
VOL. E101-A NO. 5
MAY 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

778
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.5 MAY 2018

PAPER
Naive Bayes Classifier Based Partitioner for MapReduce

Lei CHEN†a), Wei LU†, Ergude BAO†b), Liqiang WANG††, Weiwei XING†, Nonmembers,
and Yuanyuan CAI†††, Member

SUMMARY MapReduce is an effective framework for processing large
datasets in parallel over a cluster. Data locality and data skew on the re-
duce side are two essential issues in MapReduce. Improving data locality
can decrease network traffic by moving reduce tasks to the nodes where the
reducer input data is located. Data skew will lead to load imbalance among
reducer nodes. Partitioning is an important feature of MapReduce because
it determines the reducer nodes to which map output results will be sent.
Therefore, an effective partitioner can improve MapReduce performance
by increasing data locality and decreasing data skew on the reduce side.
Previous studies considering both essential issues can be divided into two
categories: those that preferentially improve data locality, such as LEEN,
and those that preferentially improve load balance, such as CLP. However,
all these studies ignore the fact that for different types of jobs, the priority
of data locality and data skew on the reduce side may produce different
effects on the execution time. In this paper, we propose a naive Bayes
classifier based partitioner, namely, BAPM, which achieves better perfor-
mance because it can automatically choose the proper algorithm (LEEN
or CLP) by leveraging the naive Bayes classifier, i.e., considering job type
and bandwidth as classification attributes. Our experiments are performed
in a Hadoop cluster, and the results show that BAPM boosts the computing
performance of MapReduce. The selection accuracy reaches 95.15%. Fur-
ther, compared with other popular algorithms, under specific bandwidths,
the improvement BAPM achieved is up to 31.31%.
key words: MapReduce, hadoop, data locality, data skew, naive Bayes,
bandwidth, job type

1. Introduction

As a popular framework for processing big data in various
applications, MapReduce [1] consists of two main stages:
the map stage, which transforms input data into intermedi-
ate data, namely <key,value> pairs, and the reduce stage,
which is applied to each list of values with the same key.
As a critical feature, partitioning determines the reducer to
which an intermediate data item will be sent. Therefore,
an ineffective partitioner will decrease data locality or cause
data skew, consequently degrade system performance.

Data locality in a distributed environment refers to

Manuscript received June 22, 2017.
Manuscript revised December 6, 2017.
†The authors are with School of Software Engineering, Beijing

Jiaotong University, Beijing 100044, China.
††The author is with Department of Computer Science, Univer-

sity of Central Florida, USA.
†††The author is with Beijing Key Laboratory of Big Data Tech-

nology for Food Safety, School of Computer and Information En-
gineering, Beijing Technology and Business University, Beijing,
100048, China.

a) E-mail: 13112084@bjtu.edu.cn
b) E-mail: baoe@bjtu.edu.cn

DOI: 10.1587/transfun.E101.A.778

computing and data are preferably co-located on the same
nodes in order to reduce network traffic. The current sched-
ulers in native Hadoop [2] only consider data locality in map
tasks and ignore the data locality of reduce tasks. When a
user uploads files to HDFS [3], the files are divided into
blocks (64 MB by default), and each chunk is replicated
across multiple machines. Data processing is co-located
with data storage: when a file needs to be processed, the job
scheduler consults a storage metadata service to get the host
node for each chunk and then schedules a “map” process
on that node so that data locality in the map phase is ex-
ploited efficiently. In state-of-the-art MapReduce systems,
each map task processes one split of input data and gen-
erates a sequence of key-value pairs, which are referred to
intermediate data, on which the hash partitioning function
defined in Equation (1) is performed. Because every inter-
mediate data has a unique hash code, the key-value pairs
with the same hash result, which we define as a hash parti-
tion, are assigned to the same reduce task.

Hash(Hashcode(Intermediate data) mod ReducerNum) (1)

In the reduce stage, a reducer takes a partition as input and
performs the reduce function on the partition. However,
with the hash function, there is a possibility of transferring
a large amount of intermediate results to improper reducer
nodes, which could cause massive network communication,
i.e., data locality might not be achieved and the job execu-
tion time might be prolonged.

Data skew refers to the imbalance in the amount of
data assigned to each task or the imbalance in the amount
of work required to process the data [4]. The fundamental
reason for data skew is that data sets in the real world are of-
ten skewed and we do not know the distribution of the data
beforehand, which cause the aforementioned hash function
in native Hadoop to be inefficient in most cases. Therefore,
balancing the hash partition size, which is defined as the
size of the key-value pairs with the same hash result, is an
important indicator for load balancing among the reducers.

In recent years, several approaches have been proposed
to improve the performance of MapReduce by increasing
the degree of data locality and decreasing the degree of data
skew intensively. Based on the order in which data local-
ity and data skew are considered, relevant studies can be
divided into two categories. Studies in the first category
consider data locality then data skew, e.g., the LEEN algo-
rithm [5], in contrast, the other category considers data lo-

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

CHEN et al.: NAIVE BAYES CLASSIFIER BASED PARTITIONER FOR MAPREDUCE
779

cality based on data skew, e.g., the CLP algorithm [6]. How-
ever, these studies do not consider the job type and network
bandwidth, according to which the preference for data local-
ity or data skew should be adjusted. Based on the amount
of intermediate data transmitted from Mappers to Reducers
in shuffle phases, all MapReduce jobs can be divided into
three different types, reduce-input-heavy, reduce-input-light
and reduce-input-zero. We will describe this in details in
Sect. 4.2. When the bandwidth is ineffective, for reduce-
input-heavy jobs, data transmission will result in overhead.
Therefore, data locality is the major factor that affects the
job execution time. In contrast, when the bandwidth among
nodes in a Hadoop cluster is relatively high, for reduce-
input-light jobs, the data transmission cost will decrease ob-
viously. In this case, data skew, which could cause load
imbalance among reducers, will be a major factor that influ-
ences the execution time. We will verify this in the exper-
imental section. Therefore, the preference for data locality
or data skew may result in varying execution time when run-
ning different types of jobs at different bandwidths.

The available bandwidth in a Hadoop cluster depends
on the resource configurations status of cluster and the free
computing resources that working nodes can provide. The
bandwidth between working nodes in Hadoop is relatively
stable when the jobs on the nodes are running, but vari-
able and unpredictable when the jobs running on the nodes
change, for example, a running job is suspended or a new
job begin to run. However, this variation is not mutable
for the following reasons. First, the Resource Manager in
Hadoop continuously monitors all resources including band-
width in the entire cluster, it tries to prevent bandwidth mu-
tation from happening as much as possible. For example,
when users start the Balancer included in Hadoop, the Re-
source Manager will limit the bandwidth allocated to the
Balancer in order to avoid obvious performance degrada-
tion [7]. Secondly, when the Resource Manager assigns a
resource container to a task, it will select the node with suf-
ficient resources (including bandwidth) from among all the
nodes that hold the input data or its replications of the task,
this will also prevent bandwidth mutation [8]. Therefore,
the bandwidth is stable in shuffle phases of a MapReduce
job. This also makes it possible to improve the performance
of a MapReduce job by increasing data locality and mitigat-
ing the data skewness under specific bandwidth. In addition,
besides job type and bandwidth, there are many other factors
that influence the performance of a MapReduce job, such as
CPU, memory and container of computing nodes, as well
as the number of nodes. Therefore, giving a specific com-
bination of job type and bandwidth, the preference between
LEEN and CLP is determined by many factors. It would be
better to use a learning technique to make the choice.

In this paper, we propose BAPM, a novel partitioner,
which can not only make a proper choice between LEEN
and CLP but also leverage the naive Bayes classifier by con-
sidering the job type and network bandwidth as classifica-
tion attributes when a MapReduce job finishes map tasks.
We consider the LEEN and CLP algorithms for the follow-

ing reasons. First, the two algorithms consider both data
locality and data skew on the reduce side, but with opposite
preferences. Second, both algorithms take intermediate data
as input. Hence, the inputs are very similar. Finally, the two
algorithms show better performance than native Hadoop.
The contributions of this study can be summarized as fol-
lows:
(1)We propose BAPM, which improves the job execution
time by properly selecting LEEN or CLP in consideration
of the job type and bandwidth.
(2)According to the amount of intermediate data that should
be transmitted from mappers to reducers, we classify pop-
ular jobs, which could be coded using MapReduce model,
into a special category. This is useful for our classifier.
(3)We conduct a performance evaluation using BAPM in a
Hadoop cluster. Based on our training sets, the selection ac-
curacy of BAPM reaches 95.15%. Comparing with other
popular algorithms, the improvement caused by BAPM
reaches 31.31%

The rest of this paper is organized as follows. Sec-
tion 2 reviews some related studies. Section 3 briefly intro-
duces the CLP and LEEN algorithms. Section 4 describes
our BAPM in detail. Section 5 describes the performance
evaluation of BAPM. Finally, Sect. 6 concludes the paper
with a brief discussion on the scope for future work.

2. Related Work

There are many approaches for improving the data local-
ity of Map tasks. Tan et al. [9] designed a resource-aware
scheduler for Hadoop to mitigate the job starvation problem
and improve the overall data locality, it utilizes wait schedul-
ing and random peeking scheduling for map tasks in order
to optimize task placement.

Many studies have focused on the locality of reduce
tasks. EP [10] formulated a stochastic optimization frame-
work to improve the data locality for reduce tasks with
the optimal placement policy exhibiting a threshold-based
structure. In presence of job arrivals and departures, EP as-
signed the Reduce tasks of the current job to proper nodes
by taking fetching cost and data locality into account com-
prehensively.

Current MapReduce implementations have overlooked
data skew, which is a major hurdle to achieve successful
scale-up in parallel computing systems. SkewTune [11] ad-
justs the data partition dynamically: after detecting a strag-
gler task, it repartitions the unprocessed data of the task and
assigns them to new tasks in other nodes. LIBRA [12] is a
system that implements a set of innovative skew mitigation
strategies. LIBRA can handle data skew not only on the map
side but also on the reduce side. First, LIBRA uses an effi-
cient sampling method to achieve a highly accurate approx-
imation for the distribution of the intermediate data. Then,
it speeds up MapReduce by allowing reduce tasks to start
copying as soon as the chosen sample map tasks are com-
pleted. Finally, it uses range partition to support the splitting
of large keys when permitted by application semantics and

780
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.5 MAY 2018

performs total order sorting of the output data.
Many studies have comprehensively investigated data

locality on the map side as well as data skew. Hsu et al.
[13] proposed a method for improving MapReduce execu-
tion in heterogeneous environments. The method achieves
higher performance by dynamically partitioning data before
the map phase in order to improve the locality of map tasks,
and it uses virtual machine mapping in the reduce phase in
order to balance the workload among reduce nodes.

Some studies [5], [6] have comprehensively investi-
gated data locality for reduce-side as well as data skew,
which we will describe in Sect. 3. However, all the afore-
mentioned approaches have ignored the fact that different
sequences of data locality and data skew could affect the
MapReduce execution time under varying network band-
width. Our approach, i.e., BAPM, can solve this problem
and improve performance.

3. LEEN and CLP

Because BAPM combines LEEN and CLP, we briefly intro-
duce the two algorithms in this section, and we demonstrate
their data locality and data skew characteristics through ex-
amples.

3.1 LEEN

In order to keep track of all intermediate key frequencies and
key distributions, LEEN uses asynchronous map and reduce
schemes. The partition function using KeyID as a unique
ID is implemented on the intermediate key. Thus, LEEN
produces data files and a metadata file. The number of data
files is the same as the number of keys. The metadata file
contains a frequency table, which includes the number of
records in each file and represents the key frequency. Fi-
nally, when all map tasks are done, all metadata files will be
aggregated. Then, the keys will be partitioned into different
DataNodes, which store the data on HDFS (Hadoop data file
system), according to the LEEN algorithm. LEEN consid-
ers data locality ahead of data skew. The LEEN algorithm is
described as follows:
(1) Suppose that there are m key-value pairs after the map
phase and n Reducers in the cluster.
(2) The hosted data on each node is set to their initial values,
which can be obtained from the frequency table.
(3) For a specific key Ki(0 < i < m), in order to achieve
the best locality, LEEN selects the node with maximum fre-
quency of key Ki. Therefore, LEEN sorts all nodes in de-
scending order according to the frequency of key Ki in every
node N j(0 < j < n).
(4) LEEN compares the current node with the next node,
having the second-hightest frequency. To address the load
imbalance among reducer nodes, LEEN introduces the
Fairness-Score. The Fairness-Score of each node is the vari-
ation in the expected hosted data among all nodes if the keyi
is partitioned to this node. A lower value is preferred. If the
Fairness-Score of the next node is better than that of the cur-

rent one, the next node is accepted. Thus, LEEN recursively
tries nodes with lower Fairness-Scores.
(5) After selecting the node, LEEN moves all <Ki, value>
pairs in a cluster to the selected node N j and calculates the
new values of the hosted data on different DataNodes.
(6) Then, LEEN will continue to process the rest of the keys
with the same strategy.

We believe that LEEN considers data locality prior to
data skew for the following reason. First, locality is con-
sidered in step 3 of the LEEN algorithm, before data skew
in step 4. Specifically, when selecting a proper destination
node for a special Ki, LEEN first sorts all nodes in descend-
ing order according to the frequency of Ki in every N j. This
ensures that the locality of the previous node is better than
that of the next node. Then, LEEN considers the data skew
through the Fairness Score. Therefore, regardless of which
node is finally chosen, its locality is better than that of the
subsequent nodes. Actually, from the example presented in
Sect. 3.3 and experiments, we find that LEEN’s improve-
ment in data locality is greater than that in data skew.

3.2 CLP

CLP considers data locality based on data skew on the re-
duce side. The CLP partition algorithm consists of three
main parts. In first part, CLP uses random sampling to an-
alyze input data and uses an extra MapReduce job to gather
information about data distribution. In the second part, CLP
designs the same number of reducer nodes, and each data
cluster is sent to one reducer. The data with the same key
will be stored into the same data cluster. In order to bal-
ance the load of each reducer when processing skewed data,
CLP provides a heuristic partition method to combine data
into data clusters so that every data cluster has similar data
size. The final part is the locality partition part, which as-
signs data clusters to suitable processing nodes according to
data locality. CLP uses RPk (1 < k < n), which represents
each of the data clusters produced in the second part, n is
the number of reduce nodes. The algorithm in the final part
is summarized as follows:
(1) CLP calculates the locality of key Ki in node N j.
(2) CLP calculates the sum of the data size of each data clus-
ter RPk(1 < k < n), which is represented by S um RPk, and
then sorts the data clusters in descending order of S um RPk.
(3) The locality-partition part enters into n iterations. In
this paper, we use Equation (2) to measure the data local-
ity, where Key j

i Count denotes the number of values of local
keys in Map Node j, and

∑m
i=1 Key j

i Count denotes the total
number of data in Node j. In each iteration, CLP selects the
best reducer in consideration of data locality and the impact
factor of load balance. The data cluster at the head of RP
will be sent to the best reducer.
(4) CLP removes the reducer selected from the reducer set
and proceeds to process the remaining data clusters with the
same strategy.

CHEN et al.: NAIVE BAYES CLASSIFIER BASED PARTITIONER FOR MAPREDUCE
781

Fig. 1 Example of LEEN and CLP.

KL j
i =

Key j
i Count∑m

i=1 Key j
i Count

(2)

3.3 Example of LEEN and CLP

We present an example that describes different partitioning
results on the same intermediate data, as shown in Fig. 1.
The example considers three DataNodes and six keys, every
DataNode is configured as a mapper node and reducer node
concurrently. The numerical values in Fig. 1 represent the
frequency of each key. Here, we assume that all records are
of equal size.

This example demonstrates the inconsistency in key
distribution, which affects data locality on the reduce side.
As shown in Fig. 1, the key distribution is inconsistent
among the nodes. The data transmission amounts will be no-
ticeably different with various partitioning strategies. In this
example, the data transmission amount is 44 records when
running LEEN and 47 records when running CLP is, the for-
mer is smaller than the latter by 6.82%. When data size is
large, LEEN can reduce data traffic significantly.

The example also shows the variation in the interme-
diate key frequencies, which could cause load imbalance
among the reducers. The total key frequency on each node
is 29, but the frequency of each key varies (6, 8, 10, 13, 20,
and 30). When the hash partitioning varies, the distribution
of reducer inputs will be different. In this study, we define
the data skew rate, expressed by Eq. (3), to describe the de-
gree of balance of key frequency among all the Reducers,
where FK j

i denotes the frequency of Ki(1 < i < m) in the
data node N j(1 < j < n),and Mean denotes the mean of all
the FK j

i values. The data skew rate of the Reducer input is
2.16 when running LEEN and 0.82 when running CLP.

DS R =

√∑n
j=1(
∑k

i=1 FK j
i − Mean)2

n
(3)

In this study, a larger data transmission amount leads
to longer execution times. Lower data skew rates result in
better performance. The results indicate that for LEEN, the
improvement in data locality is greater than the alleviation

Fig. 2 The architecture of BAPM.

of data skew. In contrast, for CLP, the alleviation of data
skew is greater than the improvement in data locality.

4. BAPM

In this section, we present BAPM, a new partitioner for
Mapreduce. First, we discuss how to classify MapReduce
jobs and measure bandwidth. Finally, we describe the naive
Bayes classifier used in BAPM.

4.1 BAPM in YARN

This section describes the design of the proposed
bandwidth-aware partitioner frame, namely, BAPM. The ar-
chitecture of BAPM is shown in Fig. 2. In particular, each
Data Amount Monitor records the input data amount and
output data amount of each map task. Each Data Frequency
Table (DFT) creates a table that records the value of each
key in every DataNode after the map phase. The global
DFT (GDFT) summarizes all DFT data in each DataNode.
The Bandwidth Monitor obtains real-time information about
bandwidth in the cluster (Sect. 4.2). The Job Type Judger
will decide the type to which a job belongs (Sect. 4.3). The
Partitioning Decision determines the partition algorithm that
will be adopted (CLP or LEEN) (Sect. 4.4). The workflow
of BAPM consists of 4 steps:
(1) In BAPM, the job type could be input by users or deter-
mined automatically. The Data Amount Monitor will com-
pute the amount of input and output of each Map task, this
is an essential preparative work for job type determination.
DFT counts and records intermediate key-value pairs gen-
erated by a map function in every DataNode, the number
of pairs corresponding to every key is represented as key
frequency. After all the map tasks are completed, the in-
formation data, which consists of the job type that the user
inputs or the statistical data from the Data Amount Monitor,

782
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.5 MAY 2018

Table 1 Job type.

Type Job
Reduce-input-light Numerical Summerization, Top N, Grep, Distinct Counting

Reduce-input-heavy Inverted Indexes, Structured to Hierarchical, Partitioning, Sort(containing TeraSort), Shuffling, Join
Reduce-input-zero Filting, Bining, Cartesian Product, Permutation

and the key frequencies in DFT will be transmitted from the
Application Master to the Resource Manager through heart-
beat messages.
(2) When the Resource Manager receives the information
data, it transmits corresponding data to the GDFT and Job
Type Judger, respectively. Then, the GDFT will summarize
all the key frequencies in each DataNode into a table, which
will be used in LEEN and CLP later. The style of GDFT is
similar to the tables in Fig. 1. Using the rules described in
Sect. 4.1.1, the Job Type Judger determines the job type by
analyzing the data from the Data Amount Monitor.
(3) To select the partitioning algorithm (LEEN or CLP), the
Partitioning Decision uses three modules: Bayes Compute
Unit, Training Set, and Algorithm Unit. After the Parti-
tioning Decision receives information data from the Band-
width Monitor and the Job Type Judger, it implements a
naive Bayes classifier by considering current bandwidth and
job type as categorical attributes, and then chooses between
LEEN and CLP. We describe this in details in Sect. 4.4. The
Training Unit records the information of all MapReduce
jobs that have been run before, including job type, band-
width, and the partitioning algorithm adopted. In order to
speed up probability calculation, in the Training Set, we
record statistical information such as the number of times
LEEN is selected, the number of times the job type is input-
reduce-heavy when LEEN is selected, and so on. We also
add current job information to the Training Set and update
the statistics after the partitioning algorithm is determined,
this will enable BAPM to further increase the selection ac-
curacy.
(4) When the partitioning algorithm is determined, the Algo-
rithm Unit will generate the partitioning result using the ta-
ble in GDFT, and the result will be transmitted back through
the resource response messages from the Resource Manager
to the Application Master.

4.2 Job Type

There are many problems that are suitable for the MapRe-
duce framework. In many situations, users have to be aware
of the system resources being used by the MapReduce job,
especially inter-cluster network utilization. The execution
time of jobs whose mappers produce a large number of key-
value pairs is strongly dependent on network conditions in
a cluster, therefore, it is necessary to categorize jobs with
the amount of intermediate data transmitted from mappers
to reducers. If the amount of output of the map phase is al-
most the same as or greater than the input data for a job, we
refer to this job as a reduce-input-heavy job. In contrast, if
the amount of data transmitted to the reducers is obviously
less than the mapper input for a job, we refer to this job as

a reduce-input-light job. In particular, there is a certain type
of jobs that do not contain the reduce phase, we refer to them
as reduce-input-zero jobs. We classify popular MapReduce
jobs using the rules stated above and the results are listed in
Table 1.

4.3 Bandwidth Monitor

Bandwidth is an important issue in networks. The Band-
width Monitor in BAPM gets current bandwidth of a link by
monitoring the traffic through it ports. Bandwidth Monitor
sends a port statistical message to a certain port. Then, a
return message is received. From the return message, Band-
width Monitor gets information such as the number of trans-
mitted and received packets, the number of transmitted and
received bytes, the duration of this process, and the number
of bytes of the transmitted message. The result is divided
by the duration time of the process, which gives the cur-
rent bandwidth of this port. Moreover, we can obtain the
remaining bandwidth of this port by subtracting the current
bandwidth from the maximum bandwidth that can be con-
figured. As we have described in Sect. 1, the bandwidth mu-
tation does not happen in Hadoop, so the bandwidth values
obtained by the Bandwidth Monitor are effective.

4.4 Bayes Compute Unit

Because the Naive Byes classifier is used in the Bayes Com-
pute Unit, we introduce it here. Given a problem instance to
be classified, represented by a vector X={x1,x2,...,xm} con-
taining m features, we assume that all features are indepen-
dent, C={y1,y2,...yn} denotes a category set that contains n
categories. The naive Bayes classifier determines the cat-
egory yi(16i6n) to which the instance X will be assigned.
In other words, it will find the maximum among the con-
ditional probability set {P(y1|X), P(y2|X),...P(yn|X)}. Under
the independence assumptions, using Bayes’ theorem, the
conditional probability P(yi|X)(16i6n) can be decomposed
as

P(yi|X) =

∏m
j=1 P(x j|yi)P(yi)

P(X)
(4)

The workflow of the Bayes Compute Unit is shown in
Fig. 3 and described as follows. In the preparation stage,
we determine the features and their division. There are only
two features in BAPM, job type and bandwidth, in vector
X, x1 denotes the job type, x2 denotes the bandwidth. Obvi-
ously, the two features are independent. The division of x1
includes the job types introduced in Sect. 4.3. The division
of x2, i.e., bandwidth, has been described in Sect. 4.2. In
the category set C, y1 denotes the LEEN algorithm and y2

CHEN et al.: NAIVE BAYES CLASSIFIER BASED PARTITIONER FOR MAPREDUCE
783

Fig. 3 The flow chart of Bayes classifier.

denotes CLP. After obtaining the training data set, BAPM
enters the Classifier Training stage.

In this stage, firstly, BAPM respectively executes a spe-
cial MapReduce job, WordCount or Sort, with two algo-
rithms, LEEN and CLP, on a training data set under a spe-
cific bandwidth. Then, the algorithm with the shorter execu-
tion time will be determined as the selected algorithm in this
case. In our experiments, BAPM conducts the same work
30 times repeatedly under each of different bandwidths. Fi-
nally, BAPM obtains P(yi) for every category. and the con-
ditional probability of every feature in all divisions.

When a MapReduce job with testing data set arrives,
BAPM uses the trained Naive Bayes classifier, to perform
the classification. The reasons for employing the naive
Bayes classifier to perform selection are as follows. First,
the naive Bayes classifier works well because the categor-
ical attributes, bandwidth and job type, are independent.
Secondly, compared with other classifiers, the naive Bayes
classifier shows efficient and stable classification when the
number of features and categories are not large [15]. In
our BAPM, we have only two features and two categories.
Thirdly, because BAPM is able to compute and record the
results in a component namly the Training Unit (introduced
in Sect. 4.2) each time, we can efficiently obtain the previ-
ous probability using the naive Bayes classifier in the next
instance.

5. Evaluation

5.1 Experiment Environment and Preparation

In this study, all experiments are performed on a homoge-
neous Hadoop cluster running a stable version of Hadoop
2.6.0. Our experiments are executed on 7 servers with
16x86 4 cores and 16 GB of RAM. The servers are intercon-
nected by an Ethernet switch with 1 Gbps links. We evaluate
BAPM performance in a virtual cluster comprising 31 vir-
tual machines (VMs). A VM is deployed on a server to act
as the master node (Namenode). We also deploy five VMs
on each of the six PMs, hence, the cluster size is 30 nodes
(DataNodes), the maximum number of tasks on each DataN-
ode is set to 6. All the virtual machines are configured with
2 CPU cores and 1 GB memory. We configure the HDFS

Fig. 4 Execution time of LEEN, CPL and BAPM for Grep and Join un-
der various bandwidths.

chunk size to be 64 MB. Because bandwidth is a critical at-
tribute of the naive Bayes classifier, we vary the bandwidth
(from 100 Mbps to 1 Gbps at intervals of 100 Mbps) in our
cluster with OpenFlow.

We train the Bayes classifer by running WordCount
and TeraSort on a 8 GB synthetic data set of data skew
rate 0.2. which is described in Sect. 4.4. BAPM’s train-
ing stage is conducted before the classification application
stage, so there should be no training time spent for any spe-
cific MapReduce job, and therefore, we do not take it into
consideration when calculating the total time.

In order to ensure accuracy, in this paper, we perform
each group of experiments at least 10 times and take the
mean value as the final result so as to reduce the influence
of the variable environment.

5.2 Selection Accuracy of BAPM

To verify BAPM’s improvement performance by doing
proper selection from LEEN and CLP, we run BAPM
for Grep and Join, which represent reduce-input-light and
reduce-input-heavy jobs, respectively, on a 12 GB synthetic
data set of data skew rate 0.6.

Figure 4 shows execution time of LEEN, CLP and
BAPM for Grep and Join under various bandwidths. LEEN
exhibits less execution time than CLP under relatively small
bandwidths; while under large bandwidths, CLP outper-
forms LEEN. Therefore, there is a turning point on band-
width between LEEN and CLP to obtain optimal perfor-
mance. BAPM can find such a tuning point on bandwidth.
We notice that BAPM’s polyline tends to overlap the poly-
line representing the algorithm that gets the shorter exe-
cution time between LEEN and CLP when bandwidth is
far away from the turning point, such as 200 Mbps and
900 Mbps. This can be explained as the distinct difference
of execution time between the LEEN and CLP in those cases
lead to a high conditional probabilities of characteristic at-
tributes in naive Bayes, which makes our BAPM select the
proper algorithm accurately. In contrast, when the band-
width is near to the tuning point, such as 400 Mbps and
500 Mbps in Fig. 4(a), the BAPM’s polyline is slightly dif-
ferent with the lowest polyline, which means that there is no
obvious distinction in terms of execution time between the
two algorithms in those cases, and it leads to the conditional
probabilities of characteristic attributes in naive Bayes be-

784
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.5 MAY 2018

Table 2 The statistical table of experiments.
Testing DataSet Testing Data Set

Job Type Grep Join
Bandwidth 200 Mbps 900 Mbps 200 Mbps 900 Mbps
Algorithm LEEN CLP BAPM LEEN CLP BAPM LEEN CLP BAPM LEEN CLP BAPM

Execution Time(second)

Map 923 926 923 930 921 921 924 926 924 933 921 921
Shuffle 281 390 281 66 72 72 401 526 401 97 111 111
Reduce 138 125 138 182 59 59 310 293 310 436 290 290

Overhead of BAPM \ \ 4 \ \ 3 \ \ 3 \ \ 3
Total 1342 1441 1346 1178 1052 1055 1635 1745 1638 1466 1322 1325

Selection Accuracy 95.15% 93.98%

ing almost equal. Therefore, our BAPM can perform proper
selection between the two algorithms, but not easily. Never-
theless, this can be improved along with the increase in the
number of times that our Training Data Set is processed.

We record the execution time in every phase of MapRe-
duce. Table 2 shows the results under bandwidths of
200 Mbps and 900 Mbps. For Grep, when the bandwidth
is 200 Mbps, LEEN is 109 seconds faster than CLP in the
shuffle phase, and is only 13 seconds slower than CLP. This
indicates that data locality has more impact on execution
time than load balance, so LEEN should be in favor and
BAPM does select it. Similarly, BAPM selects the proper
algorithm in all other cases. Generally, BAPM achieves
95.15% and 93.98% selection accuracy for Grep and Join,
respectively. The improvement in execution time reaches
10.34% and 9.58% when LEEN and CLP are selected, re-
spectively.

BAPM cannot lead to large performance degradation
even in the case of selection failure. First, the probabil-
ity of selection failure is higher when the bandwidth is set
to be close to the turning point. In this case, the execu-
tion times of LEEN and CLP are close, therefore, even if
BAMP selects the wrong algorithm, it will not cause much
performance degradation. Secondly, when BAPM fails to
select an algorithm under a bandwidth that is significantly
larger or smaller than the turning point, the execution time
is much longer than that in the case of a correct selection.
Nevertheless, because LEEN and CLP achieves greater im-
provements in execution time than native Hadoop, which
will be described in Sect. 5.3, BAPM can not cause large
performance degradation. From Table 2, we also find the
overhead of BAPM is trivial because the conditional proba-
bilities have been computed and stored in the training stage,
and only result querying is needed in the classification ap-
plication stage.

5.3 Evaluate BAPM by Running Various Types of Jobs

In this section, we run BAPM for Grep and Join, which
represent reduce-input-light and reduce-input-heavy jobs on
various data sets, respectively. We compare BAPM with
SkewTune [11], EP [10] and native Hadoop. SkewTune fo-
cuses on the performance degradation caused by data skew
in MapReduce and EP improves data locality of Reduce
tasks.

Figure 5 shows execution time of Skew-Tune, EP,
Hadoop and BAPM for Grep on various data sets. In

Fig. 5 Execution time of Skew-Tune, EP, Hadoop and BAPM for Grep
on various data sets.

Fig. 5(a), size of the data set is 6 GB and data skew rate is
0.2. BAPM and EP have the smallest execution time com-
pared with the other two algorithms under all bandwidths.
This is because both EP and BAPM seek to improve data
locality, which is a major affecting factor with a relatively
low data skew rate. For BAPM and EP, when the bandwidth
is relatively low, EP achieves a little faster performance, this
is because BAPM takes extra overhead to do data sampling
and selection from LEEN and CLP. Nevertheless, when the
bandwidth is large, BAPM outperforms EP. This is because
BAPM also considers data skew, which becomes more im-
portant when the bandwidth grows. In Fig. 5(b), the data set
size is changed to 12 GB, and the data skew rate is kept at
0.2. All the algorithms spend more time, but maintain simi-
lar relative difference as in Fig. 5(a). In Figs. 5(c) and 5(d),
the data skew rate is changed to 1.2, and the sizes are 6 GB
and 12 GB, respectively. BAPM outperforms all the other
algorithms under all bandwidths. This is because BAPM
comprehensively considers both data skew and data locality.
Specifically, compared with Hadoop, SkewTune and EP, the
improvement range of BAPM is 11.1–28.6%, 10.9–19.8%
and 5.4–16.7%, respectively.

Figure 6 shows execution time of Skew-Tune, EP,
Hadoop and BAPM for Join on the same four data sets we
have described in the previous paragraph. We notice that
all the algorithms maintain similar relative difference as in
Fig. 5, but spend more time. This can be explained as Join is
a reduce-input-heavy job, it generates much data traffic than

CHEN et al.: NAIVE BAYES CLASSIFIER BASED PARTITIONER FOR MAPREDUCE
785

Fig. 6 Execution time of Skew-Tune, EP, Hadoop and BAPM for Join on
various data sets.

Fig. 7 MapReduce job chain.

Grep. In conclusion, compared with Hadoop, SkewTune
and EP, the improvement range of BAPM is 19.5–31.3%,
15.6–22.8% and 13.5.4–18.7%, respectively.

5.4 Evaluate BAPM on a Social Network Analysis Appli-
cation

We run BAPM on a social network analysis application on
two data sets of www.stackoverflow.com, Posts and Users of
sizes 10.58 GB and 3.55 GB. Given these two data sets, the
intent of the application is to count how many times each age
group of Users has posted to each tag in Posts. The applica-
tion contains two MapReduce jobs. As Fig. 7 shows, the first
job is a reduce-input-light job similar to WordCount, while
the second job is a reduce-input-heavy job running Join to
enrich user information. BAPM is compared with Skew-
Tune, EP and naive Hadoop under various bandwidths, and
the results are shown in Fig. 8. Specially, we notice that
when the bandwidth is 200 Mbps, the first job of BAPM,
i.e., BAPM(job1) in Fig. 8, is slower than EP(job1), the rea-
son is described in Sect. 5.3. This disadvantage is offset by
BAPM(job2). Finally, the total duration of BAPM is the

Fig. 8 Execution time of Skew-Tune, EP, Hadoop and BAPM on real
data sets.

shortest in this case. Overall, BAPM has the fastest perfor-
mance under all the bandwidths for all the jobs. Specifically,
BAPM is 8.66%–29.58% faster than the other algorithms.

6. Conclusions

Locality and data skew on the reduce side are two impor-
tant performance factors in MapReduce. Experiments have
shown that the processing order of the two factors affects the
execution time under different bandwidths. In this study, we
first propose a bandwidth-aware partitioner, namely, BAPM,
which employs the naive Bayes classifier by considering
bandwidth and job type as classification attributes for proper
selection of the algorithm (LEEN or CLP) under various
bandwidths. Then, we divide MapReduce jobs into three
types according to the amount of intermediate data transmit
from the map nodes to the reduce nodes in a cluster after the
map phase. To quantify the performance of BAPM, we con-
duct experiments in a Hadoop cluster under different band-
widths, and use BAPM to execute various benchmarks and
a social network analysis application with different testing
data sets. Our experimental results show that BAPM can
achieve up to 95.15% selection accuracy and 31.31% im-
provement in execution time under specific bandwidths.

Acknowledgements

This work was partially supported by the National Nat-
ural Science Foundation of China (No. 61100143, No.
61272353, No. 61370128, No. 61428201), Beijing Natu-
ral Science Foundation (No. 4184084), Humanity and So-
cial Science Youth Foundation of Ministry of Education of
China (No. 17YJCZH007), Research Foundation for Youth
Scholars of Beijing Technology and Business University
(No. QNJJ2017-17).

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol.51, no.1, PP.107–113, 2008.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” IEEE 26th Symposium on Mass Storage

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972

786
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.5 MAY 2018

Systems and Technologies (MSST), pp.1–10, 2010.
[3] H. Zhang, L. Wang, and H. Huang, “SMARTH: Enabling multi-

pipeline data transfer in HDFS[C],” 2014 43rd International Confer-
ence on Parallel Processing. IEEE, pp.30–39, 2014.

[4] M. Kawarasaki and H. Watanabe, “System status aware Hadoop
scheduling methods for job performance improvement,” IEICE
Trans. Inf. & Syst., vol.E98-D, no.7, pp.1275–1285, July 2015.

[5] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen:
Locality/fairness-aware key partitioning for mapreduce in the
cloud,” IEEE Second Conference on Cloud Computing Technology
and Science (CloudCom), pp.17–24, 2010.

[6] Y. Chen, Z. Liu, T. Wang, and L. Wang, “Load balancing in MapRe-
duce based on data locality,” Algorithms and Architectures for Par-
allel Processing, pp.229–241, 2014.

[7] H. Huang, J.M. Dennis, L. Wang, and P. Chen, “A scalable paral-
lel LSQR algorithm for solving large-scale linear system for tomo-
graphic problems: A case study in seismic tomography[J],” Procedia
Computer Science, vol.18, pp.581–590, 2013.

[8] V. Subramanian, L. Wang, E.-J. Lee, and P. Chen, “Rapid processing
of synthetic seismograms using Windows azure cloud[C],” Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Sec-
ond International Conference on. IEEE, pp.193–200, 2010.

[9] J. Tan, X. Meng, and L. Zhang, “Coupling task progress for mapre-
duce resource-aware scheduling,” IEEE Conference on INFOCOM,
pp.1618–1626, 2013.

[10] J. Tan, S. Meng, X. Meng, and L. Zhang, “Improving reducetask
data locality for sequential mapreduce jobs[C],” INFOCOM, 2013
Proceedings IEEE. IEEE, pp.1627–1635, 2013.

[11] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune: Miti-
gating skew in mapreduce applications[C],” Proc. 2012 ACM SIG-
MOD International Conference on Management of Data, ACM,
pp.25–36, 2012.

[12] Q. Chen, J.T. Yao, and Z. Xiao, “LIBRA: Lightweight data skew
mitigation in MapReduce,” IEEE Trans. Parallel Distrib. Syst.,
vol.26, no.9, pp.2520–2533, 2014.

[13] C.H. Hsu, K.D. Slagter, and Y.C. Chung, “Locality and loading
aware virtual machine mapping techniques for optimizing commu-
nications in MapReduce applications,” Future Generation Computer
Systems, vol.53, no.1, pp.43–54, 2015.

[14] L.A. Adamic and B.A. Huberman, “Zipf’s law and the Internet,”
Glottometrics, vol.3, no.1, pp.143–150, 2002.

[15] S. Diersen, E.-J. Lee, D. Spears, P. Chen, and L. Wang, “Classifica-
tion of seismic windows using artificial neural networks[J],” Proce-
dia Computer Science, vol.4, pp.1572–1581, 2011.

[16] H. Huang, L. Wang, E.-J. Lee, and P. Chen, “An MPI-CUDA imple-
mentation and optimization for parallel sparse equations and least
squares (LSQR)[J],” Procedia Computer Science, vol.9, pp.76–85,
2012.

Lei Chen is a Ph.D candidate in computer
science of Beijing Jiaotong University. He re-
ceived the M.S. degree in 2011 in the School
of Computer Science at Taiyuan University of
Technology, China. His research interests are
in the areas of distributed data processing and
cloud computing.

Wei Lu received his Ph.D degree from
Sichuan University in 2006. Currently, He is
a professor and the dean of School of Soft-
ware Engineering in Beijing Jiaotong Univer-
sity. He serves as a member of Software Engi-
neering Professional Education Committee with
the Ministry of Education in China. His research
interests in service computing and network.

Ergude Bao received his Ph.D degree from
Department of Computer Science and Engineer-
ing, University of California, Riverside, United
States, in 2014. He is currently an associate pro-
fessor in School of Software Engineering at Bei-
jing Jiaotong University. His research interests
include design of algorithms and intelligent sys-
tems, and parallel computation.

Liqiang Wang received Ph.D degree in
Computer Science from Stony Brook Univer-
sity in 2006. He is an Associate Professor in
the Department of Computer Science at the Uni-
versity of Central Florida. His research inter-
est is the design and analysis of parallel systems
for big-data computing, which includes two as-
pects: design and analysis. He received an NSF
CAREER Award in 2011.

Weiwei Xing received the B.S. degree in
computer science and Ph.D degree in signal and
information processing from Beijing Jiaotong
University, in 2001 and 2006 respectively. Cur-
rently, she is a professor at School of Software
Engineering, Beijing Jiaotong University. Her
research interests mainly include intelligent in-
formation processing and artificial intelligence.

Yuanyuan Cai received her Ph.D degree
from Beijing Jiaotong University in 2016. Cur-
rently, She is a lecturer in the Department of
Information Management, School of Computer
and Information Engneering at Beijing Technol-
ogy and Business University. Her research inter-
ests focus on semantic computation, information
retrivel and natural language processing

http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/icpp.2014.12
http://dx.doi.org/10.1109/icpp.2014.12
http://dx.doi.org/10.1109/icpp.2014.12
http://dx.doi.org/10.1587/transinf.2014edp7385
http://dx.doi.org/10.1587/transinf.2014edp7385
http://dx.doi.org/10.1587/transinf.2014edp7385
http://dx.doi.org/10.1109/cloudcom.2010.25
http://dx.doi.org/10.1109/cloudcom.2010.25
http://dx.doi.org/10.1109/cloudcom.2010.25
http://dx.doi.org/10.1109/cloudcom.2010.25
http://dx.doi.org/10.1007/978-3-319-11197-1_18
http://dx.doi.org/10.1007/978-3-319-11197-1_18
http://dx.doi.org/10.1007/978-3-319-11197-1_18
http://dx.doi.org/10.1016/j.procs.2013.05.222
http://dx.doi.org/10.1016/j.procs.2013.05.222
http://dx.doi.org/10.1016/j.procs.2013.05.222
http://dx.doi.org/10.1016/j.procs.2013.05.222
http://dx.doi.org/10.1109/cloudcom.2010.110
http://dx.doi.org/10.1109/cloudcom.2010.110
http://dx.doi.org/10.1109/cloudcom.2010.110
http://dx.doi.org/10.1109/cloudcom.2010.110
http://dx.doi.org/10.1109/infcom.2013.6566958
http://dx.doi.org/10.1109/infcom.2013.6566958
http://dx.doi.org/10.1109/infcom.2013.6566958
http://dx.doi.org/10.1109/infcom.2013.6566959
http://dx.doi.org/10.1109/infcom.2013.6566959
http://dx.doi.org/10.1109/infcom.2013.6566959
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1145/2213836.2213840
https://doi.org/10.1109/TPDS.2014.2350972
https://doi.org/10.1109/TPDS.2014.2350972
https://doi.org/10.1109/TPDS.2014.2350972
https://doi.org/10.1016/j.future.2015.04.006
https://doi.org/10.1016/j.future.2015.04.006
https://doi.org/10.1016/j.future.2015.04.006
https://doi.org/10.1016/j.future.2015.04.006
http://dx.doi.org/10.1016/j.procs.2011.04.170
http://dx.doi.org/10.1016/j.procs.2011.04.170
http://dx.doi.org/10.1016/j.procs.2011.04.170
http://dx.doi.org/10.1016/j.procs.2012.04.009
http://dx.doi.org/10.1016/j.procs.2012.04.009
http://dx.doi.org/10.1016/j.procs.2012.04.009
http://dx.doi.org/10.1016/j.procs.2012.04.009

