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ABSTRACT

Rapidly generated data and the amount magnitude of data analyti-
cal jobs pose great pressure to the underlying computing facilities.
A distributed multi-cluster computing environment such as a hy-
brid cloud consequently raises its necessity due to its advantages
in adapting geographically distributed and potentially cloud-based
computing resources. Different clusters forming such an environ-
ment could be heterogeneous and may be resource-elastic as well.
From analytical perspective, in accordance with increasing needs
on streaming applications and timely analytical demands, many
data analytical jobs nowadays are time-critical in terms of their
temporal urgency. And the overall workload of the computing en-
vironment can be hybrid to contain both time-critical and general
applications. These all call for an efficient resource management
approach capable to apprehend both computing environment and
application features.

However, the added up complexity and high dynamics of the
system greatly hinder the performance of traditional rule-based
approaches. In this work, we propose to utilize deep reinforcement
learning for developing elasticity-compatible resource management
for a heterogeneous distributed computing environment, aiming for
less occurrences of missing temporal deadline while maintaining
low average execution time ratio. Along with reinforcement learn-
ing we design a deep model employing Long Short-Term Memory
(LSTM) structure and partial model sharing for multi-target learn-
ing mechanism. The experimental results show that the proposed
approach could greatly outperform baselines and serve as a robust
resource management for variant workloads.
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1 INTRODUCTION

Nowadays’ distributed computing resources hosting data analytical
jobs are often organized in the unit of cluster, where each cluster
represents a closed association of computing nodes that a data an-
alytical work can be carried out in a distributed manner [21]. To
further expand the computing resources in a large scale, opting for
a multi-cluster computing resource raises its benefit and necessity
due to the following reasons: Firstly, the multi-cluster environ-
ment can be naturally derived from the geographical distribution
of resource. Secondly, it sometimes can be beneficial to organize
overall resource into clusters as a separation for managing jobs and
data. Thirdly, the facility may utilize online computing resources
from service providers as additional clusters for resource expansion.
Examples of a multi-cluster environment could happen when an
institution has several physical clusters at its branches (may at dif-
ferent locations). Another example could be a hybrid-cloud, which
may consist of multiple private (self-owned) and public cloud clus-
ters. In accordance, an efficient resource management being aware
and compatible with such a multi-cluster computing infrastructure
should be presented to guide job distribution.

Moreover, there are other computing environment features to
be taken into considerations. Firstly, it is possible that computing
nodes in different clusters have different computing capabilities. In
other words, multiple clusters composing the environment could be
heterogeneous. Secondly, certain clusters could possess elasticity.
Here, elasticity is referring to that the capacity of the cluster could
be temporally expanded as desired to fit the expanded computing
demands, which is more often observed in cloud computing as one
of its main features [15]. It is certainly beneficial if a proposed re-
source manager could be compatible with such elasticity capability
and be aware of heterogeneity.

Furthermore, job features are equivalently important. For ex-
ample, besides general analytical jobs, many jobs nowadays could
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be streaming jobs, which aim to timely process gradually arriving
streaming data, and can be regarded as conducting repetitive ex-
ecutions with different batch of data. Such jobs are intrinsically
end-to-end delay-sensitive, thus are time-critical. In a multi-cluster
environment, considering differentiated transmission overhead for
a time-critical job, it requires differentiated temporal execution
deadline on different clusters, which should be regarded as a job
feature and be considered by the resource management approach.

All computing environment features such as multi-cluster, elas-
ticity and heterogeneity, and the job features such as job type and
timeliness, add up to the complexity of generating a satisfactory re-
source management approach that can well utilize the multi-cluster
environment. Thus, it is very hard to devise a comprehensive rule-
based approach. Moreover, the high dynamic feature of the system
status as well as the desire for a timely online scheduling decision
hinder the utilization of iterative searching based approaches. In
vision of this, we propose to utilize deep reinforcement learning
(DRL) techniques in this work to obtain a resource management
that could fulfill the expectation. The major contributions of this
paper include:

e We propose a deep reinforcement learning based approach
utilizing LSTM model and multi-target regression with
partial model sharing mechanism, and compare its effec-
tiveness with respect to other baseline and RL approaches.

e The DRL-based resource management is designed for dis-
tributed multi-cluster computing environments with consid-
ering its heterogeneity and being elasticity-compatible.

e The DRL-based resource management provides scheduling
support for time-critical (delay-sensitive) computing in
such a multi-cluster environment as described.

The following sections of this paper are organized as follows: In
Section 2, we introduce the background and related works. Then, the
problem description and the reinforcement learning based approach
are presented in Section 3 and Section 4 respectively. In Section 5,
we discuss the experiment results. And finally, the conclusion is
given in Section 6.

2 BACKGROUND AND RELATED WORK

Reinforcement learning (RL) has recently gained astonishing ac-
complishments in a diversified range of tasks such as artificial
intelligence, object tracking, vehicle management, robot navigation
and dialogue system [16][22][17][11][6][7]. Its advantages are well
demonstrated in extracting knowledge from continual interactions
with the environment even in complicated systems, which is oth-
erwise hard to be abstracted by rule-based approaches even under
expert guidance. Once trained, it could respond fast to inference for
providing timely action decisions in contrast to searching-based
approaches. Such capabilities of both learning from complexity and
fast response, make it a good choice for solving intricate problems
such as the one we are tackling with in this work.

In accordance with this consensus, reinforcement learning has
been adopted to deal with decision-making problems in a dis-
tributed computing environment. [14] presents “DeepRM” that
utilizes reinforcement learning for obtaining a resource manager
to coordinate workload execution in a cluster for improving exe-
cution efficiency. [23] uses multi-agent reinforcement learning in
obtaining a method aiming at the job scheduling problem in a Grid
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computing environment, in purpose of realizing load balancing. In
[3], a cloud controller towards resource allocation for applications
in a cloud environment as an automatic workflow is obtained via
reinforcement learning where techniques in accelerating training
process are integrated. [1] applies Q-learning in training towards
optimal policy for dynamic resource allocation for applications in
a cloud. [10] tries to solve a joint virtual machine resource alloca-
tion and power management problem by proposing a hierarchical
framework learned via reinforcement learning. In [9], a model-free
approach is obtained by deep reinforcement learning, targeting
at minimizing average end-to-end tuple processing time for dis-
tributed stream data processing systems. [2] presents DRL-Cloud,
a resource provisioning and task scheduling system achieved via
deep reinforcement learning focusing on reducing energy cost.

[12] proposes a resource management approach for time-critical
applications in a distributed computing environment via reinforce-
ment learning. It is the most related one to this work. However,
it differs with this work in multiple aspects. Firstly, the underly-
ing problem is largely different. Although similarly dealing with a
multi-cluster environment, [12] does not consider cluster hetero-
geneity and elasticity, both of which are considered in this work.
Later descriptions in Section 3 and 4 will reveal how greatly this
will change the problem nature and increase problem complexity.
Secondly, depending on the new problem feature, the most impor-
tant action value in this paper’s reinforcement learning is vitally
redefined with novel consideration and insights. Thirdly, the added
problem complexity leads to a brand new model structure design.
[12] uses a general neural network with fully-connected layers,
while we propose a deep neural network based on LSTM structure
and a partial network sharing multi-target learning mechanism.
Fourthly, our experiments provide more thorough observations and
show comparison with approach in [12]. Hence, this work shows
great importance and significant difference comparing to [12] from
aforementioned aspects.

In short, although sharing similar concept of utilizing reinforce-
ment learning in decision-making tasks related to distributed com-
puting, these related works are all different from our work in this
paper due to different problem characteristics and goals.

3 PROBLEM DESCRIPTION

The intended global resource management is aiming to (1) reduce
occurrences of missing temporal deadline events while (2)
maintaining a low average execution time ratio for a hybrid
workload containing multiple time-critical and general jobs, by
properly scheduling them to appropriate computing clusters in the
underlying computing environment. We depict the overall archi-
tecture of the problem in Figure 1 and present detailed problem
description as follows.

The underlying computing environment is composed of multiple
computing clusters. For each cluster, its overall computing resource
is expressed as the number of executors it could provide. The “execu-
tor" here is a basic resource allocation unit containing a combination
of virtual CPU and memory resources, which is adopted in popular
resource managing frameworks such as YARN [21], and utilized
by computing environments such as Apache Hadoop and Spark.
Different from [12], where executors are assuming to be identical
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among different clusters, cluster heterogeneity is allowed in this
work. That is, different clusters in the computing environment may
have diversified executors with different computing capabilities. A
heterogeneity factor (the larger the stronger) will be assigned to
each kind of such executors, representing its relative computing
capability. Furthermore, in this paper, clusters are allowed to have
elasticity, that is, their computing capability in terms of executor
numbers, can be temporarily expanded (with an upper bound) when
necessary, to fit workload pressure. This assumption coordinates
with the trending of elastic computing resources.

The holistic workload contains a number of continually arriv-
ing jobs, where each job can be classified into one of the three
categories[12]: streaming jobs (Cate-1), non-streaming time-
critical jobs (Cate-2) and other general non-time-critical jobs
(Cate-3). As aforementioned, streaming jobs can be regarded as
conducting repetitive executions with data batches and are inher-
ently delay-sensitive therefore time-critical. Such a categorization
of jobs helps manage hybrid workload in presenting a large range
of representative user analytical needs.

Arriving jobs first enter the global job buffer. For each moment
t when global job buffer is non-empty, given one job in the global
buffer, the intended global resource manager selects a proper cluster
in the computing environment for execution. Here, how to derive
an effective approach to fulfill the global resource management is

the main problem.
System
users

Jobs of multiple
categories

Workload of

Deep RL based
resource
management

Multi-cluster
computing M
environment

Figure 1: An illustration of the problem architecture.

This problem is inevitably complex. Firstly, abundant informa-
tion, such as job and computing environment features and system
dynamic need to be considered. Secondly, a job can have cluster-
specific difference, such as cluster-specific deadlines due to differ-
entiated transmission overhead and cluster-specific execution time

due to cluster heterogeneity. Cluster elasticity could also change
system resource status and thus affect job execution. The model
should be able to handle these issues and provide good perfor-
mance to both management goals. Solely attending to partial of
the available information or partial of the objectives can lead to
unsatisfactory performances. Integrated balancing between goals
and short-term sacrificing yet long-term benefiting scheduling ac-
tions are potentially desired. The extreme difficulty lays in whether,
when or how such kind of trade-off should be made, which is quite
uncertain for rule-based models and brings favor to DRL-based
approaches.

4 THE DEEP REINFORCEMENT LEARNING
BASED APPROACH

Our goal is to obtain an efficient resource management approach
with a neural network model via deep reinforcement learning. In
this section, we state our elaborative considerations in accommo-
dating the problem to model design and training skills, starting by
a brief introduction to reinforcement learning technique.

4.1 Introduction to Reinforcement Learning

Reinforcement learning is a mechanism that enables model im-
provement through continual interaction with the application en-
vironment defined upon several key concepts: environment, state,
episode, action and reward (or value).

Environment describes the overall world where the actual state
transitions happen. State is used to express the environment status
at a moment. Based on the adopted representation, the state s; at
moment ¢ can potentially contain historical or instantaneous infor-
mation of the environment. Action represents the set of actions
performable to environment at the moment. The instant reward
is a quantitative incentive feedback that the model receives from
environment at a moment, whereas the value is a form of the accu-
mulated reward (optionally decayed) observed in a longer duration.
Definition of the value of taking an action a in state s under a
decision-making policy 7 can be formulated as below [18]:

(o)
V7™(s,a) = Ex { Yor ka1 | st = s, ar = a}
k=0
where E; represents the expectation under policy 7, r; 41 is the
instant reward at moment ¢ + k + 1, a; is the action taken at moment
t and y is the decay factor. An episode is a round of ‘game’ that
marks the reaching of the termination state.

Reinforcement learning enables model improvement via the gen-
eral interaction mechanism as depicted in Figure 2: Based on en-
vironment state s; at t, an action is decided by the model and an
environment state transition consequently happens. Over the time,
model improvement can be carried out by learning from collected
interactive experience in purpose of maximizing action values. Such
a process is repeated multiple times until the accomplishment of
training process.

4.2 Reinforcement Learning Method Design

In this work, environment is the entire computational system
where the overall processing of jobs take place. The action set
contains number of actions equal to the number of clusters forming
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Figure 2: An illustration of reinforcement learning,.

the computing infrastructure, where each action corresponds to
deploying the job to that specific cluster. An episode is the whole
process of scheduling and finishing the execution of a workload
consisting of a certain number of jobs.

Environment state is composed of two main components: com-
puting system state and scheduling job information. Computing
system state (iterative for each cluster) includes static cluster fea-
tures like its sequence number, elasticity information (including
cluster’s normal capacity and maximum capacity under expan-
sion), heterogeneity factor (hetero factor) and dynamic features
like cluster occupation status in a past time interval and current
accumulated total occurrences of missing deadline events in cluster.

For scheduling job information, jobs in different categories can
possess different attribute sets. We utilize streaming job (Cate-1)
information as a super set for description, and other job categories
can adjust to this with unambiguous accommodations. Such in-
formation includes job category, expected hetero factor, standard
execution time with respect to using executors with the expected
hetero factor, execution deadline, total duration, discrete resource
request distribution and its heterogeneity sensitivity measure to
describe job’s adaptation capability to clusters with different hetero
factors. We explain some of the keywords here as below:

Heterogeneity sensitivity measure: A job’s execution time
is often proportionally affected by cluster’s hetero factor if the
factor is within a given range. In this work, a job’s heterogeneity
sensitivity measure ‘sen’ (integers in [1, 5] in experiment) is used
to represent such range by R = [h —sen - {, h + sen - {], where h is
the job’s expected hetero factor and { = 10 in experiment. If the
cluster’s hetero factor belongs to R, this job’s execution time in
cluster will be proportionally affected from its standard execution
time by the cluster hetero factor. Otherwise, if the cluster’s hetero
factor is outside the range, this job will cease to further fully reflect
change in its execution time. This corresponds to job behaviors
in practice where its execution time could be affected accordingly
by executors within a range of hetero factors, yet will not fully
receive benefit (or harm) in execution time for too large hetero
factor changes, due to other execution overheads.

Job’s cluster-specific difference: Job can have cluster-specific
difference. Such as, job’s execution deadline for each cluster can be
different, possibly due to cluster-specific data transmission over-
heads from data source, when regulating a uniform end-to-end

Zixia Liu, Ligiang Wang, and Gang Quan

batch execution time. It could also be due to job’s program transmis-
sion overhead to cluster before starting the execution. Job execution
time can also be cluster-specific due to cluster heterogeneity. To
lower user profiling burden, instead of requiring cluster-specific
execution times, our model only requires the standard execution
time with respect to (w.r.t.) job’s expected hetero factor and can
handle heterogeneity even without the complete execution time
information.

Discrete resource request distribution: A streaming job may
have resource request fluctuation during its repetitive executions.
Analogous to [12], when executing in a cluster, it is affiliated with an
length 10 array to describe its discrete resource request distribution,
with each position accounting for 10 percentage possibility. For
example, if such a distribution array containing eight 30s and two
60s, it means in each execution of the job, it has 0.8 probability to
request 30 executors and 0.2 probability to request 60 executors in
this cluster.

Table 1: State representation in our deep reinforcement
learning model for 5 clusters

Vector Component Dimensions

Cluster (i =1...5)

Cluster sequence number
Normal capacity

Maximum capacity if elastic
Cluster heterogeneity factor
Occupation status (latest 105 steps)* 105 — 150
Current total missing deadlines 1

_ o R e

775 (155 X 5)

Job

Category 1
Expected heterogeneity factor 1
Heterogeneity sensitivity 1
Discrete resource request distribution 10 x5
Standard execution time 1%x5
Execution deadline 1X5
Duration 1

64
Overall state vector 839 (775 + 64)

Only * row includes temporal information

The overall composition of the state representation is presented
in Table 1. For cluster occupation status, we would like to use the
records roughly in the latest 100 steps. In experiment, the latest
105 steps is used per input design desire, and this information is
specially traversed to create a 150 dimensional vector for each
cluster. Details of the traverse will be stated in Section 4.4.

The influence of deploying a job onto a cluster is destined to
be long-term due to its execution duration. Meanwhile, since per-
formance metrics related to number of missing deadline events
and execution time statistics have significant response delay from
occurring moments of their most influential contributing factors
such as inappropriate deployment or resource competition within
cluster, it is difficult to define the instantaneous action reward at
any moment. In this vision, we alternatively define the value of
an action, concentrating on action’s long-term influence. In this
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work, the value o) of an action that schedules a job j to a cluster
at some moment, is defined as follows:

M;j + i pP: (Wj(t) + WC(I[))
i=1,

o0) = flc " Mip - Mic

— ~VinYic-Rj
nj

Here, nc and 7; are the heterogeneity factor of the cluster and
the expected heterogeneity factor of the job, respectively. M; is the
number of missing deadline events of job j where resource waiting
does not happen at execution beginning. Note that a job can have
more than one missing deadline events, such as, since a streaming

job can be repetitively executed for multiple times. Wj(t) records
the happening of each missing deadline event of job j at moment

t, if it does not belong to M;. Similarly, Wc(lt> records the number
of missing deadline events of all jobs in the cluster at moment ¢
if resource waiting happens at their execution beginning. t; and
te correspond to the deployment and termination moment of job
J, respectively. f is the decay factor, and D; records how many
new jobs have been deployed to the cluster after g, till moment
t. R; represents the overall average execution delay ratio of job
Jj (its average execution time divided by standard execution time,
then minus 1 for representing delay). In the experiment, weighted
factors are applied to the components of oY), we omit its showing
in the formula for simplicity.

m;p, and m;c follow Eq. 1 of mq, where Q services as a place
holder for ‘ih’ or ‘ic’. The events corresponding to ‘ih’ and ‘ic’
are Improper_Heterogeneity (IH) and Initial_Competition (IC), re-
spectively. Here, IH refers to the case where an improper cluster
arrangement is caused by the scheduling action, that the cluster
heterogeneity factor is too low for the job, causing execution dead-
line violation. IC refers to where resource competition (resource
waiting) happens right after the job’s deployment to the cluster
designated by the scheduling action. Similarly, ;;, and ¢;. follow
Eq. 1 of Y, respectively. Here, Py, > 1and Py, > 1.

Py, isEvent & R;j > 0

Yo =1 1/Py, isEvent&R; <0

1 Otherwise
¢Y)
The design of the value formula is originated from the consider-
ation that when resource competition contributes to the causing of
the missing deadline event of job j, the root cause of the resource
competition can be complex. It could be due to the deployment of
job j on a specific cluster or later deployment of other jobs on the
same cluster. To alleviate such intertwined influence when deriv-
ing a clearer action evaluation, all missing deadline events of job
Jj related to resource competition will be decayed over numbers
of newly arriving jobs after j. Furthermore, the number of overall
missing deadline events at any moment from all jobs in the cluster
which could be caused by resource competition is also added follow-
ing the same decay pattern, in purpose of attending the potential
mutual influence of j from and to other coexisting jobs in the cluster.
On the contrary, other missing deadline events of job j without

- P isEvent
Q71 Otherwise

resource waiting will not be decayed over time. The factor Z—j in
formula helps the model discern the potential differentiated effects
of cluster heterogeneity to the job. Such heterogeneity influence is
also considered in R; due to its definition. The factors m;p,, mic, ¥;p

and ¥;c work as a whole to assist the proper avoidance of certain
irregular behaviors which the model should avoid.

4.3 DRL Model Structure and Decomposition of
Value Definition

According to Table 1, the model input (RL system state) contains
two types of information: Non-temporal information describing
static or accumulated properties of job and computing environment,
and temporal information related to computing environment oc-
cupation status in an interval of past moments. There exist neural
network structures more specialized in dealing with temporal se-
quential information, such as Long Short-Term Memory (LSTM).
LSTM has shown effectiveness in various tasks, such as speech
recognition, music modelling and language translation [5] [24]. We
plan to utilize the LSTM structure to process the temporal informa-
tion portion of the input.

Also, the action value is a vital feedback signal for RL process. In
fact, the neural network in our approach is directly performed as a
value estimator. How well the action value can be estimated will
undoubtedly affect performance in a large extent. Nonetheless, the
value definition contains multiple components for better depicting
action influence and such constitution adds up the estimation com-
plexity. It makes the changing behavior of the integrated action
value more difficult to be predicted. And, the possibly differentiated
numerical range of components and their variation patterns could
vanish influence of some individual component, which may affect
learning and the multi-goal optimization result.

A plausible solution is to consider components in the value defi-
nition as multi-objectives in reinforcement learning, converting it
to a Multi-Objective Reinforcement Learning (MORL) problem [20].
In a MORL problem, the value space can be composed of multi-
ple dimensions, i.e., V7 (s, a) = (Uf (s,a),...,05(s, a)). With such
formulations, our approach can be described as a scalarized[19]
single-policy[4, 13] learning algorithm for MORL. More specifi-
cally, a linear scalarization function is utilized to regulate a united
measure over the vector of the value components, and provide a
single scalar value feedback for a single policy learning problem.
The scalarization mechanism in this work can be described as [20]:
SAVll-near(s, a) = X1, wi X Vi(s, a), where V;(s, a) is intended to
be a value estimator for v and w; are weights. Now the problem
becomes how to achieve multiple value estimators V;(s, a), one for
each value component of our problem.

Based on the refined problem nature, the purpose of estimating
multiple real value component outputs via training with the same
training data can be modeled as a multi-target learning (regres-
sion) problem. Accordingly, we decide to utilize a partial network
sharing skill to potentially facilitate the process. It uses multiple
networks sharing the front a few layers, where one network aims
for one of the expected value component estimators. Here, multi-
target learning focuses on simultaneously training networks as
value components estimators desired by the formulated scalarized
single-policy MORL algorithm with potential intertwine, where the
shared layers serve as a joint structure aiming to capture abstract
input encoding shareable and beneficial to all networks. This model
construction and learning mechanism enable the value estimation
at its individual component level.
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Figure 3: The structure of our deep neural network.

The overall network structure of this work is depicted in Figure
3. As illustrated, the input is separated into temporal related and
non-temporal related sections. The temporal section will first go
through the LSTM-based structure and the aggregated temporal
hidden states will be integrated with the non-temporal section in
the original input to enter the fully-connected (FC) layers. The
LSTM session network and the first FC layer are the shared layers,
whereas the second FC layer is isolated for each estimator, three in
total, corresponding to each of the following value components:

te
oy = _ N - Mip - Mic (Mj + Z ,BD’Wj(t))

nj t=1
te
vy = —de Tih ' Thic Z ﬁD‘WC(lt)
nj t=1

v3 = =Yip - Yic - R;

Here v focuses on feedback related to missing deadline events
of job j itself, vy focuses on mutual influence of missing deadline
events of all jobs on-board the cluster, and v3 focuses on average
execution delay ratio of job j. The integrated value of an action is
then decided based on the (weighted) sum of outputs of the three
network estimators.

4.4 Training Enhancement Skills

We apply several training enhancement skills that are suitable for
the model training of the underlying problem with the potential to
increase training efficiency and performance. They are:

Cluster occupation status traverse:

The cluster occupation status in the last 105 time steps is spe-
cially traversed to generate the actual input of the LSTM session
of the model, which also forms the temporal portion of the model
input. This can be seen as a segmentation process of the original
status vector, aiming at transforming it into a series of status seg-
ments (possibly with overlaps) following the same temporal order,
each as a continual sub-sequence of the original one. Such kind of
segmentation helps preserve the original temporal series informa-
tion to be captured by LSTM structure, while revealing occupation
evolution by the sub-sequence in each segment available to the
LSTM cell.

For each cluster, as depicted in Figure 4, the process starts at the
beginning of the occupation status vector with a 10-element incre-
ment for each segment’s start-point and with length 15. Therefore,
each two consecutive segments have a 5-element overlap. Overall,
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the segmentation for the length 105 status vector results in 10 seg-
ments of length 15, concatenated as a 150 length vector. For totally
5 clusters as in the experiment, we have a 750 length vector as the
actual temporal portion of input.

Training with decayed learning rate: We utilize Adam opti-
mization [8] for learning rate tuning. Here we denote it as Adam(a),
where « is a base learning rate. Our exemplary experiments reveal
that a relatively large base learning rate, such as Adam(le — 2) or
Adam(1le — 3) may adversely affect training performance. And a sin-
gle base learning rate with a smaller & shows relatively promising
influence, such as Adam(1le — 4). However, for these approaches, no
manual decay in the base learning rate is included.

We decide to further supplement a manually decayed base learn-
ing rate to Adam. More specifically, for the first 1000 training
episodes in the experiment, the learning rate is Adam(1le — 4), and
afterwards, it becomes Adam(1e —5). Such Adam optimization with
a manually decayed base learning rate provides the potential to
combine the benefit of more swift change in the early stage and
more fine tuning in the later stage of the training.

Cluster occu pation status in last 105 time steps

-

N \\\\\ W I:’I
J \

N
N

Y

SRR

pzia

Traverse to generate 10 vectors of length 15
Each box represents 5 elements in the vector

Figure 4: Traverse of cluster occupation status.

We’ve also adopted some training skills in [12], shown to be
effective for training RL-based resource management, including:
Training with randomized workload: Randomness is added
to important job feature variables to inject variations of the work-
load in each episode. This stimulates better state space exploration
and pressurizes the network in continually refining itself towards
generalized knowledge of its duty to suit workload variations.
Modified e-greedy exploration: A rule-based baseline model
is supplemented to guide the action perturbation for exploration.
When a random action perturbation is needed (by probability e
from the original e-greedy exploration), it then has another proba-
bility that this perturbation will be instead provided directly by the
supplemented baseline, otherwise, a normal random action pertur-
bation is performed. This is in purpose of letting a rule-based model
inject its better-than-random knowledge to partially guide the gen-
eral exploration, such that exploration efficiency is increased.
Solving multi-job selection dilemma: The proposed resource
management can schedule one job at a moment. So, besides deciding
the scheduling action for a job, it also needs to supplementarily
select a targeted job for its scheduling, if more than one exist in the
global buffer. To accomplish this goal, designing a model to accept
all jobs in the global buffer at once is difficult due to the absence
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Figure 5: Training architecture of our deep neural network in one episode.

of job count upper bound and the further exacerbated exploration
difficulty. Therefore in the adopted design, our model still accepts a
single job input at once, but an outer level iterator will traverse the
global job buffer where an overall value vector would be assembled
to provide job and its action selection in one integration.

The overall training architecture is shown in Figure 5.

5 EXPERIMENTS

The experiments are conducted via simulation. In the experiments,
the testing distributed computing environment is set as composed of
5 clusters, with executor capabilities for each described by the vec-
tor: [800, 1200, 1500, 1800, 2300]. Notice that here executors among
different clusters can be heterogeneous. Accordingly, the hetero-
geneity factor for each cluster is: [70, 60, 100, 80, 90]. For elasticity,
we suppose two of the clusters: the 3rd cluster and the 5th cluster
have elasticity and their resource variation behaviors are managed
by the elasticity controller as described below.

Elasticity controller: Executor capacity of an elastic cluster
can be expanded by an increment amount (100), when the cluster
occupation ratio in any moment of a past time window (100 steps)
is > 95%. The accumulative expansion in effect can be no larger
than a maximum limit (200). On the other hand, if no occupation
> 95% is detected in the past time window, the expansion capacity
in effect will be returned in stages by a decrement amount (100).

Note that our approach focuses on cluster-level global resource
management. To accomplish job execution, a local intra-cluster
scheduler is still needed. Our approach, instead of replacing or
intervening, will actually cooperate with the local scheduler and
as a benefit has the potential to coordinate with different local
schedulers. We use a popular generic local scheduler for experiment.

Local intra-cluster scheduler: At each moment in a local clus-
ter, if there are jobs halting and awaiting for resource from previous
moments, they are prioritized for resource satisfaction. After that,
job requests to start execution at this moment are considered for re-
source allocation. Whenever queuing is needed, the same sequence
as the job arrival is followed. If a job’s resource need cannot be
satisfied, it will be put into halting (resource waiting), and try again
in the next moment. Here, resource satisfaction means that the job’s
executor request can be fully fulfilled by the cluster.

To compare with our deep RL-based approach, multiple rule-
based baselines are considered:

Random (RAN): Jobs are deployed to one of the clusters form-
ing the multi-cluster computing environment solely by randomness.

Round-Robin (RR): Jobs are deployed to each cluster forming
the multi-cluster computing environment in a round-robin manner,
starting from a random one at the very beginning.

Most Available First (MAF): Cluster with averagely most avail-
able computing capacity in a past time window relatively for the
considered job will be selected for job deployment. Here the avail-
able computing capability for cluster i is defined as: (1 — RO;) x
CAP; [ER;, where RO;, CAP; and ER; are the average occupation
ratio of cluster i in the past time window, current total capacity of
cluster i (elastic capacity in effect is included) and the most likely
executor amount request from the job to cluster i, respectively.

For all baselines, the job with the least amount of worker re-
quest in the global job buffer will be selected. Similar as before, the
worker request of the job is defined as the average of the number
of executors most likely to be requested by the job with respect to
each cluster. In this way, the MAF baseline roughly mimics the idea
of ‘SF-E’, which is the best baseline as presented in [12].

Additionally, we also demonstrate our DRL approach by compar-
ing to another RL model (denoted as RL-FC), which roughly
follows the reinforcement learning approach in [12].

From the computing environment perspective, the comprehen-
sive job submission (arriving) pattern to the infrastructure could
affect system status changing and thus be relevant to system state
transition. In experiments, we use three different stochastic job
arriving patterns that are utilized in [12] with the name Uniform,
Bernoulli and Beta for thorough approach testing. However, dif-
ferent from [12], where models are trained separately for each job
arriving pattern, in this work, the intended model is solely trained
with the Uniform job arriving pattern, and its generality of direct
usage on other job arriving patterns will be presented. The possibil-
ity of having i as the time interval between job arriving events for
Uniform pattern is: P(i) = ﬁlie[a,b] (i) with parameter setting
a = 1and b = 33. I is the indicator function. We refer readers to
[12] for other supplemental information about job arriving patterns
and according formulas for Bernoulli and Beta patterns.

Definition of performance metrics:

Recall there are two major goals for our resource management:
(1) reducing number of missing deadline events during job execu-
tions, and (2) maintaining low job execution time ratio. These are
equivalent as simultaneously minimizing two metrics:
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TMDL: Total number of occurrences of missing deadlines for
all jobs in all clusters during the execution of the workload.
AJER: Average job execution time ratio among all clusters, i.e.,

Ny (100 377 (—Afé")
AJER= )| —————*

j=1 nj - Nw

where SR and ARj. are the standard execution time of job j and the
execution time of job j in its k-th running when executing in the
designated cluster, respectively. n; is the number of executions for
job j and is usually larger than 1 for Cate-1 jobs. N, is the number
of total jobs in each episode. Note that by dividing AR (relevant to
cluster heterogeneity) with SR (irrelevant to cluster heterogeneity),
the resulting AJER is influenced by heterogeneity of the selected
cluster, thereby including the cluster heterogeneity influence into
evaluation. For cluster elasticity, its influence is also included in
both TMDL and AJER implicitly.

Further, an integrated score Sy, is defined by caring for the
comprehensive performance in both goals.

Slog = sign(S)xlog;g(max(|S], 1)) as S = —TMDL+50+(100—AJER)

For Sj4 € R, the higher the better. And a score 0 for S, can
be roughly seen as equivalent to having an average execution time
same as the standard one and with no missing deadline events. The
weighting factor 50 in S is for balancing between two goals, since
TMDL is an accumulative measure for all jobs in the workload,
whereas AJER is an averaged measure.

To facilitate qualitative comparison, three more comparative
measures are defined: Fully-dominant (F), Semi-dominant (S) and
Non-dominant (N), which mean that in a testing episode, whether
the RL approach has better performance comparing to MAF, for
both, only one, or none of the performance metrics (TMDL and
AJER in consideration), respectively. For 50 testing episodes we
used for approach comparison, the F/S/N scores are given as a
distribution among all testing episodes. Therefore, for performance
preference, F>S>N. Before discussing the experiment results, some
training parameters are provided in Table 2.

Table 2: Some training parameters

Notation | Description Value
E Number of training episodes 1500
N,, Number of jobs in each episode 1000
K Capacity of knowledge buffer 50000
B Training batch size 2000
Ly Model input layer size 839
Lc Input size to a LSTM cell 15
Nre1 Neurons in first FC layer 800
N Neurons in second FC layer 200
fe2 (identical size for three networks)
L Output layer size 5
o (identical size for three networks)

Approach Performance:

Consequently, the performance comparison (in S;,4) for our
approach (notated as RL-LSFC) with respect to other baseline ap-
proaches RAN, RR, and MAF, in different training episodes during
the training process, is shown in Figure 6. For each vertical com-
parison, all models are included to compare for 50 testing episodes.
The same workload is used for all models in one testing episode,
but is re-generated for each testing episode.
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Figure 6: Performance comparison (S;, ) of our RL approach RL-
LSFC and baseline approaches in different training episodes.

From it, we can observe that among baselines, Random (RAN)
and Round-robin (RR) provide similar performance and are signifi-
cantly surpassed by MAF. For our RL-LSFC, it gradually improves
itself during training and surpasses all baselines during the mid of
overall episodes, and continues to increase its performance towards
the end of training. A detailed performance comparison between
the final RL model after training and MAF is shown in Figure 7 and
the average statistics are shown in Table 3.
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Figure 7: Comparison of RL-LSFC and MAF for 50 testing episodes.
Three sub-figures are w.r.t. TMDL, AJER and Sj,4. Data in all figures
are sorted uniformly in descendent by S;,, of MAF for viewing con-
venience. (L) Lower is better. (H) Higher is better.

Table 3: Statistics w.r.t. Figure 7

TMDL (L) [ AJER (L) [ Sjoq (H) [ F/SN
RL-LSFC | 61.70 90.30 2.57 46/4/0
MAF 343.84 93.22 -0.28 -

We can see that our approach trained via deep reinforcement
learning outperforms MAF in a large scale. For TMDL, it reduces
the occurrence of missing deadline events by 5.57 times. For AJER,
it shortens average job execution ratio by 2.92%, thus obtains a
significant higher S, score with 2.57 comparing to —0.28. As
well, RL-LSFC achieves excellent 46/50 Fully-dominant, 4/50 Semi-
dominant and no Non-dominant in 50 testing episodes.

In fact, during experiment, a phenomenon is observed that the
model obtained by our deep RL approach can perform equivalently
well or even better for workloads that is statistically “less stressful”
than the ones in training. Here, a coarse definition of the “stress”
can be described as how crowded the computing environment is
during the peak period of the workload execution. The workload
“stress” can be changed via the Uniform pattern parameter b. In
training, we intentionally select b = 33, which could reasonably
stress the computing environment nearing to its maximum, yet not
over-saturate the overall computing capability. And the obtained RL-
LSFC could consequently be utilized in a wide-variety of workload
scenarios that is “less stressful” than training to the computing
environment. Therefore, although RL-LSFC has already shown
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promising performance in b = 33 scenario, we are more caring for
its performances in other “less stressful” scenarios, as they represent
a much broader variety of applicable cases. We test such generality
by two testing scenarios, one with a stress-reduced workload (b =
36), and the other with a more stress-reduced workload (b = 40).
The results are shown in Figure 8 and Table 4.
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Figure 8: Comparison of RL-LSFC and MAF in variant workloads.

(a)-(c) are related to b = 36 scenario. (d)-(f) are related to b = 40
scenario. Other instructions are the same as Figure 7.

Table 4: Statistics w.r.t. Figure 8

(@-(c) | TMDL (L) [ AJER (L) [ Sjoq (H) [ F/SN
RL-LSFC | 37.66 88.32 2.73 50/0/0
MAF 311.44 92.35 0.87 -
(d-() | TMDL (L) | AJER (L) | S;oq (H) | F/SIN
RL-LSFC | 19.76 87.12 2.79 50/0/0
MAF 276.1 91.95 1.55 -

We can see that as the workload gradually becomes less stressful,
RL-LSFC performs even better, and is consistently fully-dominant
with respect to the MAF baseline in all testing episodes for both
scenarios. Since the stress of the computing environment could
largely vary in daily usage, the generality of the RL model to fit for
such variation is certainly an apparent advantage.

Performance in other job arriving patterns

Different from [12], where a RL model is trained for each job
arriving pattern, we solely train one deep RL model based on the
Uniform pattern, and present that the obtained model could work
equivalently well for other job arriving patterns directly, which is
an out-of-intuition but exciting result. To accomplish, we directly
utilize the obtained RL-LSFC model with Uniform pattern onto other
two patterns, Bernoulli and Beta. The results in Figure 9 and Table
5 show that RL-LSFC with respect to the Uniform pattern indeed
can work well directly with the other two job arriving patterns. We
envision that this may because the obtained model is capable to
capture intrinsic information from the provided system status for
deciding scheduling actions, and is less prone and less sensitive to
job arriving pattern shift. The observed irrelevancy of job arriving
patterns in experiments is a great supplement towards approach
generality.

Comparison with a fully-connected layers model RL-FC

In this experiment, we would like to compare models of our
approach to a RL model with fully-connected layers based structure,
which roughly follows the ideas in [12] (denoted here as RL-FC).
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Figure 9: Comparison of obtained RL-LSFC and MAF in other
job arriving patterns. (a)-(c): Bernoulli pattern. (d)-(f): Beta pattern.
Other instructions are the same as Figure 7.

Table 5: Statistics w.r.t. Figure 9

@-() TMDL (L) [ AJER (L) [ Sioq (H) [ F/SN
RL-LSFC | 13.32 86.67 2.81 50/0/0
MAF 243.18 91.75 1.92 -
(d)-() | TMDL (L) [ AJER (L) | S;oq (H) | F/SIN
RL-LSFC | 39.14 88.68 2.71 50/0/0
MAF 295.66 92.41 1.11 -

To strengthen the comparison, besides RL-LSFC, we intend to ad-
ditionally supplement another deep RL model variant also obtained
by our approach. Actually, by the greatly separated recognition
of individual objectives of our MORL problem empowered by the
approach architecture, we are able to achieve variants of RL models
with different balancing between objectives such as via weight ad-
justment of objectives forming the scalarized value feedback signal.
With such benefit, we obtain another variant of our model, namely
RL-LSFCb. It shares general conception with RL-LSFC, but with a
slightly different balancing between objectives.

Three RL approaches, RL-LSFC, RL-LSFCb and RL-FC together
with the MAF baseline are put into 50 testing episodes, results
of which are shown in Figure 10 and Table 6. We can see that
although the RL-FC model achieves slightly better TMDL than RL-
LSFC, it pays a too large cost in AJER and has thus lower score in
S1og than both of our models. Similar weakness of it can also be
observed in F/S/N distribution comparing to both of our models.
Thus, the RL-FC model in experiment shows weaker balancing
ability between multiple optimization goals and a weaker overall
performance. Meanwhile, two of our models, RL-LSFC and RL-
LSFCb show differently prioritized yet better performance. RL-
LSFCb could surpass RL-FC in all aspects, which indicates potential
advantage of our approach. But its balancing in dual-objectives
causes a hit in comprehensive score S, comparing to RL-LSFC
and promotes the RL-LSFC model as the best performing model
here. The best is, our approach grants the freedom to choose either
of them per user preference.

It is worth mentioning that we are not intending to declare
an absolute structural or approach advantage here, since a direct
and thorough competition of two RL approaches requires extensive
hyper-parameter searching and tuning, which is not the main objec-
tive and beyond the scope of this paper. Nonetheless, the exemplary
RL comparative experiments here show that our approach presents
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decent capability in balancing multi-objectives while providing
good overall scheduling performances.

T = .
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Figure 10: Comparison of three RL models w.r.t. MAF. (a) each
curve is independently sorted for viewing convenience. In (b), we
give F:2, S:1 and N:0 for scoring to show a dominant area (larger
is better) of RL-LSFC and RL-FC (RL-LSFCb is very similar to RL-
LSFC here and is omitted for viewing). RL-LSFC indeed has a much
larger area (difference as in the pure purple area) than RL-FC. (c)
Non-dominant column is omitted since all models have 0 in it.

Table 6: Statistics w.r.t. Figure 10, * are our models

TMDL (L) [ AJER (L) [ Sioq (H) [ F/SN
RL-LSFC* | 36.84 88.71 2.71 50/0/0
RL-LSFCb* | 14.74 90.13 2.67 49/1/0
RL-FC 15.28 92.79 2.24 29/21/0
MAF 305.02 92.67 0.65 -

Model behavior pattern exploration

By observing the good performance of RL-LSFC, we would like to
further explore interesting behavior patterns of it. We firstly draw
temporal job scheduling sequence in one episode (one point for each
job, as shown in Figure 11 (a)-(b)) of both RL-LSFC and MAF with
respect to all computing clusters, with one color representing one
job category. We discover that the deep RL model RL-LSFC indeed
shows significantly differentiated scheduling pattern from MAF,
which could be coarsely summarized as RL-LSFC tends to utilize
clusters with larger capacities and larger heterogeneity factors (thus
stronger computing capabilities) more during the early stage of the
episode when computing pressure is not peaked, in favor of better
performance in both goals. Yet when pressure rises, it well utilizes
all cluster resource for overall performance.

Secondly, we further examine the model behavior variance for
different job categories (as in Figure 11 (c)-(h)). It seems RL-LSFC
can successfully distinguish jobs in different categories and provide
differentiated scheduling patterns. Such as, for streaming jobs (Cate-
1), it seems to prioritize clusters with stronger computing capability
and with elasticity, presumably due to their better potentials in
suiting streaming jobs with fluctuated executor amount requests.
Such differentiated job categorical scheduling patterns are further
illustrated in Figure 12.

6 CONCLUSION

In this work, we present an elasticity-compatible resource man-
agement approach obtained via deep reinforcement learning for
a heterogeneous multi-cluster computing environment. In experi-
ment, comparing to the best baseline, it successfully reduces the
occurrence of missing execution deadline events for workloads of
1000 jobs by around 5x to 18x in different scenarios, and reduces
average execution time ratio by around 2% to 5%; It also shows
better performance than a previous reinforcement learning based
approach with fully-connected layers. We believe this work can
contribute to the progress of utilizing deep reinforcement learning
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Figure 12: Comparison of Job-Cluster scheduling pattern with re-
spect to different job categories under RL-LSFC control. Value axis
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color for each cluster.

techniques in tackling problems related to large-scale distributed
computing environments.
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