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ABSTRACT
Concurrent programs are notorious for containing errors that
are difficult to reproduce and diagnose. Two common kinds
of concurrency errors are data races and atomicity viola-
tions (informally, atomicity means that executing methods
concurrently is equivalent to executing them serially). Sev-
eral static and dynamic (run-time) analysis techniques exist
to detect potential races and atomicity violations. Run-time
checking may miss errors in unexecuted code and incurs sig-
nificant run-time overhead. On the other hand, run-time
checking generally produces fewer false alarms than static
analysis; this is a significant practical advantage, since di-
agnosing all of the warnings from static analysis of large
codebases may be prohibitively expensive.

This paper explores the use of static analysis to signif-
icantly decrease the overhead of run-time checking. Our
approach is based on a type system for analyzing data races
and atomicity. A type discovery algorithm is used to ob-
tain types for as much of the program as possible (complete
type inference for this type system is NP-hard, and parts of
the program might be untypable). Warnings from the type-
checker are used to identify parts of the program from which
run-time checking can safely be omitted. The approach is
completely automatic, scalable to very large programs, and
significantly reduces the overhead of run-time checking for
data races and atomicity violations.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software/Program Verification]: Formal
Methods, Reliability; D.2.5 [Testing and Debugging]:
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1. INTRODUCTION
Concurrent programs are notorious for containing errors

that are difficult to reproduce and diagnose at run-time.
Some common kind of programming errors include data races
and atomicity violations. A data race occurs when two
threads concurrently access a shared variable and at least
one of the accesses is a write. Atomicity is a common higher-
level correctness requirement that expresses non-interference
between concurrently executed methods. A method is atomic
if every execution of the program is equivalent to an execu-
tion in which the atomic method is executed without being
interleaved with other concurrently executed methods.

Several tools have been developed for run-time detection
of data races [19, 20, 7, 17] and atomicity violations [11, 21]
in concurrent programs. The run-time race detection algo-
rithms check that a locking discipline is followed to ensure
absence of races, i.e., every variable shared between threads
is protected by a mutual exclusion lock. The run-time atom-
icity checking algorithms check whether locks are used in a
way that ensures atomicity. Run-time checking cannot guar-
antee absence of data races or atomicity violations in other
executions of the program. Run-time checking also incurs a
significant run-time overhead, slowing down programs by a
factor of 1.5 to 75. On the other hand, run-time checking
generally produces fewer false alarms than static analysis;
this is a significant practical advantage, since diagnosing all
of the warnings from static analysis of large codebases may
be prohibitively expensive.

Another approach is static analysis, in particular, type
systems, that can statically ensure race-freedom and atom-
icity [6, 9, 12, 18]. However, manually annotating code with
the necessary type annotations can be a significant burden,
especially for legacy code.

Type inference reduces the annotation burden by auto-
matically determining types for some or all parts of the pro-
gram. A type inference algorithm is complete if it can in-
fer types for all typable programs. Unfortunately, complete
type inference is NP-complete for these type systems. This



motivated the development of incomplete type inference al-
gorithms. Type discovery is an inexpensive approach to type
inference that employs both run-time monitoring and static
analysis to infer types for all or part of a program. Type
discovery is incomplete but experience shows it is very ef-
fective in practice, discovering 98% of the annotations in
our experiments [1]. However, static approaches generally
produce more false alarms than runtime techniques. Fur-
thermore, although type discovery is nearly linear-time and
in that sense very scalable, because it is guided by run-time
monitoring, it generally cannot discover types for methods
not exercised by the test suite (it generally can discover
types for unexecuted branches in executed methods); for
large codebases without good test suites, this may be a sig-
nificant fraction of the code. 1

This paper explores the use of static analysis to signifi-
cantly decrease the overhead of run-time checking. First,
type discovery is used to discover types for all or part of
the program. The discovered types are then given to the
typechecker, which issues warnings. Run-time race detec-
tion and atomicity checking is then focused on fragments
of code for which the type checker issued warnings. The
paper presents three approaches to focus run-time race de-
tection, the first based on instrumenting (potentially) race
unsafe field accesses, the second based on instrumenting un-
typed methods, and the third based on combining the above
two techniques. It also shows how to use atomicity types
to reduce the overhead of an accurate run-time atomicity
checking algorithm. Our experiments with over 175 KLOC
show that these techniques can significantly reduce the run-
time overhead. Also, the run-time race detection produces
significantly fewer spurious warnings than the typechecker
and can provide more detailed and specific diagnostic infor-
mation. The user can manually inspect the run-time warn-
ings, which are more likely to indicate real errors, and then,
if desired, the typechecker warnings. The user can then
use the detailed mode of [17] to further reduce the warn-
ings. The approach is completely automatic, scalable to
very large programs, and significantly reduces the overhead
of run-time checking for data races and atomicity violations.
Although type discovery requires running an instrumented
program, the cost is much less than full run-time checking,
because sampling (e.g., monitoring a few instances of each
class) suffices for type discovery; furthermore, the cost of
type discovery is amortized across all subsequent testing in
which the discovered types are used to reduce the overhead
of run-time checking.

We are also exploring static type inference for type sys-
tems that ensure absence of deadlock [5] and ways to use
those types to reduce the overhead of run-time detection of
potential deadlocks [13]. Our ultimate goal is to reduce the
overhead of run-time checking to a level where it can be
used unobtrusively throughout the testing process, or even
in deployed systems, instead of only during a limited period
of testing focused on concurrency errors.

Rest of the paper is organized as follows. Section 2, 3, 4
and 5 describe run-time race detection and atomicity check-
ing, type systems for race-freedom and atomicity, type dis-
covery for race-free types, and type inference for atomicity

1SAT-based type inference for these type systems [10] don’t
have this limitation but, because they are directly attacking
an NP-hard problem, probably don’t scale beyond ∼50 -100
KLOC.

types respectively. Section 6 presents our techniques for
focused run-time checking. Section 7 briefly describes the
implementation. Sections 8 and 9 present an experimental
evaluation of the techniques. Section 10 presents related
work.

2. RUN-TIME RACE DETECTION AND
ATOMICITY CHECKING

2.1 Run-time race detection
We use the popular lockset algorithm (sometimes called

the Eraser algorithm [19]). The basic idea is that violations
of a simple locking discipline—in which a shared variable is
consistently protected by the same lock—indicate potential
data races.

The lockset algorithm maintains a set C(v) of candidate
locks for each shared variable v. The set contains locks that
have protected v during the computation so far. During ini-
tialization of v, the set C(v) contains all locks. On each
subsequent access to v, C(v) is updated to be the intersec-
tion of C(v) and the set of locks held by the thread. If
C(v) ever becomes empty, it indicates violation of the sim-
ple locking discipline, and a warning of a possible race on v
is issued. If v is never updated after it becomes shared (i.e.,
after a second thread has accessed it), v is called “readonly”
and no warning is reported for it, even if its lockset becomes
empty.

Our implementation of the Eraser algorithm in Java main-
tains the following attributes per object: lkset: set of locks
held whenever any field of the object is accessed; rdonly: a
boolean that is true if none of the fields of the object are
updated after initialization; and shar: a boolean which in-
dicates whether the object is shared (i.e., has been accessed
by multiple threads). When an object o is first allocated,
the attribute rdonly is true and attribute shar is false for
o. The lkset contains all possible locks. The attributes
of o are not updated until a second thread accesses a field
of o (this is interpreted as indicating that initialization is
finished), whereafter shar attribute is set to true, lkset is
updated with the intersection of the current lkset and the
set of locks held by the current thread, and rdonly is set
to false when a field of o is written. A race is reported on
object o if lkset is empty, shar is true, and rdonly is false
for o.

Although we use the Eraser algorithm at object granular-
ity (i.e., one lkset, shar, and rdonly attributes are main-
tained for each object) in the experiments in Section 8, our
approach can equally well be used with any variant of the
Eraser algorithm, such as [19], at object granularity or field
granularity (i.e., one lkset, shar, and rdonly attribute is
maintained for each field of each object).

2.2 Run-time atomicity checking
We developed two runtime algorithms for detecting poten-

tial violations of atomicity: reduction-based algorithm (in-
dependently developed by [11]) and block-based algorithm
[21]. Both algorithms do not simply look for actual viola-
tions of atomicity in the observed execution, but also check
whether a violation seems possible in other executions, based
on how synchronization is used in the observed execution.

The reduction-based algorithm uses an enhanced lockset
algorithm to determine whether there is a data race on each



variable and then uses this information to determine commu-
tativity of events. If the sequence of events in each transac-
tion matches a given commutativity pattern based on Lip-
ton’s reduction [16], then the transactions are atomic. A
transaction is an execution of a code block that is expected
to be atomic. Ideally, the programmer would indicate those
code blocks. In our experiments, we rely on simple heuris-
tics to identify transactions; roughly, each execution of a
public method or synchronized block is a transaction. Syn-
chronized blocks are included because locks are often used to
achieve atomicity. We consider public methods as transac-
tions because they are abstractions often expected by clients
of the class to behave as atomic operations.

The block-based algorithm determines whether a viola-
tion of atomicity is possible in traces (i.e., sequences of
events) obtained from the observed execution by permut-
ing the order of events consistent with the synchronization
events. Explicitly computing these permutations would be
prohibitively expensive. The block-based algorithm looks
for such violations by constructing “blocks”—a block is an
abstraction that captures the information about two events
that is relevant to atomicity checking–and then comparing
each block with all blocks in other transactions. If two blocks
are found whose events can be interleaved in a way that
matches a fixed set of unserializable patterns, the transac-
tions containing them are not atomic. The unserializable
patterns are defined based on the concept of view serial-
izability in database transaction processing. For example,
one unserializable pattern is when a write in one transac-
tion can occur between two consecutive reads in another
transaction. The block-based algorithm is more expensive
than the reduction-based algorithm, but is more accurate,
i.e., reports fewer false alarms. This paper focuses on opti-
mizing the block-based algorithm, which we now sketch in
more detail.

There are two kinds of blocks: 1v-block and 2v-block. 1v-
block consists of two events that access the same variable in
a single transaction. For an event e that accesses variable
x in a transaction t, 1v-blocks are constructed as follows: if
there is a write event to x in t that precedes e, a 1v-block is
created from that write and e; otherwise, if there is a read
of x in t that precedes e, a 1v-block is created from the read
and e; in addition if e is the final write to x in t, 1v-blocks are
created from e and every initial read of x in t (i.e., they pre-
cede the first write of x in t). A 2v-block is created from two
accesses to different variables in the same transaction, and
the two events are initial reads or final writes (i.e., writes
not followed in the same transaction by another write to
the same variable). Each block records the variable(s) ac-
cessed, the operations (read or write), and synchronization
information— the locks held at each operation, the locks
held continuously from one event to another, etc. Note that
multiple pairs of events can produce the same block.

For all pairs of transactions t1 and t2, every 1v-block of
t1 is analyzed with each 1v-block of t2, and every 2v-block
of t1 is analyzed with each 2v-block of t2. To analyze two
1v-blocks, the algorithm checks whether any three events
from them can be interleaved (consistent with the recorded
synchronization) to form an unserializable pattern. Analysis
of two 2v-blocks is similar, except that the interleaving of
all four events in them is considered.

Our implementation of the block-based algorithm incor-
porates several optimizations. For example, the most recent

several event patterns are cached, and when an event pattern
in the cache appears again, we do not construct blocks from
it again. Also, the blocks of each transaction are stored in a
set; this ensures that only one copy of each block is stored.
Even with these optimizations, the block-based algorithm
incurs relatively high overhead, with a median slowdown of
35 in the experiments in [21]. Details of the algorithm and
a correctness theorem and proof appear in [21].

3. TYPE SYSTEMS FOR RACE-FREEDOM
AND ATOMICITY

3.1 Type systems for race-freedom
The type systems for race-freedom [6, 18, 9] are based on

the locking discipline described in Section 2.1. They require
annotation of the program to indicate which lock protects
each field and variable. The typing rules ensure that the ap-
propriate lock is held when the field or variable is accessed.
Soundness of the type system means that a well-typed pro-
gram is race-free. We present overviews of Parameterized
Race Free Java [6], of our extensions to it [18], and finally
of atomicity types [12, 18].

3.1.1 Overview of Parameterized Race Free Java
In Parameterized Race Free Java (PRFJ) [6] as in its pre-

decessor Race Free Java [9], types are extended to indicate
the synchronization discipline (also called ‘protection mech-
anism’ or ‘owner’) used to co-ordinate accesses to each ob-
ject. To allow different instances of a class to use different
protection mechanisms, each class is parameterized by for-
mal owner parameters which may be instantiated with other
formal owner parameters, final expressions (i.e., expressions
whose value does not change) representing locks, or special
owners (described below). The first owner parameter of each
class indicates the owner of the this object; the other owner
parameters are used to propagate ownership information to
the object’s fields.

A final expression used as an owner specifies a lock that
must be held when the object is accessed. There are four
special owners: thisThread, self, readonly and unique.
readonly indicates that the object is readonly and cannot
be updated. unique means that there is a unique refer-
ence to the object. thisThread means that the object is
thread-local (i.e., unshared). self means that the object is
protected by its own lock (i.e., a self-synchronized object).
The owner of an object is said to guard all of its fields.

Method declarations may have a requires clause that
contains a set of final expressions; the locks on the owners of
these expressions must be held when the method is invoked.2

The special owners thisThread, unique and readonly are
always assumed to be in the lockset. PRFJ ensures that
whenever a field of an object is accessed, either the object
is readonly, or the accessing thread either has a unique ref-
erence to the object or holds the lock on the root owner of
the object, thus avoiding races.

PRFJ, like Java, is not not purely statically typed and
allows downcasts whose safety is checked at run-time. In
PFRJ, downcasts to types with multiple owner parame-
ters require checking at run-time that the owner parameters
other than the first have appropriate values [4].

2 For simplicity, we ignore the distinction between owners
and root owners in this overview.



class Node<thisOwner> {

int value;

void setValue(int v) requires this {

value = v;

}

void getValue() {

return value;

}

}

Node<thisThread> n1 = new Node<thisThread>();

Node<self> n2 = new Node<self>();

n1.setValue(10);

fork(n2) {n2.setValue(20)};

fork(n2) {synchronized (n2) { n2.setValue(30);}}

Figure 1: An example program in PRFJ

The PRFJ program in Figure 1 illustrates how the PRFJ
type system discovers potential race conditions. The pro-
gram defines a Node class with a single formal owner param-
eter, thisOwner. The write to this.value in setValue is
well-typed because the requires this clause on setValue

implies that the lock on the owner of this should be held at
all call sites for setValue. However, the read of this.value
in getValue generates a type error, and indeed can be in-
volved in a race, because the lock on the owner of this might
not be held there.

Since n1 is parameterized by thisThread, it is a thread-
local object; accesses to fields of n1 cannot be involved in any
data races. The method invocation n1.setValue(10) type-
checks because the root owner of n1 is thisThread, which
is always assumed to be held. Since n2 is parameterized by
self, it is a self-synchronized object that can be shared by
multiple threads. The method invocation n2.setValue(20),
which writes to the field value, can be involved in a data
race, since no lock is held when this method is invoked.
PRFJ detects this race condition by checking that the requires
clause on setValue is satisfied at all its invocation sites.
Since the owner of n2 is n2 itself, and the lock on n2 is
not held when n2.setValue(20) is called, this invocation of
setValue does not typecheck. But, n2.setValue(30) type-
checks, since it is enclosed within a synchronized(n2) {..}
block.

3.2 Atomicity types
Flanagan and Qadeer’s type system for atomicity [12] ex-

tends a race-free type system [9] to associate an atomicity
with each expression and statement (for brevity, “expres-
sion” means “expression or statement” in the rest of this
section). The atomicity of each method is declared in the
program; atomicities of other expressions are implicit. An
atomicity is a basic atomicity or a conditional atomicity.
The basic atomicities and their meanings are: const: eval-
uation of the expression does not depend on or change any
mutable state; mover: the expression left-commutes with
every operation of another thread that could occur immedi-
ately before it and right-commutes with every operation of
another thread that could occur immediately after it (i.e.,
the two operations can be swapped, and this still leads to
the same state); atomic: evaluation of the expression is al-
ways equivalent to evaluation of the expression without in-

terleaved actions of other threads; cmpd (compound): none
of the preceding atomicities apply; error: evaluation of the
expression violates the locking discipline specified by the
race-free types.

Conditional atomicities are used when the atomicity of an
expression depends on which locks are held by the thread
evaluating it. A conditional atomicity l ? a : b is equiva-
lent to atomicity a if lock l is held when the expression is
evaluated, and is equivalent to atomicity b otherwise. l ? a
abbreviates l ? a : error.

Let α and a, b range over basic atomicities and atom-
icities, respectively. Each atomicity a is interpreted as a
function [[a]] from the set ls of locks currently held to a ba-
sic atomicity: [[α]] (ls) = α and [[l ? a1 : a2]] (ls) = if l ∈
ls then [[a1]] (ls) else [[a2]] (ls). A partial order v on atomic-
ities is defined. The ordering on basic atomicities is const v
mover v atomic v cmpd v error. The ordering on condi-
tional atomicities is the pointwise extension of the ordering
on basic atomicities, i.e., a v b iff ∀ls : [[a]] (ls) v [[b]] (ls).
Rules for effectively determining the ordering on atomicities
appear in [12].

The typing rules express the atomicity of an expression
in terms of the atomicities of its subexpressions using five
operations on atomicities: sequential composition a; b, iter-
ative closure a∗, join a t b (based on the partial order v
described above), conditional l ? a : b, and the operation
S(l, a) described below. Sequential composition for basic
atomicities is defined by: α1; α2 equals cmpd if α1 and α2

are both atomic, and equals α1 t α2 otherwise. The itera-
tive closure a∗ denotes the atomicity of an expression that
repeatedly executes an expression with atomicity a. For ba-
sic atomicities, it is defined by: a∗ equals cmpd if a is atomic,
and equals a otherwise. Sequential composition and itera-
tive closure for conditional atomicities are defined as follows
[12].

(l ? a : b)∗ = l ? a∗ : b∗

(l ? a1 : a2); b = l ?(a1; b) : (a2; b)
α; (l ? b1 : b2) = l ?(α; b1) : (α; b2)

In this paper, we use our atomicity type system Extended
Parameterized Atomic Java (EPAJ) [18], which combines
Flanagan and Qadeer’s atomicity types with a more expres-
sive race-free type system that we developed by extending
PRFJ to allow a different owner for each field of an object
[18].

4. DISCOVERY OF RACE-FREE TYPES
Our type discovery algorithm for race-free types has three

main steps [1, 3]. First, the target program is instrumented
by an automatic source-to-source transformation and exe-
cuted on test inputs. The instrumented program monitors
accesses to fields of certain objects of each class and writes
a log containing relevant information: which locks were held
when the object was accessed, whether multiple threads ac-
cessed the object, etc. Second, the information in the log
file is used to infer owners for fields, method parameters
and return values, and owners in class declarations. Third,
the intra-procedural type inference algorithm in [6] is used
to infer the owners in the types of local variables and in
the types of allocation sites whose owners have not already
been determined. Local type-inference has the crucial effect
of propagating type information into branches of the pro-
gram that were not exercised in the monitored executions.



Type discovery is not guaranteed to produce correct typ-
ings for all typable programs, but experience shows that it is
very effective in practice. In our experiments in [1], 98% of
the race-free types were automatically discovered. We used
only simple test inputs that accompanied the benchmarks.
These simple test inputs exercised most of the methods, but
did not necessarily achieve high branch coverage. Thus, in
our experience, the result of the type discovery algorithm
is mainly affected by which methods are exercised by the
test inputs, and is otherwise mostly insensitive to the choice
of inputs. For the larger benchmarks we are now target-
ing, a small and simple test suite might not exercise many
methods, and type discovery will be effective only for the
exercised methods.

5. INFERENCE OF ATOMICITY TYPES
This section briefly describes our algorithm for inferring

the atomicity of each method. [18] contains a more detailed
description. The algorithm assumes that the program is at
least partly annotated with race-free types (the requires

clauses are ignored; required locks are computed as part of
conditional atomicities). The algorithm does not assume
that the given race-free types are correct, and it can deter-
mine atomicity of methods in programs with races. How-
ever, errors in the given race-free types generally lead to
weaker conclusions about atomicity. For example, speci-
fying an incorrect owner may cause the algorithm to infer
that a method has atomicity cmpd or error, even though
the method might actually be atomic.

For a set S and number k, let S∗ denote the set of finite
sequences of elements of S, and Sk = {s ∈ S∗ : |s| = k}. For
a sequence s, let s[i] denote the ith element of the sequence.

Let M denote the set of all methods in the program. Let
Invoke : M → M∗ be a function such that Invoke(m) is a
sequence containing the methods that m invokes; the order
of elements in this sequence is arbitrary but fixed (e.g., lex-
icographic order). Let Atom denote the set of atomicities.

For each method m, the definition of m and the EPAJ
typing rules [18] define an atomicity transfer function fm,

with type fm : Atom |Invoke(m)| → Atom. The arguments to
fm are the atomicities of the methods that m invokes. fm re-
turns the atomicity of method m. Basically, fm(a1, a2, . . . , an)
applies the atomicity typing rules to the body of m in a
bottom-up manner, using ai to determine the atomicity of
a call to a method Invoke(m)[i], and thereby constructs the
atomicity of m.

The type inference algorithm determines an atomicity for
each method. This is expressed as an atomicity assignment
atom : M → Atom. An atomicity assignment is consistent
if, for all methods m, the atomicity assigned to m is greater
than or equal to the atomicity computed for m using the
transfer function fm, i.e.,

fm(atom(Invoke(m)[1]), atom(Invoke(m)[2]), . . .) v atom(m)

The partial order on atomicity assignments is the pointwise
extension of the partial order on atomicities. Smaller atom-
icity assignments provide stronger guarantees, thus our aim
is to compute the least consistent atomicity assignment for
the program. This can be done using a simple fixed-point
calculation, since all atomicity transfer functions are mono-
tonic (because the five operations listed in Section 3.2 are
monotonic) and continuous [18].

6. FOCUSED RUN-TIME CHECKING

6.1 Focused Run-time Race Detection
As discussed in Section 1, both run-time checking and

type-based static checking of races have limitations, and we
are exploring how to combine the two approaches to over-
come some of them.

This section presents a technique for utilizing the warn-
ings from the type checker to identify parts of the program
from which run-time checking can safely be omitted; in other
words, we focus run-time checking on parts of the code. We
present three techniques for this: field-based, method-based
and combined-field-and-method based.

6.1.1 Field-based focused runtime checking
Given a program annotated (in whole or part) with (pos-

sibly incorrect) PRFJ types, our PRFJ type-checker can be
used to compute a list of fields that might potentially be in-
volved in data races. We refer to these as race-unsafe fields.
The other fields are guaranteed to be race-free, i.e. accesses
to them cannot be involved in data races. Thus, during run-
time race detection, there is no need to monitor accesses to
race-free fields. Field-based focused runtime checking runs
the Eraser algorithm only for accesses to race-unsafe fields.

Computing race-unsafe fields automatically is essential to
automate this approach. Due to the presence of requires

clauses, it is not sufficient to consider just the fields for which
the type-checker reports potential data races as candidates
for race-unsafe fields. For example, consider the program in
Figure 1. Due to the requires this clause on the method
setValue, the type-checker does not report a race on field
value. But value is a race-unsafe field, because the call
n2.setValue(20) occurs without the lock on n2 being held,
leading to a potential data race on n2.value.

Our algorithm for computing race-unsafe fields works as
follows. For a method m, let requires(m) denote its requires
clause. For each method m, we compute the set of locks in
its requires clause held at all invocations of method m in
all the executions. We call this set locks-def-held(m).

For each method m, locks-def-held(m) is computed as fol-
lows. Given a program P , let Invoke = (V, E) denote the
extended method invocation graph of P , where the vertex
set V consists of all methods and all call-sites of methods
and the edge set E consists of edges from each call site to
the possibly called methods (there might be more than one,
due to method overriding). For a call-site c, let parent(c) de-
note the method containing c, let called(c) denote the called
method with the most general type, and let locks-acquired(c)
denote the set of locks acquired in parent(c) and held at c.
For languages like Java that have block-structured state-
ments for acquiring and releasing locks, locks-acquired is
well-defined and can be computed easily with a linear scan
of every method.

As described in Section 3.1.1, for a method m, the locks
in requires(m) are final expressions that may be method
parameters of m, or the final expression this. The PRFJ
typing rules [6] specify how these expressions are instanti-
ated at call-sites of m. Let instantiate(c, l) be a function
that takes a call-site c and a lock l ∈ requires(called(c)) as
arguments, instantiates l according to the typing rules, and
computes and returns the root owner of l.

The function locks-def-held is the greatest fix-point so-
lution to the following set of constraints. The fix-point is



computed by starting with in(m) = requires(m) for all m,
and iterating until a fix-point is reached.

in(c) = in(parent(c)) ∪ locks-acquired(c)
out(c) = { l | l ∈ requires(called(c)) ∧

instantiate(c, l) ∈ in(c) }
in(m) = requires(m) ∩

T

(c,m)∈E
out(c)

locks-def-held(m) = in(m)
The above analysis is sound as a whole program analysis,

i.e., given a well-formed whole program whose only entry
points are main and run methods, and these methods have
empty requires clauses, the greatest fixed point computed
above does not include spurious locks for methods reachable
from the entry points; it may contain spurious locks for un-
reachable methods, but this does not violate our soundness
requirement.

A field f in a class C is labeled race-unsafe if either (1)
C is a race-unsafe class (defined below), or (2) there is an
expression o with type C and a field access o.f in a method
m such that the rootowner of o is not in locks-def-held(m).

A class C is labelled race-unsafe if the type-checker signals
any of the following warnings: (1) C is not a well-formed
type as defined by the rules in [6], (2) an instance of C with
owner thisThread may escape to another thread, (3) there is
a write to a readonly instance of C, (4) a unique instance of
C violates the semantics of unique, i.e., there isn’t a unique
reference to it, (5) the type C is involved in an assignment
type mismatch (i.e., there is an assignment e1 = e2 where
both e1 and e2 have type C, but there is a mismatch between
the owners of e1 and e2), or (6) the type C is involved in an
invocation type mismatch (i.e., there is a method invocation
where the actual and formal parameters have type C, but
there is a mismatch in their owner parameters).

Using type-discovery and then this algorithm, race-unsafe
fields can be computed automatically.

6.1.2 Method-based focused run-time checking
As discussed in Section 4, type discovery is effective only

for methods exercised in the test suite during type discovery.
For large systems, this might be a small fragment of the
codebase. For example, a simple client that retrieves a static
webpage from the W3C’s Jigsaw webserver, [15] exercises
code in about 100 classes out of more than 850 classes in
Jigsaw. In such cases, executed methods are likely to be
well-typed, i.e., there are no errors in the types discovered for
them. But many methods will be “untyped”, either because
there is an error in the discovered types (possibly because
the method is untypable), or because the methods were not
exercised hence no types were discovered for them (simple
default types can be tried, as in [6], but they often get one or
more types wrong in each method), or because source code
for them is unavailable.

The main idea behind the method-based approach is to
perform run-time checking on all accesses in untyped meth-
ods and omit it from all accesses in well-typed methods.
This can potentially perform better than the field-based ap-
proach, because the test suite used for type discovery typ-
ically exercises the most frequently executed methods; if
these methods are well-typed, then the method-based ap-
proach succeeds in eliminating run-time checking in places
where this provides the most benefit.

We say m is a typed method if the typechecker is run
on m and it does not produce any warnings for m, i.e., all
field accesses and call sites in m are well typed. We say

that all other methods are untyped. No field accesses are
monitored in typed methods, but all field accesses in un-
typed methods are instrumented for run-time checking. For
objects allocated in typed methods, only owner information
is maintained. For objects allocated in untyped methods,
the attributes lkset, shar, and rdonly (described in Section
2.1) are maintained. In addition, at each call site where a
typed method m is called from an untyped method, code
is inserted to check whether the arguments’ owners or at-
tributes conform to the declared owners of the correspond-
ing parameters of m and whether the locks specified in m’s
requires clause are held; if either of these conditions does
not hold, a warning (of a potential race) is issued. To en-
sure that field accesses in untyped methods cannot lead to
races, these accesses are checked as follows: if the accessed
object was allocated in a typed method, the current access is
checked for conformance with the object’s owner (i.e., if the
owner is thisThread, the current thread must be the thread
that allocated the object; if it is readonly, the access must
be a read; if it is an object, the lock on that object must
be held); if the object was allocated in an untyped method,
the Eraser algorithm in Section 2.1 is used to update its
attributes and determine whether to issue a warning.

It is not difficult to show that any race detected by full
checking with Eraser is also detected by this focused check-
ing. Furthermore, this focused checking may issue fewer
false alarms than full Eraser. In particular, the type system
and type discovery can recognize that objects are race-free
because there are appropriately protected unique references
to them. Focused checking will not monitor accesses to those
objects. Eraser does not recognize unique references, so full
checking with Eraser will produce false alarms on accesses
to those objects.

6.1.3 Combined field-and-method-based focused run-
time checking

The combined approach is based on the observation that
not all field accesses in untyped methods need to be moni-
tored. Specifically, only race-unsafe fields need to be mon-
itored in untyped methods. Furthermore, at call sites to
typed methods in untyped methods, checking whether argu-
ments’ owners or attributes conform to the declared owners
of the corresponding method parameters is necessary only
for parameters whose types are race-unsafe classes.

6.2 Focused Run-time Atomicity Checking
Both of the run-time atomicity checking algorithms sketched

in Section 2.2 can be optimized using the race-free types and
atomicity types in EPAJ, sketched in Section 3. In [18], we
showed how to optimize the reduction-based algorithm using
EPAJ types. In the original reduction-based algorithm, ev-
ery shared variable is monitored for races, and every trans-
action is checked for atomicity. In the focused algorithm,
we monitor only race-unsafe fields and check atomicity only
for methods that are not verified to be atomic by the type-
checker. In our experiments [18], this optimization reduced
the median slowdown from 38.1 to 1.5.

This section presents an approach to focus the block-based
algorithm [21] using atomicity types automatically produced
by type discovery and type inference. The EPAJ type-
checker lists all methods that it has verified to be atomic.
The list contains well-typed methods with a basic atomicity
less than or equal to atomic and methods with a conditional



atomicty that simplifies at all call sites to a basic atomic-
ity less than or equal to atomic. We refer to transactions
that correspond to executions of these methods as atomic
transactions. We refer to the other methods as possibly
non-atomic methods, and to transactions corresponding to
executions of them as possibly non-atomic transactions. We
optimize the block-based algorithm by reducing the num-
ber of blocks constructed using events in executions of those
methods. Note that the accesses in those methods cannot be
completely ignored because they may participate in forming
unserializable patterns with events from other methods.

For an atomic transaction t, the focused block-based al-
gorithm does not directly construct blocks from pairs of
events in t. Instead, it records a few items characterizing
the accesses performed by t, and uses that information as
described below. For each escaped variable x accessed in t (a
dynamic escape analysis is used to identify the escaped vari-
ables [21]), it records whether t writes (and possibly reads)
x or merely reads x. It also records the set held(t) of locks
held at any point during t (i.e., the set of locks held when t
starts or acquired at any time during t). This information is
stored for all atomic transactions in a global table. The fo-
cused block-based algorithm treats each atomic transaction
as if it consisted of the following events: for each escaped
variable accessed by t, a single write or read (depending on
whether t wrote x) event protected by the locks in held(t).
These reduced (i.e., relatively small) sets of events for the
atomic transactions are used in the following three ways.

First, for each 1v-block from a possibly non-atomic trans-
action, the focused algorithm checks whether an unserializ-
able pattern can be formed from the two events represented
by the 1v-block and one event from the reduced set of events
of an atomic transaction. Specifically, information about
the locks held is used to determine whether the latter event
can occur between the former two, and if so, whether the
resulting pattern of three reads and writes matches an unse-
rializable pattern, i.e., the middle event does not commute
with the first and last events.

Second, for a possibly non-atomic transaction t that con-
tains calls to atomic methods, the focused block-based algo-
rithm treats those method calls as if they consisted of the
reduced sets of events described above, i.e., 1v-blocks and
2v-blocks for t are constructed from the events in those sets
and the other events in t, except that 1v-blocks are not con-
structed from two events from the same call to an atomic
method. Note that the original block-based algorithm pro-
cesses events in method calls in a transaction in exactly the
same way as events in the top-level method call in the trans-
action; the block-based algorithm does not incorporate a
concept of nested transactions.

Third, 2v-blocks are constructed from the reduced set of
events for each atomic transaction. Thus, the focused block-
based algorithm may construct 2v-blocks from two events
from the same atomic transaction, but it never constructs
1v-blocks from two events from the same atomic transaction.

A proof that treating held(t) as the set of locks held at
each access in an atomic transaction t does not affect the
result of the block-based algorithm appears in [2]. Due to
space limitations, here we just sketch the two main condi-
tions used in the proof. First, the proof relies on the struc-
ture of the EPAJ type system, specifically, the fact that a
transaction statically verified as atomic does not acquire any
lock after releasing a lock. Second, it relies on the assump-

tion that there is no potential for deadlock [13, 21]. A set
T of transactions has potential for deadlock if some feasible
interleaving of the events in T leads to a deadlock. Poten-
tial for deadlock indicates a potential violation of atomicity,
because an execution in which some transactions deadlock
is not equivalent to any serial execution; a serial execution
cannot deadlock, because we assume the program uses block-
structured synchronization, as in Java, so each transaction
releases every lock that it acquires. We use an extension of
the goodlock algorithm [13] to detect potential for deadlock.
Therefore, it suffices to show that our optimization is correct
in the absence of potential for deadlock.

7. IMPLEMENTATION
Source-to-source transformations, implemented in the Kopi

compiler (http://www.dms.at/kopi/), instrument programs
for type discovery, and full and focused run-time checking.
We do not instrument Java API classes. Instrumenting them
would create new dependencies among the bootstrap classes;
since the JVM loads those classes in a fixed order, an initial-
ization error would occur. Since we do not perform run-time
race detection for fields defined in Java API classes, we do
not attempt to detect races on those fields statically either,
i.e., we do not type-check Java API classes. We do check
for races on all fields defined in application classes, includ-
ing fields that refer to instances of Java API classes. In our
benchmarks, none of the application classes require multiple
owner parameters, so there is no need for run-time checking
of ownership information at downcasts. Our type checker
for EPAJ is based on Flanagan and Freund’s Rccjava. Our
implementation of atomicity type inference is based on Rc-
cjava and uses Soot (http://www.sable.mcgill.ca/soot) to
compute the Invoke function.

8. EXPERIENCE WITH RACE DETECTION
We evaluated the focused run-time race detection on seven

multi-threaded programs. The first three programs (eleva-
tor, tsp and hedc) were developed at ETH Zürich and used
as benchmarks in [20]. We ran tsp on two inputs, with
12 and 15 nodes. The next three programs (moldyn, ray-
tracer and montecarlo) are part of the Java Grande Forum
Benchmark Suite, available at http://www.epcc.ed.ac.uk/ .
These benchmarks came with sample inputs, which we used
for type discovery and to evaluate the overheads of full and
focused run-time race detection.

The seventh benchmark is W3C’s Jigsaw web server [15].
We wrote a simple client that retrieves a static webpage
using GET requests. In our test scenario, three clients
run concurrently, each makes a sequence of 1500 requests
for that page. Code in only 102 classes of more than 850
classes in Jigsaw webserver code was executed. We discov-
ered types for those 102 classes and ran the typechecker on
those classes. The remaining classes are untyped hence clas-
sified as race-unsafe.

Table 1 contains experimental results. The first two columns
give the name of the benchmark and the size in lines of code.
The Base Time column presents the base running time (user
+ system time) of the benchmark. The Full Run Time col-
umn presents the running time with full run-time race de-
tection. Columns under Field-based present the results of
field-based focused checking. Rc Un Fds column presents
the number of race-unsafe fields and the total number of



Full Field-based Method-based Combined
Base Run Rc Un Run Frac Untyp Run Frac Run Frac

Program LOC Time Time Fds Time Ovhd Spdup Meths Time Ovhd Spdup Time Ovhd Spdup
elevator 523 .61 .92 1/21 .86 41% 19% 1/24 .88 44% 13% .89 46% 10%
tsp(12) 706 .87 3.6 12/36 1.42 63% 80% 11/24 1.99 129% 59% 1.39 60% 81%
tsp(15) 706 .82 3.29 12/36 1.53 87% 71% 11/24 1.99 143% 59% 1.57 91% 70%
hedc 7072 1.92 2.60 36/206 2.21 15% 57% 30/379 2.36 23% 35% 2.17 13% 63%

moldyn 730 34.97 1389 8/91 36.73 5% 100% 6/23 2090 5877% -52% 35.48 1% 100%
raytracer 1308 29.96 2279 4/61 45.07 50% 99% 8/72 53.45 78% 99% 44.19 47% 99%

montecarlo 3198 33.29 142 2/94 34.02 2% 99% 4/179 34.54 4% 99% 34.17 3% 99%
Jigsaw 157K 44.4 100 3802/3854 88.75 100% 21% 6531/7650 62.36 40% 68% 60.07 35% 72%

Table 1: Experimental results with focused run-time race detection.

fields. Run Time column under Field-based presents the
running time with field-based focused checking. Frac Ovhd
presents the fractional overhead of the focused checking.
The fractional overhead is computed as (tfoc − tbase)/tbase

where tfoc is the running time of focused checking and tbase

is the running time in column Base Time. Spdup column
presents the speedup in the runtime checking time, i.e., the
fractional decrease in the overhead. Method-based present
similar results for method-based focused checking and Com-
bined columns for combined focused checking. Speedup is
(cfull−cfoc)/cfull where cfull = cost of full race-checking =
tfull - tbase and cfoc = cost of focused race-checking = tfoc

- tbase. tfull is the running time with full run-time checking.
Running times are measured in seconds on a 500MHz Sun
Blade 100 with Sun JDK1.4 and are the average over three
runs.

The field-based approach does not introduce any addi-
tional checking (compared to the full Eraser algorithm),
so field-based focused checking is always at least as fast
as full checking, and combined focused checking is always
at least as fast as method-based focused checking. This
is confirmed by our experiments; the apparent discrepancy
for elevator (combined focused checking is .01 sec slower
on average than method-based focused checking) is within
the statistical variation (standard deviation .02 sec). The
method-based introduces additional checking at the bound-
ary between untyped and typed code, i.e., at calls to typed
methods from untyped methods. This can make method-
based focused checking slower than full checking. This oc-
curs in one benchmark, namely moldyn. This is because the
most frequently executed methods are untyped, and they
frequently call very small typed methods (e.g., “get” meth-
ods). There is little correlation between the percentage of
fields classified as race unsafe or methods classified as un-
typed and the speedups achieved. The speedups depend on
how frequently the race safe fragments of the code (i.e., code
with race safe fields and typed methods) are exercised.

The combined approach outperformed full checking in all
benchmarks. The average and median speedups in the check-
ing time are 74% and 77%, respectively. The average and
median fractional overhead of checking with the combined
approach are 37% and 40%, respectively.

The field-based approach outperformed the method-based
approach in all of the smaller benchmarks, i.e., all except
Jigsaw. This is not surprising, since most of the methods in
them are exercised by the sample inputs, and most of the
fields are classified as race-free by the typechecker.

The method-based approach outperformed the field-based
approach on Jigsaw, which is the largest and most interest-
ing benchmark, with 34,839 LOC in 102 analyzed classes
and 122,362 LOC in other classes. The field-based approach

offered little benefit (speedup 21%), because most classes
are unexercised during type discovery and hence classified as
race-unsafe, and many fields accessed in the exercised classes
are also exercised in the unexercised classes and hence are
classified as race-unsafe, so all accesses to them are mon-
itored with the field-based approach. The method-based
performs better (speedup 68%), because it does not moni-
tor accesses to some of those fields in well-typed methods.

9. EXPERIENCE WITH ATOMICITY
CHECKING

We evaluated the focused block-based atomicity checking
algorithm on the benchmarks described in the previous sec-
tion except Jigsaw, because Soot failed to construct the call
graph for it. The results appear in Table 2. Running times
are measured in seconds on a 1GHz Sun Blade 1500 with
Sun JDK 1.4 and are the average over five runs. Base Time
is the running time of the original program. Intcpt Ovhd
is the overhead of intercepting events, i.e., the increase in
running time when all events relevant to atomicity check-
ing (field accesses, method calls, synchronized statements,
etc.) are intercepted but not processed; i.e., code is inserted
to call a method with arguments describing the event, and
that method simply returns. Unopt Ovhd is the cost of
the unoptimized block-based algorithm, i.e., the increase in
running time relative to the version that intercepts events
without processing them. Foc Ovhd is the cost of the fo-
cused block-based algorithm, measured the same way. The
same code is used to intercept events for the unoptimized
and focused versions; our current optimization only affects
the cost of processing those events. Spdup is (Unopt Ovhd
- Foc Ovhd) / Unopt Ovhd. The average speedup is about
32%, i.e., the cost of the block-based algorithm is reduced by
about one third.Frac Ovhd is the overhead of the optimized
block-based algorithm as a fraction of the total running time,
i.e., Foc Ovhd / (Base Time + Intcpt Ovhd + Foc Ovhd).

However, in some benchmarks, the overhead of intercept-
ing events exceeds the overhead of the block-based algorithm
itself, so an important direction for future work is to avoid
intercepting some events. The focused block-based algo-
rithm in Section 6.2 provides good opportunities for this.
Using that algorithm, for each execution of a method classi-
fied as atomic by the type checker, for each shared variable
it accesses, it is sufficient to intercept one write event or, if
there is none, one read event. Thus, if static analysis can
be used at instrumentation time to determine, for example,
that expression e reads the same field of the same object
that statement s writes, and that s is executed whenever e
is executed (i.e., e dominates s in the control flow graph),
then e does not need to be instrumented.



Program Base Intcpt Unopt Foc Frac
Time Ovhd Ovhd Ovhd Spdup Ovhd

elevator 0.2 0.14 0.32 0.30 8.6% 46.5%
tsp(12) 0.3 9.59 8.89 8.49 4.5% 46.2%
tsp(14) 0.48 17.06 387.0 393.0 -1.5% 95.7%
hedc 0.6 0.22 0.64 0.55 15.0% 40.0%
moldyn 44.03 1430 172.7 129.5 25.0% 8.1%
montecarlo 15.85 443.2 10.3 0 100% 0%
raytracer 14.34 594 44.8 24.2 46.0% 3.8%

Table 2: Comparison of running time between the
optimized algorithm and the block-based algorithm.

The focused reduction-based algorithm [18] completely ig-
nores events in methods shown by the typechecker to be
atomic. This greatly reduces the interception overhead as
well as the cost of the reduction-based algorithm itself, re-
ducing the median overall slowdown from 38.1 to 1.5 in the
experiments in [18]. The opportunity for this more drastic
improvement is related to the fact that the reduction-based
algorithm is less accurate (i.e., more conservative, producing
more false alarms) than the block-based algorithm.

10. RELATED WORK
Choi et al. [7] present a run-time race detection algorithm

that uses static analysis to show that some statements can-
not be involved in data races and hence do not need to be
instrumented. This is similar in spirit to our focused check-
ing. However, there are many situations where type discov-
ery succeeds in showing that a statement is race-free while
their static analysis does not. For example, their analysis
does not correlate field accesses with thread and synchro-
nization information, so it is unable to show race-freedom
for a statement that is executed by multiple threads and
accesses a different unshared object in each thread. Also,
their analysis does not recognize readonly objects or objects
to which there is a unique reference and hence does not
recognize that accesses to those objects are race-free. Our
technique can verify absence of races in these cases. On the
other hand, their static analysis of the weaker-than rela-
tion identifies statements that need not be instrumented be-
cause another access (that is instrumented) would produce
the same warning. This optimization is complementary to
and compatible with our approach.

O’ Callahan and Choi [17] present a run-time race detec-
tion technique that combines lockset-based detection and
happens-before-based detection. In their two-phase mode
they first run an unoptimized Eraser algorithm and then run
a more accurate and more expensive algorithm that moni-
tors only fields on which Eraser reported a potential race.
Our work can be combined with theirs by using our focused
Eraser algorithm in the first phase. This could also reduce
the cost of the second phase, by allowing it to monitor fewer
fields, because our focused Eraser algorithm sometimes re-
ports fewer potential races (specifically, fewer false alarms)
than full Eraser, as described in Section 6.1.2.

von Praun and Gross [20] reduce the overhead of run-time
race detection by using static escape analysis to eliminate
some run-time checks, by detecting races at object granular-
ity (instead of field granularity), by conservatively treating
method calls as writes to the this object and thereby elim-
inating the need to instrument accesses to fields of this

(of course, this is a heuristic that can produce more false
alarms), and by a variety of lower-level optimizations, de-
scribed briefly below. While there is some overlap between
the benefits of our focused checking and their use of escape
analysis, our techniques and theirs are mostly complemen-
tary and can be used together. Also, they introduce a modi-
fication to the Eraser algorithm designed to reduce the num-
ber of false alarms on objects referenced by unique point-
ers passed between threads; however, their modification can
cause some races to be missed (i.e., not reported), while
the support for the owner unique in our approach achieves
similar benefits in a safe way.

We spent relatively little effort on unrelated lower-level
optimizations to our implementation of run-time race de-
tection. For example, in [20], the commonly executed part
of the instrumentation is inlined (and the x86 code generator
of their ahead-of-time Java compiler is enhanced to handle
the inlined code more efficiently than a JVM could [20]),
avoiding a method invocation in most cases; we did not do
this, because it is harder to implement, but this optimiza-
tion is compatible with our techniques and could reduce the
overhead significantly. In [7], the runtime checking algo-
rithms are implemented in C++ as part of the JVM; this
can also give a noticeable constant factor improvement in
the overhead compared to our implementation in Java.

Quantitative comparison with these other static-analysis-
based techniques for optimizing runtime race detection is
very difficult, due to unavailability of the existing implemen-
tations of these techniques, differences in the programs and
test inputs used as benchmarks (in some cases, we attempted
unsuccessfully to obtain the programs used as benchmarks
and to find out what test inputs were used), different and
non-standard run-time systems (especially for techniques in-
tegrated with the compiler or JVM), different lower-level
optimizations unrelated to the use of static analysis, etc.
Therefore, our comparison with related work is mostly qual-
itative. As a small first step towards quantitative compar-
ison, the fractional overheads for our combined approach
range from 1% to 91%, while the fractional overheads re-
ported in [20] and [7] (for a different set of benchmarks)
range from 16% to 129% and 13% to 42% respectively.

Purely static analysis of data races faces a difficult trade-
off between scalability, accuracy (few false alarms), and sound-
ness. For example, RacerX [8] achieves high scalability and
accuracy but, unlike race-free type systems, is not sound,
i.e., is not guaranteed to detect all races. Race checking by
context inference [14] is sound, and it is accurate for a class
of programs, but it is less scalable than runtime checking
and type discovery, and it does not accurately analyze pro-
grams that use heap allocation or arrays. Thus, runtime
checking, and combinations of static analysis and runtime
checking, are also valuable.

We are not aware of any work on use of static analysis to
optimize runtime atomicity checking, other than our recent
work on the focused reduction-based algorithm [18].
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