
Future Generation Computer Systems 25 (2009) 568–576
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Atomicity and provenance support for pipelined scientific workflows
Liqiang Wang a,∗, Shiyong Lu b,∗, Xubo Fei b, Artem Chebotko b,d, H. Victoria Bryant a, Jeffrey L. Ram c
a Department of Computer Science, University of Wyoming, USA
b Department of Computer Science, Wayne State University, USA
c Department of Physiology, Wayne State University, USA
d Department of Computer Science, University of Texas - Pan American, USA

a r t i c l e i n f o

Article history:
Received 15 November 2007
Received in revised form
6 May 2008
Accepted 24 June 2008
Available online 5 July 2008

Keywords:
Scientific workflows
e-Science
Atomicity
Provenance
Transaction

a b s t r a c t

Today many significant scientific discoveries are achieved through complex and distributed scientific
computations that are structured and represented as scientific workflows. Although atomicity is a well
studied topic in transaction processing and business workflows, such an important capability needs to be
revisited in a scientific workflow environment. Firstly, the semantics of atomicity needs to be defined
in a dataflow-oriented scientific workflow model, particularly for pipelined execution of hierarchical
scientific workflows. Secondly, in a scientific workflow environment, atomic regions are specified or
inferreddynamically as needed and are committed implicitly,which are in contrast to a prioriwell-defined
transaction boundaries and explicit commits in transaction processing and business workflows. Finally,
although atomicity and provenance are related to each other, their interactions and relationships have
never been explored in the literature. In this paper, we propose: (i) an architecture for scientific workflow
management systems that supports both provenance and atomicity; (ii) a dataflow-oriented atomicity
model that supports the notions of commit and abort; and (iii) a dataflow-oriented provenance model
that supports querying and visualizing provenance.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, more and more scientists use scientific work-
flows [30,33,19,16,50,11,27] to integrate and structure various
local and remote heterogeneous data and service resources to
perform in silico experiments to produce significant scientific dis-
coveries. As a result, scientific workflows have become the de facto
cyberinfrastructure upper-ware for e-Science [28]. While business
workflows are control-flow-oriented, scientific workflows tend to
be dataflow-oriented and frequently need to access large amounts
of scientific datasets [30,19].
Atomicity is an important transactional property, which

requires that a transaction either runs to completion or has no
partial effect (all-or-nothing). In scientific workflows, some tasks
might fail during execution due to either the failure of the task
itself or inappropriate input to a task. A domain scientist might
require the execution of a sub-workflow to be atomic in the sense
that either the execution of all the tasks of the sub-workflow runs
to completion or none of them has any effect at all.

∗ Corresponding author.
E-mail addresses:wang@cs.uwyo.edu (L. Wang), shiyong@wayne.edu (S. Lu),

xubo@wayne.edu (X. Fei), artem@cs.panam.edu (A. Chebotko),
hbryant@cs.uwyo.edu (H. Victoria Bryant), jeffram@med.wayne.edu (J.L. Ram).

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.06.007
Traditional techniques for atomicity in transaction processing
systems are inappropriate for complex long-running processes
in distributed and heterogeneous environments. Compensation is
generally considered a proper way to handle rollback in business
workflows [18], as it can eliminate effects of already committed
transactions. The atomicity techniques based on compensation
in business workflows [26,14] are not suitable for scientific
workflows. They require the explicit definitions of transaction
boundaries which are often obscured in scientific workflows due
to the data dependency introduced by pipelined execution (i.e.,
next task uses input while previous task has not completed).
Moreover, since scientific workflows are often computation-
intensive, traditional rollback techniques are inefficient because
the intermediate results of aborted transactions, which might be
reusable in the future, are discarded.
Data provenance is closely related to the data lineage prob-

lem [8,13] studied in the database community, which determines
the source data that are used to produce a data item. While Bune-
man et al. focus on the analysis of provenance of a tuple t pro-
duced by a single query Q executed over database D [13], Cui
and Widom propose algorithms for lineage tracing of data ware-
house data in the presence of general data warehouse transforma-
tions [13]. These approaches can be used for provenance analysis
in scientific workflows when the process applied to a data product
consists of database operations, such as SQL queries or data ware-
house transformations. However, a scientific workflow typically

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:wang@cs.uwyo.edu
mailto:shiyong@wayne.edu
mailto:xubo@wayne.edu
mailto:artem@cs.panam.edu
mailto:hbryant@cs.uwyo.edu
mailto:jeffram@med.wayne.edu
http://dx.doi.org/10.1016/j.future.2008.06.007

L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576 569
Fig. 1. An example of hierarchical scientific workflow.
consists of computational and analytical steps that are more com-
plex than database operations. On the other hand, although several
provenance models [22,37,6,12,3] have been proposed for scien-
tific workflows, none of them supports the notion of atomicity.
This paper proposes a novel dataflow-oriented atomicity and

provenance system for scientific workflows. To the best of our
knowledge, our system is the first one that supports both
atomicity and provenance. Our system highlights the following
features: (i) an architecture that supports both provenance and
atomicity; (ii) a dataflow-oriented hierarchical atomicity model
that supports the notions of commit and abort; and (iii) a dataflow-
oriented provenance model to support querying and visualizing
provenance.

2. The atomicity management subsystem

2.1. A hierarchical scientific workflow

Our approach is based on a dataflow-oriented workflow
model [5,34], in which each workflow consists of automatic tasks
connected to each other by data channels. A workflow task is
modeled as an actor. There are two kinds of actors: atomic and
composite. An actor is atomic if it is always treated as a whole (i.e.,
contains no sub-actors). An atomic actor can have input ports and
output ports that provide the communication interfaces to other
actors. A composite actor is a set of actors, which are either atomic
actors or other composite actors. For a composite actor a and its
sub-actor ai, i.e., ai ∈ a, an input port of ai is also an input port of
a if that input port is connected with another actor not contained
in a. An output port for composite actors is defined similarly. Let
InPorts(a) and OutPorts(a) denote all input ports and all output
ports of actor a, respectively.
Actors communicate by passing data tokens (called token for

short) between their ports. Each token is unique in the whole
workflow. For two actors a and b, a data channel from a to b
provides the communicationmedium for a dataflowof tokens from
an output port of a to an input port of b.
A workflow w = 〈A, C〉 consists of a set A of actors, and a set C

of data channels between actors of A. Similar to the notion of user
views introduced in [12,3], a workflow can have different views
based on different observation levels on each composite actor. An
atomic actor has a single view. A view for a composite actor is either
a ‘‘zoom-out’’ view (i.e., the composite actor itself) or a ‘‘zoom-in’’
view that consists of views for each sub-actor. Note that a ‘‘zoom-
in’’ view considered more details for a composite actor, but still as
a whole, instead of part of it. For a workflow w = 〈A, C〉, a view of
w is 〈A′, C ′〉, where A′ ∈ View(A), and C ′ consists of data channels
that connect the views of A′.
For example, Fig. 1 shows a hierarchical scientific workflow.

Composite actor B consists of atomic actors a, b, c , d. A ‘‘zoom-
in’’ view considers the details of all atomic actors in B. A ‘‘zoom-
middle’’ view considers B as a whole. A ‘‘zoom-out’’ view considers
all actors in the workflow as a whole.
This paper makes some assumptions about the scientific
workflows that we analyze. Firstly, scientific workflows execute
in a pipelined fashion. Secondly, each actor is ‘‘white’’, i.e.,
data dependencies between input tokens and output tokens
are observable. Thirdly, message-send-response relationships
between actors and services are known. Fourthly, tokens are not
shared by actors. Specifically, if two actors need to read the same
data input, we duplicate the data into two tokens. Fifthly, each
retriable Web service is modeled as a local actor, which calls the
remote Web service on behalf of the user. Thus, the execution of
all tasks are performed in a local machine except the execution of
Web or Grid Services.

2.2. Round and data dependency

In our atomicity model, a workflow execution invokes a series
of actors to run. Each actor maintains a state which stores
intermediate results computed from input tokens. A state indicates
some data dependencies between the output tokens and the input
tokens. A state is flushed by calling reset().
A round r on an actor a, denoted by a.r , contains the whole

events that happen between two consecutive reset events (i.e., no
other reset events in themiddle). Formally, a round is 〈Ida, I,O,D〉,
where Ida is the identifier of the actor where the round occurs, I is
the set of input tokens for the round, O is the set of output tokens
for the round,D ⊆ I×O is the set of dependency relationshipswith
each (i, o) ∈ D representing that output token o depends on input
token i. Let input(a.r) and output(a.r) denote all input tokens and
output tokens of a.r , respectively.
The call of reset() is a non-blocking operation. A reset event

terminates the current round of data dependencies, and starts
a new round of data dependencies. Each round has a unique
identifier in the workflow itself. Thus, an invocation of a workflow
contains a series of invocations on actors; each invocation contains
one or more rounds. A round is decided by each actor itself. When
an actor calls reset(), it tells the workflow engine that the current
round has completed. For each output token in a round, we assume
that the actor can tell what input tokens that it is dependent on.
Note that these dependent tokens should be some of the input
tokens read so far, but may not be the all.
A round can be defined explicitly, i.e., by calling reset(), or

inferred automatically. To infer rounds, we analyze the definition
of aworkflow for data dependencies statically (i.e., based on source
code) or dynamically (i.e., runtime monitoring data flows during
execution). Automatic inference of rounds is in our future work.
Fig. 2(a) shows an example of rounds based on the scientific

workflow in Fig. 1. Round e.r1 consumes t0 and produces tokens
t1 and t2. There are two rounds on actor B, B.r1 consumes t1 then
produces t13; B.r2 consumes t2 then produces t14. Similarly, actor f
has two rounds f .r1 and f .r2.
For two tokens t1 and t2, if t2 is computed from t1, we say t2

depends on t1, denoted t1 → t2. Token dependencies are transitive,

570 L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576
Fig. 2. Token dependency graph and hierarchical rounds. Some rounds are displayed by shaded areas.
Fig. 3. Round dependency graph.

i.e., if t1 → t2 and t2 → t3, then we have t1 → t3. There is no
cyclic transitive dependencies on tokens. Token dependencies are
not reflexive, i.e., t → t is not allowed.
A round on a composite actor can be decomposed into a set of

sub-rounds. Formally, let a = 〈{a1, a2, . . . , an}, Ca〉 be a composite
actor, and let a.r be a round of a. For a round of ai.ri, where ai ∈
{a1, a2, . . . , an}, ai.ri is a sub-round of a.r if the following conditions
are satisfied: (1) ∀t ′ ∈ input(ai.ri).∃t ∈ input(a.r).(t == t ′ ∨
t → t ′) (i.e., each input token of ai.ri is an input token of a.r or
depends on its input tokens), and (2) ∀t ′ ∈ output(ai.ri).∃t ∈
output(a.r).(t == t ′ ∨ t ′ → t) (each output token of a.r is an
output token of ai.ri or depends on its output tokens). Let ai.ri v a.r
denote that ai.ri is a sub-round of a.r .
Thus, as a ‘‘zoom-out’’ view sees round a.r , a ‘‘zoom-in’’ view

can see its detailswhich contains sub-rounds a1.r1, a2.r2, . . . , an.rn.
For example, Fig. 2(b) shows that round B.r1 consists of sub-rounds
a.r1, b.r1, c.r1, c.r2, and d.r1; Fig. 2(c) shows that round B.r2 consists
of sub-rounds a.r2, b.r2, c.r3, c.r4, and d.r2.
For two rounds a.r and b.r , if ∃t.(t ∈ output(a.r) ∧ t ∈

input(b.r) ∧ a 6= b), i.e., b.r consumes the tokens produced by
a.r , we say b.r directly depends on a.r , denoted a.r⇒̇b.r . More
generally, round dependencies (denoted⇒) are defined as follows:
(1) if a.r⇒̇b.r , then a.r ⇒ b.r; and (2) if a.r ⇒ b.r , b.r ⇒ c.r ,
and a 6= c , then a.r ⇒ c.r . Thus, round dependencies are also
transitive. Similar to token dependencies, round dependencies are
not reflexive. Fig. 3 shows the round dependencies based on the
token dependencies in Fig. 2. Note that we do not allow cyclic
transitive data dependencies on rounds in our scientific workflow
model. Thus, a partial order for the executions of rounds can be
generated based on a round dependency graph.
For three rounds a1.r , a2.r , and a3.r , if a1.r ⇒ a2.r and a3.r v
a2.r , a1.r ⇒ a3.r may not exist, because a3.r may not consume
any tokens that depend on a1.r . Similarly, if a1.r ⇒ a2.r and
a3.r v a1.r , a3.r ⇒ a2.r may not exist.
Given a view v = 〈A, C〉 of a workflow, let depd− parentsv(a.r)

= {a′.r|a′.r⇒̇a.r ∧ a′ ∈ A} (i.e., all rounds in the current view that
the round a.r directly depends on) and depd− childrenv(a.r) =
{a′.r|a.r⇒̇a′.r ∧ a′ ∈ A} (i.e., all rounds in the current view that
directly depend on the round a.r). They can be easily computed
from the log introduced in Section 3.

2.3. Commit and abort

We define the atomicity of a round as follows: the execution of
a round a.r is atomic if either it and all the rounds on which a.r
depends run to completion or neither it and nor all the rounds
that depend on a.r have any effect. Thus, users do not need to
explicitly define transaction boundaries as in business workflows
and database systems. Atomicity is ensured automatically by
our atomicity management subsystem. Although the atomicity
granularity is based on one ‘‘round’’ of execution of a task in
this paper, the technique can be readily extended for various
granularities. Our system supports atomicity through capturing
data dependencies in scientific workflows.
For two rounds a.r and a′.r , and a.r⇒̇a′.r , if a′.r consumes

only some early output tokens of a.r , a′.r might finish by calling
reset() even when a.r is still running. Thus, ‘‘reset’’ does not
mean ‘‘commit’’ of the round, because we have to rollback both
a.r and a′.r if a.r fails. For a view v of a workflow, a round a.r
commits if a.r has finished by calling reset() and every round
in depd− parentsv(a.r) has committed. If depd− parentsv(a.r) is
empty, a.r commits once it is done. Intuitively, a reset event
indicates the ending of the current round and the starting of the
next round, and a commit event makes the results of the round
be observable to the users. The left column of Fig. 4 shows how
the atomicity management subsystem commits a round a.r . When
a round a.r calls reset(), the atomicity management subsystem
writes a reset event in a log, and calls commit(a.r, v) to commit
round a.r . The log is checked to see whether all rounds that a.r
depends on have committed. If the commit condition is satisfied, it
commits a.r by writing a commit event in the log; otherwise, the

L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576 571
Fig. 4. Commit algorithm and abort algorithm for a round a.r .
current commit process is suspended andwaits for beingwaken up
by its parent rounds. A data item is not available to the end users
until the round producing it has submitted because uncommitted
rounds can be rolled back.
In our system, each data channel is modeled and implemented

as an extended recoverable queue adapted from [2]. An extended
recoverable queue is a reliable and fault-tolerant queue which
supports the following operations: enqueue pushes a token at
the head; dequeue removes a token from the end and returns
the token; ¬enq undoes the operation of enqueue; ¬deq undoes
the operation of dequeue. For a view v of a workflow, when the
atomicity management subsystem detects crashing of a round a.r ,
it will send abort messages to all actors that execute rounds in
depd− childrenv(a.r) to abort the corresponding rounds, which
are not necessarily the on-going rounds. Given a view v of a
workflow, a round a.r aborts if all rounds in depd− childrenv(a.r)
have aborted. The abort of a round will eliminate all output
tokens (which may still be kept by recoverable queues), then
recover all input tokens. The right column of Fig. 4 shows how
the atomicity management subsystem aborts a round a.r . The
atomicity management subsystem first stops the execution of a.r
if it is still running and sends abort messages to each actor in
depd− childrenv(a.r). Then the algorithm checks the log to see
whether all rounds that dependon a.r have aborted. If some rounds
have not aborted, the current abort process is suspended andwaits
for being waken up by its children rounds. During the abort, the
atomicity management subsystem looks up the log to find the
corresponding recoverable queue for a given token t (i.e., by calling
getRecoveryQueue(t)); then it commands the recoverable queue to
undo the previous operations. When an abort operation succeeds,
an abort event is written in the log.
To support rerun efficiently, we reuse the results of the previous

rounds if possible. For a deterministic task, when the input tokens
are the same as before, it will generate exactly the same output
tokens as before. Thus, when a round of a deterministic task is re-
executed, we compare the input tokens with the tokens consumed
in previous rounds, if they are exactly the same, we recover the
corresponding output tokens and the execution of the current
round can be omitted. A recoverable queue keeps as many tokens
as its capacity allows. As a minimum, it should be able to keep all
tokens for rounds before they commit.
In the algorithm shown by Fig. 4, if two rounds have

data dependencies, they are contained in the same atomicity
region. This may make commitment and rollback of atomicity
computationally expensive. A feasible solution is to classify data
dependencies to different levels according to their coherence.
Based on different data dependencies, different granularities of
atomicity can be defined. This will be in our future work.

2.4. Comparison of rounds and transactions

The rounds in pipelined scientific workflows look similar
to transactions that allow dirty reads. The aborts of rounds
look similar to cascaded rollbacks of transactions. But there are
fundamental differences between them: (1) Round boundaries are
specified or inferred dynamically as needed, which is in contrast to
a priori well-defined transaction boundaries; (2) Conflict accesses
exist between transactions, but they do not exist between rounds
because rounds communicate by sending data tokens, whereas
transactions communicate by accessing to the commondata items;
(3) Isolation is enforced for transactions using locking protocols,
but serializability is automatically achieved in our model because
a total order of rounds can be generated based on the partial
order of the round dependency graph; (4) Transaction processing
usually does not support dirty read and cascaded rollback because
these operations reduce performance significantly; but pipelined
execution is a fundamental technique to improve performance of
scientific workflows; and (5) hierarchy of rounds are automatically
inferred by the hierarchy of actors in our model; transactions
do not support such a hierarchical structure, although there are
extensions for nested transactions.

3. The event log

Our atomicity and provenance system records the following
events for supporting atomicity: enq, which enqueues a token to a
data channel;¬enq, the compensating operation of enq; deq, which
dequeues a token from a data channel; ¬deq, the compensating
operation of deq; rst , which resets a state; fail, which signifies the
failure of a task; cmt , which commits a round; abt , which aborts a
round. These events are stored in a sequential event log, in which
each row stores event identifier, time stamp, workflow identifier,
round identifier, queue identifier for a queue event, event type, token
identifier if the event is related to a token, and dependent tokens,

572 L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576
Fig. 5. A log for an execution of the workflow in Fig. 2.
Fig. 6. An excerpt of the provenance ontology.
representing the set of tokens that contribute to the production of
a token by the current event if this is the case.
Fig. 5 shows an example of a log file for the workflow run in

Fig. 2, where time stamp, workflow identifier, and queue identifier
are omitted. The left column shows an aborted workflow run.
Round a.r1 first dequeues t1 and then enqueues t3. c.r1 consumes
t3, produces t9, and then calls reset(). c.r1 cannot commit at that
time since a.r1 has not committed. Finally, a.r1 fails, and c.r1 and
a.r1 have to be aborted. The right column shows a successful run.

4. The provenance subsystem

It is imperative to keep the size of the event log small,
since this affects the performance of our commit and abort
algorithms, and thus the performance of the workflow engine
which implements them. Therefore, once the scientific workflow
execution is completed, we store provenance information into
our provenance system and truncate the log. We use Semantic
Web technologies and an RDF repository to design the provenance
system. The motivation of using Semantic Web technologies
is threefold. First, large-scale e-science applications can span
multiple domains and can involve global distributed workflows
that consist of several heterogeneous local workflows orchestrated
by different workflow engines, each of which has its own
provenance manager [51]. The integration of these heterogeneous
provenance systems is important for global provenance analysis. A
Semantic Web approach promotes interoperability and facilitates
such provenance integration. Second, RDF [43] is a property-
centric, extremely flexible and dynamic data model, which
captures the dynamic and heterogeneous nature of data, services,
and metadata in e-science applications. Finally, we can use the
inference capability of Semantic Web for deriving metadata for
various provenance dependency graphs [6].
To serialize provenance metadata in RDF format, we design a

provenance ontology encoded in OWL [42]. In Fig. 6, we present

L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576 573
an excerpt of our ontology which sketches main classes and
properties that are used to represent information in the event log.
Note that the class names are shortened only for the conciseness
of our presentation in this paper. The ontology models different
events (Event) that can occur during workflow execution, such as
reset (Rst), commit (Cmt), fail (Fail), abort (Abt), enqueue (Enq),
¬enqueue (UnEnq), dequeue (Deq), and ¬dequeue (UnDeq). Each
event occurs in specific time (see po:time) and is related to a round
(Round) and one or many tokens (Token) via properties po:round
and po:token, respectively. A round refers to an actor (Actor) via
po:executes and a token represents a data object (DataObject) via
po:represents.
Based on this provenance representation and Semantic Web

inference capability, we can build a token dependency graph, an
object dependency graph, and a round dependency graph as in [6]. In
our ontology, these dependency graphs are captured via properties
po:dependsT, po:dependsO, and po:dependsR, respectively. The
properties are defined as transitive (owl:TransitiveProperty), such
that an inference engine can dynamically derive transitive
relations.While token dependencies are directly available from the
event log, we infer data object and round dependencies using our
defined inference rules as explained in the following.
We use a simple language to define inference rules, such that an

antecedent and a consequent of a rule are specified as SPARQL [44]
basic graph patterns. If the antecedent matches triples in an RDF
graph, then bound variables are used in the consequent to infer
new RDF triples that are appended to the RDF graph. The rule for
deriving a data object dependency graph is as follows:

?t1 po : dependsT ?t2 . ?t1 po : represents ?d1 . ?t2 po : represents ?d2 .

?d1 po : dependsO ?d2 .

This rule states that if token ?t1 depends on token ?t2, and
?t1 and ?t2 are tokens for data objects ?d1 and ?d2, respectively,
then ?d1 depends on ?d2. Finally, the rule for deriving round
dependencies is:

?e1 rdf : typepo : Enq . ?e2 rdf : typepo : Deq .

?e1 po : token ?t . ?e2 po : token ?t . ?e1 po : round ?r1 . ?e2 po : round ?r2

?r1 po : dependsR ?r2 .

This rule states that if the same token ?t is dequeued and
enqueued during events ?e1 and ?e2, respectively, and these
events are initiated by rounds ?r1 and ?r2, respectively, then ?r1
depends on ?r2.
To support efficient querying of provenancemetadata, we store

the enhanced RDF dataset into an RDMBS-based RDF repository,
which provides both SPARQL and SQL query interfaces. Since our
provenance information embraces the event log and contains all
information of the event log in [6], we can support all provenance
queries listed in [6]. In addition, we can support the atomicity
and failure related queries, which are illustrated in the following
examples using SPARQL.

• What actors have aborted rounds?

Select Distinct ?a Where { ?e rdf:type po:Abt .
?e po:round ?r .
?r po:executes ?a .

}

In this query, the first triple pattern matches an abort event
?e; the second triple pattern matches a round ?r that has
initiated ?e; and the last triple pattern matches an actor ?a that
has been executed by ?r . The query returns all bindings of ?a.
Fig. 7. A screenshot of provenance querying and visualization.

• When round r1 runs, what actors simultaneously execute the
rounds that depend on r1?

Select Distinct ?a Where { ?e1 rdf:type po:Rst .
?e1 po:round r1 .
?e1 po:time ?t1
?r2 po:dependsR r1 .
?e2 po:round ?r2
?e2 po:time ?t2
?r2 po:executes ?a .

FILTER (xsd:dateTime(?t2) < xsd:dateTime(?t1))
}

In this query, the first three triple patterns match a reset
event ?e1 that has been initiated by round r1 at time ?t1. The
rest triple patterns match a round ?r2 that depends on r1, an
actor ?a that has been executed by ?r2, and time?t2 for an event
?e2 that has been initiated by ?r2. The value constraint ensures
that ?t2 is less than ?t1 or, in other words, that ?r2 runs before
r1 resets.

Finally, the provenance system can visualize various prove-
nance graphs retrieved from the provenance repository with
SPARQL or SQL queries. In addition, our system can visualize static
medical images or interactive 3-D graphical models of intermedi-
ate or final data products of a workflow run. In Fig. 7, we execute a
SPARQL query to retrieve all data object dependencies of a particu-
lar workflow run, then visualize the data object dependency graph
and one of the data products as a 3-D brain model.

5. Related work

This paper extends our previous work [45] by supporting
hierarchical workflows and rounds, and providing descriptions of
our provenance ontology, inference rules for various provenance
graph derivation, and visualization of provenance.

574 L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576
In recent years, scientific workflows have gained great momen-
tum due to their roles in e-Science and cyberinfrastructure appli-
cations [31]. There are a plethora of scientific workflows covering a
wide range of scientific disciplines. A survey of various approaches
for building and executing workflows on the Grid has been pre-
sented by Yu and Buyya [47].
One important line of research for scientific workflows is data

provenance, which focuses on the support of data derivation and
usage trails to support operations, such as restarts, partial runs, and
run-diagnosis of workflows. Although several provenance mod-
els [22,38,6,12,3] have been proposed for scientific workflows,
there has been no work on the provenance system that supports
the notion of atomicity. Surveys on provenance systems include a
metamodel for a system architecture for lineage retrieval [4], var-
ious approaches to the development of provenance systems [36],
and use cases for a provenance system in e-science [32].
Although atomicity is a well studied topic in the context of

databases in transaction processing and business workflows, there
has been no work on atomicity in the context of ‘‘dataflows’’ and
‘‘pipelined execution’’ in scientific workflows. The read committed
assumption that existing atomicity techniques are based on does
not hold in pipelined scientific workflows, where both task
parallelism and pipelined parallelism are present.
In the rest of this section, we review some of the provenance

management systems proposed in the literature.
The Kepler system [1,29] implements a provenance recorder to

record information about a workflow run, including the context,
data derivation history, workflow definition, and workflow evo-
lution. The provenance recorder is parametric and customizable,
allowing the user to choose different levels of granularity of prove-
nance data for recording. Based on the provenance information,
Kepler supports efficient workflow rerun for a slightly modified
workflow. Bowers et al. [6] propose the Read-Write-State-Reset
(RWS) provenancemodel for pipelined scientific workflowswithin
the Kepler framework [30]. The execution of a pipelined workflow
exhibits both task parallelism and pipeline parallelism, allowing
different actors to execute concurrently. The RWS model records
read, write, and state-reset events for each actor in a workflow
run and stores them in a relational event log. Compared with our
model, the RWS model assumes that each output token depends
on all tokens input so far in the current round, whereas our model
refines this by assuming actors can tell what input tokens that each
output token depends on.
The myGrid/Taverna system [49,48] uses Semantic Web tech-

nologies for representing provenance metadata at four levels: pro-
cess, data, organization, and knowledge. Two levels of ontologies
are used. A domain-independent schema ontology is used to de-
scribe the classes of resources and the properties between them
that are needed to represent the four levels of provenance. A do-
main ontology is used to classify various types of resources such
as data types, service types, and topic of interest for a particular
domain. Taverna uses out of the shelf RDF stores, such as Jena [46]
and Sesame [7], to manage and query provenance.
The CombeChem [41,17] and Mindswap [20,21] systems also

use a Semantic Web approach for provenance collection and
representation. While CombeChem, similarly to Taverna, uses a
general purpose RDF store, in particular 3store [23], to manage
provenance, Mindswap publishes workflow provenance on the
Semantic Web.
The Chimera [15] and Swift [50] systems introduce a Virtual

Data System (VDS) consisting of a set of relations to store the
description of executable programs as transformations, their actual
invocations as derivations, and input/outputs as data objects. These
systems use provenance for tracking the data derivation history,
on-demand data generation and re-generation, and data product
validation.
The Wings-Pegasus system [24] uses an OWL ontology for se-

mantic representation [25] of provenance generated during work-
flow instantiation and the Virtual Data System (VDS) provenance
tracking catalog for provenance generated duringworkflow execu-
tion. As a result, workflow instantiation provenance can be queried
using SPARQL and workflow execution provenance can be queried
using SQL.
The VisTrails system [16,9] is the first system that supports

provenance tracking of workflow evolution. In VisTrails, workflow
evolution provenance is represented as a rooted tree, in which
each node corresponds to a version of a workflow, and each edge
corresponds to an update action that was applied to the parent
workflow to create the child workflow. Therefore, a workflow
evolution tree concisely represents all theworkflow versions that a
scientist has explored to produce the visualization products. In this
way, VisTrails can support scientists to navigate through the space
of workflows and parameter settings for an exploration process.
VisTrails uses XML and relational database technologies to store
and query provenance.
Our VIEW system [27,10] uses OWL and RDF to represent

provenance and an RDBMS-based RDF store to manage and
query provenance with SPARQL and SQL. Unlike Taverna and
CombeChem, which employ general purpose RDF stores, VIEW
develops an in-house RDF store which is specifically optimized for
provenance management.
The above provenance systems are tightly coupled with

their scientific workflow environments. A couple of stand-alone
provenance systems have also been developed, including the
PReServ (Provenance Recording for Services) system developed
under the PASOA (Provenance Aware Service Oriented Architec-
ture) project [22] and the Karma system [37,39]. PReServe sup-
ports the recording of interaction provenance, actor provenance,
and input provenance with the Provenance Recording Protocol,
which specifies the messages that actors can asynchronously
exchange with a provenance store to support provenance submis-
sion. PReServ uses a provenance management service which pro-
vides a common interface to enable different storage systems, such
as file system, relational databases, XML databases, and RDF stores,
as a provenance store. The Karma system records provenance at
four dimensions: execution, location, time, and dataflow, and uses
a Publish-Subscribe notification protocol for provenance collec-
tion. Karma uses XML and relational database technologies to store
and query provenance. Both PReServ and Karma support web ser-
vice interfaces.
Finally, Stevens et al. distinguish four types of provenance

in the context of bioinformatics workflows: process provenance,
data provenance, organization provenance, and knowledge prove-
nance [40]. Under such a classification, our system supports both
process provenance and data provenance.

6. Conclusions and future work

This paper proposes a hierarchical architecture for scientific
workflow management systems that supports both provenance
and atomicity. We have shown that, while our atomicity system
can support the notion of atomicity, currently at the round
level that does not contain cyclic transitive data dependencies,
our provenance system has added value to existing provenance
systems as we support atomicity and failure related queries.
Currently, we are applying the atomicity and provenance

techniques proposed in this paper to a biological simulation
workflow for the study of mate-finding behavior of the swarming
polychaete, Nereis succinea [35]. In this workflow, we have already
incorporated provenance technique for the replay of a simulation

L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576 575
run. We will incorporate our atomicity technique to support
failure-tolerant pipelined execution of simulations. Moreover,
we will extend current atomicity and provenance model to
various granularities of atomicity and for different models of
computations.

References

[1] I. Altintas, O. Barney, E. Jaeger-Frank, Provenance collection support in the
Kepler scientific workflow system, in: Proc. of the International Provenance
and Annotation Workshop, IPAW, 2006, pp. 118–132.

[2] P. Bernstein, M. Hsu, B. Mann, Implementing recoverable requests using
queues, in: Proc. of the 1990 ACM SIGMOD International Conference on
Management of data, 1990, pp. 112–122.

[3] O. Biton, S.C. Boulakia, S.B. Davidson, C.S. Hara, Querying and managing
provenance through user views in scientific workflows, in: Proc. of the
International Conference on Data Engineering, ICDE, 2008, pp. 1072–1081.

[4] R. Bose, J. Frew, Lineage retrieval for scientific data processing: A survey, ACM
Comput. Surv. 37 (1) (2005) 1–28.

[5] S. Bowers, B. Ludäscher, Actor-oriented design of scientific workflows, in: 24th
Intl. Conf. on ConceptualModeling, ER’05, in: LNCS, vol. 3716, Springer-Verlag,
2005.

[6] S. Bowers, T. McPhillips, B. Ludäscher, S. Cohen, S.B. Davidson, A model for
user-oriented data provenance in pipelined scientific workflows, in: Proc. of
the International Provenance and Annotation Workshop, IPAW’06, Chicago,
Illinois, USA, May 2006.

[7] J. Broekstra, A. Kampman, F. van Harmelen, Sesame: A generic architecture
for storing and querying RDF and RDF Schema, in: Proc. of the International
Semantic Web Conference, ISWC, 2002, pp. 54–68.

[8] P. Buneman, S. Khanna, W.-C. Tan, Why and where: A characterization of data
provenance. Proc. of the International Conference on Database Theory (ICDT),
1973, 2001, pp. 316–330.

[9] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, H.T. Vo, Vistrails:
Visualization meets data management, in: Proc. of the SIGMOD International
Conference on Management of Data, 2006, pp. 745–747.

[10] A. Chebotko, C. Lin, X. Fei, Z. Lai, S. Lu, J. Hua, F. Fotouhi, VIEW:A visual sciEntific
workflow management system, in: Proc. of the International Workshop on
Scientific Workflows, SWF, 2007.

[11] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I.
Taylor, I. Wang, Programming scientific and distributed workflow with triana
services: Research articles, Concurr. Comput. : Pract. Exper. 18 (10) (2006)
1021–1037.

[12] S. Cohen, S.C. Boulakia, S.B. Davidson, Towards amodel of provenance and user
views in scientific workflows, in: Data Integration in the Life Sciences, 2006,
pp. 264–279.

[13] Y. Cui, J. Widom, Lineage tracing for general data warehouse transformations,
The VLDB Journal (2001) 471–480.

[14] W. Derks, J. Dehnert, P. Grefen, W. Jonker, Customized atomicity specification
for transactional workflows, in: Proceedings of the Third International
Symposium on Cooperative Database Systems for Advanced Applications,
CODAS’01, 2001, pp. 140–147.

[15] I. Foster, J. Vöckler, M. Wilde, Y. Zhao, Chimera: A virtual data system for
representing, querying, and automating data derivation, in: Proc. of the
International Conference on Scientific and Statistical Database Management,
SSDBM, 2002, pp. 37–46.

[16] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, C.E. Scheidegger, H.T. Vo,
Managing rapidly-evolving scientific workflows, in: International Provenance
and Annotation Workshop, Chicago, Illinois, U.S.A., May 2006, pp. 10–18.

[17] J.G. Frey, D.D. Roure, K.R. Taylor, J.W. Essex, H.R.Mills, E. Zaluska, CombeChem:
A case study in provenance and annotation using the Semantic Web, in: Proc.
of the International Provenance and Annotation Workshop, IPAW, 2006, pp.
270–277.

[18] H. Garcia-Molina, K. Salem, Sagas, in: SIGMOD ’87: Proceedings of the 1987
ACM SIGMOD international conference on Management of data, 1987, pp.
249–259.

[19] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, H. Tangmunarunkit, Artificial
intelligence and grids: Workflow planning and beyond, IEEE Intelligent
Systems 19 (1) (2004) 26–33.

[20] J. Golbeck, Combining provenance with trust in social networks for Semantic
Web content filtering, in: Proc. of the International Provenance andAnnotation
Workshop, IPAW, 2006, pp. 101–108.

[21] J. Golbeck, J. Hendler, A Semantic Web approach to the provenance challenge,
Concurr. Comput. : Pract. Exper. 20 (5) (2008) 431–439.

[22] P. Groth, S. Miles, W. Fang, S. Wong, K. Zauner, L. Moreau, Recording and
using provenance in a protein compressibility experiment, in: Proceedings
of the 14th IEEE International Symposium on High Performance Distributed
Computing, HPDC’05, Research Triangle Park, North Carolina, U.S.A., July 2005.

[23] S. Harris, N. Gibbins, 3store: Efficient bulk RDF storage, in: Proc. of the
International Workshop on Practical and Scalable Semantic Systems, PSSS,
2003, pp. 1–15.

[24] J. Kim, E. Deelman, Y. Gil, G.Mehta, V. Ratnakar, Provenance trails in theWings-
Pegasus system, Concurr. Comput. : Pract. Exper. 20 (5) (2008) 587–597.
[25] J. Kim, Y. Gil, V. Ratnakar, Semantic metadata generation for large scientific
workflows. In Proc. of the International Semantic Web Conference, ISWC,
2006, pp. 357–370.

[26] F. Leymann, D. Roller, Production Workflow: Concepts and Techniques,
Prentice-Hall, 2000.

[27] Cui Lin, Shiyong Lu, Zhaoqiang Lai, Artem Chebotko, Xubo Fei, Jing Hua,
Farshad Fotouhi, Service-oriented architecture for VIEW: A visual scientific
workflow management system, in: Proc. of the IEEE 2008 International
Conference on Services Computing, SCC 2008, Honolulu, Hawaii, USA, July
2008, pp. 335–342.

[28] B. Ludäscher, Scientific workflows: Cyberinfrastructure for e-science. Pacific
Neighborhood Consortium, PNC, Berkeley, October 2007.

[29] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee,
J. Tao, Y. Zhao, Scientific workflow management and the Kepler system,
Concurr. Comput.: Pract. Exper. 18 (10) (2006) 1039–1065.

[30] B. Ludäscher, I. Altintas, C. Berkley, D.Higgins, E. Jaeger,M. Jones, E.A. Lee, J. Tao,
Y. Zhao, Scientific workflow management and the kepler system: Research
articles, Concurr. Comput. : Pract. Exper. 18 (10) (2006) 1039–1065.

[31] B. Ludäscher, C. Goble, Guest editor’s introduction to the special section on
scientific workflows, SIGMOD Record 34 (3) (2005) 3–4.

[32] S. Miles, P. Groth, M. Branco, L. Moreau, The requirements of recording and
using provenance in e-science experiments, J. Grid Computing (2006).

[33] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R. Pocock, M. Senger, R. Stevens,
A. Wipat, C. Wroe, Taverna: Lessons in creating a workflow environment for
the life sciences: Research articles, Concurr. Comput. : Pract. Exper. 18 (10)
(2006) 1067–1100.

[34] T.M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R.M. Greenwood, T. Carver,
K. Glover, M.R. Pocock, A. Wipat, P. Li, Taverna: A tool for the composition
and enactment of bioinformatics workflows, Bioinformatics 20 (17) (2004)
3045–3054.

[35] J. Ram, X. Fei, S. Danaher, S. Lu, T. Breithaupt, J. Hardege, Finding females:
Pheromone-guided reproductive tracking behavior by male Nereis succinea in
the marine environment, J. Exp. Biol. 211 (5) (2008) 757–765.

[36] Y. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-science,
SIGMOD Record 34 (3) (Sept.2005) 31–36.

[37] Y. Simmhan, B. Plale, D. Gannon, A framework for collecting prove-
nance in data-centric scientific workflows, in: Proc. of the IEEE Interna-
tional Conference on Web Services, ICWS’06, Washington, DC, USA, 2006,
pp. 427–436.

[38] Y.L. Simmhan, B. Plale, D. Gannon, A framework for collecting prove-
nance in data-centric scientific workflows, in: Proc. of the IEEE Interna-
tional Conference on Web Services, ICWS’06, Washington, DC, USA, 2006,
pp. 427–436.

[39] Y.L. Simmhan, B. Plale, D. Gannon, Query capabilities of the Karma provenance
framework, Concurr. Comput. : Pract. Exper. 20 (5) (2008) 441–451.

[40] R. Stevens, J. Zhao, C. Goble, Using provenance tomanage knowledge of n silico
experiments, Briefings in Bioinformatics 8 (3) (2007) 183–194.

[41] K.R. Taylor, R.J. Gledhill, J.W. Essex, J.G. Frey, S.W. Harris, D.D. Roure, Bringing
chemical data onto the Semantic Web, J. Chem. Inf. Modeling 46 (3) (2006)
939–952.

[42] W3C. OWL Web Ontology Language Reference. W3C Recommendation,
10 February 2004. M. Dean and G. Schreiber (Eds.). Available from:
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[43] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax.
W3C Recommendation, 10 February 2004. G. Klyne, J. J. Carroll, and B.McBride
(Eds.). 2004. Available from: http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[44] W3C. SPARQL Query language for RDF. W3C Candidate Recommendation, 15
January 2008. E. Prud’hommeaux and A. Seaborne (Eds.). 2008. Available from:
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[45] L. Wang, S. Lu, X. Fei, J. Ram, A dataflow-oriented atomicity and provenance
system for pipelined scientific workflows, in: Proc. 2nd International
Workshop on Workflow Systems in e-Science (WSES 07), in conjunction with
International Conference on Computational Science (ICCS) 2007, in: LNCS,
Springer, 2007.

[46] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, Efficient RDF storage and
retrieval in Jena2, in: Proc. of the International Workshop on Semantic Web
and Databases, SWDB, 2003, pp. 131–150.

[47] J. Yu, R. Buyya, A taxonomy of scientific workflow systems for grid computing,
SIGMOD Record 34 (3) (2005) 44–49.

[48] J. Zhao, C. Goble, R. Stevens, D. Turi, Mining Taverna’s semantic web of
provenance, Concurr. Comput. : Pract. Exper. 20 (5) (2008) 463–472.

[49] J. Zhao, C. Wroe, C.A. Goble, R. Stevens, D. Quan, R.M. Greenwood, Using
Semantic Web technologies for representing e-science provenance, in: Proc.
of the International Semantic Web Conference, ISWC, 2004.

[50] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewski, V. Nefedova,
I. Raicu, T. Stef-Praun, M. Wilde, Swift: Fast, reliable, loosely coupled parallel
computation. In IEEE International Workshop on Scientific Workflows, SWF
2007, 2007, pp. 199–206.

[51] Z. Zhao, A. Belloum, C. de Laat, P. Adriaans, B. Hertzberger, Distributed
execution of aggregated multi domain workflows using an agent framework,
in: Proc. of the International Workshop on Scientific Workflows, SWF, 2007,
pp. 183–190.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

576 L. Wang et al. / Future Generation Computer Systems 25 (2009) 568–576
Liqiang Wang is an assistant professor in the Department
of Computer Science at the University of Wyoming. His
research focuses on designing methods and tools for
concurrent and distributed systems including scientific
workflows. He also serves as a program committee
member for several IEEE and ACM conferences. He
received his Ph.D. degree in Computer Science from
Stony Brook University in 2006, M.E. in Computer Science
from Sichuan University at China in 1998, and B.S. in
Mathematics from Hebei Normal University at China in
1995.

Dr. Shiyong Lu is currently an assistant professor in
the Department of Computer Science at Wayne State
University and the director of the Scientific Workflow
Research Laboratory (the SWR Lab). Dr. Lu received his
Ph.D. from Stony Brook University in 2002, M.E. from the
Institute of Computing Technology at Chinese Academy of
Sciences at Beijing in 1996, and B.E. from the University
of Science and Technology of China at Hefei in 1993.
His research interest focuses on scientific workflows with
applications to bioinformatics, medical informatics, and
biological simulations. He has published over 60 refereed

international journal and conference papers in the above areas. Dr. Lu is the founder
and currently the chair of the IEEE InternationalWorkshop on ScientificWorkflows,
an editorial boardmember for International Journal ofMedical Information Systems
and Informatics and International Journal of Semantic Web and Information
Systems. He also serves as a program committee member for several IEEE and ACM
conferences. He is a member of both ACM and IEEE.

Xubo Fei is currently a Ph.D. student in the Department of
Computer Science at Wayne State University. His current
research interests include scientific workflows and their
applications in bioinformatics and biology simulation.
Artem Chebotko is an assistant professor in the Depart-
ment of Computer Science at University of Texas - Pan
American. He received his Ph.D. in Computer Science from
Wayne State University in 2008, M.A. in Computer Science
fromWayne State University in 2005,M.S. inManagement
Information Systems in 2003 and B.S. in Computer Science
from Ukraine State Maritime Technical University. His re-
search interests include scientific workflow provenance
metadata management and semantic web data manage-
ment. He has published a number of papers in refereed
journals and conference proceedings and currently serves

as a program committee member of two international workshops on scientific
workflows. He is a member of ACM and IEEE.

H. Victoria Bryant is currently a graduate student at
Florida State University. Her research interests include
artificial intelligence, distributed systems and robotics.
She received her Master’s in Computer Science in 2007
from the University of Wyoming.

Jeffrey L. Ram received his B.A. in Physics from the
University of Pennsylvania and his Ph.D. in Biochemistry
and Neurophysiology from the California Institute of
Technology. He is currently a Professor of Physiology
at Wayne State University USA, an Honorary Professor
at Hull University, UK, and a researcher at the Marine
Biological Laboratory, Woods Hole, MA USA. In addition
to having an active biological research program on
behavioral responses to chemical attractants in organisms
as widely different as bacteria and worms, Dr. Ram uses
computational methods to model genetic and behavioral

mechanisms involved in these organisms. Author ofmore than 100 research papers,
his research has been supported by grants at both the federal and state level, from
NIH, NSF, NOAA, and the State of Michigan.

	Atomicity and provenance support for pipelined scientific workflows
	Introduction
	The atomicity management subsystem
	A hierarchical scientific workflow
	Round and data dependency
	Commit and abort
	Comparison of rounds and transactions

	The event log
	The provenance subsystem
	Related work
	Conclusions and future work
	References

