
A Reinforcement Learning Based Resource Management Approach for Time-critical
Workloads in Distributed Computing Environment

Zixia Liu, Hong Zhang, Bingbing Rao, Liqiang Wang
Department of Computer Science, University of Central Florida

Email: zixia, hzhang1982, Robin.Rao@knights.ucf.edu, lwang@cs.ucf.edu

Abstract—Many data analyzing applications highly rely on
timely response from execution, and are referred as time-
critical data analyzing applications. Due to frequent appearing
of gigantic amount of data and analytical computations, run-
ning them on large scale distributed computing environments
is often advantageous. The workload of big data applications is
often hybrid, i.e., contains a combination of time-critical and
regular non-time-critical applications. Resource management
for hybrid workloads in complex distributed computing en-
vironment is becoming more critical and needs more studies.
However, it is difficult to design rule-based approaches best
suited for such complex scenarios because many complicated
characteristics need to be taken into account.

Therefore, we present an innovative reinforcement learning
(RL) based resource management approach for hybrid work-
loads in distributed computing environment. We utilize neural
networks to capture desired resource management model,
use reinforcement learning with designed value definition to
gradually improve the model and use ε-greedy methodology
to extend exploration along the reinforcement process. The
extensive experiments show that our obtained resource manage-
ment solution through reinforcement learning is able to greatly
surpass the baseline rule-based models. Specifically, the model
is good at reducing both the missing deadline occurrences for
time-critical applications and lowering average job delay for
all jobs in the hybrid workloads. Our reinforcement learning
based approach has been demonstrated to be able to provide
an efficient resource manager for desired scenarios.

Keywords-reinforcement learning, time-critical, distributed
computing

I. INTRODUCTION

In today’s big data era, enormous amount of data is
generated continuously and awaiting to be analyzed. Some
of the analytical applications, such as accumulative historical
data statistics analysis, may not have strict deadline or
are more tolerant of response delay. However, more and
more data analyzing applications, such as streaming data
processing, highly rely on timely response from execution
result, and can be referred as time-critical jobs. In this work,
we classify time-critical applications into two subcategories,
time-critical streaming application with approximately peri-
odical repeating patterns and non-streaming single running
time-critical application without repeating patterns.

Due to frequent appearing of gigantic amount of data
and deeper analytical workflow in contemporary data ana-
lytics, these applications often rely on large scale distributed

computing systems which often include multi-cluster/multi-
group topological structures due to geographical distribution
of resources, internal isolation for resource management
purpose, possible hybrid cloud elastic structure of computing
capabilities, etc. In real-world environment, it is more likely
that the large scale computing resources not only handle
time-critical applications but also regular non-time-critical
data analytics as well. We call such kind of mixed work-
loads with time-critical and non-time-critical applications
as hybrid workloads. Although resource scheduling and
management have been well studied in traditional parallel
and distributed computing, time-critical big data analytics
brings many new challenges such as how to balance multiple
performance demands regarding hybrid workloads, how to
at best effort fulfill the temporal needs from time-critical
applications meanwhile keeping general job delay low.

In this paper, we present a reinforcement learning based
resource management approach that takes into consideration
many unique features specific to efficient resource utilization
on large-scale distributed data analytical systems for hybrid
workloads. Our approach coordinates overall cluster-level
resource allocation and is compatible with different inner-
cluster resource management components. By our approach,
time-critical and non-time-critical applications can compre-
hensively utilize computing resources in an efficient and
harmonic way. The experiment results demonstrate that
our approach is more effective than rule-based resource
management approaches due to better capability of capturing
complex characteristics behind scene using reinforcement
learning. The major contributions of this paper include:

• Use reinforcement learning based approach with proper
neural network to obtain effective resource management
solution that outperforms baseline rule-based resource
manager.

• Design applicable value function definition in reinforce-
ment learning for evaluating both effects of actions in
reducing missing deadline occurrences and reducing
average job delay.

• Improve reinforcement learning technique relating to
ε-greedy strategy, as well as other accommodations to
better suit RL approach to underlying practical problem
and improve learning effectiveness and efficiency.

• Compare effects of different reinforcement learning
models with multiple competitive rule-based resource
management schemes in various hybrid workload sce-
narios.

II. BACKGROUND

Resource management for time-critical distributed com-
puting faces many challenges, which requires a better un-
derstanding of both instantaneous and long-term influence
of allocation decision. Traditional rule-based or white-box
resource allocation models are inadequate on these goals due
to intrinsic system complexity and difficulty in abstracting
behavior characteristics. Instead, we tackle this problem
by using the cutting-edge reinforcement learning technique,
which is good at capturing intricate system features and
gradually improving itself along RL process. Reinforcement
learning is an important area in machine learning. The goal
of which is to gradually learn to perform good actions in
response to state representations of different environment
status, in earning maximum action value.

Recently, many significant achievements have been ac-
complished using reinforcement learning technique. For one
representative example, Deepmind [1] recently developed a
computer Go program called AlphaGo to defeat world cham-
pions [2, 3]. In [2], they facilitate Monte-Carlo Tree Search
(MCTS) algorithm [4] with their own policy network and
value network, which are obtained via techniques including
supervised learning and reinforcement learning with deep
neural networks. Further in [3], they apply reinforcement
learning strategy directly without human knowledge, and are
able to achieve model which surpasses previous one [2] in
a short interval of time.

In the field of distributed computing, there are also studies
focusing on utilizing various approaches in improving sys-
tem performance and functionality. [5] proposes a search-
based automatic parameter tuning method for MapReduce
[6] framework. It uses a genetic algorithm to identify near-
optimal configuration of several Hadoop platform param-
eters in minimizing job execution time. [7] proposes an
architecture for scientific workflow management systems
that supports provenance and atomicity to distributed sci-
entific computations represented as scientific workflows. [8]
proposes a framework facilitating execution of a big data
computing application with multiple spark clusters. [9] pro-
poses JDS-HNN, a heuristic approach that utilizes Hopfield
Neural Network for job scheduling and data replication in a
grid, in purpose of minimizing job execution makespan and
data file delivery time. [10] and [11] try to deduce machine
learning model that could respectively capture the rela-
tionship between execution time or percentage performance
improvement with parameter configurations. The former is
depicted as a regression problem, while the later a binary
and multi-category classification problem. [12] proposes a
cloud computing configuration optimization method for big

data analytical platforms. It focuses on configurations such
as selecting appropriate type and numbers of instances, and
could distinguish a good configuration efficiently due to
Bayesian optimization efficiency.

Approaches including reinforcement learning have been
investigated to be applied to computing resource manage-
ment. [13] introduces a parallel temporal-difference rein-
forcement learning algorithm for achieving optimal cloud re-
source scaling decision. [14] employs deep learning strategy
in reinforcement learning to accomplish resource manage-
ment in a cluster from gradually accumulated experience and
the result called DeepRM is comparable to state-of-the-art
heuristics. [15] presents a novel multi-agent reinforcement
learning method for load balancing problems of grid com-
puting resources composed of multiple clusters with large-
scale computing jobs. [16] proposes to enable model-free
control in distributed stream data processing systems using
deep reinforcement learning, which aims at minimizing tuple
processing time in average. However, none of the aforemen-
tioned researches handles hybrid time-critical workload in
distributed computing environment.

III. PROBLEM DESCRIPTION

The overall computing resource is defined as multiple
computer clusters with specific capability. To define comput-
ing capability, we use the concept of executor in Yarn [17],
which is a stationary basic allocation unit of a combination
of virtual CPUs (a.k.a., vCPUs) and memory. This concept
is general and is widely adopted in popular distributed com-
puting systems such as Apache Hadoop and Spark. Clusters
can be heterogeneous in the sense that they provide overall
different numbers of executor units. In this paper, we assume
executors in a cluster are identical to different applications
so that they provide the same computing performance.

The workload deployed to the overall computing resource
is hybrid. More specifically, it can be a combination of
three categorical applications: (1) streaming applications that
repeat executions of themselves with different batches of
arriving streaming data, which intrinsically contain temporal
desire thus are time-critical; (2) non-streaming time-critical
applications without repeating patterns; and (3) regular non-
time-critical applications. Each application may have differ-
ent duration, execution time on single executor and different
computing capacity needs in unit of executors. Streaming
applications can also possibly experience streaming input
data fluctuation. In such a case, the streaming application
will reflect this as a different desire for numbers of executors
in order to maintain equivalent workload on single executor
to better achieve temporal requirement in data fluctuation. In
addition, we assume that computing resources are released
between intervals of batch executions of streaming applica-
tions for less idling resource occupation.

At each moment, multiple applications may possibly
arrive at the scheduling pool, which mimics the practical

scenario where multiple users submit jobs simultaneously.
At each moment, the resource management module picks
one of the awaiting applications to deploy onto one of the
computing clusters for actual execution. Selecting which
application and which cluster is crucial in determining the
overall performance of all applications.

Internal scheduling within a cluster is accomplished by
local scheduler. The global resource management module
does not interact or intervene with the operation of the local
internal schedulers. As a matter of fact, this design brings up
one advantage of the global resource management module,
that is, our proposed reinforcement learning is capable of co-
ordinating with different local internal scheduling schemes,
which greatly enhances the generality and applicability of
the proposed approach to different practical scenarios.

For time-critical applications, if the actual execution time
exceeds its temporal deadline requirement, this triggers
the “missing deadline” (MDL) event. It can be caused
by prolonged resource allocation waiting time and/or in-
sufficient executor allocation due to resource competition
among concurrent applications. For both time-critical and
non-time-critical applications, we also generally care about
the average job execution delay ratio, where a lower average
of job execution delay ratio represents more efficient overall
application running.

A critical problem that the global resource manager needs
to solve is how to schedule a hybrid workload for minimal
total missing deadline events and average job delay ratio.
Hence it may need to abstract cluster running statistics,
application characteristics, workload pattern, and internal lo-
cal scheduler behavior. The achieved resource management
module should be capable of achieving favorable balance in
goals and provide effective resource management scheme.

Streaming
time-critical
 application

Non-streaming
time-critical
 application

Regular non-time-
critical

 application

Reinforcement Learning based Resource
Management Approach

Simulation with local
scheduling scheme

Knowledge and
Performance

Metrics Collector

Reinforcement
Learning
Training

Knowledge
Replay
Buffer

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Figure 1. An illustration of the architecture of our approach.

IV. THE REINFORCEMENT LEARNING BASED APPROACH

As depicted in Figure 1, we propose a resource manage-
ment approach based on reinforcement learning for hybrid
workloads in distributed computing environment. Recall the

main purpose is to select an application from possible
multiple candidates and identify a suitable cluster for it
among all available ones for application deployment.

A. Concept Definition and Value Function Design

The environment of our reinforcement learning can be
described as follows: the overall distributed computing re-
source is composed of multiple computing clusters. These
clusters may provide different numbers of executors, with
each executor a fixed basic combinational allocation unit of
vCPU and memory resources. The applications awaiting to
be allocated can be categorized as three classes: streaming
time-critical, non-streaming time-critical, and regular non-
time-critical.

The state of the environment is defined as a vector of
several components, with details shown in Table I according
to experiment setup. (1) For each cluster, a component
is used for describing its computing capability in terms
of executors, discrete resource utilization statistics in the
past 100 time slices if available, and total occurrences of
missing deadlines for time-critical applications in current
episode. (2) Another component is for job profile. Without
loss of generality, we use streaming time-critical application
as an example for description. The profile includes: (a)
The category of job: streaming time-critical application,
non-streaming time-critical application, or non-time-critical
application; (b) Discrete probability distribution of resource
utilization due to streaming data fluctuation; (c) Single
executor occupation time, execution deadline for batch run-
ning, and overall duration of the streaming application.
Applications in the other two categories can nonetheless
use the same state format with intuitive modifications. For
all state representations, we uniformly expand or shrink
individual value range accordingly to maintain similar data
range for different dimensions in state vector.

Table I
STATE REPRESENTATION IN REINFORCEMENT LEARNING MODEL

Vector Component Dimensions
Cluster (i = 1 . . . 5)
Sequence number 1
Capability 1
Occupation statistics (latest 100 steps) 100
Current total missing deadline 1

515 (103× 5)
Application
Category 1
Discrete resource utilization distribution 10
Single executor occupation time 1
Execution deadline 1
Duration 1

14
Overall state vector 529 (515+ 14)

The action space of our reinforcement learning model is
composed of a number of actions equaling the number of
candidate clusters from 1 to C. In our experiment, C = 5.

An episode is defined as the successful finishing of a fixed
number of applications, where each application finishes its
execution (for non-streaming applications) or a number of
repeating executions (for streaming applications) during its
lifespan.

The value of an action with respect to assigning a time-
critical application i to a cluster can be defined as follows:

valuei = −λ·MDLi−γ·MDLt>ti−η·DelayResulti (1)

Similarly, the value of an action with respect to assigning
a regular non-time-critical application i to a cluster can be
defined as follows:

valuei = −γ ·MDLt>ti − η ·DelayResulti (2)

where MDLi is the accumulative occurrence of missing
temporal deadline events of application i during its lifes-
pan. MDLt>ti is total number of missing deadlines for all
applications in entire resource that happen after ti when
application i is deployed and before eventual termination
of i. The delay result DelayResulti is the average value of
all running time ratio of application i in possible multiple
executions during the episode. A running time ratio of
application i is the ratio of its actual running time over
its optimal expected running time. λ, γ and η are hyper-
parameters. In our experiment λ = 1, γ = 0.02 and η = 0.1.

The value of an action here is equivalent as accumulated
rewards an action received in an episode. Definition of the
value function can be interpreted as follows. Our purpose
for resource management for hybrid workloads is to increase
the overall resource utilization of all clusters by assigning
newly coming applications, meanwhile achieving multiple
performance considerations. For each application, we would
like the average job delay result remains low. However, for
any time-critical application, we also want to greatly restrict
any temporal deadline missing. Consequently, these should
be comprehensively taken into consideration by desired
resource manager. Specifically, our value function not only
depicts the influence of selected action to the occurrence
of application’s own missing deadline events, but also takes
into account the influence of it to all missing deadline events
happened after the action, regardless of whether the event is
solely related to application i or not. This ensures the global
vision of action value evaluation, and enables consideration
of correlated influence of multiple actions during action
selection performed by the approach.

B. Neural Network and Reinforcement Learning Method
Design

To capture important characteristics of efficient resource
management decision, we utilize a neural network of three
layers, including two fully connected hidden layers of 2000
and 500 neurons respectively and one output layer with
neurons equal to the number of available actions.

We use reinforcement learning framework to improve the
neural network model served as a value function estimator.
Given feature vector input regarding to a single application,
the network outputs value estimation for each possible
actions. Action is selected based on ε-greedy strategy.

To accomplish the training process, in each episode, we
gather resource management actions made by the neural
network model and attach them to the knowledge replay
buffer, which consists of at most 50000 latest resource
management knowledge. At the end of an episode, each
action taken is evaluated and their values are supplemented
to corresponding items in the knowledge replay buffer.
Therefore, our approach can be categorized as a Monte-
Carlo method [18] instead of Temporal Difference method
[19]. After finishing of each episode, if enough knowledge is
accumulated in the knowledge replay buffer, neural network
training process will be carried out with 1000 randomly
selected samples from knowledge replay buffer.

C. Strategies in Accommodating and Improving RL based
Approach

We briefly describe the special strategies and considera-
tions we have taken in the process of better accommodating
the reinforcement learning based model in the desired re-
source management problems as follows.

1) Enabling resource management target selection am-
ong multiple applications: Note that for the designed neural
network, it accepts feature vector of a single application
awaiting resource allocation, and the output is the value
estimation of all actions corresponding to allocating the
aforementioned application to according cluster. However,
it is possible that there are multiple applications awaiting
scheduling by our resource manager at certain moments.
We would like our reinforcement learning based approach to
be able to deliberately choose the most suitable application
among all awaiting ones at each time slice.

A fundamental requirement for neural network is the
stationary length of input vector, which is obviously achiev-
able when the input is with respect to one application,
but not likely when input vector is used for describing
multiple jobs, where the number of jobs remains variable and
unbounded. Considering features of adopted reinforcement
learning process, where an action is chosen based on the
largest values given by all available actions, we decide
to modify the outer-layer of the action selection process,
instead of the neural network input vector, to accommodate
the need in choosing among multiple awaiting applications.

In our modification, the neural network remains un-
changed, that is, its input is still with respect to one single
application. However, by utilizing the uniform meaning of
values in the output, in each time slice, if there are multiple
jobs awaiting, we would feed each of them to the neural
network individually, then append all values together as
one vector. The vector is then passed through the ε-greedy

Job Arriving
Pattern

Controller

Multi-Job
Arriving

Iterator by
Gaussian

Distribution

Job Categorical
Generator by

Stationary
Distribution

Resource
Management

Approach

Multi-cluster
Resource

Simulation Engine

Knowledge
Replay BufferNew

Knowledge

Action Value
Calculator

Performance
Metrics Collector

Knowledge Value
 Supplement

Reinforcement
Learning Training

Job Generation Module Simulation Module

Random Knowledge
Retrival

Figure 2. Reinforcement learning procedure in single episode.

process as described below. For any position selection in
vector, the position is then translated back to corresponding
application and its action. This enables the choice among
multiple awaiting jobs without modifying neural network
input.

2) Improved ε-greedy strategy for more effective and
efficient RL process: In reinforcement learning, there is a
strategy with the name ε-greedy strategy. It can expand the
exploration by randomly selecting actions with ε probability,
so that the vision of the reinforcement learning is not
restricted by current capability of the obtained model. It also
provides opportunities to escape out of local optimum, and
enhances chances to reach global optimum.

However, one disadvantage of the ε-greedy strategy is that
it solely expands exploration by random actions, therefore no
other possible valuable prior knowledge is utilized. This may
hinder efficiency in achieving better evolved resource man-
ager via reinforcement learning model. In light of this, we
innovatively apply an improved ε-greedy strategy by default
for more effective and efficient RL process. Specifically,
the improved ε-greedy strategy uses both the random action
and action from our baseline resource manager to increase
exploration. The details of it are stated as below.

action =


random action r1 < ε1 & r2 < ε2
baseline guided action r1 < ε1 & r2 ≥ ε2
argmax
j∈J,a∈A

Qa(sj) r1 ≥ ε1
(3)

When deciding an action, a randomized value from 0
to 1 is compared to current ε1 value. If less than, an
action is selected with ε2 possibility being random and
1− ε2 probability being the action selected by our baseline
resource manager; otherwise, action with largest value given
by network outputs is selected. Thus, knowledge from the
baseline approach could be utilized to enhance reinforcement
learning effectiveness and efficiency meanwhile the random
exploration is carried out. This improved strategy is shown
in Eqn. 3, where J is the set of scheduling awaiting jobs,
A is the action set and Qa(sj) gives value estimation of
action a for application j, r1, r2 are randoms in [0, 1]. In
experiments, we set ε2 = 0.5, and ε1 linearly decrements

from 0.8 to 0.00001 in Episode 1 to Episode 1900 (total
episode is 2000).

3) Training with randomized workloads: In specifying
single application characteristics in a workload, there are
multiple configuration parameters that can be varied, such as
discrete resource utilization distribution for streaming appli-
cation, single executor occupation time, execution deadline,
and duration for application. These parameters define the ex-
ecution features of an application. Whenever an application
is generated, especially in verifying the performance effect
of resource management approaches, we implement proper
randomness to these parameters to expand generality of the
workload.

The question remains whether in the reinforcement learn-
ing training process, application characteristic randomness,
which enhances workload generality, will bring difficulty or
even hinder the training process. We consequently verify the
answer to this question in several circumstances and have
made the following observation:

For different value function designs, it is possible that
the broad generality of workload by application randomness
may bring great difficulty in training process and harm
the effectiveness of reinforcement learning model. Using
one sampling of randomized workload as a fixed workload
for the entire training process could mostly alleviate the
problem, and surprisingly, the resulting model ends up rea-
sonably well for using in randomized workload environment.
However, after refining the value function design to be what
we present in this work, we discover that the effectiveness
of the training process remains well even for randomized
workload and the performance of the resulting model is
further greatly improved comparing to the model obtained by
training with a fixed sampling of randomized workload. The
underlying reason behind this is apparent since the trained
model with randomized workload has better knowledge and
vision from the better workload generality. We thus apply
training with randomized workloads in experiments.

D. RL Training Algorithm for Resource Management

The main algorithm for RL training is presented in
Algorithm 1. A detailed presentation of the procedure for

Algorithm 1 Resource Management and Training Algorithm
i: Current episode; t: Time,
N : Total number of episodes,
NoW : Predefined number of applications in workload,
fNoW : Finished number of applications in workload,
RGA: Number of randomly Generated Applications,
vecV : Value vector for jobs in job pool,
nn: Neural network model,
kb: Knowledge replay buffer

kb=[]; initialize ε1
for i in range(N) do
t=0; RGA=0; fNoW = 0
while fNoW < NoW do

if RGA < NoW then
RGA += generateJobs(jobPool)

end if
vecV=[]
for all job j in jobPool do

generate feature vector s for j
vecV.append(nn.eval(s))

end for
if random(0, 1) < ε1 then

if random(0, 1) < ε2 then
action=randint(0,len(vecV)-1)

else
action=actionbaseline

end if
else

action=argmax(vecV)
end if
takeAction(action)
knowl=generateKnowledge(action)
kb.push(knowl)
fNoW+ = removeF inishedJobs()
t++

end while
update value for new knowledges in episode i
if len(kb) > batchsize then

minibatch=random.sample(kb,batchsize)
Train neural network by stochastic gradient descent

end if
ε1 decrements

end for

one single episode is shown in Figure 2. The entire training
process is composed by N training episodes. In our exper-
iments, N = 2000. Obtained knowledge in each episode
is pushed into the knowledge replay buffer. At the end of
each episode, the value of each new knowledge is calculated
and supplemented to the knowledge buffer. If sufficient
knowledge exists, the neural network training is launched

where the newly obtained model is used in the next episode.
The weight of the neural network is updated via Stochastic
Gradient Descent (SGD) with mean square error.

V. EXPERIMENT RESULTS

In this section, we present experiment design and results.
The experiment is launched in our designed simulator, in a
computing resource of 5 clusters with different number of
executors defined by [500, 800, 1200, 1300, 1900]. For inner-
cluster local scheduler, a First-in-First-out (FIFO) sched-
uler is adopted, which is popularly provided as a default
scheduler in various big data platforms. First, we introduce
design of job arriving patterns and the baseline rule-based
resource managers. Then we present experimental results
regarding the performance comparison of RL based resource
management approach to baseline models.

A. Job Arriving Patterns

To thoroughly testify the effectiveness of designed rein-
forcement learning based approach, we adopt three statistical
patterns as job arriving patterns in resource management
experiments.

1) By Bernoulli process: In the first job arriving pat-
tern, we assume at each simulation time step, a job ar-
riving event happens with a stationary probability ρ =
0.08, where each experiment is fully independent. This
obeys the definition of “Bernoulli process”. When such
an event happens, we let the number of arriving jobs be
decided following a rectified discrete Gaussian distribution:
Numjob = max(round(N(µ, σ2)), 1). For Bernoulli pat-
tern, µ = 1.5, σ = 1, for other two patterns, µ = 3, σ = 1.

The category of arriving jobs also follows a stationary
distribution, with β1, β2, and β3 being probabilities for
regular non-time-critical, non-streaming time-critical and
streaming time-critical, respectively. Here β1+β2+β3 = 1,
and remains the same for other job arriving patterns as well.
For all three patterns, β1 = 0.5, β2 = 0.25, and β3 = 0.25.
From the property of Bernoulli process, the probability of
having a new job arriving event with interval i is equivalent
as the probability of having a first success in i consecu-
tive yet independent Bernoulli experiments, of which the
expression can be written as: P (i) = (1−ρ)i−1 ·ρ · Ii>0(i).
Here Iset(x) is the indicator function, it is 1 when x ∈ set,
otherwise 0.

2) By Uniform distribution: In the second job arriving
pattern, we assume the occurring interval of job arriving
event follows a discrete uniform distribution in [a, b], here
a = 1, b = 39. That is, in our selected range, the occurring
probability for job arriving event with each interval time i
is the same. Thus, the probability function can be presented
as:

P (i) =
1

|b− a+ 1|
Ii∈[a,b](i) (4)

3) By Beta distribution: In the third job arriving pattern,
we assume the occurring interval of job arriving event
follows a modified discrete version of Beta distribution. α,
β and M are pattern parameters, where in our experiment
α = 4, β = 2, M = 30. The probability of job arriving
event with interval i therefore can be written as:

P (i) =
Ii>0(i) · Γ (α+ β) · [B

(
i
M ;α, β

)
− (B

(
i−1
M ;α, β

)
]

Γ (α)Γ (β)
(5)

where,

B(x;α, β) =

∫ x

0

tα−1(1− t)β−1dt (6)

and Γ (x) is defined as the Gamma function:

Γ (x) =

∫ ∞
0

tx−1e−tdt (7)

The probability of job arriving event with interval time
i for all three job arriving patterns, and corresponding
sampling of first 30 job arriving events in an episode, could
be seen in Figure 3.

(a) Bernoulli pattern probability (b) Bernoulli pattern sampling

(c) Uniform pattern probability (d) Uniform pattern sampling

(e) Beta pattern probability (f) Beta pattern sampling

Figure 3. Job arriving pattern probability and pattern sampling

B. Rule-based Baseline Resource Managers

To compare with the effectiveness and justify the necessity
of the proposed reinforcement learning based approaches,
we put forward rule-based resource management approaches
as the baseline models. These different rule-based resource
management methods are designed in purpose of expanding

baseline solution generality. During designing, we at best
effort design competitive ruled-based solutions that utilize
available information reasonably and at its utmost; mean-
while keeping variance and generality of solutions in mind.

The rule-based approaches are shown as follow:
• Random action (Random): Both the target job when

multiple jobs are awaiting scheduling and the schedul-
ing action for this job are selected randomly.

• Smallest first-P (SF-P): When multiple jobs are await-
ing scheduling, the job with smallest computing capac-
ity requirement will be selected. This scheduler will
examine cluster utilization percentage in the nearest
past 100 time slices, and select the one with the lowest
average percentage as the destination for the target job.

• Largest first-P (LF-P): Same as previous, except that
the job with largest requirement in computing capacity
is selected among multiple awaiting jobs.

• Smallest first-E (SF-E): SF -E is the same with SF -P
in selecting target job among multiple awaiting ones.
But it will examine cluster resource utilization in the
nearest past 100 time slices, and select the one with
the largest average number of available executors as
the destination for the target job.

• Largest first-E (LF-E): Same as previous, except that
the job with largest requirement in computing capacity
is selected among multiple awaiting jobs.

C. Evaluation Metrics

Whenever evaluating approaches, all participating ap-
proaches will be tested for 50 independent testing episodes.
Each testing episode is independent in the sense that its
workload consisting of 500 jobs is entirely randomly gen-
erated following designated job arriving pattern. However,
in each testing episode, this same workload of 500 jobs are
submitted to all approaches. To enable performance compar-
ison, we present multiple evaluation metrics as follow.

Firstly, as previously stated, there are two major perfor-
mance factors we take into consideration as shown below.
• TMDL: Total occurrence of missing temporal deadline

events in all clusters of the overall computing resource
during one episode, with respect to the resource man-
agement approach.

• AJDR: Average job delay ratio is defined as the average
job running overhead percentage for all 500 jobs in one
episode with respect to certain resource management
approach. Specifically, it is defined as:

AJDR =

J∑
i=1

100 ·
∑Ni

j=1

(
ARij

ORij
− 1
)

Ni

 /J (8)

where J = 500 is the total number of jobs in one
episode. Ni is the total repeating runtime of job i, it is
1 for non-streaming application and larger than 1 for
streaming applications. ARij and ORij are the actual

running time and optimal expected running time of job
i in its j-th running, respectively.

Then, besides these two direct metrics, to evaluate system
performance in a more integrated and well-rounded way with
considering both performance metrics as mentioned before,
we include one more quantitative measurement and four
more comparative methods.

1) Quantitative Measurement: The quantitative measure-
ment is presented in Eqn. 9. It is designed in purpose of
concisely evaluating both major performance metrics TMDL
and AJDR in combination. With the reciprocal operation,
the eventual Evalapp can be interpreted as an evaluation
score where higher score implies better performance, with
0 being the lower bound. The weights in linear combination
are chosen considering data scales in separate metrics.

Evalapp = (0.02 · TMDL+AJDR)−1 (9)

2) Comparative Methods: Comparative methods will be
used in different configurations for comparing proposed RL
approaches with baseline approaches (the best of candidates
is chosen) in 50 testing episodes of workloads. The methods
are constructed based on deciding win(1), lose(0), and op-
tionally, even(0.5) for proposed RL approach in each testing
episode. The sum of which is then multiplied by 2 to convert
into a 100 basis. At all times, ScoreRL+ScoreBase = 100,
with a winning-for-all-rounds RL approach during testing
scored at 100. Difference in score definition decides its
strictness.
• Score-A: If RL approach outperforms the baseline in

both metrics in a testing episode, it scores 1, other-
wise 0. It is a very strict evaluation standard for RL
approach, in purpose of showing absolute dominant
percentage of RL approach over baseline.

• Score-B: Same as Score-A, but additionally adds the
’even’ case, that is, the RL approach receives 0.5 if it
outperforms in only one of either metrics.

• Score-C: RL receives 1 if its evaluation Evalapp is
higher than that of the baseline solution, calculated by
Eqn. 9. Otherwise, it receives 0.

• Score-D: The percentage changes respectively in
TMDL and AJDR from baseline to RL approach are
computed and added together. If the overall percentage
change is negative (thus implies improved performance
for RL approach), RL gets 1, otherwise 0.

D. Performance Comparison

In this section, we present performance comparison of RL
approach with multiple baselines for all job arriving patterns.
The RL approach is constructed by description in Section
IV, with employing all modification strategies mentioned
in Section IV-C (SF-E as baseline in improved ε-greedy
method). Each RL approach is trained for 2000 episodes.

For each job arriving pattern, we present performance
comparison of RL with other baseline approaches along

different training episodes. Following by quantitative metric
and score comparison of RL at final training episode with
the best baseline approach.

Furthermore, we present the comparison of RL ap-
proaches with and without utilization of our improved ε-
greedy strategy in reinforcement learning process. We also
present the result of applying the obtained RL approach
to workloads with intentionally varied computing capability
requirement statistics, which demonstrates the generality of
our obtained RL resource management approach.

(a) Bernoulli (b) Uniform

(c) Beta (d) RL comparison

Figure 4. (a-c) Performance comparison of RL approach and different
baselines for Bernoulli, Uniform and Beta job arriving pattern respectively
in different training episodes. (d) Performance comparison of RL approach
with and without our improved ε-greedy method in different training
episodes.

For three job arriving patterns, the performance compar-
isons of RL approach with different baselines, with respect
to training episodes are shown in Figure 4(a), 4(b) and 4(c).
When computing Evalapp in Figure 4, TMDL and AJDR are
averaged respectively over 50 testing episodes. For all job
arriving patterns, it is observable that among five baselines,
the Random baseline performs the worst; SF-P and LF-P
although perform slightly differently, are on average at a
similar level; as well, SF-E and LF-E perform at a very
similar level with slight differences occasionally.

From Figure 4(a), 4(b) and 4(c) we can see that our
proposed RL approach for all job arriving patterns gradually
improves itself, surpassing all opponents in early training
episodes, and eventually achieves big performance advan-
tage over all baseline approaches. This fulfills our desire in
achieving good resource management approach.

When further looking into the final model, which is the
RL approach at final training episode, we first select its
best opponent. By examining the overall performance of all
baseline approaches, in all three job arriving patterns, SF-E

remains performing as the best baseline, it is thus selected
for pairwise comparison with final RL approach for all three
job arriving patterns.

The comparison of corresponding RL approach (at final
training episode) and best baseline SF-E in 50 testing
episodes for three job arriving patterns can be found in
Figures 5. Specifically, for Bernoulli pattern: 5(a), 5(b), 5(c);
for Uniform pattern: 5(d), 5(e), 5(f); and for Beta pattern:
5(g), 5(h), 5(i), which are all related to Evalapp, TMDL and
AJDR metrics, respectively. It is worth mentioning that for
Evalapp metric, the higher value means better performance.
Whereas for the later two metrics TMDL and AJDR, the
lower means the better performance. It is apparent that our
final RL approach consistently performs very well in all
three job arriving patterns, and outperforms SF-E in all three
metrics with significant difference.

(a) Bernoulli Evalapp (b) Bernoulli TMDL (c) Bernoulli AJDR

(d) Uniform Evalapp (e) Uniform TMDL (f) Uniform AJDR

(g) Beta Evalapp (h) Beta TMDL (i) Beta AJDR

Figure 5. Comparison of RL (at final training episode) with the best
baseline (SF-E) for Evalapp, TMDL and AJDR metrics in different job
arriving patterns. Graphs are showing for 50 testing episodes used for
comparison, sorted by RL TMDL in convenience of viewing. Three rows
correspond to Bernoulli, Uniform and Beta, respectively. Three columns
correspond to Evalapp, TMDL and AJDR, respectively. For Evalapp,
the higher the better. For TMDL and AJDR, the lower the better.

The average statistics of aforementioned 50 testing
episodes with respect to all three job arriving patterns can
be found in Table II:

Bernoulli pattern: For TMDL, the average belongs to RL
and Baseline are 35.04 and 189.34. RL approach achieves to
reduce TMDL by a significant ratio of 5.40. It also reduces
AJDR by ratio 1.78. For four scoring metrics, it suffices to
say that even for Score-A, the most strict standard for RL, it
achieves 98 out of 100. That is, according to testing, it can
dominant baseline in both TMDL and AJDR simultaneously
with approximately 98 percentages probability. Other scores

are even higher.
Uniform pattern: For TMDL, RL approach achieves to

reduce TMDL by a significant ratio of 7.55, it also receives
reduction in AJDR by 2.08. For four scoring metrics, the
scores keep showing RL approach as dominant solution, with
Score-A, the most strict one, being 96 out of 100.

Beta pattern: Once again, RL approach achieves to reduce
TMDL by a good ratio of 4.40, and receives reduction in
AJDR by 1.79. For four scoring metrics relating to 50 testing
episodes, all scores are identically 100.

By examining performance comparison, we are therefore
confident to consider achieved RL approach as a good
resource management approach for designated scenario and
it becomes a much better resource management solution than
aforementioned rule-based baselines.

After showing major performance comparison, we would
like to supplement additional experiments. Firstly, we want
to verify influence of the improved ε-greedy strategy de-
scribed in Section IV-C2. We use Bernoulli process pattern
and compare the performance of obtained RL approach
with and without the improved ε-greedy method as shown
in Figure 4(d). The improved ε-greedy method (with SF-
E as baseline) indeed improves both the effectiveness and
efficiency of RL approach. The RL approach with improved
ε-greedy strategy gains much better final performance. And
even at middle stage of RL process, it already achieves
comparable performance to the one at final episode without
the improved ε-greedy method. This justifies the necessity
in utilizing proposed improved ε-greedy strategy.

Secondly, although our RL resource management ap-
proach demonstrates good generality by being suitable to
randomly generated hybrid workloads in multiple job ar-
riving patterns, we intend to further apply stresses to the
obtained RL approach by the following experiments:

For an already obtained RL model, we vary several
statistical characteristics during workload generation in test-
ing. The newly randomly generated workloads, although
following the same job arriving pattern as in training, show
significantly different computing capability desires than ones
during training. This consequently brings challenges to RL
approach generality. Using uniform distribution job arriving
pattern, we generate two new testing workload patterns,
“eased” uniform and “stressed” uniform, where randomly
generated jobs have statistically less (more) computing
capability requirement than original ones respectively. We
test obtained final RL approach by original uniform pattern
and SF-E against new workload patterns. The result is shown
in Table III.

As expected, comparing to original version, it can be seen
that the performance of RL and SF-E in the sense of TMDL
and AJDR both simultaneously improve (deteriorate) in the
“eased” (“stressed”) version, respectively, due to changes
in computing capability requirement statistics. However,
regardless of the pattern change, the originally obtained RL

Table II
PERFORMANCE COMPARISON OF RL APPROACH AND SF-E FOR THREE DIFFERENT ARRIVING PATTERNS

Metric Bernoulli arriving pattern Uniform arriving pattern Beta arriving pattern
RL Approach Baseline Ratio RL Approach Baseline Ratio RL Approach Baseline Ratio

TMDL 35.04 189.34 5.40 46.34 349.9 7.55 56.52 248.86 4.40
AJDR 3.24 5.78 1.78 5.18 10.80 2.08 3.40 6.07 1.79
Score-A 98 2 49 96 4 24 100 0 ∞
Score-B 99 1 99 98 2 49 100 0 ∞
Score-C 100 0 ∞ 100 0 ∞ 100 0 ∞
Score-D 100 0 ∞ 100 0 ∞ 100 0 ∞

approach remains performing very well in either cases. It
means that the generality of our RL approach is further
fortified. And this concludes our experiment section.

Table III
PERFORMANCE COMPARISON OF RL AND SF-E FOR UNIFORM
ARRIVING PATTERN WITH EASED AND STRESSED WORKLOADS

Metric Eased workloads Stressed workloads
RL Baseline Ratio RL Baseline Ratio

TMDL 16.36 140.52 8.59 350.44 1027.86 2.93
AJDR 3.12 4.87 1.56 13.76 19.96 1.45
Score-A 96 4 24 92 8 11.5
Score-B 98 2 49 95 5 19
Score-C 100 0 ∞ 94 6 15.67
Score-D 100 0 ∞ 96 4 24

VI. CONCLUSION

In this paper, we analyze reinforcement learning based
approach for resource management of hybrid workloads in
large-scale distributed big data computing environment. By
comparing its performance with multiple baseline solutions
in various job arriving patterns, as well as comparing to
other RL approach version, we are able to demonstrate the
effectiveness and generality of obtained RL approach. It is
observed during testing that the TMDL metric is improved
by up to 7.55 times, while the AJDR metric is improved
by up to 2.08 times. In conclusion, we successfully obtain
better RL based resource management approaches for hybrid
workloads in distributed big data computing environment.

Acknowledgements: This work was supported in part by
NSF-1836881.

REFERENCES

[1] Deepmind, “Deepmind,” https://deepmind.com/.
[2] D. Silver et al., “Mastering the game of go with deep neural

networks and tree search,” Nature, vol. 529, no. 7587, pp.
484–489, 2016.

[3] D. Silver et al, “Mastering the game of go without human
knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[4] G. M. J.-B. C. Chaslot, “Monte-carlo tree search,” Ph.D.
dissertation, Maastricht University, 2010.

[5] G. Liao, K. Datta, and T. L. Willke, “Gunther: Search-
based auto-tuning of mapreduce,” in European Conference
on Parallel Processing. Springer, 2013, pp. 406–419.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[7] L. Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant, and
J. L. Ram, “Atomicity and provenance support for pipelined
scientific workflows,” Future Generation Computer Systems,
vol. 25, no. 5, pp. 568–576, 2009.

[8] Z. Liu, H. Zhang, and L. Wang, “Hierarchical spark: A multi-
cluster big data computing framework,” in Cloud Computing
(CLOUD), 2017 IEEE 10th International Conference on.
IEEE, 2017, pp. 90–97.

[9] J. Taheri, A. Y. Zomaya, P. Bouvry, and S. U. Khan, “Hopfield
neural network for simultaneous job scheduling and data
replication in grids,” Future Generation Computer Systems,
vol. 29, no. 8, pp. 1885–1900, 2013.

[10] N. Yigitbasi, T. L. Willke, G. Liao, and D. Epema, “Towards
machine learning-based auto-tuning of mapreduce,” in 2013
IEEE 21st International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems.
IEEE, 2013, pp. 11–20.

[11] G. Wang, J. Xu, and B. He, “A novel method for tuning con-
figuration parameters of spark based on machine learning,” in
High Performance Computing and Communications. IEEE,
2016, pp. 586–593.

[12] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,
and M. Zhang, “Cherrypick: Adaptively unearthing the best
cloud configurations for big data analytics.” in NSDI, vol. 2,
2017, pp. 4–2.

[13] E. Barrett, E. Howley, and J. Duggan, “Applying reinforce-
ment learning towards automating resource allocation and
application scalability in the cloud,” Concurrency and Com-
putation: Practice and Experience, vol. 25, no. 12, pp. 1656–
1674, 2013.

[14] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proceed-
ings of the 15th ACM Workshop on Hot Topics in Networks.
ACM, 2016, pp. 50–56.

[15] J. Wu, X. Xu, P. Zhang, and C. Liu, “A novel multi-agent
reinforcement learning approach for job scheduling in grid
computing,” Future Generation Computer Systems, vol. 27,
no. 5, pp. 430–439, 2011.

[16] T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for
distributed stream data processing using deep reinforcement
learning,” Proceedings of the VLDB Endowment, vol. 11,
no. 6, pp. 705–718, 2018.

[17] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th annual Sym-
posium on Cloud Computing. ACM, 2013, p. 5.

[18] N. Metropolis, “Monte carlo method,” From Cardinals to
Chaos: Reflection on the Life and Legacy of Stanislaw Ulam,
p. 125, 1989.

[19] A. G. Barto, “Temporal difference learning,” Scholarpedia,
vol. 2, no. 11, p. 1604, 2007.

