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a b s t r a c t 

MapReduce is an effective and widely-used framework for processing large datasets in parallel over a 

cluster of computers. Data skew, cluster heterogeneity, and network traffic are three issues that signif- 

icantly affect the performance of MapReduce applications. However, the hash-based partitioner in the 

native Hadoop does not consider these factors. This paper proposes a new partitioner for Yarn (Hadoop 

2.6.0), namely, NPIY, which adopts an innovative parallel sampling method to distribute intermediate 

data. The paper makes the following major contributions: (1) NPIY mitigates data skew in MapReduce 

applications; (2) NPIY considers the heterogeneity of computing resources to balance the loads among 

Reducers; (3) NPIY reduces the network traffic in the shuffle phase by trying to retain intermediate data 

on those nodes running both map and reduce tasks. Compared with the native Hadoop and other popular 

strategies, NPIY can reduce execution time by up to 41.66% and 58.68% in homogeneous and heteroge- 

neous clusters, respectively. We further customize NPIY for parallel image processing, and the execution 

time has been improved by 28.8% compared with the native Hadoop. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The past decade has witnessed a proliferation of data gen-

ration and processing techniques [1] . MapReduce [2] has been

roven to be an effective tool to process large data sets. As a

arallel computing framework that supports MapReduce, Apache

adoop [3] is widely used in many different fields. such as paral-

el image processing. MapReduce consists of two main functions:

he map function, which transforms input data into intermediate

ata, namely < key,value > pairs, and the reduce function, which

ummarizes the values with the same key. Partitioning [4] is a crit-

cal to MapReduce because it determines the Reducer to which an

ntermediate data item will be sent in the shuffle phase. Hadoop

.6.0 employs a static hash function to partition the intermediate

ata, which is called Hash-Partitioner and shown in Eq. (1) . Al-

hough MapReduce is currently gaining wide popularity in paral-

el data processing, its Hash-Partitioner in Hadoop is still not ideal

nd has room to be improved. 

 ash (H ashcod e (Intermed iate d ata ) mod Red ucerNum ) (1)
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First, data skew [5] is one of the most critical impact factors af-

ecting the performance of Hadoop cluster. Data skew refers to the

mbalance in terms of data allocated to each task or work required

o process. When data skew occurs, the aforementioned Hash-

artitioner could lead to a scenario that most of nodes remain

dle after they complete their tasks [24] . Thus, this approach pro-

ongs execution time and decreases computing efficiency. There-

ore, balancing hash partition size, which is defined as the size of

he < key,value > pairs with the same hash result, is an important

ndicator for balancing the loads among Reducers [25] . 

Secondly, heterogeneity is neglected by the Hash-Partitioner.

he computing environments for MapReduce in the real world are

ypically heterogeneous [6] . Even if intermediate data is not skew,

he execution time of tasks in different nodes are diverse because

f various computing capacities, consequently, stragglers still exist

n clusters [26] . Therefore, Hash-Partitioner does not work well in

 heterogeneous Hadoop cluster. 

Thirdly, with the increasing size of computing clusters [7] , it is

ommon that many nodes run both map tasks and reduce tasks.

bviously, the more intermediate data stay on these nodes, the

ess network traffic happens in the shuffle phase [8] . However, the

ash-Partitioner does not consider this fact [27] . Therefore, large

mount of data transmitted seriously decreases the performance

f cluster. 

https://doi.org/10.1016/j.jvlc.2018.04.001
http://www.ScienceDirect.com
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Among the previous solutions, some are specific to a partic-

ular type of applications [9,10] , some require a pre-sampling of

input data [11–13] , and some identify the tasks with the great-

est expected remaining processing time and repartition unresolved

data to fully utilize nodes in cluster [14] . There are lots of studies

[15,16] on heterogeneous Hadoop cluster to reduce network traf-

fic in the shuffle phase. In our previous work [17] , we proposed

a method named PIY to improve the performance of MapReduce

by comprehensively considering the three deficiencies mentioned

above; however, we find it still has a lot of room to improve. 

This paper proposes a novel partitioner for Yarn (Hadoop 2.6.0),

namely, NPIY (Novel Partitioner in Yarn), to solve the problems of

data skew and network traffic in the shuffle phase in heteroge-

neous Hadoop clusters. Compared with the previous studies, the

contributions of this paper can be summarized as follows: 

(1) We propose a novel sampling method, named PRS. PRS

achieves a highly accurate approximation to the distribution

of intermediate data by sampling the input data during nor-

mal map processing, and its overhead is very low and negli-

gible. We also propose an evaluation model to select an ap-

propriate sample percentage in PRS. This model comprehen-

sively considers the importance of cost, effect, and variance

in sampling. 

(2) To tackle the data skew problem, we propose a strategy

called BASHE, which is based on an Approx-Relaxed-Subset-

Sum algorithm. BASHE effectively mitigates load imbalance

among Reducers. 

(3) To avoid the performance degradation caused by hetero-

geneity, NPIY allocates appropriate amount of intermediate

data to Reducers according to their computing capacities. 

(4) NPIY optimizes network traffic by decreasing the amount of

transmitted data on the nodes executing both map and re-

duce tasks. 

We evaluate the performance of NPIY in YARN (Hadoop 2.6.0).

Compared with other popular strategies, NPIY can reduce the exe-

cution time by up to 41.66% and 58.68% in homogeneous and het-

erogeneous Hadoop clusters, respectively. We also evaluate NPIY

on a parallel image processing application. Compared with several

existing strategies, NPIY can reduce the execution time by up to

11.2%. 

The rest of this paper is organized as follows. Section 2 reviews

related work. Section 3.3 briefly introduces the Approx-Relaxed-

Subset-Sum algorithm used by NPIY. Section 4 describes our NPIY

in details. Section 5 describes the performance evaluation of NPIY.

Finally, Section 6 concludes this paper. 

2. Related work 

To estimate the distribution of intermediate result before deter-

mining the partition in Hadoop, sampling methods are widely used

in previous studies. We classify these methods into two categories.

The first category is to launch a pre-run extra job to conduct data

distribution statistics before the whole normal job, and then to de-

cide an appropriate partition [11] . The drawback of these methods

is that when data volume is large, sampling will cost much time

and delay the start of map tasks, which prolongs the execution

time of whole job. The second category is to integrate sampling

into the map stage [5] . However, these methods hardly achieve

high sampling accuracy, and also cause performance degradation

because the parallel degree is decreased between the map and re-

duce stages. 

Data skew has also been studied in MapReduce environment in

the past few years. Ibrahim et al. [18] propose LEEN, which parti-

tions all intermediate keys according to their frequencies and the

fairness of the expected data distribution after the shuffle phase.
owever, LEEN lacks preprocessing to estimate data distribution

ffectively. Gufler et al. propose TopCluster [19] to mitigate data

kew among Reducers by estimating the cost of each intermediate

artition. However, it increases the intermediate data transmission

mount in the shuffle phase because it ignores data locality in the

educe phase. 

Heterogeneous computing environment is a research hot spot

n recent years. LATE [15] calculates the progress rate of tasks and

eassigns the task with the longest remaining time to other idle

odes. The work in [6] presents a system that adopts virtualization

echnology to allocate data center resources dynamically based on

he application’s demands. A set of heuristics is developed to com-

ine different types of workloads so as to reduce overload effec-

ively. However, these approaches cannot solve the data skew prob-

em well. 

In addition, all the aforementioned approaches ignore the fact

hat there are heterogeneous nodes running both map tasks and

educe tasks concurrently in large-scale computing cluster. The

etwork traffic in the shuffle phase will be optimized remarkably

f the partitioner is able to dramatically reduce the transmission

mount of intermediate data among those nodes. Our approach,

.e. , NPIY, can comprehensively resolve these problems mentioned

bove. 

. Approx-Relaxed-Subset-Sum algorithm 

In our previous work [17] , we propose an approach called PIY to

educe our problem into the well-know Subset-Sum problem. In a

eterogeneous cluster, the computing capacities of different Reduc-

rs are diverse. Let T denote the computing capacity of a Reducer.

he problem of load balance can be modeled as a Subset-Sum Prob-

em , which is abbreviated as SS in this paper. An instance of the SS

roblem is a pair (K, T), where K is a set of n positive integers (in

rbitrary order), i.e. , k 1 , k 2 , . . . , k n , and T is a positive int eger. A SS

roblem is to find whether there exists a subset of K that add up as

arge as possible but not greater than the target value T , which is

 NP-complete problem. The load balance problem can be approx-

mately solved by calling multiple rounds of SS , each of which is

o determine data assignment for a given Reducer i with a capac-

ty T i , except for the tail Reducer, which may have more leftovers

han its capacity. Such a tail Reducer may cause load imbalance. 

xample. Assume there are 3 Reducers in a cluster, the inter-

ediate data set contains 6 < key,value > pairs, and the amount

f pairs are denoted by K = { k 0 = 105, k 1 = 115, k 2 = 123, k 3 = 138,

 4 = 145, k 5 = 151}. For simplicity, we assume that the three Reduc-

rs are homogeneous, which means that they have equal comput-

ng capacity with a target value T = 258. When using the Approx-

ubset-Sum algorithm introduced in our previous work [17] (in

rder to clarify the problem more clearly, in the Approx-Subset-

um algorithm, we eliminate the Trim function, which is shown

s Algorithm 2 in Section 3.3 ), the final amount of intermediate

ata partitioned to 3 Reducers are 256 ( k 0 + k 5 ), 253 ( k 1 + k 3 ), 268

 k 2 + k 4 ) and their standard deviation is 6.48. Obviously, this result

s not good because the last Reducer is assigned with much more

ntermediate data than the other two. 

The result can be explained as the SS problem is constrained by

he restriction that the sum of selected integers must be less than

r equal to the target value. As far as selecting intermediate data

s concerned, the total amount of selected intermediate data must

e less than or equal to T . Therefore, in the shuffle phase, Reduc-

rs whose intermediate data are assigned firstly usually have total

oad T , and these missing loads are taken over by the other Reduc-

rs whose intermediate data are assigned later. This decreases the

egree of load balance. 
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Algorithm 1 Relaxed-Subset-Sum Algorithm. 

Input: K : a positive integer set containing n elements < 

k 0 , . . . , k n −1 > ; L : a positive integer set; T : a target value; L i : a 

generated list after k i is appended. 

Output: an optimal solution 

1: n = the length of K 

2: L 0 = 0 

3: for i = 1 to n do 

4: L i = MERGE-LIST( L i −1 , L i −1 + k i ) 

5: L i = PRESERVE( L i , T) 

6: end for 

7: t1, t2 = LARGEST-TWO( L n ) 

8: if | t i − T | < | t 2 − T | then 

9: t ∗ = t 1 
10: else 

11: t ∗ = t 2 
12: end if 

13: Back trace from t ∗ to get an optimal solution. 

Algorithm 2 Trim Algorithm. 

Input: L : a positive integer set contains m factors 

< l 0 , . . . , l m −1 > ; ε: trimming parameter; 

Output: L 
′ 

1: m = L.length; 

2: L 
′ = 〈 l 0 〉 ; 

3: last = l 0 ; 

4: for i = 1 to m-1 do 

5: if l i > last ∗ (1 + ε) then 

6: append i 1 onto the end of L 
′ 
; 

7: last = l i ; 

8: end if 

9: end for 

10: return L 
′ 
; 

b  

e
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.1. Relaxed-Subset-Sum problem 

To solve this issue, we propose a more accurate approach,

amely, Relaxed-Subset-Sum problem , which can be formally

tated as: given n positive integers, k 0 , k 2 , . . . , k n −1 , and target

alue T , we try to find a subset of these integers whose sum is

s close to T as possible . We call this problem RSS for short. The RSS

roblem can be formulated as the following integer program: 

in | t − T | s.t. t = 

n ∑ 

i =1 

y i k i , y i ∈ { 0 , 1 } , i = 1 , 2 , . . . n 

 i = 1 indicates k i is selected in the subset, and y i = 0 otherwise. 

Both RSS and SS problem are defined w.r.t a set K of n positive

ntegers k i ( 0 < i < n − 1 ) and target value T , which are denoted

y RSS(K, T) and SS(K, T) , respectively. That is, y ∗
1 
, y ∗

2 
, . . . , y ∗s is an

ptimal solution of RSS problem, 

SS(K, T ) = 

n ∑ 

i =1 

k i y 
∗
i 

imilarly, we denote the optimal sum by SS(K, T) . 

In order to facilitate the discussion of algorithm in Section 3.2 ,

e give two properties of the RSS problem and their proofs. The

rst property describes the relationship between the RSS problem

nd SS problem. 

roperty 1. Given a set K that consists of n positive integers

 0 , k 1 , . . . , k n −1 and a target value T , if y ∗0 , y 
∗
1 , . . . , y 

∗
n −1 is an optimal

olution for a RSS problem and RSS(K, T) ≤ T , then y ∗
0 
, y ∗

1 
, . . . , y ∗

n −1 
s also an optimal solution for an SS problem, i.e., SS(K, T) = RSS(K, T) .

roof. Suppose y ∗0 , y 
∗
1 , . . . , y 

∗
n −1 is not an optimal solution for this

S instance, there must be another solution y ′ 
0 
, y ′ 

1 
, . . . , y ′ 

n −1 
to this

S instance, such that 

n −1 
 

i =0 

k i y 
∗
i < 

n −1 ∑ 

i =0 

k i y 
′ 
i ≤ T 

o we have | ∑ n −1 
i =0 k i y 

∗
i 

− T | > | ∑ n −1 
i =0 k i y 

′ 
i 
− T | . That means the

um obtained from y ′ 
0 
, y ′ 

1 
, . . . , y ′ 

n −1 
is closer to T than that of

 

∗
0 , y 

∗
1 , . . . , y 

∗
n −1 , contradicting the assumption that y ∗0 , y 

∗
1 , . . . , y 

∗
n −1 

s an optimal solution of the RSS instance. So y ∗
0 
, y ∗

1 
, . . . , y ∗

n −1 
must

e an optimal solution, and RSS(K, T) = SS(K, T) = 

∑ n −1 
i =0 k i y 

∗
i 
. �

The second property shows that the difference between the val-

es of RSS(K,T) and T cannot be too much. 

roperty 2. Given a set K consisting of n positive inte-

ers k 0 , k 1 , . . . , k n −1 and a target value T , a RSS problem has an

ptimal solution y ∗
0 
, y ∗

1 
, . . . , y ∗

n −1 
, then RSS(K, T ) − k j < T for any

 

∗
j 
= 1(0 ≤ j ≤ n − 1) . 

roof. This property is obviously true when RSS(K, T) ≤ T , so we

nly focus on the case of RSS(T) > T . 

Let RSS j ( K, T ) denote RSS(K, T ) − k j for any y ∗
j 
= 1. It is assumed

hat RSS j ( K, T ) > T , and we have | RSS j (K, T ) − T | = | RSS(K, T ) −
 j − T | = RSS(K, T ) − k i − T < RSS(K, T ) − T = | RSS(K, T ) − T | . Ac-

ording to the definition of RSS problem, RSS j is the optimal so-

ution. However, this contradicts the definition of RSS(K, T) . There-

ore, we must have RSS j < T , which is equivalent to RSS(K, T ) − k j <

 . �

In summary, when RSS(K, T) ≤ T , Property 1 guarantees the

SS problem is equivalent to the SS problem. When RSS(K, T) >

 , Property 2 guarantees that the difference between RSS(K, T) and

 must be less than the largest k i ( 0 < i < n − 1 ). In practice, if the

mount of intermediate data received by a Reducer is beyond its

omputing capacity, Property 2 ensures that the degree of the be-

ond is not too much and will not cause much overhead. This has
een verified in our experiments. Having demonstrated these prop-

rties, we are ready to explore algorithms for the RSS problem. 

.2. Relaxed-Subset-Sum algorithm 

In this section, we propose our Relax-Subset-Sum algorithm,

hich is shown in Algorithm 1 . The algorithm’s inputs are oper-

tion loads and target value, the algorithm generates n +1 integer

ets L i (0 ≤ i ≤ n ). Line 2 initializes the list L 0 to 0. The loop in lines

 - 7 computes L i as a sorted list containing a properly trimmed

ersion of L i −1 . MERGE-LISTS( L , L 
′ 
) in line 4 returns a sorted list

hat is the merge of its two sorted input lists L and L 
′ 

with dupli-

ate values removed. Specifically, L i −1 + k i denotes the list of inte-

ers generated by adding k i to each element of L i −1 . For example,

f L i −1 = 〈 1, 2, 3, 5, 9 〉 , L i = L i −1 + 2 = 〈 3, 4, 5, 7, 11 〉 . Function

RESERVE( L i , T ) in line 5 perseveres all the elements smaller than

 , and the smallest one among those elements is larger than or

qual to T. When the loop terminates, L i contains the sum of sub-

ets of { k 1 , k 2 , . . . , k n } . 
Function LARGEST-TWO( L n ) in line 7 selects the maximum two

ntegers in L n , which are denoted by t 1 and t 2 . Lines 8–12 select

he one closer to the target value T from t 1 and t 2 . The selected

lement is denoted by t ∗. Obviously, t ∗ is an optimal sum. In line

3, we back trace integer sets L 0 , L 1 , . . . , L n to obtain the solution. 

xample. We illustrate the Relaxed-Subset-Sum algorithm with

he same example mentioned before. The final amount of interme-

iate data assigned to the three Reducers are 260 ( k 1 + k 4 ), 256

 k + k ) and 261 ( k + k ), and their standard deviation is only
2 3 0 5 
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Algorithm 3 Approx-Relaxed-Subset-Sum Algorithm. 

Input: K : a positive integer set contains n elements < 

k 0 , . . . , k n −1 > ; L : a positive integer set; T : a target value; L i : a 

generated list after the k i is appended. 

Output: an optimal solution 

1: n = the length of K 

2: L 0 = 0 

3: for i = 1 to n do 

4: L i = MERGE-LIST( L i −1 , L i −1 + K i ) 

5: L i = Trim( L i −1 , ε) 

6: L i = PRESERVE( L i , T) 

7: end for 

8: t1, t2 = LARGEST-TWO( L n ) 

9: if | t i − T | < | t 2 − T | then 

10: t ∗ = t 1 
11: else 

12: t ∗ = t 2 
13: end if 

14: Back trace from t ∗ to get an optimal solution. 
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2.16, much smaller than 6.48. Hence, the RSS algorithm provides

a better load balance than the SS algorithm. 

We analyze the time complexity of the RSS algorithm as follows.

Line 1 takes O(1) time. The time of the loop in lines 3–6 depends

on the length of L i . L i only contains the distinct nonnegative in-

tegers smaller than T and at most one integer equal to or larger

than T , thus the maximum length of L i is T (0 ≤ i ≤ n ). Therefore,

the time complexity of this loop is O( nT ). Line 7 and the if state-

ment in lines 8–12 take O(1) time. The back trace in the last line

takes n-1 steps, t ∗ in L i determines the time of each step. This can

be done through binary search in O ( log | L i | ) = O(log T ). Therefore, the

last line takes O ( n log T ) time, and the total time complexity of RSS

algorithm is O ( n T ) . 

3.3. Approx-Relaxed-Subset-Sum Algorithm 

The RSS algorithm is time-consuming when the data being pro-

cessed is extremely large. To reduce the time complexity, we pro-

pose an Approx-Relaxed-Subset-Sum algorithm, which implements

the Trim algorithm. As shown in Algorithm 2 , the Trim algorithm

lists L by selecting and remaining only a value Z to represent all

values Y according to Eq. (2) and finally get the list L 
′ 
. Here ε

(0 < ε < 1) is a trimming parameter. Obviously, the Trim algorithm

can dramatically decrease the number of elements by keeping a

close (and slightly smaller) representative value in the list for the

deleted elements. Algorithm 2 describes the procedure of trimming

list L that contains m elements in time �( m ). It is assumed that L

is sorted in a monotonically increasing order. The output of the

procedure is a trimmed and sorted list. 

Y 

1 + ε 
≤ Z ≤ Y (2)

We insert the algorithm Trim into Relaxed-Subset-Sum algo-

rithm and place it just before the function PRESERVE( L i , T ) to

form our Approx-Relaxed-Subset-Sum algorithm, which is shown

as Algorithm 3 . Approx-Relaxed-Subset-Sum algorithm can find a

sub-optimal solution in a fully polynomial time, therefore, the

caused overhead is acceptable [17] . 

4. NPIY: A Novel Partitioner in yarn 

4.1. System overview 

To tackle the problem of system performance degradation

caused by data skew, heterogeneity of cluster, and large amount
f network traffic, we design a new partitioner in Yarn (Hadoop

.6.0), named NPIY, Fig. 1 shows its architecture. In particular, each

arallel Reservoir Sampler (PRS) samples the input data on each

apper. Data Frequency Table (DFT) creates a table that records

he value of each key in every DataNode according to sampling

tatistics. The Capacity Monitor estimates the computing capacity

f each DataNode. Global DFT (GDFT) summarizes all DFT data in

ach DataNode. CV records the computing capacity values of all

ataNodes. BASHE is the core unit in our NPIY, which generates

he final partitioning result. The workflow of NPIY consists of three

teps. 

(1) When a user submits a MapReduce job, the Resource Man-

ager in the NameNode creates an Application Master for

this job in a DataNode. Besides normal MapReduce tasks,

this Application Master is also in charge of Capacity Monitor

tasks, PRS tasks, and DFT tasks. Then the Application Master

applies for containers to run all these tasks in parallel, which

are shown as MapReduce Container, Capacity Monitor Con-

tainer, PRS Container, and DFT Container in Fig. 1 . When the

split operation in the map stage finishes, PRS tasks in each

DataNode conduct sampling. All the sampled < key,value >

pairs are summarized and stored into a file. The detailed

process of PRS is described in Section 4.2 . A DFT task counts

and records the sampled < key, value > pairs, and gener-

ates a key frequency table. Here the key frequency refers

to the number of pairs with a specific key. At the same

time, the Capacity Monitor tasks collect the computing ca-

pacity of each DataNode, which is described in Section 4.3 .

When all these processes are completed, the obtained infor-

mation, which consists of key frequencies in DFTs and com-

puting capacity value of each DataNode, will be transmitted

from DataNodes to NameNode through heartbeat messages.

In Hadoop, DataNodes send heartbeat messages to NameN-

ode after a regular interval to indicate that they are alive and

working. In these heartbeat messages, DataNodes also send

their computing and resource usage information to NameN-

ode. 

(2) When NameNode receives the information, it forwards them

to GDFT and CV. Then GDFT summarizes all key frequencies

in each DataNode into a total frequency table. CV records

computing capacity values of all DataNodes by the informa-

tion from Capacity Monitors. 

After achieving the capacity value of each DataNode, NPIY

selects the top 40% of DataNodes with the highest capacity

values to process reduce tasks, which ensures the execution

parallelism and efficiency of reduce tasks. On these DataN-

odes, the user-specified number of Reducers are set up with

Mappers and reserved during map tasks are executed. 

Compared with the native Hadoop, the reserved Reducers do

not decrease the utilization of system resources because of

the following reasons. First, in the native Hadoop, when a

certain small percentage of map tasks complete (default by

5%), Reducers start to pull their input data by using the Hash

Partitioner. Therefore, Reducers start to work shortly after

Mappers. Secondly, the selected DataNodes are with stronger

processing capacity, so the map tasks on them are executed

quickly. These are essential preparative works for the final

partitioning results generated by BASHE. 

(3) Then BASHE generates the final partitioning result using the

BASHE algorithm described in Section 4.5 . Finally, NameN-

ode transmits the results back to DataNodes through re-

source response messages. 

In NPIY, we obtain the distribution of intermediate re-

ult by running a novel sampling during normal map pro-

essing. Our sampling is performed in parallel by the map
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Fig. 1. The Architecture of NPIY. 
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Algorithm 4 BASHE Algorithm. 

Require: k, r, key_size[0,.,k-1], CV[0,… ,r-1], Sum _ CV , ε, RS[0,.,r-1], 

T[0,… ,r-1], Total_Size 

Ensure: key_dest[0,… ,k-1] 

1: for i = 0 to k-1 do 

2: key _ dest i = −1 ; 

3: end for 

4: for j = 0 to r-1 do 

5: RS j = 0 ; 

6: Sum _ CV = Sum _ C V + C V j ; 

7: end for 

8: for each Reducer R j (0 ≤ j ≤ r − 1) do 

9: if the node with R j locates also executes map tasks then 

10: for every key i (0 ≤ i ≤ k-1)on R j do 

11: if key_ dest i == -1 then 

12: key _ d est i = MaxRed ucer(key i ) ; 

13: RS key _ dest i 
= RS key _ dest i 

+ key _ size i ; 

14: key _ size i = 0; 

15: end if 

16: end for 

17: end if 

18: end for 

19: for j = 0 to r-1 do 

20: T j = T otal _ Size ∗ (C V j /Sum _ C V ) − RS j ; 

21: end for 

22: for j=0 to r-1 do 

23: Z ∗=ARSS( key _ size [0 , . . . , k − 1] , T j , ε); 

24: Set key _ dest of the keys composing Z ∗ to the sequence num- 

ber of Reducer j ; 

25: end for 

26: for i = 0 to k-1 do 

27: if key _ dest i == −1 then 

28: key _ dest i = Hash(Hashcode( Key i ) mod (the sequence 

number of Reducer)); 

29: end if 

30: end for 

31: return key _ dest[0 , . . . , k − 1] ; 
asks with higher priority. Therefore, when the split opera-

ion in the map stage finishes, the map tasks conducting sam-

ling are processed preferentially. Our sampling strategy, namely

arallel Reservoir Sampling (PRS for short), is based on the

eservoir sampling algorithm [20] . PRS runs by invoking the

lass org.apache.hadoop.mapreduce.lib.InputSampler 
nd overloading the SplitSampler method. Obviously, there is

 tradeoff between sampling overhead and result accuracy. If the

ampling rate is too large, a higher sampling accuracy is achieved

ith the cost of longer execution time. On the contrary, small sam-

ling rate shorts sampling duration but sacrifices sampling accu-

acy. In our previous work [17] , we set sampling rate empirically.

n this paper, we propose a more accurate evaluation model to se-

ect an appropriate sampling rate, which comprehensively consid-

rs the importance of effect, cost, and variance in sampling. 

.2. Parallel reservoir sampling strategy 

.2.1. Sampling strategy 

The main idea of PRS is described as follows. PRS builds a reser-

oir for each selected split and samples k elements from it. All

 key, value > pairs in each split are scanned and the first k ele-

ents are stored in each reservoir. For a < key, value > pair whose

equence number is larger than k , we replace the stored elements

ith this pair based on a certain probability. 

This process is executed for each reservoir in parallel. All the

ampled < key, value > pairs are summarized together and stored

nto a file by a reduce function. The process of PRS is shown

n Fig. 2 (a). When sampling tasks of selected splits are finished,

heir corresponding normal user-defined map functions are exe-

uted successively. In other words, our PRS is integrated into a

ormal map processing. As shown in Fig. 2 (b), when all samplers

re complete, the sampling results are aggregated and transmitted

o the GDFT model in our NPIY, which performs the BASHE algo-

ithm to generate the final partitioning scheme. To those < key,

alue > pairs that do not appear in the PRS results, BASHE assigns

hem to the corresponding Reducers according to their hash code,

hich is described in Algorithm 4 . In our system, Reducers begin

o pull their input data after the sampling partition is decided. This

s later than the default start time of the reduce stage in the na-

ive Hadoop because the decision of sampling partition introduces
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Fig. 2. The Process of Parallel Reservoir Sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Evaluation for cost and effect with different benchmarks. 

i Sampling percentage (%) E i D i V i f i 

1 1 357.31 285 43.35 685.66 

2 25 150.5 401 29.82 581.32 

3 50 101.01 504.16 24.68 629.85 

4 75 53.11 594.08 19.92 667.11 

5 100 12.58 632.82 2.66 648.06 
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overhead. However, the overhead is negligible based on our exper-

imental results shown in Section 5 . 

4.2.2. Sampling rate selection 

Through extensive experiments, we find that the sampling rate

affects not only sampling effect, but also sampling duration and

variation of these duration. We propose an evaluation model to

better estimate appropriate sampling rates and take these affected

factors into consideration comprehensively. The evaluation model

is shown in Eq. (3) , 

i = argMin [ f i (E i , D i , V i ) = αE i + βD i + γV i ] (3)

where function f i ( E i , D i , V i ) comprehensively considers both sam-

pling effect, time cost, and variation. α, β , and γ are the weight

coefficients that reflect the importance of these affected factors. 

In function f i , E i denotes the sampling effect when sampling

rate is set to i . In this paper, we focus on 5 different sampling

percentages: 1%, 25%, 50%, 75%, 100%, so the series number i satis-

fies 1 ≤ i ≤ SN , where SN denotes the number of different sampling

rates, here, SN = 5. As shown in Eq. (4) , E i represents sampling ef-

fect by the differences among the sequences of CoV (Coefficient

of Variation) values between the currently adopted percentage and

the whole input dataset. 

E i = 

√ √ √ √ 

N ∑ 

j=1 

( 

cov i, j −
1 

N 

N ∑ 

j ′ =1 

cov 5 , j ′ 

) 2 

(4)

where cov i, j denotes the CoV value of j th sampling experiment un-

der sampling rate i. N is the repeated times of experiment. For ex-

ample, cov 5, j denotes the values with a 100% sampling rate. 

D i denotes an average sampling duration, which is calculated by

Eq. (5) . 

D i = 

1 

N 

N ∑ 

j=1 

d i, j (5)
here d i, j represents the execution time of the j th sampling exper-

ment under the i th sampling rate, 1 ≤ i ≤ SN and 1 ≤ j ≤ N . 

Due to the fact that our cluster is heterogeneous, variation of

omputation time exists in our parallel sampling. To fully consider

his factor, we propose Eq. (6) to calculate the variation, which is

enoted by V i under sampling rate i . 

 i = 

√ √ √ √ 

1 

N 

N ∑ 

j=1 

( 

C OV i, j −
1 

N 

N ∑ 

j=1 

C OV i, j 

) 2 

(6)

We run Sort and Grep benchmarks in our experiments. Table 1

resents the final values of E i , D i and V i , which are calculated us-

ng Eqs. (4) –(6) with different sam pling rate i , respectively. We per-

orm each group of experiments for 10 times, so the parameter N

n Eqs. (4) –(6) is set to 10. Here, we simply assume the importance

f efficiency, cost and variation are equal, and set α = β = γ = 1. 

From Table 1 , we observe that with the increase of sampling

ate, the value of D i increases, and both the values of E i and V i de-

rease. Specifically, in the group of experiments with 1% sampling

ercentage, E i ’s value is great larger than the one with 100% sam-

ling percentage, which means although low sampling rate reduces

he sampling duration, it can not demonstrate the distribution of

nput data accurately. According to Eq. (3) , it is easy to observe

hat sampling 25% of the map tasks is an appropriate choice for

he input data of Sort and Grep benchmarks. 

.3. Capacity monitor 

Hadoop cluster is often heterogeneous. To obtain DataNodes’

omputing capacity, we design a model, namely, Capacity Moni-

or, which runs on each DataNode. To dramatically decrease ex-

ra overhead caused from heterogeneity, Capacity Monitor in each

ataNode keeps monitoring the sampled input data when sam-

ling begins to run, and gets its consuming volume Volume ( con ) id 
1 ≤ id ≤ m ) during a period of time �t . Here m denotes the num-

er of DataNodes. Then we calculate the capacity value of the id th 

ataNode, i.e., CV id , by the following Eq. (7) . Capacity Monitor tasks

end the capacity values of all DataNodes to NPIY in NameNode

hrough heartbeat messages. 

V id = V olume (cons ) id / �t (7)

.4. Network traffic in shuffle phrase 

As bandwidth is a scarce resource, the shuffle phase has be-

ome the bottleneck of MapReduce due to its large amount of

etwork traffic. Many DataNodes run both map and reduce tasks

12] . If we can keep as many as intermediate < key,value > pairs

n these DataNodes by using an appropriate partitioning method

n the shuffle phase, it can further decrease the network traffic.

he BASHE algorithm finds the DataNode that contains the max-

mum amount of these pairs, and then transmits all these pairs

o this DataNode. Our experimental results show that this method

ecreases the network traffic in the shuffle phase by up to 22.22%.
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Table 2 

Variable notation. 

Variable name Description 

k The number of distinct keys 

r The number of Reducers in cluster 

key _ dest i The ID of the destination Reducer that will process the 

< key,value > pairs corresponding to key i 
RS i The data volume that should be processed on Reducer i 
CV i Computing capacity of Reducer i 
Sum_CV The total computing capacity value of all Reducers 

key _ size i The data volume of 〈 key,value 〉 pair with key i 
T i Remaining capacity of Reducer i 
Total _ Size The total volume of experimental data set 

ε Approximation parameter 
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Table 3 

Jobs with different sampling methods. 

Sampling Method Time(s) Sample File Size(MB) Accu appro 

Random 5.7 2.8 310,986 

TopCluster 5.1 3.0 147,282 

PRS 5.3 10.6 99,763 
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.5. BASHE Algorithm 

In this section, we describe our algorithm BASHE that com-

rehensively considers the load BA lance among Reducers, network

raffic in S huffle and the H eterogeneity of Hadoop cluster basing

n Approx-R E laxed-Subset-Sum algorithm. As Algorithm 4 shows,

here are three steps in BASHE. First, it reduces intermediate data

ransmitted in the shuffle phase. Then, it predicts the data volume

hat each Reducer should process according to their computing ca-

acity. Finally, to balance the loads among Reducers, BASHE parti-

ions intermediate data to each Reducer using the Approx-Relaxed-

ubset-Sum algorithm. The variables used in BASHE are shown in

able 2 . 

Lines 1–3 initialize all key _ dest i with -1, which means all

 key,value > pairs have not been partitioned. Lines 4–7 initial-

ze all RS i (1 < i < r ), and compute the Sum_CV. The value of CV i 

an be obtained by Eq. (7) . Lines 8–18 reduce the amount of net-

ork traffic in the shuffle phase. As described in Section 4.4 , we

ocus on the DataNodes who run both map and reduce tasks. For

ach key i ( 0 < i < k − 1 ) on these Reducers, BASHE first checks

hether its destination Reducer is determined. If not, the function

axReducer( key i ) in line 12 will find the Reducer on which the

olume of the < key,value > pairs with key i is maximum, and then

et this Reducer as the destination Reducer of key i . Line 13 up-

ates data volume that should be processed on this Reducer. Line

4 sets key _ size i to zero, because the < key,value > pairs with key i 
ave been partitioned to a Reducer, this operation prevents these

 key,value > pairs from being re-partitioned. Lines 19–21 obtain

he remaining computing capacity of each Reducer. Here remain-

ng computing capacity means extra data volume that one Reducer

an process. Total_Size ∗ ( CV j /Sum_CV) means the total data vol-

me that the Reducer j should process according to its computing

apacity. 

Using the Approx-Relaxed-Subset-Sum algorithm (abbreviated 

s ARSS in line 23), Lines 22–30 balance the loads among all Re-

ucers by partitioning intermediate data based on Reducers’ com-

uting capacity. In Lines 22–25, BASHE partitions intermediate

ata to each Reducer and records the destination Reducer of each

ey into the array key_dest. We can obtain these values through

DFT in NPIY. In lines 26–30, BASHE checks whether there exist

he keys that have not been partitioned, e.g. , the keys not appeared

n PRS results. If exists, BASHE assigns these intermediate data to

he corresponding Reducers according to their hash code. The last

ine returns partitioning result. 

. Evaluation 

In this section, we describe the performance evaluation of NPIY

y running two popular benchmarks with synthetic and real-world

atasets with different data skew rate, and our experiments are

erformed under both homogeneous and heterogeneous environ-
ents. Specifically, we evaluate NPIY to process large-sized images

n parallel. 

.1. Experimental environment 

In our experiments, we set up two Hadoop clusters, one is

omogeneous, and the other is heterogeneous. Our homogeneous

adoop cluster consists of 60 physical machines installed with

buntu 12.04 (KVM as the hypervisor) with 16 core 2.53 GHz Intel

rocessors, 4G memory, and the 60 nodes are connected through

 single switch with 1 Gbps network bandwidth. Our experiments

re performed in YARN (Hadoop 2.6.0). All nodes are used as both

omputing and storage nodes. The HDFS block size is set to 64 MB

nd each node is configured to run at most 6 map tasks and 2

educe tasks concurrently. Our heterogeneous cluster contains 60

hysical machines with three types. The first type contains 30 ma-

hines with 16 core 2.53GHz Intel processor and 2 GB memory.

he second type contains 20 machines with 4 core 3.3 GHz Intel

rocessor, and 8 GB memory. The third type contains 10 machines

ith 4 core 2.4 GHz Intel processor, and 2 GB memory. The other

onfigurations are the same as that in the homogeneous cluster. 

We evaluate NPIY by running different types of benchmarks in

omogeneous and heterogeneous Hadoop clusters, respectively. We

ompare NPIY with Hadoop hash partition, SkewTune [14] , and our

rior approach PIY [17] . In order to ensure accuracy, we perform

ach group of experiments at least 10 times and take the mean

alue as the final result. 

.2. Accuracy of the sampling method 

To evaluate how our sampling method PRS can achieve a good

pproximation to the distribution of intermediate result, we run

 Sort benchmark and compare our PRS with the other two sam-

ling methods. One is the random sampler used in the native

adoop and the other is TopCluster [19] . We run these three dif-

erent samplers on a 20GB real-word data sets from the full En-

lish Wikipedia archive, which contains 50,0 0 0 keys. Our sampling

xperiments are executed on our homogeneous Hadoop cluster,

ach node is configured to run at most 6 map tasks and 2 re-

uce tasks concurrently. We measure the sampling approximation

y Eq. (8) , where x 
appro 
i 

and x real 
i 

denote the sampling and real fre-

uency of 〈 key, value 〉 pairs with key i , respectively. The smaller

alue Appro sampl is, the better performance our approach achieves.

s described in Section 4.2.2 , we set sample percentage to 25%. In

rder to maintain consistency, the other two methods sample 25%

f input splits. Table 3 shows that the size of sample file generated

rom PRS is larger than the others meanwhile their execution time

re approximately equal. This is because PRS completes reservoir

ampling on each split in parallel and collects the sample result

ith larger volume. Obviously, the better accuracy can be realized

f the sampling result is larger. 

ppro sampl = 

√ ∑ n 
i =1 (x appro 

i 
− x real 

i 
) 2 

n 

(8) 

From Table 3 we can see that the approximation of our PRS

s 99,763, which is better than the other two sampling methods.
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Fig. 3. Comparison of three sampling methods in Grep. 
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Fig. 3 for the top 10 0 0 large keys in the data shows the same re-

sult. Note that the sampling approximation of TopCluster is fairly

accurate on the large keys at the beginning of its curve, represent-

ing their frequency are relatively large, but it becomes worse on

the keys whose frequency is less than 10 3 . The reason is that Top-

Cluster assumes the distribution of small keys are in accordance

with large keys, and this assumption can be misleading when there

are a large number of small keys in the input data. Fig. 3 shows

that our PRS achieves a better approximation to the distribution of

intermediate data in MapReduce computation. 

5.3. Load balance among reducers when running sort benchmark 

One of major motivations for NPIY is to balance the loads

among Reducers when data skew happens. Therefore, we evalu-

ate NPIY by running the Sort benchmark, which is a reduce-input-

heavy job to process input data with various data skew degrees.

In this paper, the degree of load balance and data skew are mea-

sured by the coefficient of variation, which is represented as COV.

The smaller COV means the better. Fig. 4 (a) and (b) shows the COV

values when running Sort benchmark based on 10 GB of synthetic

data in homogeneous and heterogeneous clusters, respectively. We

generate a 10GB synthetic data set following Zipf [21] distributions

with varying δ parameters from 0.2 to 1.2 to control the degree of

the skew. 

We compare our NPIY with three strategies, Hadoop-Hash,

SkewTune [14] , and PIY [17] . As shown in Fig. 4 (a), the curves of

Hadoop-Hash and SkewTune keep rising when data skew rate in-

creases, while the COV of NPIY always remains very low. This can

be explained as NPIY partitions the intermediate data to all Re-

ducers evenly in the homogeneous cluster. The reason why Skew-

Tune performs worse than NPIY and PIY is that SkewTune can only

repartition the input data of one straggler at a time, it can not

balance the loads on all Reducers when there are more than one

slow reduce tasks caused by serious skew data. On account of the

Hadoop-Hash partitions data by the hash code of keys, it is easy to

cause serious unbalanced loads when data skew happens, which

makes the worst performance in Fig. 4 (a). 

From Fig. 4 (b), we find the same results as in Fig. 4 (a). NPIY is

also with the best performance in terms of COV, and the Hadoop-

Hash is the worst one. In addition, while the value of NPIY is

almost unchanged, the values of Hadoop-Hash and SkewTune at
ost of data skew rates are higher than that in the homogeneous

luster, and this trend is more obvious when the data skew rate

ncreases. In other words, the optimization degree of NPIY in load

alance in the heterogeneous cluster is much more than that in

he homogeneous cluster. Besides the aforementioned reasons, the

onsideration of heterogeneity of NPIY makes a greater contribu-

ion in load balance among Reducers. 

From Figs. 4 (a) and (b), we find that, compared with PIY, NPIY

oes better in all time. This can be explained as the Approx-

ubset-Sum algorithm in PIY causes that the last Reducers are al-

ocated with more intermediate data than the front ones, which

ecreases the degree of load balance. Hence, the Approx-Relaxed-

ubset-Sum algorithm in NPIY effectively avoids the occurrence of

his situation. 

.4. Execution time of sort benchmark 

Fig. 4 also shows the execution time of the experiments we

ave described in Section 5.3 . The curves in Fig. 4 (c) show the re-

ults in the homogeneous cluster. We can see that NPIY is faster

han Hadoop-Hash and SkewTune when processing the data with

igh skew rate. On the contrary, when the data skew rate is lower

han a certain threshold, NPIY does not perform satisfactorily. The

eason is that when data skew degree is low, e.g. less than 0.30 in

ur experiment, the Hadoop-Hash has the shortest execution time

n the homogeneous cluster because of its even partitions of inter-

ediate data without extra overhead. SkewTune causes small over-

ead on migrating unprocessed data on the slower nodes to the

aster ones because there are few stragglers in this scenario, and

his leads to its execution performance behinds the Hadoop-Hash.

urthermore, NPIY consumes the longest execution time because

f its extra overhead produced by the sampling data and parti-

ioning results in the map phase. However, as data skew degree

ncreases, the optimization, which is achieved through balancing

oads among Reducers by using our Approx-Relaxed-Subset-Sum

lgorithm, gradually offsets the time spent on the extra overhead.

herefore, NPIY achieves the shortest execution time. 

In addition, NPIY is always faster than PIY because it does

etter in load balance, which avoids stragglers produced by PIY

nd shortens the execution time. In addition, as described in

ection 3.3 , although the Approx-Relaxed-Subset-Sum algorithm

ay cause loads on some Reducers slightly beyond their comput-
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Fig. 4. Evaluation of PIY In Hadoop Clusters. 
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ng capacity, the optimization on load balance offsets this over-

ead. 

Consequently, compared with Hadoop-Hash, SkewTune and PIY,

PIY achieves the average improvements on execution time by

0.39%, 8.60% and 4.65%, respectively, and the maximum improve-

ents reach 41.66%, 14.90% and 7.81%, respectively, when the data

kew percentage is 1.2. 

Fig. 4 (d) shows the full adaption of NPIY to heterogeneous clus-

er. NPIY is also the fastest one in most cases. There also exists a

kew rate threshold in the heterogeneous cluster, under which the

IY and NPIY run slightly slower than the other two methods, the

eason is the same as in the homogeneous cluster. However, on

verage, NPIY can perform 31.86% and 16.65% faster than Hadoop-

ash and SkewTune, respectively. Specifically, when the data skew

s 1.2, the improvement is 58.68% and 30.92%, respectively. These

alues demonstrate that the improvement degree of NPIY is more

bvious in the heterogeneous cluster than that in the homoge-

eous cluster because it considers the computing capacity of each

ode during partitioning. For the same reason we have explained

efore, compared with PIY, NPIY performs 5.38% faster on average

nd 8.89% when data skew is 1.2. 

.5. Grep benchmark testing 

To evaluate the performance of NPIY on reduce-input-light ap-

lications, we run Grep, a reduce-light job, in our heterogeneous
luster. We modify Grep benchmark in Hadoop so that it outputs

he matched lines in a descending order based on how frequently

he searched expression occurs. The data set we use is the full En-

lish Wikipedia archive with a total data size of 10 GB. Because the

ehaviour of Grep depends on how frequently the search expres-

ion appears in the input files, we tune the expression and make

he input query percentages vary from 10% to 100%. Figs. 4 (e) and

f) shows that NPIY obtains the best performance of COV and job

xecution time at all time due to the accuracy of PRS and the con-

ideration of heterogeneity. Specifically, in Fig. 4 (e), NPIY obtains

he best COV when the query percentage is lower. This is because

RS in NPIY is good at searching unpopular words in the archive

nd generates better sampling results. As the query percentage in-

reases, the distribution of the result data becomes increasingly

niform, so the performance improvement vanishes. From these

wo figures, we also observe that, compared with SkewTune, the

ptimization NPIY achieves is not so much. This can be explained

s Grep is a reduce-input-light application, thus the amount of in-

ermediate data is relativity small, and the room to improve is not

uch. With the same reason we have described, the performance

f NPIY in load balance and duration are all better than PIY. 

.6. Optimization in shuffle phase 

To verify that BASHE algorithm used by NPIY can decrease the

mount of data transmission in the shuffle phase, we record the
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Fig. 5. The Execution Time Of Each Phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

The size of sample images. 

Image name Size(in bytes) 

CARTOSAT-1 1,342,552,576 

CARTOSAT-2A 4,259,355,002 

CARTOSAT-2B 9,204,661,322 
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execution time in each phase of MapReduce when running Sort

job in the heterogeneous cluster. Without losing generality, we il-

lustrate the execution time when δ is 0.8 in Fig. 4 (d). The na-

tive Hadoop starts shuffle tasks when 5% map tasks finish, there-

fore, we divide MapReduce into 4 phases, which are represented

as Map (Separate), Concurrent Map and Shuffle, Shuffle (Separate),

and Reduce. Concurrent Map and Shuffle indicate the overlap pe-

riod in which the shuffle tasks begin to run and map tasks have

not totally finished. Therefore, the duration of Map phase equals

the sum of Map (Separate) and “Concurrent Map and Shuffle”. Sim-

ilarly, the duration of Shuffle phase, which is shown in red color in

Fig. 5 , equals to the sum of Shuffle(Separate) and “Concurrent Map

and Shuffle”. In particular, because NPIY executes PRS in the Map

phase, its duration of Map phase should contain additional time

costed by PRS, which is represented as Sampling in Fig. 5 . From

Fig. 5 (a), we can see the duration in the shuffle phase of NPIY is

138+9 = 147 seconds, which is less than SkewTune (165+29 = 194)

and Hadoop-Hash (165+61 = 226), the improvement are 194 −147 
194 =

24 . 23% and 34.96%, respectively. 

Through a plenty of experiments, we observe that, compared

with Hadoop-Hash and SkewTune, the improvement degree NPIY

achieves in the shuffle phase is in proportion to the number of

reducers until the degree reaches the peak value. In our experi-

ment, the peak improvement degree is achieved when each node

is configured to run 6 map tasks and 4 reduce tasks concurrently.

Compared with the original configuration (6 map tasks and 2 re-

duce tasks), this modification should increase the number of Re-

ducers because the native Hadoop determines Reducer nodes ac-

cording to the computing resource (container in Yarn) in each Re-

ducer. The results are shown in Fig. 5 (b). We can easily observe

that NPIY’s duration in the shuffle phase is 117+12 = 129 seconds,

which is much less than 284 seconds for SkewTune, and 224 sec-
nds for Hadoop-Hash, the improvement is up to 284 −129 
284 = 54 . 58%

nd 42.41%, which are larger than Fig. 5 (a). This can be explained

s with the number of Reducers increases, the BASHE algorithm

nds much input data whose map and reduce tasks are able to be

cheduled to the same DataNode. This results in the decrease of

mount of data transmission in the shuffle phase. However, when

e configure each node to run at most 6 map tasks and 6 re-

uce tasks concurrently, compared with SkewTune and Hadoop-

ash, the improvement caused by NPIY are reduced to 22.53% and

9.31%, respectively. How to find the optimal Reducer number is

 problem about the tradeoff between the computing parallelism

egree and the network traffic, which is our future work on NPIY. 

.7. NPIY In parallel image processing 

With the demand of processing large-sized images increases

apidly, parallel image processing technologies are widely used to

horten the execution time. MapReduce has become a suitable

latform for large-scale high-volume image processing applications

ecause of the following three reasons: (1) images can be eas-

ly represented as multiple dimensional structure; (2) majority of

unctions in image processing can be highly parallelized; (3) the

DFS is an efficient way to store image data. 

NPIY is applicable to large-sized image processing due to the

ollowing reasons. First, the RGB and gray values of pixels in an

mage are always unevenly distributed, i.e. , these values are skew.

here are many popular image processing algorithms that do cal-

ulation with these values, such as auto-contrast, histogram, Sobel

ltering, sharpening. For example, auto-contrast algorithm filters

ut a certain percentage of higher values and lower values in Red,

reen and Blue channels. Therefore, the value skew decreases the

fficiency of these algorithms dramatically. Secondly, the comput-

ng clusters processing large-sized image are always heterogeneous

n real production environments. 

We conducted experiments for images with large sizes approx-

mately from 1.3 GB to 9.1 GB Chinese Remote Sensing (IRS) satel-

ite series. The sample data sets are shown in Table 4 . We conduct

istogram [22] operation on the native Hadoop, HIPI [23] , PIY, and

PIY. HIPI is an open-source Hadoop Image Processing Interface,

hich processes image without requiring the additional coding by

sing Java Image Processing Library. Histogram operation counts

he frequency of the pixel intensity in an entire image, which is

imilar to counting words in a file. In our implementation, the

ap function splits the large-sized image into several pieces. One

iece is processed by one map task, which collects the count of

he pixel (gray) value. Reduce function completes aggregation of

he collected numbers from map functions. To increase amount of

nput data in the reduce phase, we add TeraSort operation in his-

ogram and finally output pixel intensity results in a descending

rder. We implement histogram operation in a 5-node heteroge-

eous cluster, which is composed of the three types of physical

omputers described in Section 5.1 . Specifically, a node in the first

ype acts as a master, two nodes for each of the other types act as

laves. 

As shown in Fig. 6 , NPIY obtains the shortest execution time

hen processing all 3 different large-sized images. Compared with

he other three methods, the average execution time is reduced

y 28.8%, 19.2%, and 8.2%, respectively due to the following rea-
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Fig. 6. Execution Time Of Histogram. 
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ons. First, the distribution of the frequency of the pixel intensity

n a large-sized image is not even in general, i.e. , the pixel inten-

ity values are skew. Different from the native Hadoop and HIPI,

PIY considers data skew by balancing the loads on Reducers. Sec-

ndly, the PRS sampling method helps NPIY realize more even dis-

ribution of pixel intensity than the other two frameworks. Thirdly,

eterogeneity consideration helps NPIY achieve the fastest process

peed. Fourthly, the better load balance makes NPIY run faster than

IY. 

. Conclusion 

This paper proposes NPIY to mitigate data skew in MapReduce

ystems. Using the parallel reservoir sampling method we pro-

osed, NPIY achieves even distribution of intermediate data with

egligible overhead. NPIY tries to reduce network traffic in the

huffle phase by decreasing data traffic on those nodes running

oth map and reduce tasks. NPIY also considers cluster hetero-

eneity when balancing loads among Reducers. We run Sort and

rep benchmarks on two 10 GB synthetic and real-world data sets,

espectively. Compared with some other popular strategies, NPIY

mproves performance by 41.66% and 58.68% in the homogeneous

nd heterogeneous clusters, respectively. In particular, in a paral-

el imagine processing application, NPIY can reduce the execution

ime by up to 28.8%. 
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