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Abstract—Data locality and data skew on the reduce side are
two essential issues in MapReduce. Improving data locality can
decrease network traffic by moving reduce tasks to the nodes
where the input data of reduce tasks is located. Data skew will
lead to load imbalance among reducer nodes. Partitioning is
an important operation of MapReduce because it determines
the destinations of map output and could significantly affect
the data amount of shuffle. Therefore, an effective partitioner
can improve MapReduce performance by increasing data locality
and decreasing data skew on the reduce side. Previous studies
considering the two essential issues have ignored the fact that for
different types of jobs, the priority of data locality and data skew
on the reduce side may produce different effects on the execution
time. In this paper, we propose a novel partitioner based on
naive Bayes classifier, namely, BAPM, which achieves better
performance through optimizing data locality and data skew by
leveraging the naive Bayes classifier, i.e., considering job type
and bandwidth as classification attributes. Our experiments are
performed in a Hadoop cluster with 31 nodes and the results show
that BAPM speeds up the computing performance of MapReduce
by up to 19.26% compared to the native Hadoop.

I. INTRODUCTION

As a popular framework for processing big data, MapRe-

duce [1] consists of two main stages: map stage, which trans-

forms input data into intermediate data, namely <key,value>
pairs, and reduce stage, which is applied to each list of

values with the same key. As a critical feature, partitioning

determines what reducer an intermediate data item will be

sent to. Therefore, an ineffective partitioner will decrease

data locality or cause data skew, consequently degrade system

performance.

Data locality [2] in a distributed environment refers to that

computing and data are preferably co-located on the same node

in order to reduce network traffic. The current schedulers in

native Hadoop [3] only consider data locality in map tasks

and ignore data locality of reduce tasks. When a user uploads

files to HDFS[4], the files are divided into blocks (64 MB

by default), and each chunk is replicated across multiple

machines. Data processing is co-located with data storage,

i.e., when a file needs to be processed, the job scheduler

consults a storage metadata service and then schedules a map

process on that node so that data locality in the map phase is

exploited efficiently. In state-of-the-art MapReduce systems,

each map task processes one split of input data and generates a

sequence of key-value pairs, which are referred to intermediate

data, on which hash partitioning is performed. The key-value

pairs with the same hash result, which we define as a hash

partition, are assigned to the same reduce task. In the reduce

stage, a reducer takes a partition as input and performs reduce

operation on the partition. However, with hash function, there

is a possibility of transferring a large amount of intermediate

results to certain reducer nodes, which could cause massive

network communication, furthermore, data locality might not

be achieved and job execution time might be prolonged.

Data skew refers to the imbalance in the amount of data

assigned to each task or the imbalance in the amount of work

required to process the data [5]. The essential reason for data

skew is that data sets in the real world are often skewed and

we do not know data distribution beforehand, which causes

the aforementioned hash function in native Hadoop to be

inefficient in most cases. Therefore, balancing hash partition

size, i.e., the size of the key-value pairs with the same hash

result, is important for maintaining load balancing among the

reducers.

In recent years, several approaches, such as [12][20], have

been proposed to improve the performance of MapReduce by

increasing data locality and decreasing data skew. However,

these studies do not consider job type and network bandwidth

when adjusting data locality or data skew. Based on the amount

of intermediate data transmitted from Mappers to Reducers in

shuffle phases, all MapReduce jobs can be divided into three

different types: reduce-input-heavy, reduce-input-light, reduce-

input-zero. We will describe this in details in Section IV.

When the bandwidth is limited, for reduce-input-heavy jobs,

data transmission will result in more overhead. Therefore, data

locality is one of major factor that affecting job execution time.

In contrast, when the bandwidth among nodes is relatively

high, for reduce-input-light jobs, the data transmission cost

will be less important. In this case, data skew, which could

cause load imbalance among reducers, will be a major factor

affecting the execution time. This has been verified in our

experimens. Therefore, the preference for data locality or data

skew may result in varying execution time when running

different types of jobs at different bandwidths.
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In this paper, we propose a novel partitioner for MapReduce,

namely, BAPM, which improves the job execution time by

properly selecting the preference of data locality or data skew

in consideration of job type and bandwidth. Our contributions

can be summarized as follows:

1. BAPM makes a proper choice between two algorithms,

LRS (data Locality Rather than Skew) and SRL (data Skew

Rather than data Locality), both consider data locality and

data skew on reduce side, but with reversed preference. BAPM

leverages naive Bayes classifier by considering job type and

network bandwidth as classification attributes.

2. According to the amount of intermediate data transmitted

from mappers to reducers, we classify a given MapReduce

job into specific categories, which is then used by BAPM to

determine appropriate algorithms (LRS or SRL) for the given

job.

We evaluate BAPM in YARN(Hadoop 2.6.0) with bench of

benchmarks. Based on our training sets, the selection accuracy

of BAPM is 93.18%. Comparing with the native Hadoop,

the improvement caused by BAPM reaches 19.26% on the

average.

The rest of this paper is organized as follows. Section

II reviews some related studies. Section III introduces the

LRS and SRL algorithms. Section IV describes our BAPM

in details. Section V describes the performance evaluation of

BAPM. Finally, Section VI concludes the paper.

II. RELATED WORK

There are many approaches to improve data locality of Map

tasks. Tan et al. [6] designed a resource-aware scheduler for

Hadoop to mitigate the job starvation problem and improve

overall data locality; it utilizes wait scheduling and random

peeking scheduling for map tasks in order to optimize task

placement.

Many studies have focused on the locality of reduce tasks.

LARTS [7] attempts to collocate reduce tasks with the max-

imum required data computed after recognizing input data

network locations and sizes. It adopts a cooperative paradigm

that seeks higher data locality while circumventing scheduling

delay, scheduling skew, poor system utilization, and low

degree of parallelism.

MapReduce implementation in Hadoop 2.6.0 overlooks data

skew, which obstructs scale-up in parallel computing systems.

LIBRA [8] is a system that implements a set of innovative

skew mitigation strategies. LIBRA can handle data skew not

only on map side but also on reduce side. However, LIBRA

can not tackle the problem of prolonging execution time

caused by lower degree of data locality.

Many studies have comprehensively investigated data local-

ity on map side as well as data skew. Hsu et al. [9] proposed a

method for improving MapReduce execution in heterogeneous

environments. The method achieves higher performance by

dynamically partitioning data before the map phase in order

to improve locality of map tasks, and it uses virtual machine

mapping in the reduce phase in order to balance workload

among reduce nodes.

Some studies [10][11][12][15][16] have comprehensively

investigated data locality for reduce-side as well as data skew.

However, all the aforementioned approaches have ignored the

fact that for different types of MapReduce jobs, different

consideration orders of data locality and data skew could affect

MapReduce execution time under varying network bandwidth.

Our approach, i.e., BAPM, can solve this problem and improve

performance.

III. LRS AND SRL

To improve the performance of MapReduce jobs, we design

two algorithms named LRS and SRL, which increase data lo-

cality and decrease data skew on reduce side, but with reversed

preference. LRS is an extension of the LEEN algorithm in

[10], and SRL is an extension of the CLP algorithm in [11].

In this section, we describe these two algorithms and then

demonstrate their data locality and data skew characteristics

through case studies. The variable notation used in this paper

are shown in Table I.

TABLE I
VARIABLE NOTATION

Variable Name Description
K : {key0, ..., keym−1} keys in < key, value > pairs
N : {node0, ..., noden−1} the datanodes in the entire hadoop cluster

C : {C0, C1, ..., Cn−1} a set of clusters, each of which contains
several < key, value > pairs

FKj
i

the frequency of keyi in the data
node nodej

FKi total frequency of keyi

DataSkewj
i

the data skew rate of all reduce nodes
if data with keyi are partitioned to nodej

hostedDataNk
i

the amount of data hosted in nodek if data with
keyi are partitioned

Tranj
i

the amount of data transferred to nodej
with keyi

TotalTranj
i

the amount of data transmitted to nodej
with the keys in cluster Ci

A. LRS

As shown in Algorithm 1, LRS considers data Locality

Rather prior to data Skew. LRS produces data files and

a metadata file. The number of data files is the same as

the number of keys. The metadata file contains a frequency

table, which includes the number of records in each file and

represents the key frequency. When all map tasks are done, all

metadata files will be aggregated. Then, all keys are partitioned

into different DataNodes according to the LRS algorithm,

which works as follows:

1. Suppose that there are m key-value pairs after the map

phase and n reducers in the cluster. Because the higher the

frequency of a key, the greater it effects on data locality, we

prioritize these high frequency keys. Line 1 sorts all keys in

descending order according to their FKi.

2. For a specific keyi(0≤i≤m-1), in order to achieve the best

locality, LRS selects the node with the maximum frequency

of keyi. Line 3 sorts all nodes in descending order according

to the frequency of keyi on every nodej (0≤j≤n-1).
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Algorithm 1 LRS

Input: K, N
Output: partition(K,N);
1: Sort keys in descending order based on FKi

2: for i=0 to m-1 do
3: Sort all nodes in descending order based on FKj

i (0 ≤ j ≤ n-1);
4: j=0;

5: while DataSkewj
i >DataSkewj+1

i do
6: j = j + 1;
7: end while
8: Partition(ki,Nj ); //move all < keyi, value > pairs to Reducer j
9: for k=0 to n-1 do

10: Calculate hostedDataNk
i ;

11: end for
12: end for

3. Lines 5-7 compare the current node with the node

with the second-hightest frequency of keyi. To solve load

imbalance among reduce nodes caused by data skew, LRS

introduces DataSkewj
i to describe data skew rate of all

reduce nodes if the data with keyi are partitioned to nodej .

DataSkewj
i is defined as Formula (1), where Mean rep-

resents the mean of all HostedDataN j
i values. A lower

value is preferred. LRS recursively looks for nodes with lower

DataSkewj
i value.

DataSkewj
i =

√∑n−1
j=0 (hostedDataN j

i −Mean)2

N
(1)

4. After the node with the lower DataSkewj
i is determined,

lines 8-11 move all <Keyi, value> pairs to the selected nodej
and calculate the new values of the hosted data on different

DataNodes.

5. Then, LRS continues to process the rest of the keys with

the same strategy.
LRS optimizes the existing algorithm LEEN [10], the im-

provements include: (1) LEEN assumes the amount of output
data on each map node are equal, this is not always true. Our
LRS obtains the actual intermediate data on each map node by
the Data Amount Monitor, which will be described in Section
IV.A. (2) LEEN sorts the keys in descending order accroding
to their FLK, which is defined as formula (2), where mean

′

represents the mean of FKj
i values. This sorting provides a

tradeoff between data skew rate of all reducers (the numerator
in Eq. (2)) and data locality (the denominator in Eq. (2)).
However, the numerator considers the data skew rate of all
keys rather than all reducers. In addition, for a specific key
i, finding the maximum of FKj

i needs traversing all nodes,
therefore, the computational complexity of the sorting is m×n,
which is more time-consuming than our LRS’s sort in step
1. To reduce time complexity, sort in this paper is done on
multiple nodes concurrently.

FLKi =

√
∑n

j=1(FK
j
i−mean

′
)2

N

max1≤j≤nFKj
i

(2)

B. SRL

As shown in Algorithm 2, SRL considers data Skew Rather

prior to data Locality on the reduce side. SRL creates a cluster

Algorithm 2 SRL

Input: K, N, C
Output: partition(K,N);
1: Obtain input data distribution using random sampling;
2: Sort the keys in descending order based on their FKi (0 ≤ i ≤ m− 1);
3: i=0;
4: while i ≤ m-1 do
5: keyi → Cmin; //put the < keyi, value > pairs into the data cluster

Cmin

6: Update the amount of data in cluster Cj (Cj (0 ≤ j ≤ n− 1));
7: i = i + 1;
8: end while
9: Sort C in descending order based on their data volume

10: i = 0; //cluster number
11: while i ≤ n-1 do
12: for j=0 to n-1 do //node number
13: for every keyp in Ci do
14: Tranj

p = FKp - FKj
p;

15: TotalTranj
i += Tranj

p;
16: end for
17: end for
18: partition(Ci, nodej ) with the smallest TotalTranj

i ;
19: Remove Nj ;
20: i = i + 1;
21: end while

set C, which contains the same number of clusters as the

number of reducers. The data with the same key will be put

into the same data cluster, and each data cluster is sent to one

reducer. The SRL consists of three main phases:

1.In first phase (line 1), SRL uses the random sampling

method to analyze input data and uses an extra MapReduce

job to gather information about data distribution.

2.In the second phase (line 2-7), in order to balance the load

of each reducer when processing skewed data, SRL provides a

heuristic partition method to combine <key,value> pairs into

data n clusters so that every data cluster has similar data size.

Cmin in line 5 represents the cluster Cj (0 ≤ j ≤ n − 1)

containing the smallest amount of data in cluster set C.

3.The final phase (lines 9-21) assigns data cluster to a

suitable reducers considering data locality. With the same

reason described in LRS, line 9 sorts the cluster set C in

descending order based on the data amount of the clusters.

We improve data locality on reduce side by decreasing data

transfer in shuffle phase. Lines 13-16 calculate total data

transfer when partitioning <key, value> pairs in cluster Ci

to nodej . Line 18 selects the node to which the data traffic

with the keys in cluster Ci in shuffle is minimal. Line 19

removes the Reducer node selected from the Reducer set.

SRL optimizes the existing algorithm CLP [11], both algo-

rithms have same three phases, the difference between them

is in Phase-3, during which the data locality on reduce side is

improved. The drawbacks of CLP is it considers load balance

repeatedly in Phase-2 and Phase-3, which causes unnecessary

overhead. Our SRL improves performance of MapReduce jobs

by considering the load balance and data skew in Phase-2 and

Phase-3 respectively.

C. Comparison of LRS and SRL

We compare different partitioning results on the same

intermediate data by LRS and SRL, as shown in Figure 1.
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Fig. 1. Example of LRS and SRL

The case study considers three DataNodes and six keys; every

DataNode is configured as a mapper node and a reducer node.

The numerical values in Figure 1 represent the frequency of

each key. Here, we assume that all records are of equal size.

We demonstrate inconsistency in key distribution, which

affects data locality on the reduce side. As shown in Figure

1, the key distribution is inconsistent among nodes. The

data transmission amounts will be noticeably different under

various partitioning strategies. In this case study, the data

transmission includes 37 records when running LRS and 47

records when running SRL; the former is smaller than the

latter by 21.28%.

The case study also shows the variation in the intermediate

key frequencies, which could cause load imbalance among the

reducers. The total key frequency on each node is 29, but the

frequency of each key varies (6, 8, 10, 13, 20, and 30). When

hash partitioning varies, the distribution of reducer inputs will

be different. The Fairness of the Reducer input is 2.16 when

running LRS and 0.82 when running SRL.

In this study, a larger data transmission leads to longer

execution time. Lower Fairness results in better performance.

For LRS, the improvement in data locality is greater than the

alleviation of data skew. In contrast, for SRL, the alleviation

of data skew is greater than the improvement in data locality.

IV. BAPM

In this section, we present BAPM, a new partitioner for

Mapreduce. First, we describe BAPM in detail. Next, because

BAPM considers job type and network bandwidth as classifi-

cation attributes for the naive Bayes classifier, we discuss how

to classify MapReduce jobs. Finally, we describe the naive

Bayes classifier used in BAPM.

A. BAPM in YARN

The architecture of BAPM is shown in Figure 2. In par-

ticular, each Data Amount Monitor records the input data

amount and output data amount of each map task. Each Data

Frequency Table (DFT) creates a table that records the value of

each key in every DataNode after the map phase. The global

DFT (GDFT) summarizes all DFT data in each DataNode.

The Job Type Classifier classifies jobs into several categories

Fig. 2. The Architecture of BAPM

(IV.B). The Bandwidth Monitor obtains real-time bandwidth

in the cluster (IV.C). The Partitioning Decision determines

the partition algorithm (LRS or SRL)(IV.D). The workflow

of BAPM consists of 4 steps:

1. In BAPM, job type could be given by users or classi-

fied automatically. The Data Amount Monitor computes the

amount of input and output of each Map task, which is

essential for job type classification. DFT counts and records

intermediate <key,value> pairs generated by map functions

in every DataNode; the number of pairs with the same key is

denoted as a key frequency. After all map tasks are completed,

the profiling data, which consists of job type that can be input

by users or the statistical data from the Data Amount Monitor,

and the key frequencies in DFT, will be transmitted from the

Application Master to the Resource Manager through heartbeat

messages.

2. When the Resource Manager receives profiling data, it

transmits them to the GDFT and Job Type Classifier. Then,

the GDFT summarizes all key frequencies in each DataNode

into a table, which will be used in LRS and SRL later. The

format of GDFT is similar to the tables in Figure 1. Using the

rules described in IV.B, the Job Type classifier determines job

type by analyzing the data from the Data Amount Monitor.

3. To select partitioning algorithms (LRS or SRL), the

Partitioning Decision uses three modules: Bayes Compute

Unit, Training Set, and Algorithm Unit. After the Partitioning

Decision receives profiling data from the Bandwidth Monitor

and the Job Type classifier, based on current bandwidth and job

type as categorical attributes, a naive Bayes classfier chooses

LRS or SRL, which is detailed in IV.D. The Training Unit

records the profiling information of all MapReduce jobs that

have been run before, including job type, bandwidth, and the

partitioning algorithm adopted. In order to speed up proba-

bility calculation, in the Training Set, we record statistical
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TABLE II
JOB TYPE

Type Job
Reduce-input-light Numerical Summerization, Top N, Distinct Counting

Reduce-input-heavy
Inverted Indexes, Structured to Hierarchical, Partitioning,

Sort(containing TeraSort), Shuffling, Join
Reduce-input-zero Filting, Bining, Cartesian Product, Permutation

information such as the number of invocation times of LRS,

the number of times of input-reduce-heavy job types under

LRS. We also add current job information to the Training

Set and update the statistics after the partitioning algorithm

is determined; this will enable BAPM to further increase the

selection accuracy.

4. When the partitioning strategy is determined, the Algo-

rithm Unit will generate partitioning results using the table

in GDFT, and the result will be transmitted back through

resource response messages from the Resource Manager to

the Application Master.

B. Job Type

If mappers in a job produce a large number of <key,value>
pairs, its execution time is mainly determined by network

conditions in a cluster; therefore, we can categorize jobs based

on the amount of intermediate data transmitted from mappers

to reducers. If the amount of map output is approximately

equal to or greater than the input data for a job, we refer to

this job as a reduce-input-heavy job. In contrast, if the amount

of transmitted data is obviously less than the mapper input, we

refer to this job as a reduce-input-light job. In particular, there

is a certain type of jobs that do not contain the reduce phase;

we refer to them as reduce-input-zero jobs. We classify popular

MapReduce jobs using this rule and the results are listed in

Table II. In this study, WordCount and Sort in our experiment

represent reduce-input-light job and reduce-input-heavy job,

respectively.

As the combiner can always be utilized in WordCount, the

intermediate result is much smaller than the mapper input data;

therefore, WordCount is classified into the reduce-input-light

type.

TeraSort uses map/reduce to sort the data into a total order.

TeraSort is a standard map/reduce sort, except for a custom

partitioner that uses a sorted list of N-1 sampled keys that

define the key range for each reduce. In particular, all keys

such that sample[i-1] <= key < sample[i] are sent to reducer

i. This guarantees that the output of reduce i are less than

the output of reduce i+1. To speed up the partitioning, the

partitioner builds a two-level trie tree that quickly indexes into

a list of sample keys based on the first two bytes of the key.

Map tasks mark the number of reducer that input data should

be transmitted to. All Reducers do local sort in parallel and

output the final total order results. Because all marked data will

be transmitted over the network in shuffle phases, TeraSort is

a reduce-input-heavy job.

C. Bandwidth Monitor

Bandwidth is an important issue in networks [17][19][21].

The Bandwidth Monitor in BAPM uses iPerf3, a tool for

measuring the maximum achievable bandwidth on IP net-

works. The bandwidth between working nodes in Hadoop

is relatively stable when the running jobs on the nodes

remain stable, but variable and unpredictable when the jobs

change, for example, a running job is suspended or a new

job begins to run. However, this variation is not mutable for

the following reasons. First, the Resource Manager in Hadoop

continuously monitors all resources including bandwidth in

the entire cluster; it tries to prevent bandwidth mutation from

happening as much as possible. For example, when users start

the Balancer in Hadoop, the Resource Manager will limit the

bandwidth allocated to the Balancer in order to avoid obvious

performance degradation [13][20][18]. Secondly, when the

Resource Manager assigns a resource container to a task,

it will select the node with sufficient resources (including

bandwidth) among all nodes that hold the input data; this

will also prevent bandwidth mutation [14]. Therefore, the

bandwidth is stable in shuffle phases of a MapReduce job.

This also makes it possible to improve the performance of a

MapReduce job by increasing data locality and mitigating the

data skewness under special bandwidth.

D. Bayes Compute Unit

Given a problem instance to be classified, denoted by a

vector X={x1,x2,...,xm} with m features, we assume that all

features are independent, C={y1,y2,...yn} denotes a category

set with n categories. The naive Bayes classifier determines

the category yi(1�i�n) to which the instance X will be

assigned. In other words, it will find the maximum among the

conditional probability set {P(y1|X), P(y2|X),...P(yn|X)}. Un-

der the independence assumptions, using Bayes’ theorem, the

conditional probability P(yi|X)(1�i�n) can be decomposed as

P (yi|X) =

∏m
j=1 P (xj |yi)P (yi)

P (X)
(3)

The workflow of the Bayes Compute Unit is shown in

Figure 3. In the preparation stage, we determine the features

and their values. There are two features in BAPM, job type and

bandwidth. In vector X, x1 denotes the job tupe, x2 denotes

the bandwidth. Obviously, the two features are independent.

In the category set C, y1 denotes LRS and y2 denotes SRL. In

training stage, firstly, BAPM executes a MapReduce job, with

two algorithms (LRS and SRL) on a training data set under

a special bandwidth. The algorithm with shorter execution
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Fig. 3. The Workflow of Bayes Classifier

Algorithm 3 BAPM

1: Vinit = the volume of the input data before Map phase;
2: Vinter = the volume of the intermediate data after Map phase;
3: if Vinter <0.8Vinit then
4: Job Type = 0; //reduce input heavy job
5: else
6: Job Type = 1; //reduce input light job
7: end if
8: bw = the bandwidth values got from the Bandwidth Monitor;
9: trainResult = the statistics of training data set;

10: partitioner = Bayes(JobType, BW, TrainResult);
11: if partitioner = 0 then
12: SRL;
13: else
14: LRS;
15: end if

time will be chosen as the designated algorithm. BAPM

will repeat the procedure under different bandwidths. Finally,

BAPM obtains P(yi) for every category, and the conditional

probability of every feature in all divisions.

When executing a MapReduce job that has been explored,

BAPM uses Algorithm 3 to choose the proper algorithm

from LRS and SRL to optimize the performance of the job.

In Algorithm 3, lines 1-7 determine the job type and line

8 measures the bandwidth. Line 9 obtains the statistics of

training data set. Lines 10-15 use the Naive Bayes classifier

to perform the classification.

V. EVALUATION

A. Experiment Environment

All experiments are performed on a homogeneous Hadoop

cluster running Hadoop 2.6.0. The cluster consists of 7 identi-

cal servers, each equipped with 12 x86 64 cores Xeon proces-

sors and 128 GB of RAM, running RHEL5 with kernel 2.6.22.

The servers are interconnected by an Ethernet switch with 1

Gbps. We evaluate BAPM performance in a virtual cluster

comprising 31 virtual machines (VMs). A VM is deployed on

one server to act as the master node (Namenode). We also

deploy five VMs on each of the other six servers; hence, the

cluster size is 30 nodes (DataNodes), the maximum number

of tasks each DataNode is set to 6. All virtual machines are

configured with 2 virtual CPU cores and 1 GB memory. We

configure the HDFS chunk size to be 64 MB. Because the

TABLE III
DATA SET OF EXPERIMENTS

Data Set Training Data Set Testing Data Set
Size 12G 12G

Key Frequencies Variation 105% 187%
Keys Distribution 126% 201%

bandwidth is a critical attribute of the naive Bayes classifier,

we vary the bandwidth (from 100 Mbps to 1 Gbps at intervals

of 100 Mbps) in our cluster with OpenFlow.

We generated training data sets, which embodies the vari-

ation in key frequencies and inconsistency in key distribution

comprehensively. To control the two issues, we modify the

existing methods so that files can be assigned to specific map

nodes because the native Hadoop randomly selects destination

nodes among available map nodes when writing files from

the local disk to HDFS. We use up to 100 different keys of

the same length (64 B) to avoid variation in value size, and

obtain intermediate data from map function on each map node

as our testing set, as shown in Table III. We ran WordCount

and Sort, which represent reduce-input-light and reduce-input-

heavy job, respectively, under varying bandwidths (from 100

Mbps to 1000 Mbps at intervals of 100 Mbps interval) using

LRS and SRL.

B. Evaluation of BAPM

We conduct experiments under different bandwidths using

BAPM to execute WordCount and TeraSort with Testing Data

Set 1 shown in Table III. In order to ensure accuracy, we

perform each group of experiments at least 10 times and take

the mean value as the final result to reduce the influence of

the variable environment. The definitions of data locality and

data skew rate have been introduced in Section III.

In order to investigate the accuracy of our BAPM, we per-

form two groups of experiments on WordCount and TeraSort

with the Training Data Set, which shows variation of key

frequencies and inconsistency in key distribution comprehen-

sively.

We first introduce the method used to evaluate whether a

selection is accurate. When BAPM completes a MapReduce

job, it records the execution time and the selected algorithm

(LRS or SRL). To verify if the selection is accurate, we execute

the same job with the other algorithm and compare their

execution time. We vary the bandwidth from 100 Mbps to

1000 Mbps with 100 Mbps as the intervals. Without the loss

of generality, we only show the results in 100 Mbps and 900

Mbps in Table III. The selection accuracy of our BAPM are

92.04% and 93.18% when running WordCount and TeraSort

with Dataset1, respectively. We also evaluate the improvement

in execution time due to BAPM. The bandwidth under which

both LRS and SRL have the equal execution time is referred

to as cross point in this paper. When the bandwidth is more

than the cross point, compared with LRS, the improvement of

BAPM ranges from 0.91% to 5.60% for WordCount and from

0.90% to 5.10% for TeraSort. When the bandwidth is smaller

than the cross point, compared with SRL, the improvement
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TABLE IV
THE RESULTS OF EXPERIMENTS

Testing DataSet Testing Data Set 1

Job Type WordCount TeraSort

Bandwidth 200Mbps 900Mbps 200Mbps 900Mbps

Algorithm LRS SRL BAPM LRS SRL BAPM LRS SRL BAPM LRS SRL BAPM

Execution Time(second)

Map 923 926 923 930 921 921 926 926 926 933 921 921
Shuffle 311 389 311 88 92 92 399 466 399 101 108 108
Reduce 138 124 138 145 118 118 310 289 310 318 281 281

Overhead of BAPM \ \ 4 \ \ 3 \ \ 3 \ \ 3
Total 1372 1439 1376 1163 1131 1134 1635 1681 1638 1352 1310 1313

Performance Improvement
Compared With LRS 0.91%-5.60% 0.88%-6.80%
Compared With SRL 0.90%-5.10% 1.11%-7.10%

Compared With Hadoop 8.90%-17.10% 8.11%-19.26%
Selection Accuracy 92.04% 93.18%
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Fig. 4. Evaluation of BAPM

ranges from 0.88% to 6.80% and from 1.11% to 7.10% for

the two types of jobs, respectively.

In Figure 4 (a), the two lines that represent LRS and SRL

intersect when the bandwidth is set to 608 Mbps; thus, 608

Mbp is a cross point. From Figure 4(a) and (b), we can find

that the cross points in experiments are disparate because they

are subject to bandwidth, data sets, and job type. Therefore,

users can not easily know where the cross point would appear.

However, our BAPM can find the cross point accurately so

as to reduce the execution time by choosing the LRS on the

left of the cross point, and choosing SRL on the right of the

cross point. We also discover that BAPM tends to overlap

the polyline representing the algorithm that gets the shorter

execution time between LRS and SRL when bandwidth is far

away from the cross point, such as 200 Mbps and 900 Mbps.

This can be explained as the distinct difference of execution

time between the LRS and SRL in those cases lead to the

conditional probabilities of characteristic attributes in naive

Bayes are very high; this makes our BAPM select the proper

algorithm more accurately. In contrast, when the bandwidth

is set to near to the cross point, such as 500 Mbps and

700 Mbps in Figure 4(a), the polyline of BAPM is slightly

different from the fastest algorithm (LRS or SRL). Therefore,

when the bandwidth is near to the cross point, the values of

LRS and SRL are very close, which means that there is no

obvious distinction in terms of execution time between the two

algorithms in those cases, and the conditional probabilities

of characteristic attributes in naive Bayes are almost equal.

Therefore, our BAPM performs proper selection between

the two algorithms less accurately. Nevertheless, this can be

improved along with more experiments. Figures 3(b)(c)(e)(f)

describe the variation of data locality and data skew when

running different benchmarks with data set1.

Figure 4 also shows that for any specific data set, the

cross point of TeraSort (648 Mbp) is higher than that of

WordCount (608 Mbp). This can be explained as the data

amount transferred in TeraSort is greater than the amount

in WordCount; this causes the degree of dependence on

bandwidth in TeraSort jobs is much higher than that in

WordCount. We record the execution time in every phase
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of MapReduce under specific bandwidths in Table IV. We

define the Contribution Rate CR[i] to describe the ratio of

duration change in phase i, which can be one of map,

shuffle, and reduce, in total time change. As shown in

Table IV, for Dataset1 on WordCount, when the band-

width is set to 200 Mbps, CR[shuffle]= 311−389
1372−1439=116.4%,

CR[reduce]= 138−124
1372−1439=−20.89%. The absolute value of

CR[shuffle] is greater than the absolute value of CR[reduce],

which verifies our analysis. Because SRL is good at dealing

with load imbalance, and the overhead of data transmission

is relatively small, BAPM selects SRL and achieves better

performance. Overall, BAPM boosts computing performance.

The reasons why BAPM does not lead to large perfor-

mance degradation even in the case of selection failure are

as follow. First, the probability of selection failure is higher

when the bandwidth is close to the cross node. However,

it does not cause much performance degradation due to the

execution time of LRS and SRL are close in this case.

Secondly, when BAPM fails to select an algorithm under a

bandwidth that is significantly larger or smaller than the cross

node, the execution time is much longer than that in the

case of a correct selection. Takes the experiment shown in

Figure 4(b) for instance, the largest performance degradation

is 4.61%( 1734−1675
1675 ). Nevertheless, because LRS and SRL

achieve greater improvements in execution time than the native

Hadoop, BAPM does not cause large performance degradation.

We also find that BAPM results in overhead when it selects the

proper algorithm using the naive Bayes classifier and updates

the statistics. The overhead can be measured by subtracting the

execution times of the Map, Shuffle and Reduce phases from

the total execution time. The overhead is trivial because the

conditional probabilities of the characteristic attributes have

been computed and stored in the Training Set module before

the job begins to run. As shown in Table 3, the overhead is less

than 0.23% ( OverheadofBAPM
TotalExecutionTime ), which could be ignored.

VI. CONCLUSIONS

Locality and data skew on the reduce side are two impor-

tant factors affecting MapReduce. Experiments have shown

that the processing order of the two factors will affect the

execution time under different bandwidths. In this study, we

propose a bandwidth-aware partitioner, namely, BAPM, which

employs the naive Bayes classifier by considering bandwidth

and job type as classification attributes for proper selection

of the algorithm (LRS or SRL) under various bandwidths. To

evaluate the performance of BAPM, we conduct experiments

under different bandwidths, and evaluate BAPM using the

benchmark WordCount and TeraSort with different testing data

sets. Our experimental results show that BAPM can achieve

up to 93.18% selection accuracy and reduce execution time by

6.85% and 7.10% when LRS and SRL are used, respectively.
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