, checking the equivalence
of program context is also expensive. The work
in (Fei and Midkiff 2006) takes approximation
for variables and pointers.

Static Analysis

Static analysis makes predictions about a pro-
gram’s runtime behavior based on analyzing its
source code. Static analysis tools like Codesurfer
(Anderson et al. 2003), PREfix and PRE-fast
(Bush et al.2000), ESP (Das et al. 2002), ESC/
Java (Detlefs et al. 1998), and LockSmith (Pra-
tikakis et al. 2006) aim to detect potential errors
by analyzing the source code (or byte/binary
code) without actually executing the programs.
Type systems are proposed to avoid deadlocks
(Boyapati et al. 2002, Agarwal et al. 2005b), data
races (Flanagan and Freund 2000, Boyapati and
Rinard 2001, Boyapati et al. 2002, Flanagan and
Freund 2004b, Agarwal et al. 2005a, Sasturkar
et al. 2005, Naik and Aiken 2007), and atomicity
violations (Flanagan and Qadeer 2003, Agarwal
et al. 2005a, Sasturkar et al. 2005, Flanagan et al.
2005, Wang and Stoller 2005). A type system is a
system of programmer added types that express
some correctness requirement on the variables
or functions that can be involved in concurrent

397

Analyzing Concurrent Programs Title for Potential Programming Errors

error. For example, the deadlock types express a
partial order on the locks, and the type rules ensure
that whenever a thread holds multiple locks, the
thread acquires the locks in a descending order
(Boyapati et al. 2002, Agarwal et al. 2005b).
However, it is a big burden for programmers
to manually annotate programs with extra type
information. Moreover, even the very expressive
type systems may report many false positives.
Inter-procedural static analysis is also used to
detect potential concurrency errors (Choi et al.
2002, Engler and Ashcraft 2003). Compared to
type systems, these inter-procedural analyses do
not need annotations for types, but still produce
numerous false positives. Static analysis can be
sound, but it sacrifices accuracy and reports many
false positives.

Hybrid Analysis

Static and dynamic analyses can be combined in
various ways. Static analysis can be used to reduce
the overhead of dynamic analysis. For example,
static analysis can show that some statements are
not involved in any data races or atomicity viola-
tions and hence do not need to be instrumented;
this can significantly reduce the overhead of
dynamic analysis by up to a factor of 20 (von
Praun and Gross 2001, Choi et al. 2002, Agarwal
et al. 2005a, Sasturkar et al. 2005, Agarwal et al.
2005b, Elmas et al. 2007). Dynamic analysis can
help static analysis by providing more accurate
runtime information. Daikon (Ernst et al. 2001)
examines program executions to determine in-
variants to assist static analysis such as theorem
proving. Static analysis and dynamic analysis can
be performed interactively. Synergy (Gulavani et
al. 2006) combines testing (i.e., dynamic analysis)
and verification (i.e., static analysis) to simul-
taneously search for bugs and proofs. Concolic
testing (Godefroid et al. 2005, Cadar et al. 2006,
Majumdar and Sen 2007) runs symbolic execu-
tion simultaneously with concrete executions to
generate new test inputs for better path coverage.

(Chen et al. 2009) designs a hybrid approach that
integrates static and dynamic analyses to attack
this problem. It first performs static analysis to
obtain summaries of synchronizations and ac-
cesses to shared variables. The static summaries
are then instantiated with runtime values during
dynamic executions to speculatively approximate
the behaviors of branches that are not taken. Com-
pared to dynamic analysis, the hybrid approach is
able to detect atomicity violations in unexecuted
parts of the code.

Model Checking

Model checking is a formal method for prov-
ing that a finite-state model satisfies a temporal
logic property. Explicit state model checkers,
such as SPIN (Holzmann 2003), enumerate the
reachable states explicitly. They also utilize ad-
ditional techniques such as partial order reduction
(Holzmann and Peled 1994). Symbolic model
checking (McMillan 1994) avoids an explicit
enumeration of the state space using symbolic
representations of sets of states and transitions
based on Binary Decision Diagrams (BDDs) or
Boolean Satisfiability Solving. Model checking
can also be applied to real programs. CHESS
(Musuvathi and Qadeer 2008), Java PathFinder
(Visser et al. 2003), Bogor (Dwyer et al. 2005)
and VeriSoft (Godefroid 1997) are such tools.
Although the most rigorous automatic method
to verify software, model checking faces a com-
binatorial blow up of the state space, commonly
known as the state explosion problem. Hence it
cannot handle large-scale software systems.

Approaches to Detect Deadlock

Detecting deadlock has been a decades-long
problem. Recall that a deadlock occurs when all
threads are blocked, each waiting for some action
by one of the other threads. Thus dependences
among threads and resources can be modeled by
a resource allocation graph, where nodes denote

398

Analyzing Concurrent Programs Title for Potential Programming Errors

threads and exclusive resources, and edges denote
allocation or wait-for relations between threads
and resources. A common way to detect deadlock
is to check whether the resource allocation graph
contains a cycle (Silberschatz et al. 2008). Most
approaches are based on it by checking against
cycles, just in different ways. However, detecting
deadlock thoroughly is very expensive. Large-
scale software systems such as operating systems
take an ostrich way, i.e., assume that deadlock
will not happen, hence never detect or prevent it
in order to keep the performance to be efficient.

Detect Deadlocks in
Multithreaded Programs

To introduce how to detect potential deadlocks in
multithreaded programs, we use the GoodLock
algorithm (Havelund 2000) as a typical algo-
rithm. The GoodLock algorithm assumes that all
locks are acquired and released in nested pairs,
like “synchronized” in Java threads. It records a
run-time lock tree for each thread as shown in
Figure 3. A lock tree is a tree that represents the
lock acquire order and relation for each thread as
the control flows in each thread. An edge from a
parent node to a child node in the lock tree indi-
cates that the thread is currently holding a lock
represented by the parent node when acquiring
another lock denoted by the child node. The lock

tree for a thread represents the nested pattern in
which locks are acquired by the thread. Each node
of the lock tree is labeled with a lock. If a thread
re-acquires a lock that it already holds, its run-time
lock tree does not contain a node representing
the re-acquire. At the end of the execution of the
program, if there exist threads t1 and t2 and locks
l1 and l2 such that t1 acquires l2 while holding l1,
and t2 acquires l1 while holding l2, then a warn-
ing of potential deadlock is issued, unless there
is a common lock, called a gate lock, that is held
by both threads when they acquire l1 and l2; the
gate lock prevents the acquires of l1 and l2 from
being interleaved in a way that leads to deadlock.
For example, in Figure 3, the left branches in
thread 1 and thread 2 denote two lock acquiring
sequences, where L2 and L3 are acquired in the
reverse order. However, there is no deadlock in
this example because of the gate lock L1.

The GoodLock algorithm was extended in
(Agarwal and Stoller 2006), which presents a
runtime detection approach for potential deadlocks
in Java programs that involves locks, semaphore,
and condition variables. They extended the runtime
lock tree in the GoodLock algorithm into a di-
rected graph G = (V;E), where V contains all the
nodes of all the run-time lock trees, and the set E
of directed edges contains (1) tree edges, which
are the directed (from parent to child) edges in
each of the lock trees, and (2) inter edges, which

Figure 3. A lock tree example. The small superscript numbers identify each unique lock acquire event.

399

Analyzing Concurrent Programs Title for Potential Programming Errors

are the bidirectional edges between nodes labeled
with the same lock in different run-time lock trees.
In order to detect potential deadlocks, they use a
modified DFS (Depth First Search) to traverse
the graph to look for cycles. To check deadlocks
involving semaphore and condition variables,
they check possible permutations of the program
execution trace and report if any feasible permu-
tation would result in a deadlock.

However, most deadlock approaches suffer
from false positives which might baffle the pro-
grammers from distinguishing real bugs from
false alarms. To improve the quality of deadlock
checking, (Agarwal et al.) proposes more exten-
sions that help eliminate possible false positives
or label them as low severity deadlocks in the lock
graph generated by static or dynamic analysis.
In addition, they present a technique that effec-
tively combines information from multiple runs
of the program into a single lock graph. Such a
technique may help find deadlock potentials that
might not be revealed by one arbitrary run of the
program because of nondeterministic scheduling.
Finally they describe the use of static analysis to
automatically reduce the overhead of dynamic
checking for deadlock potentials.

There are many other approaches to detect
deadlock. For example, (Li et al.2005) imple-
ments a tool that is integrated with operating
systems and dynamically detects various types
of deadlocks in application programs. Their tool
runs as a system daemon and periodically scans
the system for processes that have been blocked
for a long time. To determine if these processes are
deadlocked, the tool speculatively executes them
ahead to discover their dependences. Based on
this information, it constructs a general resource
graph and detects deadlock by checking whether
the graph contains cycles. (Williams et al. 2005)
applies a flow-sensitive, context-sensitive inter-
procedural static analysis on detecting deadlock
in Java libraries. Their analysis builds a single
lock-order graph that captures locking information

for an entire Java library source code and checks
for cycles in the graph.

Detecting Deadlock in MPI Programs

The simplest way to detect deadlock in MPI
program is to use timer when MPI program is
running. If the blocking time of some process
exceeds the pre-defined threshold, those processes
are announced to be in deadlock. Timer approach
is easy to implement and does not impose too
much overhead, but is difficult to set and adjust
the threshold, and it may potentially report many
false positives.

Dependency graph is one of the major ap-
proaches to detect deadlocks in MPI programs.
It is usually implemented as a dynamic approach.
In (Hilbrich et al. 2009), based on the concept of
AND model, OR model and the combination of
AND-OR model, dependency graph expresses
the waiting relation between various processes
at specific time. If part of the dependency graph
satisfies the pre-defined deadlock conditions such
as a circle or some kind of knot, then that part of
the dependency graph is considered in a deadlock.
This approach can only find deadlock happening
during execution for specific schedules, but will
not report all potential deadlock for all schedules.

(Luecke et al. 2002) uses a dynamic hand-
shaking approach to detect potential and actual
deadlocks. Handshaking code (handshake_send
and handshake_recv) is statically instrumented
before each MPI send/receive call in the source
program and when the instrumented program is
compiled and run, the dynamic monitor tracks the
handshaking code to match a send and a receive.
A handshake is a matching pair of instrumented
handshake method calls for a send event and a
receive event. If a handshake is not observed
for each send or receive call after a user-defined
time, then it reports a potential or actual deadlock
warning for that send or receive call depending
on the scenarios. They summarize a collection
of situations where a actual deadlock will occur

400

Analyzing Concurrent Programs Title for Potential Programming Errors

and a set of possible deadlock situations if the
handshake is not observed. In (Vo et al. 2008), a
dynamic formal verification approach is proposed
to detect potential deadlocks in MPI programs. In
the proposed approach, the execution of MPI pro-
gram is under control of an interleaving scheduler
where nondeterministic constructs are explored
for all possible interleavings.

Approaches to Detect
Race Condition

Detecting Race Condition in
Multithreaded Programs

Many static and dynamic approaches have been
proposed to detect race conditions in multithreaded
programs. They are based on either lockset analysis
or happen-before order. However, detecting race
conditions is not an easy problem, which has been
proved to be NP-hard (Netzer and Miller 1992).

We use the Eraser algorithm (Savage et al.
1997) shown above as a typical algorithm of
lockset analysis. As a dynamic approach, Eraser
checks all shared-memory accesses against a
simple locking policy, i.e., all accesses to a shared
variable should be protected by a common lock.
As shown above, for each shared variable v,
Eraser maintains a set C(v) of candidate locks for
v. This set contains those common locks that have
protected v in the execution so far. That is, a lock
l is in C(v) if, in the execution up to that point,
every thread that has accessed v was holding l at
the moment of the access. When v is initialized,
its candidate set C(v) is considered to hold all
possible locks. Whenever the variable is accessed,

Eraser updates C(v) with the intersection of C(v)
and the set of locks held by the current thread.
This process, called lockset refinement, ensures
that any lock consistently protecting v is contained
in C(v). If some lock l consistently protects v, it
will remain in C(v) during the refinement. If C(v)
becomes empty, which indicates that there is no
lock consistently protecting v, Eraser will report
a warning of race condition on v.

Figure 4 illustrates how the Eraser algorithm
is applied to detect potential data races. The left
two columns contain two threads. Thread 2 runs
after thread 1. The third and forth column reflect
the corresponding locks held by the current thread
and the set of candidate locks C(v), respectively.
This example has two locks, so C(v) starts contain-
ing both of them. When v is accessed by thread 1
while holding lock o1, C(v) is refined to contain
that lock. Later, v is accessed again by thread 2
while holding only o2. The intersection of the
singleton sets {o1} and {o2} is the empty set,
which indicates that no lock protects v. Hence, a
race condition is reported on v.

However, the simple locking discipline may
report many false positives. More improvements
are designed for better accuracy. The extended
Eraser algorithm proposed in (Savage et al. 1997)
distinguishes states such as variable initialization
(i.e., Exclusive), initialized then read-only (i.e.,
Shared), and read/write by multiple threads (i.e.,
Shared-Modified). The state transitions are shown
in Figure 5. When a variable is first allocated, it
will be in the Virgin state, which implies that the
variable is not shared among multiple threads yet.
Once it has been accessed by the first thread, it
enters the Exclusive state. Any following reads
and writes from the same thread do not change
the variable’s state and do not update C(v). With
a read access from a different thread, the state is
changed to Shared from Exclusive. In the Shared
state, C(v) is updated, but no data race will be
reported because this is a read-shared situation.
Alternatively, a write access from a different thread
changes the state from Exclusive or Shared to the

Algorithm 11.

Let held(t) be the set of locks held by thread t.
For each v, initialize C(v) to the set of all locks.
On each access to v by thread t,
C(v):= C(v) ∩ locks_held(t);
if C(v) == { }, then issue a warning.

401

Analyzing Concurrent Programs Title for Potential Programming Errors

Shared-Modified state, in which C(v) is updated
and races are reported as the original Eraser al-
gorithm would.

To improve accuracy and achieve lower run-
time overhead of dynamic analysis, (Choi et al.
2002) proposes an efficient and precise dynamic
detection approach on multithreaded programs.
They take into account a weaker-than relationship
that allows dynamic analysis to consider only
portion of memory accesses rather than monitor
all memory accesses. Given two memory access
events ei and ej, if for every subsequent access ek,
isRace(ej, ek) implies isRace(ei, ek), then ei is more
weakly protected from data race than ej, or in
another word, ei is weaker than ej. With the
weaker-than relation, they only need to store in-
formation about the weaker one of two events,
which reduces both space and time overhead. In

addition, caching technique is used to detect and
remove redundant accesses thus further reduce
space overhead. Before running the dynamic
analysis, a static analysis is performed to identify
all possible statements involving data races. Thus,
the dynamic analysis will not need to monitor the
irrelevant statements. The static analysis uses
inter-thread control flow graph, points-to analysis,
and extended escape analysis to help identify data
races more accurately.

The hybrid approach in (O’Callahan and Choi
2003) further extends the Eraser algorithm (Sav-
age et al.1997) and the work in (Choi et al. 2002)
with happens-before order relationship to reduce
false positives. “Hybrid” means that the approach
integrates the lockset-based analysis and the
happen-before order relationship. The happens-
before relationship was originally defined by

Figure 4. An example illustrating the Eraser algorithm

Figure 5. State transition of the extended Eraser algorithm

402

Analyzing Concurrent Programs Title for Potential Programming Errors

Lamport as a partial order on events occurring in
a distributed system (Lamport1978). Informally, a
pair of events (ei, ej) has happen-before relationship
if (1) ei and ej are events in the same thread, and
ei occurs before ej; or (2) If ei is the sender of a
message and ej is the receiver of the message; or
(3) ei and ej have transitive happen-before order.
The hybrid race detection helps reduce many false
positives reported by the Eraser algorithm alone.

Based on the lockset analysis and happen-
before orders, there are many other approaches
to detect race conditions. (Engler and Ashcraft
2003) proposes a static technique that uses flow-
sensitive, inter-procedural static analysis to check
race conditions and deadlocks. One of the con-
tributions is to rank all warnings using various
criteria such as simple checking, simple statistical
measure, and precise statistical measure. (Yu et al.
2005) proposes an adaptive tracking scheme that
can reduce the runtime monitoring overhead to
at most 3x slowdown of the original program. In
addition, a post-processing step is performed to
rank race warnings with the most likely ones on
top. Their implementation on Microsoft.NET plat-
form exploits the benefits of Common Language
Runtime so that the instrumentation happens on
the virtual machine level and no modification on
the original programs is needed. They track the
happen-before order through the vector clock at-
tached to each memory access. Many other related
work have been introduced in Section 5.1.

Detecting Message Race
in MPI Programs

(Netzer et al. 1996) is one of the first papers
that explore the problem of detecting message
races in MPI programs. The proposed approach
is a dynamic algorithm with two passes that can
handle long running MPI programs regardless
their execution length. Specifically, it uses a vec-
tor timestamp to track the happen-before relation
between different send events then determines
the possible concurrent send events. In the first

pass, for each send event that has been matched
by a receive event in the real execution, it tries
to find out all possible send events that could be
matched by that receive event. The second pass
uses the information reported by the first pass to
validate the message races.

(Park et al., 2007) detects all potential race
conditions by checking concurrent communication
between processes. It uses vector timestamps to
determine possible concurrency between send/
receive events in MPI programs. To capture all
points-to-points MPI function calls, it replaces all
the original calls with the profiling calls defined
by MPI profiling interface.

Approaches to Detect
Atomicity Violation

The approaches to detect atomicity violations
root in the detection of serializability in database
systems. The algorithms can be classified into
two main categories: the approaches based on
Lipton’s reduction theorem (Lipton 1975), and
the approaches based on detecting unserializable
patterns.

The approach in (Flanagan and Qadeer 2003)
is a typical algorithm based on Lipton reduction
theorem for analyzing atomicity in multithreaded
programs. The theory of reduction is based on
the notion of right-mover and left-mover actions.
In the reduction algorithm, events are classified
according to their commutativity properties. An
event is a right-mover if, whenever it appears
immediately before an event of a different thread,
the two events can be swapped (i.e., they can be
executed in the opposite order without blocking)
without changing the resulting state. A left-mover
is defined analogously. For example, if an event
e1 of a thread is a lock acquire, its immediate
successive event e2 from another thread cannot be
a successful acquire or release of the same lock
because an acquire would block and a release
would fail (in Java, it would throw an excep-
tion). Hence, e1 and e2 can be swapped without

403

Analyzing Concurrent Programs Title for Potential Programming Errors

affecting the result, so e1 is a right-mover. Lock
release events are left-movers for similar reasons.
An event is a both-mover if it is both a left-mover
and a right-mover. For example, if there are only
read events (no write) on a given variable, the
read events commute in both directions with all
events, so these read events are both-movers.
Events not known to be left or right movers are
non-movers. For Java programs, a classification
of events can be conveniently obtained based on
synchronization operations. Lock acquire events
are right-movers. Lock release events are left-
movers. Race-free reads and race-free writes are
both-movers. An execution path is considered to
be atomic if it contains sequence of right-movers,
followed by at most one non-mover action and
then a sequence of left-movers.

The approach in (Wang and Stoller 2006b) is
a typical algorithm based on detecting unserial-
izable patterns. The algorithm checks atomicity
violations by permuting the order of events that
are consistent with the synchronization events.
Explicitly enumerating these permutations would
be prohibitively expensive. Instead, they look for
unserializable patterns of operations from these
events. An unserializable pattern is a sequence in
which operations from different threads are inter-
leaved in an unserializable way. As an example,
the following table shows four unserializable
patterns when multiple threads share exactly
one variable. The more complex cases, such as
multiple shared variables, are introduced in (Wang
and Stoller 2006b).

From top left to bottom right, these four pat-
terns shown in Algorithm 12 are described below.

•	 A read in one transaction occurs between
two writes in another transaction.

•	 A write in one transaction occurs between
two reads in another transaction.

•	 A write in one transaction occurs between
a write and a subsequent read in another
transaction.

•	 The final write in one transaction occurs
between a read and a subsequent write in
another transaction.

Many other approaches have been proposed
to check atomicity violations. (Vaziri et al. 2006)
takes a similar approach to check atomicity prob-
lems by searching non-serializable interleaving
scenarios. In addition, they present a language
extension called atomic set of locations to allow
programmers to specify existence of properties
between fields in objects. They use an inter-
procedural static analysis technique that automati-
cally infers those points where synchronization is
missing. (Xu et al. 2005) proposes a tool to detect
serializability violation (i.e., atomicity violation).
It can automatically infer atomic regions where
serializability criterion must be met. (Lu et al.
2006) proposes an approach to detect atomicity
violations based on access interleaving invariants
that are observed in multiple runs of the concurrent
program. The access interleaving invariants imply
the programmers’ assumptions about the atomicity
of certain code regions. (Farzan and Madhusudan
2008) proposes a space-efficient monitoring al-
gorithm for checking atomicity violations. The
algorithm builds a conflict-graph through dynamic
monitoring the program and then reduces the
conflict graph into a summarized conflict graph
to check atomicity problem. (Chen et al. 2009)
presents a hybrid approach that complements
dynamic analysis with static speculation to detect
potential atomicity violations in concurrent Java
programs. Their approach first performs static
analysis to obtain summaries of synchronizations

Algorithm 12.

W(x)
R(x)
W(x)

R(x)
W(x)
R(x)

W(x)
W(x)
R(x)

R(x)
FW(x)
W(x)

404

Analyzing Concurrent Programs Title for Potential Programming Errors

and accesses to shared variables. The static sum-
maries are then instantiated with runtime values
during dynamic executions to speculatively ap-
proximate the behaviors of branches that are not
taken. Compared to dynamic analysis, the hybrid
approach is able to detect atomicity violations in
unexecuted parts of the code. Compared to static
analysis, the hybrid approach produces fewer false
alarms. More approaches about checking atomicity
violations appear in Section 5.1.

TOOLS TO DETECT
CONCURRENCY ERRORS

There are many methods and tools that have
been developed for ensuring the correctness of
multithreaded and MPI programs. Here we give a
brief overview of the widely used or well-known
tools. The commercial debugging tools include
PGI Tools, TotalView, Intel Message Checker,
Allinea Distributed Debugging Tool (DDT), and
Nvidia Nexus and CUDA GDB. The open source
community offers Eclipse Parallel Tools Platform
(PTP), MPI-CHECK, Umpire, MARMOT, ISP,
MPI-Spin, and MS CHESS.

Commercial Debugging Tools

PGDBG (pgi2009) is developed by the Portland
Group, Inc. (PGI) as a symbolic debugger for
Fortran, C/C++, and assembly language programs.
It provides most typical debugger features such
as breakpoint setting, single instruction stepping,
visualization of application variables, memory
locations, and registers. It supports debugging
parallel applications using Pthreads or Windows
threads, OpenMP and MPI, as well as hybrid pro-
gramming paradigms that combine two or more of
aforementioned parallel programming interfaces.

Intel Message Checker (DeSouza et al. 2005)
is an MPI correctness tool that helps ensure the cor-
rectness of MPI programs. It can detect many MPI
errors such as mismatched arguments and buffers

(size and type), race conditions, resources leak-
ing, overlapped read/write to the same message
buffers, message checksum errors, and potential
deadlocks. It comes with a user-friendly graphical
user interface. However, the trace files generated
by Intel Message Checker can be very large thus
it may be inefficient to analyze the trace files.

Intel Thread Checker (inta) is a data race
and deadlock detection tool for 32-bit and 64-
bit multithreaded and OpenMP applications in
Windows and Linux. However, its overhead could
be as high as 200x of the original program’s per-
formance which makes it hard to be adopted on
long-running server programs (Sack et al. 2006).

Intel Trace Analyzer and Collector (intb)
contains an MPI correctness checking library
that can dynamically detect many communica-
tion errors including deadlocks, data corruption,
or errors regards to MPI parameters, data types,
buffers, communicators, point-to-point messages,
and collective operations. The tool supports set-
ting debugger breakpoints to greatly help the
analysis. It can also instrument the original source
code of MPI programs to monitor data types and
MPI calls with their wrapper calls and compile
the instrumented programs with their checking
library. It can scale to large systems with many
processes running concurrently.

TotalView (Kingsbury 2007) is a commercial
MPI tool providing industrial level of debugging
support. It can debug one or many processes and/
or threads with complete control over program
execution. In addition, it has the capability of
reproducing programs crashes. It can visualize
the state of the running program for efficient
debugging of memory errors and leaking and
diagnosing subtle problems like deadlocks and
race conditions. It works with C, C++, and FOR-
TRAN applications. Its latest extension supports
debugging CUDA programs.

Allinea Distributed Debugging Tool (DDT)
(DDT) is another commercial debugging tool
with graphical user interface that supports both
centralized and distributed debugging. It supports

405

Analyzing Concurrent Programs Title for Potential Programming Errors

C/C++, FORTRAN, OpenMP, MPI, Pthreads,
Windows threads, and CUDA. DDT supports
fine-grained control over the target program to
examine the program states in more effective ways
during execution. In addition, with the support of
controlling individual threads and/or processes
separately or collectively, it allows programmer
to examine data across threads/processes. The
programmable STL Wizard that comes with DDT
enables the programmers to view C++ Standard
Template Library structures such as lists, maps,
sets, pairs, and strings.

Nvidia introduces Nexus (NVIDIA Nexus,
2009) in October, 2009, which is a tool integrated
into Microsoft Visual Studio 2008 to debug, pro-
file, and analyze CUDA programs. CUDA-GDB
(CUDA-GDB) is an extension of the GNU Project
Debugger (GDB) to debug CUDA programs on
both 32-bit and 64-bit Linux. CUDA-GDB sup-
ports debugging both host and GPU code. CUDA-
GDB runs only on CUDA-capable GPUs with the
compute capability later than 1.1.

Open-source Debugging Tools

Eclipse Parallel Tools Platform (PTP) (Watson et
al. 2006) is a plug-in to Eclipse IDE and contains
many productivity tools to help programmers
launch, control, monitor, and debug MPI programs.
It is also a framework for developers to integrate
external tools so that they can take advantage of the
user interface components and services provided
by both PTP and Eclipse. The latest version is 4.0
published at the end of June, 2010.

PTP manages MPI source programs as proj-
ects. With PTP, programmers can utilize all the
productivity features in Eclipse to develop their
programs such as syntax highlighting, static code
checking, automatic build, and error location. PTP
uses the resource manager to manage and control
the resources required for launching a parallel
job. For example, given a cluster with Open MPI
installed, the Open MPI runtime system would be
considered the resource manager. Once the pro-

grammers configure the resource manager, they
can launch, monitor, and control their programs
on the target resource regardless whether the target
resource is remote or local. Programmers can also
launch a MPI program in debug mode of PTP. In
the debug mode, PTP switches Eclipse to Parallel
Debug View which allows programmers to sus-
pend processes, and visualize the detailed informa-
tion about the suspended processes such as stack
frame content and local variables values. Parallel
break point is another feature supported in PTP.
Programmers can either set global breakpoints in
the source program that apply to all processes in
any job or set local breakpoints that apply only to
a specific set of processes (which can include the
root set) for a single job. The difference is that a
global breakpoint remains in effect between job
launches while local breakpoints are removed
when the job completes.

MARMOT (Krammer et al. 2004) is a runtime
detection tool that samples the MPI-calls invoked
in the runtime and subsequently checks the correct
usage of these calls and their arguments. It can
be used in conjunction with traditional sequential
debuggers such as GDB to help the programmers
pinpoint the bugs. It supports both C and FOR-
TRAN languages. After the runtime monitoring,
it generates a human-readable log file which can
be analyzed for reporting the violations of MPI
specification. It can also check the call stack
trace for potential deadlocks based on a time-out
mechanism. However, the deadlock detection
could report false positives since some calls would
take longer than expected due to physical network
problems or other reasons.

UMPIRE (Vetter and de Supinski 2000) is
another dynamic tool to analyze MPI programming
errors using a profiling interface like MARMOT.
It can detect deadlocks by combining time-out
mechanism and dependency graphs together.

ISP (Vo et al. 2008) is a tool that dynamically
verifies MPI programs. It consists of three parts:
profiler, scheduler, and checker. The profiler wraps
the MPI-related function calls inside their wrap-

406

Analyzing Concurrent Programs Title for Potential Programming Errors

per functions and intercepts these MPI function
call events for later processing. The scheduler
carries out all possible schedulings while using
POE (Partial Order Reduction) to remove the re-
dundant states and minimize the state space. The
scheduler explicitly considers and handles MPI-
specific properties including wildcard receives,
barriers, which are important to scheduling. The
checker checks each permuted ordering for pos-
sible violations of properties such as deadlocks
and resource leaking.

MPI-Spin (Siegel 2007) is an extension to the
popular model checker Spin (Holzmann 2003).
It adds to Spin’s input language a number of
functions, types, and constants for modeling MPI
programs. By default, MPI-Spin checks a number
of generic correctness properties in MPI programs.
These properties include (1) the program cannot
deadlock, (2) there are never two incomplete
requests whose buffers intersect non-trivially, (3)
the total number of outstanding requests never
exceeds a specified bound, (4) when MPI_Final-
ize is called, there are no request objects allocated
for and there are no buffered messages destined
for the calling process, and (5) the size of an
incoming message is never greater than the size
of the receive buffer. In addition, MPI-Spin can
check application-specific user-written properties
that are formulated in temporal logic. It provides
extensive support for symbolic execution, mak-
ing it possible to verify that a program behaves
correctly on all possible inputs.

MPI-CHECK (Luecke et al. 2003) is an
open-source tool developed for checking MPI
programs in FORTRAN and C/C++ languages. It
provides both compile-time and runtime checks
on the target MPI programs. With macro and the
wrappers for MPI routines, compiler can invoke
MPI-CHECK to statically check the data type of
each argument, the intent of each argument, and
the number of arguments in the routines. For the
runtime checking, MPI-CHECK first instruments
the original source program and links it with their
modules to produce an instrumented executable.

When the resulting executable runs, instrumented
code emits events to MPI-CHECK and possible er-
ror/warning messages are reported if found. MPI-
CHECK run-time checker checks all MPI-1 and
MPI-2 routines for problems such as buffer data
type inconsistency, buffer out of bounds, improper
placement of MPI_INIT, illegal message length,
and invalid MPI rank. However, MPI-CHECK
places significant performance overhead for the
target programs under test which could prevent
it from being deployed to large scale real-world
programs.

Library-Based MPI Debugging Tools

Some level of debugging support is also provided
in many MPI implementations such as OpenMPI
(Graham et al. 2005), LAM-MPI (Burns et al.
1994) and MPICH (Worringen et al.2002). They
either provide additional compile-time flags
for checking MPI function calls, or come with
a separate profiler/monitor for runtime testing.
OpenMPI provides several compiler flags for
statically checking some properties of function
calls such as null parameter passing, checking
potential resource leaking, displaying runtime
configuration such as MCA parameters and their
values during MPI_INIT call, and printing stack
trace when MPI_ABORT() is invoked. LAM-MPI
implementation has a GUI-based tool called XMPI
that allows programmers to debug and visualize
the running MPI programs. It can take snapshots
of runtime synchronization events and retrieve
detailed information about MPI events such as
communicator, data type, tag, and message content
and length. MPICH provides support for external
debuggers such as TotalView and DDT.

Summary and Comparison of Tools

To summarize the differences and commonality
between these tools, we present a comparison in
Table 1.

407

Analyzing Concurrent Programs Title for Potential Programming Errors

Table 1. Comparison of MPI error prevention and detection tools. S denotes using static analysis; D
denotes using dynamic analysis which includes both online analysis and offline trace-based analysis; H
denotes using both Static and Dynamic; × denotes Not Available. The column “MPI-specific problems”
include resource leak, mismatched buffer size and type, null parameter passing etc. None of the tools is
able to support detecting atomicity violations so far.

Deadlock Detection MPI-specific prob-
lems

Message Race Detec-
tion

Data Race
Detection

Runtime Debugging
Support

Allinea Distrib-
uted Debugging
Tool (DDT)

× × × × Pthreads
Windows Threads
OpenMP
MPI in C
MPI in Fortran
CUDA

Intel Message
Checker

× MPI in C: D
MPI in Fortran: D

MPI in C: D
MPI in Fortran: D

× ×

Intel Thread
Checker

OpenMP: D
Pthreads: D

× × OpenMP: D
Pthreads: D

×

Intel Trace
Analyzer and
Collector

MPI in C: D
MPI in Fortran: D

MPI in C: D
MPI in Fortran: D

MPI in C: D
MPI in Fortran: D

× MPI in C
MPI in Fortran

ISP MPI in C: D MPI in C: D × × ×

MARMOT MPI in C: D
MPI in Fortran: D

MPI in C: D
MPI in Fortran: D

× × ×

MPI-CHECK MPI in C: D
MPI in Fortran: D

MPI in C: H
MPI in Fortran: H

× × ×

MPI-Spin MPI in C: S MPI in C: S × × ×

Nvidia Nexus × × × × CUDA

PGDBG × × × × Pthreads
Windows Threads
OpenMP
MPI in C
MPI in Fortran

Eclipse Parallel
Tools Platform
(PTP)

× × × × OpenMP
MPI in C
MPI in Fortran

TotalView × × × × Pthreads
WindowsThreads
OpenMP
MPI in C
MPI in Fortran

UMPIRE MPI in C: D
MPI in Fortran: D

× × × ×

LAM-MPI × × × × MPI in C
MPI in Fortran

MPICH × × × × ×

Open MPI × MPI in C: S
MPI in Fortran: S

× × ×

408

Analyzing Concurrent Programs Title for Potential Programming Errors

As we can see from this Table 1, most current
tools are using dynamic analysis to find out and
correct potential errors. This could be partly at-
tributed to the precision of dynamic analysis which
leads to much fewer false positives. However,
due to the nature of dynamic analysis, users might
find difficulty in adopting them on many large
programs.

CONCLUSION

We give a comprehensive introduction to mul-
tithreaded and message passing programming,
including the approaches to detect deadlock, race
condition, and atomicity violation, as well as the
widely used tools to debug concurrent programs.
With the prevalence of multi-core CPU and many-
core co-processor, concurrent programming is
becoming more popular and bringing significant
effect on the practice and research of software en-
gineering. The research on detecting concurrency
errors is attracting more and more attentions. With
the effort of industry and academia, we expect that
the next generation of concurrent programming
will be easier for coding and debugging.

REFERENCES

Agarwal, R., Bensalem, S., Farchi, E., Havelund,
K., Nir-Buchbinder, Y., & Stoller, S. D. (in press).
Detection of deadlock potentials in multi-threaded
programs. IBM Journal of Research and Devel-
opment.

Agarwal, R., Sasturkar, A., Wang, L., & Stoller,
S. D. (2005a). Optimized run-time race detection
and atomicity checking using partial discovered
types. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software
Engineering (ASE). ACM Press.

Agarwal, R., Wang, L., & Stoller, S. D. (2005b).
Detecting potential deadlocks with static analysis
and runtime monitoring. In Proceedings of the
Parallel and Distributed Systems: Testing and
Debugging (PADTAD). Springer-Verlag.

Anderson, P., Reps, T., Teitelbaum, T., & Zarins,
M. (2003). Tool support for fine-grained software
inspection. IEEE Software, 20(4), 42–50.

ANL MPI Using MPI in Simple Programs http://
www.mcs.anl.gov/research/projects/mpi/usingm-
pi/examples/simplempi/main.htm

Bensalem, S., & Havelund, K. (2005). Scalable
deadlock analysis of multi-threaded programs. In
S. Ur (Ed.), IBM Verification Conference, (LCNS
3875), Haifa, Israel. Springer.

Borthakur, D. (2007). The Hadoop Distributed
File System: Architecture and design. The Apache
Software Foundation.

Boyapati, C., Lee, R., & Rinard, M. (2002). Own-
ership types for safe programming: Preventing
data races and deadlocks. In Proceedings of the
17th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications
(OOPSLA), (pp. 211–230). ACM Press.

Boyapati, C., & Rinard, M. C. (2001). A param-
eterized type system for race-free Java programs.
In Proceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA), (pp. 56–69). ACM Press.

Boyer, M., Skadron, K., & Weimer, W. (2008).
Automated dynamic analysis of CUDA programs.
In Proceedings of the Third Workshop on Software
Tools for Multi-Core Systems.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fa-
tahalian, K., & Houston, M. (2004). Brook for
GPUs: Stream computing on graphics hardware.
ACM Transactions on Graphics, 23(3), 777–786.

409

Analyzing Concurrent Programs Title for Potential Programming Errors

Burns, G., Daoud, R., & Vaigl, J. (1994). LAM: An
open cluster environment for MPI. In Proceedings
of Supercomputing Symposium, (pp. 379–386).

Bush, W., Pincus, J. D., & Sielaff, D. J. (2000).
A static analyzer for finding dynamic program-
ming errors. Software, Practice & Experience,
30(7), 775–802.

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D.
L., & Engler, D. R. (2006). EXE: Automatically
generating inputs of death. In Proceedings of the
13th ACM conference on Computer and commu-
nications security (CCS). ACM Press.

Chen, F., Serbanuta, T. F., & Rosu, G. (2008).
jPredictor: A predictive runtime analysis tool
for Java. In Proceedings of the 30th international
conference on Software engineering (ICSE ’08),
pages 221–230. ACM.

Chen, Q., Wang, L., Yang, Z., & Stoller, S. D.
(2009). HAVE: Integrated dynamic and static
analysis for atomicity violations. In Proceedings
of International Conference on Fundamental Ap-
proaches to Software Engineering (FASE), (LNCS
5503), (pp. 425–439). Springer.

Choi, J.-D., Lee, K., Loginov, A., O’Callahan,
R., Sarkar, V., & Sridharan, M. (2002). Efficient
and precise datarace detection for multi-threaded
object-oriented programs. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
(pp. 258–269). ACM Press.

Cuda, N. V. I. D. I. A. CUDA Compute Unified
Device Architecture Programming Guide. http://
www.nvidia.com/object/cuda_home.html

CUDA-GDB. CUDA-GDB: The NVIDIA CUDA
Debugger. http://developer.download.nvidia.com/
compute/cuda/2_1/cudagdb/CUDA_GDB_User_
Manual.pdf

Das, M., Lerner, S., & Seigle, M. (2002). Esp:
Path-sensitive program verification in polyno-
mial time. In proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI).

DDT Allinea Software, Allinea DDT The Distrib-
uted Debugging Tool. http://www.allinea.com/
index.php?page=48.

Dean, J., & Ghemawat, S. (2008). MapReduce:
Simplified data processing on large clusters. Com-
munications of the ACM, 51(1), 107–113.

DeSouza, J., Kuhn, B., de Supinski, B. R., Samo-
falov, V., Zheltov, S., & Bratanov, S. (2005).
Automated scalable debugging of MPI programs
with Intel message checker. In Proceedings of the
Second International Workshop on Software Engi-
neering for High Performance Computing System
Applications, (pp. 78–82). New York: ACM.

Detlefs, D. L., Leino, K. R. M., Nelson, G., &
Saxe, J. B. (1998). Extended static checking.
Research Report 159, Compaq SRC. Retrieved
from http://www.research.compaq.com/SRC/esc/

Dwyer, M., Hatcliff, J., Hoosier, M. & Robby
(2005). Building your own software model checker
using the Bogor extensible model checking frame-
work. Computer Aided Verification (CAV).

Elmas, T., Qadeer, S., & Tasiran, S. (2007).
Goldilocks: A race and transaction-aware Java
runtime. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI). ACM Press.

Engler, D., & Ashcraft, K. (2003). RacerX: Ef-
fective, static detection of race conditions and
deadlocks. In Proceedings of ACM SIGOPS
Symposium on Operating Systems Principles
(SOSP). ACM Press.

410

Analyzing Concurrent Programs Title for Potential Programming Errors

Ernst, M. D., Cockrell, J., Griswold, W. G., &
Notkin, D. (2001). Dynamically discovering likely
program invariants to support program evolution.
IEEE Transactions on Software Engineering,
27(2), 99–123.

Fei, L., & Midkiff, S. P. (2006). Artemis: Practical
run-time monitoring of applications for execution
anomalies. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI), (pp. 84–95). ACM
Press.

Flanagan, C., & Freund, S. (2000). Type-based
race detection for Java. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
(pp. 219–232). ACM Press.

Flanagan, C., & Freund, S. N. (2004a). Atomizer:
A dynamic Atomicity checker for multithreaded
programs. In Proceedings of the ACM Sympo-
sium on Principles of Programming Languages
(POPL), (pp 256–267). ACM Press.

Flanagan, C., & Freund, S. N. (2004b). Type infer-
ence against races. In Static Analysis Symposium,
(LNCS 3148). Springer-Verlag.

Flanagan, C., & Freund, S. N. (2009). FastTrack:
Efficient and precise dynamic race detection. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI), (pp. 121–133). ACM Press.

Flanagan, C., Freund, S. N., & Qadeer, S. (2005).
Exploiting purity for Atomicity. IEEE Transac-
tions on Software Engineering, 31(4).

Flanagan, C., Freund, S. N., & Yi, J. (2008).
Velodrome: A sound and complete dynamic Ato-
micity checker for multithreaded programs. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI), (pp. 293–303), New York: ACM.

Flanagan, C., & Qadeer, S. (2003). A type and
effect system for Atomicity. In Proceedings of
the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).
ACM Press.

Godefroid, P. (1997). Model checking for program-
ming languages using Verisoft. In Proceedings of
the ACM Symposium on Principles of Program-
ming Languages (POPL). ACM Press.

Godefroid, P., Klarlund, N., & Sen, K. (2005).
DART: Directed Automated Random Testing. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI). ACM Press.

Graham, R. L., Woodall, T. S., & Squyres, J. M.
(2005). Open MPI: A flexible high performance
MPI. In Proceedings, 6th Annual International
Conference on Parallel Processing and Applied
Mathematics, Poznan, Poland.

Gulavani, B. S., Henzinger, T. A., Kannan, Y., Nori,
A. V., & Rajamani, S. K. (2006). Synergy: A new
algorithm for property checking. In Proceedings
of the 14th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering
(SIGSOFT ’06/FSE-14). ACM Press.

Hadoop Hadoop Open Source MapReduce Plat-
form. http://lucene.apache.org/hadoop/

Havelund, K. (2000). Using runtime analysis
to guide model checking of Java programs. In
Proceedings of the 7th Int’l. SPIN Workshop on
Model Checking of Software, (LNCS 1885), (pp.
245–264). Springer-Verlag.

Hilbrich, T., de Supinski, B. R., Schulz, M., &
Müller, M. S. 2009. A graph based approach for
MPI deadlock detection. In Proceedings of the
23rd International Conference on Supercomput-
ing, Yorktown Heights, NY, (pp. 296-305). New
York: ACM.

411

Analyzing Concurrent Programs Title for Potential Programming Errors

Holzmann, G. J. (2003). The SPIN model checker.
Addison-Wesley.

Holzmann, G. J., & Peled, D. (1994). An improve-
ment in formal verification. In Proceedings of
International Conference on Formal Description
Techniques (FORTE’94), volume 6 of IFIP Con-
ference Proceedings, (pp. 197–211). Chapman
& Hall.

Hou, Q., Zhou, K., & Guo, B. (2009). Debugging
GPU stream programs through automatic dataflow
recording and visualization. In ACM SIGGRAPH
papers (pp. 1–11). New York: ACM.

inta Intel Thread Checker. http://software.intel.
com/en-us/intel-thread-checker

intb Intel Trace Analyzer. http://software.intel.
com/en-us/intel-trace-analyzer

Joshi, P., Park, C.-S., Sen, K., & Naik, M. (2009). A
randomized dynamic program analysis technique
for detecting real deadlocks. In Proceedings of the
2009 ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI),
(pp. 110–120). ACM Press.

Kang, M.-H., Ha, O.-K., Jun, S.-W., & Jun, Y.-K.
(2009). A tool for detecting first races in OpenMP
programs. In Proceedings from the 10th Interna-
tional Conference Parallel Computing Technolo-
gies, (pp. 299–303).

Kingsbury, B. (2007). Organizing processes and
threads for debugging. In Proceedings of the
2007 ACM Workshop on Parallel and Distributed
Systems: Testing and Debugging, (pp. 21–26),
New York: ACM.

Krammer, B., Muller, M. S., & Resch, M. M.
(2004). MPI application development using the
analysis tool MARMOT. In Proceedings from
the International Conference on Computational
Science, (pp 464–471).

Liblit, B., Aiken, A., Zheng, A., & Jordan, M.
I. (2003). Bug isolation via remote program
sampling. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI), (pp. 141–154).
ACM Press.

Lu, S., Tucek, J., Qin, F., & Zhou, Y. (2006). AVIO:
Detecting Atomicity violations via access inter-
leaving invariants. In Proceedings of the Twelfth
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS). ACM Press.

Luecke, G., Chen, H., Coyle, J., Hoekstra, J.,
Kraeva, M., & Zou, Y. (2003). MPI-CHECK: A
tool for checking FORTRAN 90 MPI programs.
Concurrency and Computation, 15(2), 93–100.

Luecke, G., Zou, Y., Coyle, J., Hoekstra, J., &
Kraeva, M. (2002). Deadlock detection in MPI
programs. [John Wiley & Sons.]. Concurrency
and Computation, 14(11), 911–932.

Majumdar, R., & Sen, K. (2007). Hybrid concolic
testing. In Proceedings of the 29th International
Conference on Software Engineering (ICSE).
IEEE Press.

McCool, M., Du Toit, S., Popa, T., Chan, B., &
Moule, K. (2004). Shader algebra. ACM Transac-
tions on Graphics, 23(3), 787–795.

McMillan, K. L. (1994). Symbolic model checking.
Boston: Kluwer Academic Publishers.

Musuvathi, M., & Qadeer, S. (2008). Fair state-
less model checking. In Proceedings of the ACM
SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), (pp.
362–371). ACM Press.

Naik, M., & Aiken, A. (2007). Conditional must
not aliasing for static race detection. In Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages (POPL). ACM Press.

412

Analyzing Concurrent Programs Title for Potential Programming Errors

NCSA-CUDA NCSA CUDA Tutorial. http://
www.ncsa.illinois.edu/UserInfo/Training/Work-
shops/CUDA/presentations/tutorial-CUDA.html

Netzer, R. H. B., Brennan, T. W., & Damodaran-
Kamal, S. K. (1996). Debugging race conditions
in message-passing programs. In Proceedings of
the SIGMETRICS Symposium on Parallel and
Distributed Tools, (pp. 31–40). New York: ACM.

Nexus, N. V. I. D. I. A. 2009 - Visual Studio-based
GPU Development, http://developer.nvidia.com/
object/nexus.html

O’Callahan, R., & Choi, J.-D. (2003). Hybrid
dynamic data race detection. In Proceedings of
ACM SIGPLAN 2003 Symposium on Principles
and Practice of Parallel Programming (PPoPP),
(pp. 167–178). ACM.

OpenCL Open Computing Language (OpenCL).
http://www.khronos.org/opencl/.

Park, C.-S., & Sen, K. (2008). Randomized ac-
tive Atomicity violation detection in concurrent
programs. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations
of Software Engineering (FSE’08), (pp. 135–145).
New York: ACM.

pgi2009 (2009). PGI Tools Guide. http://www.
pgroup.com/doc/pgitools.pdf

Pratikakis, P., Foster, J. S., & Hicks, M. (2006).
Locksmith: Context-sensitive correlation analysis
for race detection. In Proceedings of the ACM
SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), (pp.
320–331). ACM.

RapidMind RapidMind. http://www.rapidmind.
com/.

Ratanaworabhan, P., Burtscher, M., Kirovski, D.,
Zorn, B., Nagpal, R., & Pattabiraman, K. (2009).
Detecting and tolerating asymmetric races. In Pro-
ceedings of the 14th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming
(PPoPP), (pp. 173–184). ACM Press.

Sack, P., Bliss, B. E., Ma, Z., Petersen, P., &
Torrellas, J. (2006). Accurate and efficient filter-
ing for the Intel thread checker race detector. In
Proceedings of the 1st Workshop on Architectural
and System Support for Improving Software De-
pendability, (pp. 34–41) New York: ACM.

Sasturkar, A., Agarwal, R., Wang, L., & Stoller,
S. D. (2005). Automated type-based analysis of
data races and Atomicity. In Proceedings of the
ACM SIGPLAN 2005 Symposium on Principles
and Practice of Parallel Programming (PPoPP).
ACM Press. Savage, S., Burrows, M., Nelson, G.,
Sobalvarro, P. & Anderson, T.E. (1997). Eraser:
A dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Sys-
tems, 15(4), 391–411.

Sen, K. (2008). Race directed random testing of
concurrent programs. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), (pp. 11–21).
ACM Press.

Siegel, S. F. (2007). Verifying parallel programs
with MPI-SPIN. In Proceedings of the 14th
European PVM/MPI User’s Group Meeting on
Recent Advances in Parallel Virtual Machine and
Message Passing Interface, (pp. 13–14). Berlin/
Heidelberg: Springer-Verlag.

Silberschatz, A., Galvin, P. B., & Gagne, G. (Eds.).
(2008). Operating system concepts (8th ed.). John
Wiley & Sons.

UPC UPC. UPC language specifications. http://
upc.gwu.edu/docs/upc_spec_1.1.1.pdf

Vetter, J. S., & de Supinski, B. R. (2000). Dy-
namic software testing of MPI applications with
UMPIRE. In Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing (CDROM), (p.
51). Washington, DC: IEEE Computer Society.

Visser, W., Havelund, K., Brat, G., Park, S., &
Lerda, F. (2003). Model checking programs. Au-
tomated Software Engineering, 10(2), 203–232.

413

Analyzing Concurrent Programs Title for Potential Programming Errors

Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrish-
nan, G., Kirby, R. M., & Thakur, R. (2008).
Formal verification of practical MPI programs.
In Proceedings of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel
Programming, (pp. 261–270). New York: ACM.

von Praun, C., & Gross, T. R. (2001). Object race
detection. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), (pp.
70–82). ACM Press.

Wang, L., & Stoller, S. D. (2005). Static analysis
of Atomicity for programs with non-blocking
synchronization. In Proceedings of the ACM SIG-
PLAN 2005 Symposium on Principles and Practice
of Parallel Programming (PPoPP). ACM Press.

Wang, L., & Stoller, S. D. (2006a). Accurate and
efficient runtime detection of Atomicity errors
in concurrent programs. In Proceedings of the
ACM SIGPLAN 2006 Symposium on Principles
and Practice of Parallel Programming (PPoPP).
ACM Press.

Wang, L., & Stoller, S. D. (2006b). Runtime
analysis of Atomicity for multi-threaded programs.
IEEE Transactions on Software Engineering,
32(2), 93–110.

Watson, G., Rasmussen, C., & Tibbitts, B. (2006).
Application development using eclipse and the
parallel tools platform. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, (p.
204). New York: ACM.

Worringen, J., Scholtyssik, K., Dr, P. & Bemmerl,
T. (2002). MP-MPICH: User documentation
technical notes.

Xu, M., Bodik, R., & Hill, M. D. (2005). A serializ-
ability volation detector for shared-memory server
programs. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI). ACM Press.

Yu, Y., Rodeheffer, T., & Chen, W. (2005). Race-
Track: Efficient detection of data race conditions
via adaptive tracking. In Proceedings of the Sym-
posium on Operating Systems Principles (SOSP).
ACM Press.

ADDITIONAL READING

Chen., et al. 2008 Chen, F., Serbanuta, T. F., and
Rosu, G. (2008). jPredictor: A Predictive Runtime
Analysis Tool for Java. In Proceedings of the 30th
international conference on Software engineering
(ICSE ’08), pages 221–230. ACM.

Chen., et al. 2009 Chen, Q., Wang, L., Yang,
Z., and Stoller, S. D. (2009). HAVE: Integrated
Dynamic and Static Analysis for Atomicity Viola-
tions. In Proceedings of International Conference
on Fundamental Approaches to Software Engi-
neering (FASE), volume 5503 of LNCS, pages
425–439. Springer.

Choi., et al. 2002 Choi, J.-D., Lee, K., Loginov,
A., O’Callahan, R., Sarkar, V. and Sridharan, M.
(2002). Efficient and Precise Datarace Detection
for Multi-threaded object-oriented programs. In
Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation
(PLDI), pages 258–269. ACM Press.

Engler and Ashcraft 2003 Engler, D. and Ashcraft,
K. (2003). RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In Proceedings of
ACM SIGOPS Symposium on Operating Systems
Principles (SOSP). ACM Press.

Ernst, (2001). Ernst, M. D., Cockrell, J., Gris-
wold, W. G., and Notkin, D. (2001). Dynamically
Discovering Likely Program Invariants to Sup-
port Program Evolution. IEEE Transactions on
Software Engineering, 27(2), 99–123.

414

Analyzing Concurrent Programs Title for Potential Programming Errors

Fei and Midkiff 2006 Fei, L. and Midkiff, S. P.
(2006). Artemis: Practical Run-time Monitoring
of Applications for Execution Anomalies. In Proc.
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
pages 84–95. ACM Press.

Flanagan, (2005). Flanagan, C., Freund, S. N.,
and Qadeer, S. (2005). Exploiting Purity for
Atomicity. IEEE Transactions on Software En-
gineering, 31(4).

Flanagan., et al. 2008 Flanagan, C., Freund,
S. N., and Yi, J. (2008). Velodrome: A Sound
and Complete Dynamic Atomicity Checker for
Multithreaded Programs. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
pages 293–303, New York, NY, USA. ACM.

Flanagan and Freund 2000 Flanagan, C. and
Freund, S. (2000). Type-based Race Detection
for Java. In Proc. ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation (PLDI), pages 219–232. ACM Press.

Flanagan and Freund 2004a Flanagan, C. and
Freund, S. N. (2004a). Atomizer: A Dynamic
Atomicity Checker for Multithreaded Programs.
In Proc. ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 256–267.
ACM Press.

Flanagan and Freund 2004b Flanagan, C. and
Freund, S. N. (2004b). Type Inference Against
Races. In Static Analysis Symposium (SAS),
volume 3148 of LNCS. Springer-Verlag.

Flanagan and Freund 2009 Flanagan, C. and
Freund, S. N. (2009). FastTrack: Ffficient and
Precise Dynamic Race Detection. In Proc. ACM
SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages
121–133. ACM Press.

Flanagan and Qadeer 2003 Flanagan, C. and
Qadeer, S. (2003). A Type and Effect System for
Atomicity. In Proc. ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation (PLDI). ACM Press.

Godefroid 1997 Godefroid, P. (1997). Model
Checking for Programming Languages Using
Verisoft. In Proc. ACM Symposium on Principles
of Programming Languages (POPL). ACM Press.

Graham., et al. 2005 Graham, R. L., Woodall,
T. S., and Squyres, J. M. (2005). Open MPI: A
flexible high performance MPI. In Proceedings,
6th Annual International Conference on Parallel
Processing and Applied Mathematics, Poznan,
Poland.

O’Callahan and Choi 2003 O’Callahan, R. and
Choi, J.-D. (2003). Hybrid Dynamic Data Race
Detection. In Proc. ACM SIGPLAN 2003 Sym-
posium on Principles and Practice of Parallel
Programming (PPoPP), pages 167–178. ACM.

Park and Sen 2008 Park, C.-S. and Sen, K. (2008).
Randomized Active Atomicity Violation Detection
in Concurrent Programs. In Proceedings of the
16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’08),
pages 135–145, New York, NY, USA. ACM.

Wang and Stoller 2005 Wang, L. and Stoller,
S. D. (2005). Static Analysis of Atomicity for
Programs with Non-blocking Synchronization.
In Proc. ACM SIGPLAN 2005 Symposium on
Principles and Practice of Parallel Programming
(PPoPP). ACM Press.

Wang and Stoller 2006a Wang, L. and Stoller, S.
D. (2006a). Accurate and Efficient Runtime Detec-
tion of Atomicity Errors in Concurrent Programs.
In Proc. ACM SIGPLAN 2006 Symposium on
Principles and Practice of Parallel Programming
(PPoPP). ACM Press.

415

Analyzing Concurrent Programs Title for Potential Programming Errors

Wang and Stoller 2006b Wang, L. and Stoller, S.
D. (2006b). Runtime Analysis of Atomicity for
Multi-threaded Programs. IEEE Transactions on
Software Engineering, 32(2):93–110.

Xu., et al. 2005 Xu, M., Bodik, R., and Hill, M.
D. (2005). A Serializability Volation Detector for
Shared-memory Server Programs. In Proc. ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM Press.

Yu., et al. 2005 Yu, Y., Rodeheffer, T., and Chen,
W. (2005). RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking.
In Symposium on Operating Systems Principles
(SOSP). ACM Press.

KEY TERMS AND DEFINITIONS

Atomicity Violation: An atomicity viola-
tion refers to a program error that an interleaved
execution of a set of code blocks (expected to
be atomic) by multiple threads is not equivalent
to any serial execution of the same code blocks.

Benign Warning: A benign warning is a false
warning about some code that actually does not
affect the correctness of the program but matches
the definition of a specific bug. Examples include
the benign data race on the busy-wait and compare-
and-swap flag.

Concurrent Programs: Concurrent programs
are programs that contain portion of code that can
run concurrently on a machine or a collection of
machines.

Data Race: A data race refers to a scenario
that two concurrent threads perform conflicting
accesses (i.e., accesses to the same shared variable
and at least one access is a write) and the threads
use no explicit mechanism to prevent the accesses
from being simultaneous.

Deadlock: A deadlock occurs when a chain of
processes/threads are involved in a cycle in which
each process is waiting for resources/locks that
are held by some other processes.

Dynamic Analysis: Dynamic analysis is a
program analysis technique that observes and
analyzes the actual behaviors of a program by
executing it.

False Positive: A false positive is a false bug
warning that has been erroneously reported by the
bug detection tool due to the imperfect or inaccu-
rate algorithm or approach that is used by the tool.

Hybrid Analysis: Hybrid analysis refers to a
hybrid program analysis technique that combines
both dynamic and static analysis to analyze the
program.

Static Analysis: Static analysis is a program
analysis methodology that examines the program
source code without running the program.

