
Reasoning About Frame Properties in Object-Oriented Programs

Yuyan Bao

CS-TR-17-05

Revised December 14, 2017

Keywords: Frame axiom, modifies clause, separation logic, dynamic frames, region logic, fine-

grained region logic, formal methods, Dafny language.

2013 CR Categories: D.2.4 [Software Engineering] Software/Program Verification — Formal

methods, programming by contract; F.3.1 [Logics and Meanings of Programs] Specifying and Ver-

ifying and Reasoning about Programs — Assertions, logics of programs, pre- and post-conditions,

specification techniques;

Ph.D. dissertation.

Computer Science

4000 Central Florida Blvd.

University of Central Florida

Orlando, Florida 32816, USA

REASONING ABOUT FRAME PROPERTIES IN OBJECT-ORIENTED PROGRAMS

by

YUYAN BAO

M.S. Software Engineering, Beihang University, 2007

B.S. Computer Science, Beijing University of Technology, 2003

A dissertation submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

in the College of Engieering & Computer Science

at the University of Central Florida

Orlando, Florida

Fall Term

2017

Major Professor: Gary T. Leavens

ABSTRACT

Framing is important for specification and verification of object-oriented programs. This disser-

tation develops the local reasoning approach for framing in the presence of data structures with

unrestricted sharing and subtyping. It can verify shared data structures specified in a concise way

by unifying fine-grained region logic and separation logic. Then the fine-grained region logic is

extended to reason about subtyping.

First, fine-grained region logic is adapted from region logic to express regions at the granularity

of individual fields. Conditional region expressions are introduced; not only does this allow one

to specify more precise frame conditions, it also has the ability to express footprints of separation

logic assertions.

Second, fine-grained region logic is generalized to a new logic called unified fine-grained region

logic by allowing the logic to restrict the heap in which a program runs. This feature allows one to

express specifications in separation logic.

Third, both fine-grained region logic and separation logic can be encoded to unified fine-grained

region logic. This result allows the proof system to reason about programs specified in both styles.

Finally, fine-grained region logic is extended to reason about a programming language that is

similar to Java. To reason about inheritance locally, a frame condition for behavioral subtyping is

defined and proved sound.

ii

ACKNOWLEDGMENTS

Firstly, I would like to thank my adviser, Gary T. Leavens, for his patient guidance and encourage-

ment for the past 7 years. He introduced me to this research area and inspired me with the spirit

of adventures in research. His valuable suggestions had a great impact on my work. I am also

grateful for him sending me to various summer schools, where I met various other scholars and

researchers; all such chances enhanced my background and broadened my view.

Secondly, I thank Gidon Ernst for introducing me the KIV theorem prover and for discussing the

semantics of separation logic and its encoding in the KIV. Also, I thank David A. Naumann for

discussion about region logic and for providing feedback on the FTfJP’15 paper and on an early

draft of this work. His work has great influence on this work as well. I thank Rustan Leino for

teaching me Dafny and answering related questions. I also thank the anonymous referees for the

feedback of this work.

Thirdly, I would like to thank my colleagues in the formal method lab for providing a friendly

environment to work in.

Last, but not least, I would like to thank my parents and sister for their constant love. Also,

I think my friends for their friendship. My special thanks go to my boyfriend, Xin Li, for his

understanding, ongoing support and encouragement.

iii

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xiv

CHAPTER 1: INTRODUCTION . 1

1.1 Background . 2

1.1.1 Separation Logic . 2

1.1.2 Region Logic . 3

1.1.3 Supertype Abstraction . 4

1.2 Problems . 5

1.3 Contributions . 5

1.4 Overview . 6

1.5 Related Work . 6

1.5.1 Non-local Reasoning Approaches to Framing 7

Ownership-based Model: . 7

Linear Logic: . 9

Linear Type: . 10

iv

1.5.2 Dynamic Frames Approaches . 10

Region Logic: . 11

Dafny: . 12

The work of Smans et al.: . 13

The KeY Tool: . 14

1.5.3 Related work on Separation Logic . 14

Implicit Dynamic Frames . 14

1.5.4 Related Work on Behavioral Subtyping 15

CHAPTER 2: PROGRAMMING LANGUAGE . 17

2.1 Syntax . 17

2.2 Semantics . 20

CHAPTER 3: ASSERTION LANGUAGES AND FRAMING 24

3.1 Syntax and Semantics of Assertions . 24

3.2 Effects . 25

3.3 Framing . 29

3.4 Separator and Immune . 31

v

CHAPTER 4: FINE-GRAINED REGION LOGIC . 38

4.1 Axioms and Inference Rules . 39

4.1.1 The Sequence Rules . 42

4.1.2 The Loop Rule . 46

4.2 Soundness . 49

CHAPTER 5: UNIFIED FINE-GRAINED REGION LOGIC 50

5.1 Axioms and Inference Rules . 52

5.1.1 The Sequence Rules . 55

5.2 Soundness . 57

CHAPTER 6: INTEROPERABILITY . 59

6.1 FRL - An Instance of UFRL . 59

6.2 Encoding Separation Logic . 62

6.2.1 Separation Logic Review . 62

6.2.2 Supported Separation Logic . 65

6.2.3 Encoding SSL Assertions . 69

6.2.4 SSL Proofs Review and Approach . 72

6.2.5 Translating SSL Proofs into UFRL . 76

vi

6.3 Extending the UFRL (FRL) Proof System with Separating Conjunction 79

6.3.1 Extending the Syntax and the Semantics 80

6.3.2 Proof Rules . 82

6.3.3 Encoding SSL specifications: . 86

6.3.4 Summary . 86

CHAPTER 7: RECURSIVE PREDICATES . 87

7.1 Recursive Predicated in UFRL (FRL) . 87

7.2 Inductive Definition in SSL . 89

7.3 Encoding . 91

CHAPTER 8: REASONING ABOUT SUBTYPING . 94

8.1 Programming Language Extended with Inheritance 94

8.2 Semantics . 98

8.3 Effects . 101

8.3.1 The read effect of a class . 102

8.4 Supertype Abstraction and Local Reasoning . 102

8.4.1 Problem . 103

8.4.2 Encapsulation . 105

vii

8.5 The Proof System . 109

8.5.1 Correctness Judgment . 111

8.6 Examples . 118

CHAPTER 9: APPLICATIONS . 123

9.1 A Footprint Function . 123

9.2 Intraoperation of FRL and SSL . 123

9.3 Hypothetical Reasoning and Interoperation between Modules 124

9.4 The DAG Example . 128

9.5 An Integrated Example . 136

9.6 Examples on Behavioral Subtyping . 148

CHAPTER 10: CONCLUSION AND FUTURE WORK 154

10.1 Future Work . 154

10.1.1 Formalization . 154

10.1.2 Encoding or incorporating other methodologies 154

10.1.3 Implementation . 155

APPENDIX A: TYPING RULES . 156

viii

APPENDIX B: PROOF OF THEOREM 1 . 160

APPENDIX C: PROOF OF THEOREM 3 . 166

APPENDIX D: PROOF OF THEOREM 5 . 178

APPENDIX E: PROOF OF THEOREM 7 . 180

APPENDIX F: PROOF OF LEMMA 13 . 184

APPENDIX G: PROOF OF THEOREM 8 . 191

APPENDIX H: PROOF OF THEOREM 9 . 198

APPENDIX I: PROOF OF LEMMA 23 . 209

LIST OF REFERENCES . 212

ix

LIST OF FIGURES

1.1 Taxonomy of methodologies for framing . 8

2.1 The syntax of the programming language 18

2.2 The definition of the function MV. 18

2.3 The semantics of expressions . 22

2.4 The semantics of statements . 23

3.1 The syntax of assertions . 24

3.2 The semantics of assertions . 25

3.3 The grammar of effects . 26

3.4 The sub-effect rules . 27

3.5 The read effects of expressions, region expressions and atomic assertions . . . 29

3.6 The inference rules for the framing judgment 30

3.7 The definition of separator . 32

4.1 The correctness axioms and proof rules for statements in FRL 40

4.2 The structural rules in FRL (1) . 41

4.3 The structural rules in FRL (2) . 42

x

5.1 The correctness axioms and proof rules for statements in UFRL 53

5.2 The structural rules in UFRL (1) . 54

5.3 The structural rules in UFRL (2) . 55

6.1 A summary of results on encoding assertions 72

6.2 The axioms and proof rules for statements in SSL [76] 75

6.3 A linked-list example written in UFRL with separating conjunction 84

7.1 Translation of inductive definition in SSL to recursive predicates in UFRL . . 92

7.2 The encoding of the predicate Eq. (7.3) . 92

8.1 The extended syntax with OO features . 94

8.2 An example of framing invariant . 103

8.3 Classes Cell, ReCell and FCell . 106

8.4 Encapsulation example . 107

8.5 The specification of the class ECell . 109

8.6 Argument exposure example . 110

8.7 The specification of class Cell . 120

8.8 The revised specification of class ECell 122

xi

9.1 The class NumberS specified in the style of SSL 126

9.2 The class NumberR specified in the style of FRL 126

9.3 Translating method specifications in the class NumberS and NumberR 127

9.4 The specification of marking a DAG . 129

9.5 A client code of a coffee shop . 136

9.6 The specification of a generic linked-list written in a mixed style 138

9.7 The class ListIterator specified in the style of FRL 139

9.8 The specification of a generic dictionary written in the style of SSL 141

9.9 The class Order . 142

9.10 The specification of an application program written in a mixed style (part 1) . 143

9.11 The specification of an application program written in a mixed style (part 2) . 144

9.12 The specification of the class DCell . 148

9.13 The specification of the class ReCell . 151

9.14 The specification of the class TCell . 152

9.15 The specification of the class OCell . 153

A.1 The typing rules for pure expressions and region expressions 157

A.2 The typing rules for statements . 158

xii

A.3 The typing rules for assertions . 159

H.1 The derivation of rule TRRrrALLOCsss . 207

H.2 The derivation of rule TRRrrACCsss . 208

H.3 The derivation of rule TRRrrUPDsss . 208

xiii

LIST OF TABLES

2.1 Features of the programming language that are not formalized in this disser-

tation. 19

8.1 Auxiliary functions used in the semantics 95

9.1 Selected specifications for the class Node<T> 140

9.2 The predicates that are used by clients . 145

xiv

CHAPTER 1: INTRODUCTION1

As software are widely used in our daily life, its quality is drawing concern. Although software

testing can improve software quality by reducing defects, it cannot guarantee the absence of de-

fects. On the contrary, software verification can prove that the software has no defects and behaves

exactly as the specifications describe.

In software engineering, modularization allows large projects to be decomposed into smaller com-

ponents. Each component performs distinguished functionality, and can be developed indepen-

dently. Thus, specifications that document functionality and verification that checks implemen-

tations’ functionality against their specifications should be carried out modularly as well. This

modularity poses challenges for local reasoning about object-oriented programs. In particular,

local reasoning about mutable data structures with unrestricted sharing is complex and requires

onerous annotations. And reasoning about subtypes lacks a modular treatment of framing.

In software specification and verification, the frame property is used to achieve local reasoning

[21]. Local reasoning means that specifications only mentions what matters to the program under

verification. The classical Hoare logic [38, 40] with an added frame property provides proof ax-

ioms and rules that are used to reason about imperative programs containing, for example, assign-

ment, sequence statements, conditional statements and loop statements. The logic uses formulas

of the form tP uStQurXs, for partial correctness, where P and Q are assertions, S is a program

statement, andX is a set of variables that specifies the frame property of S, which allows S to only

modify variables in the set X . The state of a program is the program’s information characterized

by predicates, such as P and Q, at a given time. The validity of a Hoare-formula tP uStQurXs

means that if a program, S, executes from an initial state satisfying P , if S does not cause an error

1Part of the content in this chapter was presented at FTfJP ’15 [8] and is submitted to Formal Aspects of Computing.

1

and terminates, then the final state satisfies Q, and S can only modify the variables in X . As de-

fined, such a formula deals with partial correctness; total correctness additionally means that the

statement will terminate.

In object-oriented (OO) programs, frame properties are difficult to specify because of their use of

complex data structures and abstractions. These data structures may consist of recursively struc-

tured and shared objects, such as directed acyclic graphs. Moreover, OO features, such as aliasing,

encapsulation and dynamic dispatch, raise additional challenges to modularly specifying and ver-

ifying frame properties. For example, specifying the frame conditions of the methods who may

be overridden in subclasses, and the overriding method may modify additional states introduced in

the subclasses [52].

1.1 Background

A summary of the relevant background is provided in this section. However, knowledge about

OO programming [27, 63], first-order logic and Hoare logic [38, 40] is assumed. Firstly, two

approaches to local reasoning, separation logic and region logic, are discussed. Then dynamic

dispatch and an approach to reason about it, i.e., supertype abstraction are discussed.

1.1.1 Separation Logic

In separation logic (SL) [42, 78], the introduction of separating conjunction leads to its frame rule:

(FRMs)
$

Γ
s tau S ta1u

$
Γ
s ta ˚ cu S ta1 ˚ cu where MVpSq X FV(c) “ H

2

where FVpcq returns the set of free variables in c and MVpSq returns the set of variables that may

be modified by S.is Local reasoning is achieved by this frame rule, since the specification in the

hypothesis (above the horizontal line) can solely describe the partial state that program S uses.

Assertions, such as c, depending on other disjoint parts of the states that are untouched, can be

preserved by applying the frame rule. The side-condition is needed since separating conjunction

does not describe separation in the store, but only in the heap.

However, the frame rule in SL cannot be directly used when verifying data structures with un-

restricted sharing [41] because of the use of regular (i.e., non-separating) conjunctions, e.g., the

following definition of the predicate dag:

dagpdq
def
“ d ‰ null ñ D i, j, k.pd.mark ÞÑ i ˚ d.l ÞÑ j ˚ d.r ÞÑ k ˚ pdagpjq ^ dagpkqqq

where the assertions of the form x.f ÞÑ e mean that the location x.f stores the value of e. The

use of the conjunction (instead of separating conjunction) indicates that sub-Dags may share some

locations. Thus, changes in the left descendants may affect the value of the right descendants, and

hence the validity of assertions that describe the values of the right descendants.

1.1.2 Region Logic

Region logic [2, 5] (RL) supports local reasoning by the means of effects. The effects may be

variables in stores or locations in heaps; locations are expressed in terms of sets of objects and

their fields [5]. RL’s frame rule uses effects to distinguish what is preserved, shown as follows:

(FRMrl)
$

Γ
rl tP u S tP 1urεs P $Γ

rl δ frm Q

$
Γ
rl tP && Qu S tP 1 && Qurεs

where P && Qñ δ¨{̈ε

The formula ε is a write effect that denotes the set of variables and locations that may be modified

by S. The formula δ is a read effect that denotes the set of variables and locations that the assertion

3

Q relies on. The formula δ¨{̈ε denotes the disjointness of the two sets of variables and locations.

The frame rule says that to preserve the validity of the assertion Q after executing the statement

S, one has to prove that the variables and locations in S’s write effects are disjoint with those that

Q depends on. In the conclusion of the frame rule, P is connected with Q by the conjunction.

Thus, this rule allows one to use the frame rule directly when reasoning about data structures with

sharing.

1.1.3 Supertype Abstraction

OO programs allow a subclass, S, to inherit from a superclass, T , by either adding or modifying

fields or methods of its superclass. In this case, the type S is a subtype of T , and the type T is

the type S’s supertype. A variable may have two types: a static type and a dynamic type. The

static type is the declared one, and the dynamic type is the most specific type of the object that

the variable denotes at runtime. Moreover, any instance of a subtype can be used in place of its

supertype. A method call x.mpq runs code that is determined by the dynamic type of the receiver

x, not x’s static type. This is known as dynamic dispatch.

A standard form of modular static verification uses the method’s specification of its receiver’s

static type, as its exact dynamic type may be unknown. In other words, verification may use a

supertype’s specification to reason about an overriding method call that may dynamicallly dispatch

to its subtypes. This kind of reasoning is known as supertype abstraction [50]. Then, one can use

its supertype’s specification to soundly describe the method’s behavior and the method’s receiver

may be its subtype. Validity of supertype abstraction is ensured by behavioral subtyping [1, 48, 62],

in which each overridden method obeys the specifications declared in its supertypes.

Leavens and Naumann [49] have shown that behavioral subtyping is necessary and sufficient for the

validity of supertype abstraction. They define specification refinement in terms of preconditions

4

and postconditions. However, to apply their result to the framework of local reasoning, frame

conditions are needed.

1.2 Problems

The overall problems of this dissertation are to unify methodologies for reasoning about frame

properties, i.e., separation logic and region logic, and to modularly reason about frame properties

in object-oriented programs. That is the second problem is to find a sound frame condition for

reasoning about dynamic dispatch.

1.3 Contributions

My work has two major contributions. One is that it combines two successful logics for framing: a

commonly used subset of SL and a fine-grained variant of region logic, FRL. The combined logic,

unified fine-grained region logic (UFRL), is enriched by features of both SL and FRL: separating

conjunction can be expressed along with explicit write and read effects specified by region ex-

pressions. Specifications written in these two styles thus can interoperate with each other as they

can both be encoded into UFRL. Therefore, specifying and verifying one module can use other

modules’ specifications written in different styles. The FRL and SL assertion languages have been

formalized in the KIV theorem prover [32]. Lemmas and theorems that are not formally proved in

the dissertation have been proved in KIV. These machine-checked proofs have been exported and

are available online [6, 7].

Another contribution is that my work defines a frame condition for behavioral subtyping, which is

proved sound for supertype abstraction. Framing for subtyping handles extended state in subtype

objects through a novel notion of encapsulation.

5

1.4 Overview

Chapter 2 defines an object-based programming language, formalizes its type system and its deno-

tational semantics. Chapter 3 introduces effects, separator and framing that serve as foundations

for FRL and UFRL. Chapter 4 defines the notion of validity for FRL Hoare-formula and introduces

the proof axioms and rules for FRL. Chapter 5 extends FRL to UFRL. It defines the validity for

UFRL Hoare-formula and introduces the proof axioms and rules for UFRL. Chapter 6 presents the

formal connections between FRL and UFRL and between SL and UFRL. Chapter 7 extends these

results with SSL inductive predicates. Chapter 8 extends FRL to reason about Object-Oriented

programs. Chapter 9 presents potential applications of UFRL. For example, it introduces a scheme

that interprets different styles of specifications in a single mechanism. It also shows more examples

of behavioral subtyping. Section 10 concludes the dissertation and discusses future work.

1.5 Related Work

There are several approaches to framing that have been described in the formal methods literature.

Historically specification languages, such as VDM [44] and interface specification languages in

the Larch family [36], specify frames for procedures by writing a clause in the specification that

names the variables and locations that are allowed to be changed during the procedure’s execution;

all other locations must be unchanged. However, such an approach does not easily generalize to

layered structures of mutable objects. For example, it is difficult to specify dynamically-allocated

objects where locations are generated through underlying data structures at run time.

Fig. 1.1 lists related methodologies for framing with a view towards classifying different method-

ologies as a guide for this section. One could imagine different classifications depending on the

problems one is concerned about. Fig. 1.1 categorizes each methodology as either supporting local

6

reasoning or not. In general, local reasoning approaches use “small axioms” [71] that focus on

the part of a program state that is being written (or read) by the statement in question [5], and use

frame rules to derive the property of global states by means of explicit locations that the program

may write or read. Non-local reasoning approaches do not focus only on such local state, and

commonly combine an aliasing control mechanism with the technique of object invariant. For ex-

ample, updating an object’s field cannot unnoticeably violate other objects invariant. Section 1.5.1

summarizes those works that use non-local reasoning. Section 1.5.2 and Section 1.5.3 discuss lo-

cal reasoning approaches in detail, as the approaches presented in this dissertation belong to this

category. Section 1.5.4 discusses the related work on behavioral subtyping.

Non-local reasoning approaches and the work in this dissertation are orthogonal. None of the local

reasoning approaches relates and encodes other approaches, except the work of Parkinson and

Summers [77] which connects one variant of SL with another.

1.5.1 Non-local Reasoning Approaches to Framing

Ownership-based Model:

The ownership-based model [70] is one approach that works with object structures. It only allows

a designated owner object to mutate the objects that make up part of a complex object structure.

Consider the data structure of a linked list. Its representation is a list of nodes, where each node

contains its value and a reference to the next node in the list. In an ownership model, the list is the

owner of all the nodes that it contains. Modifying any node in the list has to go through the methods

of the list object. However, in the approaches that support local reasoning, the precondition for an

update statement (i.e., n.val := e;) is just n ‰ null in region logic, or D x.n.val ÞÑ x in

separation logic, no matter whether n is a node in a list or not.

7

Methodologies
for Framing

Local
Reasoning

The Dynamic Frame
Approach [45, 46]

Dafny [53, 55, 56]

Region Logic [5]

Smans et al. [83]

KeY [14, 85]

Separation Logic [42, 78]
Implicit Dynamic Frames

[82]

Non-local
Reasoning

Ownership-based
Model [44]

The Boogie Methodology
[10, 58, ?]

The Universe Type System [65]

Linear Logic [35]
Bierhoff and Aldrich [19]

Nistor et al. [69]
Linear Type [33]

Figure 1.1: Taxonomy of methodologies for framing

The universe type system [65] combines type checking and some dynamic checks to enforce the

ownership property; the universe type system also gives a semantics to specifications of frames

in a way that allows modular verification of frame conditions and invariants [68]. However, the

universe type system and other approaches based on ownership have difficulties in specifying and

verifying some shared data structures, for example, the subject-observer design pattern has sharing

that is not compatible with ownership. However, SL and RL do not have difficulty in reasoning

about this pattern [5, ?].

The Boogie methodology [10] and its variants [12, 58] encode the ownership model by specification-

only fields. The Boogie methodology [10] introduces a field modifier rep that identifies an object’s

8

representation; a rep field means that the field is owned by the enclosing object of its declaring

class. An object may have different owners. Although the Boogie methodology eases the problem

of dealing with shared mutable data structures, it introduces a fair amount of overhead and com-

plexity in writing specifications. For example, each object is instrumented by specification-only

fields inv and committed that denote the states of an object and are specified in method specifi-

cations. And their values can only be modified through the use of the two specification statements:

pack and upapck, which can be used in a method body.

Leino and Müller [58] improve the Boogie methodology by allowing dynamic contexts and own-

ership transfer. Their work introduces another field owner storing the owning object. Its value

can be changed through the statement pack and unpack as well.

Barnett and Naumann [?] introduce an explicit friend declaration, e.g., friends T reads f,

which denotes the declaring class grants the type T a read access to its field f. A flexible protocol,

called “friendship”, is established between the two types, where invariant can be expressed over

their shared data structures, e.g., the subject-observer design pattern.

Linear Logic:

Bierhoff and Aldrich’s work [19] combines linear logic [35] with access permissions. Specifica-

tions of a statement S are defined by linear implication: P ´̋ Q, where P is a precondition andQ is

a postcondition. It means that S consumes P and yields Q; that has some similarities to the mean-

ing of specifications in SL. Sharing in Bierhoff and Aldrich’s work can be expressed by permission

predicates. However, it does not make footprints explicit, i.e., locations that an object’s invariant

depends on. Therefore, it lacks a way to tell whether updating an object’s field may influence other

objects. It uses the pack and unpack statements to transfer from a state when the invariant holds

to a state where it may not hold.

9

Nistor et al. [69]’s approach also builds on top of linear logic. Similar to Bierhoff and Aldrich’s

work, sharing is expressed by means of permissions. An assignment to a field of an object t needs

to know the state of the current this.

Linear Type:

Linear type systems restrict aliasing. An object with linear type is not aliased; an object with non-

linear type may be aliased. To safely allow a nonlinear type to have linear components, Fähndrich

and Deline [33] introduces two operations: adoption and focus. Adoption, adopt e1 by e2, allows

the object that e2 denotes to reference the object that e1 denotes. Thus, it allows a linear type to

transfer to a non-linear one where aliasing is allowed. Focus allows a non-linear type to be treated

as a linear one when all aliases become invalid. To do so, the type system needs to track aliases’

lifetimes. It is not local as updating a field of an object needs to be aware of all references to the

field. The dynamic frames approach does not prevent aliasing, but prevents harmful updating by

various proof obligations (which can be decided by set-theoretic judgment, e.g., the location where

a change may happen to be disjoint with the locations that intended invariant depends on).

1.5.2 Dynamic Frames Approaches

The dynamic frames approach [45, 46] dynamically tracks sets of locations (regions) stored in

specification variables (or computed by functions); these regions are used in the specification of

frames. The resulting flexibility allows the specification of shared data structures, but reasoning

about dynamic frame uses second-order logic, which makes automation difficult.

10

Region Logic:

Our work is partly based on the work of Banerjee et al. on region logic (RL) [5]. However, there

are several key differences between FRL (and UFRL) and this work on RL:

1. In RL, regions are sets of references, possibly containing null [5]. For example, txu is a

region containing a singleton object x. In RL, image expressions (like x‘f) denote a region

only if the field referenced (f) has type rgn or Object. By contrast, in FRL regions are sets

of locations, which makes it convenient to form unions of sets of locations, something that

is more difficult to express in RL. This difference also makes it more convenient in FRL to

express footprints of SL assertions, which are used in the encoding. Using sets of locations

also matches specification languages in which frames are specified using such sets, like JML

[24].

2. In RL, the footprints of region expressions are larger than the corresponding footprints in

FRL. For example, in RL the footprint of the region expression txu‘f is rd txu‘f, x, mean-

ing that the value of this region expression depends on txu‘f itself, since f may not be a

field declared in x’s class. In FRL the region expression, regiontx.fu, only depends on

the variable, x, as FRL’s type system makes sure that f is a declared field name.

3. Finally, RL does not have conditional region expressions, which makes FRL more conve-

nient for specifying the frames of SL assertions that involve implication.

However, FRL (UFRL) and RL also share lots of similarities, due to FRL and UFRL being adapted

from RL..

1. Both use ghost fields with type regions to express frame conditions, i.e., read effects, write

effects and fresh effects. The effects are stateful, which follows the work of dynamic frames.

11

2. RL’s read effects have the same granularity as FRL (and UFRL). The formula rdG‘f allows

one to read the field of objects in G [5, p.22]; e.g., the RL read effect rd x‘f is equivalent

to the FRL read effect reads regiontx.fu.

3. The read effects of the points-to predicate are consistent in RL and FRL (and UFRL). In RL,

the read effects of the points-to predicate, which are called “footprints” in their work [5],

are defined by fptppx.f “ Eq “ rd x, x.f,ftptpEq, where rd is the keyword for read

effects (this work uses reads instead). The form rd x.f abbreviates the form rd txu‘f

[5, p.23]. Although x‘f may not be the same as the region expression regiontx.fu as

explained previously, rd x‘f is semantically equivalent to as reads regiontx.fu in FRL

and UFRL.

4. RL and FRL (and UFRL) have similar definitions of agreement, frame validity, separator,

immunity, and Hoare-formula. Therefore, their proof rules are quite similar as well. In

particular, the frame conditions for the proof axioms are semantically equivalent.

Rosenberg’s work [79] implements a semi-decision procedure for RL as a plugin inside the satis-

fiability modulo theories (SMT) solver Z3. Similarly, FRL and UFRL expressions could also be

encoded into SMT, but such an encoding is beyond the scope of this dissertation.

Dafny:

Leino’s Dafny language [53, 55, 56] is based on dynamic frames, in which frames are specified

using sets of objects stored in ghost fields. Our work has adopted several programming and speci-

fication language features from Dafny, i.e., the style of programming and specification languages.

However, unlike FRL, Dafny does not make it easy to specify frames at the level of locations,

so instead one must strengthen postconditions by using old expressions to specify which fields of

12

threatened objects must not change. Consider the following example adapted from Leino’s work

[56].

class C {

var x : int; var y : int;

method Update()

modifies {this};

ensures x = old(x) + 1;

ensures y = old(y);

{ x := x + 1; }

}

The modifies clause indicates the objects that may be modified by a method. In the above code,

all the fields of the object this are allowed to be modified by the method Update. Although the

implementation only updates the field x and leaves the field y unchanged, the second postcondition

y = old(y) is needed, otherwise, the caller would lose the value about the field y.

The work of Smans et al.:

The dynamic frames approach used by Smans et al. [83], however, does use sets of locations. These

sets can be computed by pure functions. This use of pure functions supports data abstraction and

information hiding. Data abstraction and information hiding are considered to be orthogonal to the

problems discussed in this dissertation, as standard solutions can be applied [2, 3, 52, 60]. While

their language has much of the power of FRL, they do not formally connect SL with their language,

and they do not address the problem of allowing specifications in both SL and RL to interoperate.

13

The KeY Tool:

The KeY tool [14, 85] extends JML with dynamic frames. It introduces a type \locset that

stands for sets of memory locations. Recently, Mostowski and Ulbrich [64] replace ghost fields

with model methods that allow method contracts to dynamically dispatch through abstract predi-

cates. However, neither KeY nor JML addresses the problem of connecting SL to RL and mixing

specification styles.

1.5.3 Related work on Separation Logic

This dissertation also draws on work in separation logic (SL) [42, 78]. It supports local reasoning

and its frame conditions are implicit from preconditions where a program’s read and write locations

are requested. The introduction of separating conjunction and the frame rule allows a program to

be verified on partial heaps, which has been explained in Section 1.1.1. There has been much work

on automating SL using first-order tools [15, ?, 17, 20, 26, 31, 77]. Our results show another way

of encoding SL into first order logic, via UFRL. However, these work do not show connection with

dynamic frames approaches.

Implicit Dynamic Frames

Implicit dynamic frames [82] is a variant of separation logic [81]. It introduces a predicate acc

that specifies locations that are requested and returned by preconditions and postconditions. The

upper bound of the requested locations by a method’s precondition are considered as the method’s

implicit frame conditions. Similar to SL, it does not separate the locations that may be written

from those that may be read.

14

An inspiration for this dissertation was the work of Parkinson and Summers [77], who showed a

relationship between SL and the methodology of Chalice [59] that combines the core of implicit

dynamic frames [82] with fractional permissions and concurrency. They encode a separation logic

fragment (similar to the subset of separation logic that are encoded in this dissertation) into the

language of implicit dynamic frames by defining a total heap semantics of SL, which agrees with

the weakest precondition semantics of the implicit dynamic frames language. While their work did

not connect SL and RL, the results in this dissertation go further than the analogous results in their

paper. In this thesis, a translation of axioms and proof rules for a SL Hoare logic is formalized and

proved to be sound.

1.5.4 Related Work on Behavioral Subtyping

Behavioral subtyping [1, 48, 62] constrains the behavior of each method that overrides the one

in its supertype, such that one can use the supertype’s specifications to reason about the clients

that may invoke the subtype’s methods at run time. This is known as supertype abstraction [50].

Leavens and Naumann [48] have shown that behavioral subtyping is necessary and sufficient for the

soundness of supertype abstraction. They define specification refinement in terms of preconditions

and postconditions, but give no explicit treatment of frame conditions. Thus, their results are

difficult to apply to the framework of local reasoning.

Müller’s work [65] achieves behavioral subtyping by specification inheritance [30] in the Uni-

verse Type System, which is an ownership model for flexible alias control. His approach provides

explicit frame conditions and the extended state are allowed to be modified in subtypes, as the en-

capsulation is proved by universes [65]. However, the approach in this dissertation does not have

the concept of universes. Instead of controlling the aliasing, my work uses regions to frame an as-

sertion, and uses the frame rule to derive assertions whose values are preserved, i.e., the assertions

15

who depends on disjoint regions from a program’s write effects. Thus, an unsound conclusion due

to aliasing is prevented. Therefore, this dissertation defines a new definition of encapsulation in

the terms of region expressions.

Barnett et al.’s Spec7 specification language [11] encodes an ownership-based model with ghost

variables. In Spec7, an overriding method can enhance supertype’s postconditions, and has to

preserve supertype’s precondition. The extended states are allowed to be modified by subtype’s

methods given that each component is owned by a unique owner at a time. Such mechanism

provides encapsulations. However, the work in this dissertation is not based on any ownership

models. A new mechanism of encapsulation is needed, which is one of the problems that is solved

here.

DeLine and Fähndrich’s work [29] handles aliasing by a linear type system. Their work follows the

notion of behavioral subtyping of Liskov and Wing [62]. Their uses abstract predicates in pre- and

postconditions. The extended states of a subclass are specified by either enhancing typestates that

are defined in its superclass or by adding new typestates. However, specifications in their work are

transitions of typestates together with aliasing information. There are no explicit frame conditions.

Thus, their work does not help solve the problem of specifying frame conditions for subtypes.

Parkinson and Bierman [75] handle different types of inheritance by introducing an abstract pred-

icate family based on the formalism of second-order separation logic. Each method has a static

specification and a dynamic specification. Dynamic specifications follow the behavioral subtyping

criteria defined in Leavens and Naumann’s work [48]. Encapsulation is implicit in SL in the sense

that α˚c implies that all the predicates belong to the predicate family α separate-conjuncts from the

assertion c. However, the work in this dissertation needs methodology to express encapsulation.

16

CHAPTER 2: PROGRAMMING LANGUAGE1

This chapter presents the programming language for which the programming logic is formalized.

2.1 Syntax

Fig. 2.1 on the following page defines the syntax of sequential object-based programs. Over-

lines indicate possible empty sequences. Square brackets mean optional elements. There are

distinguished variable names. The variable this is the receiver object; the variable ret stores

the return value of a method if the method has one; the variable alloc stores the domain of the

heap. In the syntax, the notation n is a numeral, x is a variable name (or a pseudo-variable, such as

alloc), and f is a field name.

A class consists of fields and methods. A field is declared with type integer, a user-defined datatype,

or region. A method is declared in a class. A constructor is the method whose name is the same

as the class name. Each class must define its constructor that must be invoked after an object of

the class is allocated. In a method implementation, there are local variable declarations, update

statements, condition statements, and loop statements. The statement for garbage collection or

deallocation are excluded in our statements. Fig. 2.2 on the next page shows the definition of the

function MV that returns a set of variables that may be modified by a given statement.

The syntactic category E describes expressions, RE describes region expressions, and S describes

statements. Expressions and region expressions are pure, so cannot cause errors. There is a type

region, which is a set of locations. The region expression regiontu denotes the empty region.

1Subsets of the presented language in this chapter was presented at FTfJP ’15 [8] and is submitted to Formal
Aspects of Computing.

17

Prog ::“ Class S
Class ::“ class C { Field Method }
Field ::“ var f:T;

Method ::“ method m(x : T)[:T’]{ S }
T ::“ int | bool | region | C | C<T>
E ::“ n | x | null | E1 ‘ E2

RE ::“ x | region{} | region{x.f} | region{x.˚} | E ? RE1 : RE2

| filter{RE,T,f} | filter{RE,T} | RE1 b RE2

G ::“ E | RE
S ::“ skip; | var x:T; | x:=G; | x1:=x2.f; | x.f:=G;

| x:=new T; | if E then {S1} else {S2} | while E {S} | S1S2

‘ ::“ “ | ` | ´ | ˚ | ď . . .
b ::“ ` | ´ | ˚

Figure 2.1: The syntax of the programming language

MVpskip;q “ H MVpvar x : T ; q “ H MVpx :“ new T ; q “ txu
MVpx :“ G; q “ txu MVpx.f :“ G; q “ H MVpx :“ x1.f ; q “ txu
MVpif E then tS1uelse tS2uq “ MVpS1q Y MVpS2q

MVpwhile E tSuq “ MVpSq
MVpS1S2q “ MVpS1q Y MVpS2q

Figure 2.2: The definition of the function MV.

The region expression of the form regiontx.fu denotes a singleton set that stores the location

of field f in the object that is the value of x. The region expression of the form regiontx.˚u

denotes a set that contains the abstract locations represented by the reference x and all its fields. 2

The conditional region expression, E ? RE1 : RE2, is stateful; it denotes that if E is true, then the

region is RE1, otherwise the region is RE2. A region expression of the form filtertRE, T, fu

denotes the set of locations of form po, fq in RE, where each object reference, o, has the type T . A

2Since FRL does not have subclassing or subtyping, the fields in regiontx.˚u are based on the static type of the
reference denoted by x, which will also be its dynamic type.

18

Table 2.1: Features of the programming language that are not formalized in this dissertation.

seqăTą seqnence type
|s| the length of the sequence s
sris the element at index i of the sequence s if 0 ď i and i ă |s|
sri..s generate a new sequence that has the same elements in the

same order as s, but the first one, if 0 ď i and i ă |s|
sri..js generate a new sequence that has j ´ i elements, and

elements in the same order as s but starting with
the element sris, if 0 ď i and i ă |s|

s1 ` s2 sequence concatenation
mapăK,Vą map type
mrks the value of a given key k in a map m, if k is in the domain

of m
k inm test whether the key k is in the domian of the map m
k !inm test whether the key k is not in the domian of the map m
mrk :“ vs generate a new map that adds k to the domain of the map

m, and associates the key k with the value v, if k is not in
the domain of m, otherwise it is overridden in the new map

map i | i inm && i ‰ k :: mris generate a new map that is the same as the map m
excluding the key k.

region expression of the form filtertRE, T u denotes the subset of RE with references of type

T . For example, let RE “ to1.f1, o1.f2, o2.fu, where only o1 has type T , then filtertRE, T u “

to1.f1, o1.f2u. The operators `, ´, and ˚ denote union, difference and intersection respectively.

In addition to the language that has been formalized, Table. 2.1 shows notations for a generic

mathematical type seq adopted from Dafny [53, 55]. It is used in examples, and is not formalized

here for simplicity.

For simplicity, functions and pure methods are not formalized, but rely on the formalization in

Banerjee et al.’s work [3]. Functions are just pure methods. In examples, a predicate declaration

predicate p(z : T) reads r { P }

19

is syntax sugar for the declaration

method p(z : T) reads r { ret := P; }

Predicates are used for the purpose of specification, and cannot be invoked by programs.

There is a type environment, Γ, which maps variables to types:

Γ P TypeEnv “ var Ñ T.

A type environment, Γ, is well-formed if it is a partial function, i.e., for all x P dompΓq, Γpxq is

unique. Typing rules for expressions, region expressions and statements are not surprising, thus,

are defined in Appendix A.

2.2 Semantics

In order to define the semantics of the programming language, the definition of some common

semantic functions are given. A program state is a pair of a store and a heap. A store, σ, is a

partial function that maps a variable to its value. A heap, h or H , is a finite partial map from Loc to

values. The set Loc represents locations in a heap. A location is denoted by a pair of an allocated

reference, o, and its field name, f . We call a set of locations a region, writtenR. Heaps and regions

are manipulated using the following operations.

Definition 1 (Heap and Region Operations). Lookup in a heap, written Hro, f s, is defined when

po, fq P dompHq. Hro, f s is the value that H associates to po, fq.

H1 is extended by H2, written H1 Ď H2, means: @po, fq P dompH1q :: po, fq P dompH2q ^

H1ro, f s “ H2ro, f s.

H1 is disjoint from H2, written H1KH2, means dompH1q X dompH2q “ H.

20

The combination of two heaps written H1 ¨ H2, is defined when H1KH2 holds, and is the partial

heap such that: dompH1 ¨H2q “ dompH1q Y dompH2q, and for all po, fq P dompH1 ¨H2q :

pH1 ¨H2qro, f s “

$

’

&

’

%

H1ro, f s, if po, fq P dompH1q,

H2ro, f s, if po, fq P dompH2q.

Let H be a heap and R be a region. The restriction of H to R, written H æR is defined by:

dompH æRq “ dompHq X R and @po, fq P pH æRq :: pH æRqro, f s “ Hro, f s. We use err to

denote an error region or an error heap; the restriction of a heap H to an error region is defined

by: Hæerr “ err.

Notations: Let f and g be two partial functions. Then f ď g means that dompfq ď dompgq and

@ x P dompfq :: fpxq “ gpxq. And f ˚ g means that dompfq X dompgq “ H. The notation f ¨ g

means disjoint union, i.e., dompf ¨ gq “ dompfq Y dompgq, @ x P dompfq :: fpxq “ pf ¨ gqpxq and

@ x P dompgq :: gpxq “ pf ¨ gqpxq. Let f : X ÞÑ Y and g : Y ÞÑ Z. Then g ˝ f : X ÞÑ Z, i.e.,

@ x P X :: pg ˝ fqpxq “ gpfpxqq.

Fig. 2.3 on the next page shows the semantics of properly typed programming language, where

N is the standard meaning function for numeric literals. The function MO gives the semantics

of operators. A Value is either a Boolean, an object reference (which may be null), an integer or

a set of locations: Value “ Boolean ` Object ` Int ` PowerSetpLocq. The auxiliary function

fields(T) takes a reference type T and returns a list of its declared field names and their types.

The function typepoq takes a reference o and returns its type. Pure expressions evaluate to Values;

thus the semantics of E1 “ E2 and E1 ‰ E2 have no need to check for errors. Region expressions

evaluate to regions, i.e., sets of locations, and also cannot produce errors. For example, the region

expression regiontx.fu is evaluated to an empty set when x “ null. The pair pnull, fq is not

allowed in the regions of our language’s semantics.

21

E : Expression Typing Judgment Ñ Store Ñ Value
ErrΓ $ x : T sspσq “ σpxq ErrΓ $ null : T sspσq “ null ErrΓ $ n : intsspσq “ N rrnss
ErrΓ $ E1 ‘ E2 : T sspσq “ ErrΓ $ E1 : T1sspσqMOrr‘ss ErrΓ $ E2 : T2sspσq

ErrΓ $ regiontu : regionsspσq “ H
ErrΓ $ regiontx.fu : regionsspσq “ if σpxq “ null then H else tpσpxq, fqu
ErrΓ $ regiontx.˚u : regionsspσq “

if σpxq “ null thenH else tpo, fq | o “ σpxq and T “ typepoq and pf : T 1q P fieldspT qu
ErrΓ $ E ? RE1 ? RE2 : regionsspσq “

if ErrΓ $ E : boolsspσq then ErrΓ $ RE1 : regionsspσq else ErrΓ $ RE2 : regionsspσq
ErrΓ $ filtertRE, T u : regionsspσq “

tpo, fq|po, fq P ErrΓ $ RE : regionsspσq ^ typepoq “ T u
ErrΓ $ filtertRE, T, fu : regionsspσq “

tpo, f 1q|po, f 1q P ErrΓ $ RE : regionsspσq ^ f 1 “ f ^ typepoq “ T u
ErrΓ $ RE1 b RE2 : regionsspσq “

ErrΓ $ RE : regionsspσqMOrrbss ErrΓ $ RE : regionsspσq

Figure 2.3: The semantics of expressions

We consider the form skip; S to be identical to S. In examples, if E then tSu is syntax sugar

for if E then tSu else tskip; u.

A semantic function, MS : Statement Typing Judgment Ñ pState Ñ StateKq, maps an input

state to an output state, an error state, err, or K (in case of infinite loops). The function, default,

takes a type and returns its default value. The allocate function takes the heap and the class

name as parameters, and returns a location and a new heap. An error happens, for example, when

statements attempt to access a location not in the domain of the heap. The semantics does not have

garbage collection and there is no explicit deallocation. The underlined lambda (λ) denotes a strict

function that cannot recover from a nonterminating computation [80]. The semantics of statements

are standard, and are defined in Fig. 2.4 on the following page.

The following lemma states that extending a type environment does not change the computation.

22

MS : Statement Typing Judgment Ñ State Ñ StateK
MSrrΓ $ skip; : okpΓqsspσ,Hq “ pσ,Hq
MSrrΓ $ var x : T ; : okpΓ, x : T qsspσ,Hq “ pσrx ÞÑ defaultpT qs, Hq
MSrrΓ $ x :“ G; : okpΓqsspσ,Hq “ pσrx ÞÑ ErrΓ $ G : T sspσqs, Hq
MSrrΓ $ x.f :“ G; : okpΓqsspσ,Hq “

if σpxq ‰ null then pσ,Hrpσpxq, fq ÞÑ ErrΓ $ G : T sspσqsq else err
MSrrΓ $ x1 :“ x2.f ; : okpΓqsspσ,Hq “

if σpx2q ‰ null then pσrx1 ÞÑ Hrpσpx2q, fqss, Hq else err
MSrrΓ $ x :“ new T ; : okpΓqsspσ,Hq “ let pl, H 1q “ allocatepT,Hq in

let pf1, . . . , fnq “ fieldspT q in
let σ1 “ σrx ÞÑ ls in
pσ1, H 1rpσ1pxq, f1q ÞÑ defaultpT1q, . . . , pσ

1pxq, fnq ÞÑ defaultpTnqsq
MSrrΓ $ if E thentS1uelsetS2u : okpΓqsspσ,Hq “

if ErrΓ $ E : boolsspσq then MSrrΓ $ S1 : okpΓ1qsspσ,Hq
else MSrrΓ $ S2 : okpΓ2qsspσ,Hq

MSrrΓ $ while E tSu; : okpΓqsspσ,Hq “
fix pλg . λs . let v “ ErrΓ $ E : boolsspσq in

if v ‰ 0 then let s1 “ MSrrΓ $ S : okpΓ1qsspsq in g ˝ s1
else if v “ 0 then s else errqpσ,Hq

MSrrΓ $ S1S2 : okpΓ1qsspσ,Hq “ let s1 “ MSrrΓ $ S1 : okpΓ2qsspσ,Hq in
if s1 ‰ err then MSrrΓ2 $ S2 : okpΓ1qssps1q else err

Figure 2.4: The semantics of statements

The proof can be done by induction on the structure of the statement, and is easy. Thus, it is

omitted. This lemma is used in proving Lemma 26 in Chapter 8.

Lemma 1. Let Γ and Γ1 be two well-formed type environments. Let S be a statement, such that

Γ $ S : okpΓ1q. Let Γ2 be a well-formed type environment, such that dompΓq X dompΓ2q “ H and

dompΓ1q X dompΓ2q “ H. Then

1. if MSrrΓ $ S : okpΓ1qsspσ, hq ‰ err, then MSrrΓ,Γ2 $ S : okpΓ1,Γ2qsspσ, hq ‰ err.

2. if MSrrΓ $ S : okpΓ1qsspσ, hq “ pσ1, h1q, then MSrrΓ,Γ2 $ S : okpΓ1,Γ2qsspσ, hq “ pσ1, h1q.

23

CHAPTER 3: ASSERTION LANGUAGES AND FRAMING1

This chapter formalizes the assertion language and effects using region expressions. And a framing

judgment is defined in term of effects.

3.1 Syntax and Semantics of Assertions

The syntax of assertions is defined in Fig. 3.1. The first three are called atomic assertions. Quan-

tification is restricted in the syntax. Quantified variables may denote an int, or a location drawn

from a region.

B ::“ E1 = E2 | E1 ‰ E2

P ::“ B | x.f = E | RE1 ď RE2 | RE1 !! RE2 | P1 && P2 | P1 || P2

| P | @ x:int::P | @ x:T:region{x.f}ďRE:P | D x:int::P
| D x:T:region{x.f}ďRE:P

Figure 3.1: The syntax of assertions

The typing rules for assertions are in Fig. A.3. The semantics of assertions is shown in Fig. 3.2 on

the following page. The assertion RE1 ď RE2 checks that RE1 is a subregion of RE2. The assertion

RE1 !! RE2 checks that RE1 and RE2 are disjoint. The semantics of assertions identifies errors

(err) with false, and is two-valued. For example, x.f “ 5 is false if x.f is err. This design follows

the works of Banerjee et al. [5].

The following lemma states that the value of a well-typed assertion in a given state is preserved

1The content in this chapter was partially presented at FTfJP ’15 [8]. And part of the content is submitted to Formal
Aspects of Computing.

24

σ,H (Γ E1 “ E2 iff ErrΓ $ E1 : T1sspσq “ ErrΓ $ E2 : T2sspσq
σ,H (Γ E1 ‰ E2 iff ErrΓ $ E1 : T1sspσq ‰ ErrΓ $ E2 : T2sspσq
σ,H (Γ x.f “ E iff pσpxq, fq P dompHq and Hrσpxq, f s “ ErrΓ $ E : T sspσq
σ,H (Γ RE1 ď RE2 iff ErrΓ $ RE1 : regionsspσq Ď ErrΓ $ RE2 : regionsspσq
σ,H (Γ RE1 !! RE2 iff ErrΓ $ RE1 : regionsspσq X ErrΓ $ RE2 : regionsspσq “ H
σ,H (Γ P1 && P2 iff σ,H (Γ P1 and σ,H (Γ P2

σ,H (Γ P1 || P2 iff σ,H (Γ P1 or σ,H (Γ P2

σ,H (Γ P iff σ,H * P
σ,H (Γ @ x : int :: P iff for all v :: σrx ÞÑ vs, H (Γ, x:int P
σ,H (Γ @ x : T : regiontx.fu ď RE : P iff for all o : po, fq P ErrΓ $ RE : regionsspσq and

typepoq “ T : σrx ÞÑ os, H (Γ, x:T P
σ,H (Γ D x : int :: P iff exists v :: σrx ÞÑ vs, H (Γ, x:int P
σ,H (Γ D x : T : regiontx.fu ď RE : P iff exists o : po, fq P ErrΓ $ RE : regionsspσq and

typepoq “ T : pσrx ÞÑ os, Hq (Γ, x:T P

Figure 3.2: The semantics of assertions

under type extension. This lemma is used in proving Lemma 26 in Chapter 8. The proof is done

by induction on the assertion’s structure, and is omitted as it is intuitive.

Lemma 2. Let Γ and Γ1 be two well-formed type environments. Let pσ,Hq be a Γ-state. Then

σ,H (Γ P implies pσ,Hq (Γ,Γ1

P .

3.2 Effects

FRL uses effects to specify frame conditions and to frame formulas. The grammar for effects is

given in Fig. 3.3 on the next page. The latter five forms are called atomic effects. The keyword

modifies specifies write effects and reads specifies read effects. The keyword, modifies

or reads, is omitted when the context is obvious, or when listing the same type effects, e.g.,

(modifies x, regionty.fu) is short for (modifies x, modifies regionty.fu). The effect

freshpREq means all the locations in RE did not exist (were not allocated) in the pre-state. To

25

ε,δ ::“ H | ε1,ε2 | E ? ε1:ε2 | reads RE | reads x | modifies RE
| modifies x | fresh(RE)

Figure 3.3: The grammar of effects

avoid ambiguity, the notation reads xÓ means that reading the locations that are in x, where x

has type region; the notation reads x means that reading the variable x. The write effects are

similar.

Effects must be well-formed (wf) for the well-formed type environment Γ; for example, reads x

is meaningless if x in not in the domain of Γ.

Definition 2 (Well-formed Effects). Let Γ be a well-formed type environment, and δ be an effect.

The effect δ is well-formed in Γ if,

1. for all pM xq P δ :: x P dompΓq,

2. for all pM regiontx.fuq P δ :: x P dompΓq, and

3. for all pM regiontx.˚uq P δ :: x P dompΓq,

where M is either reads, modifies, or fresh.

A correct method must have an actual write effect that is a sub-effect of its specified effect.2 A set

of subeffect rules is defined in Fig. 3.4 on the following page to reason about such cases; it encodes

the standard properties of sets.

To streamline explanations, the following functions on effects are defined.

2The sub-effect rules are also applicable for read effects.

26

$
Γ ε ď ε $

Γ ε, ε1 ď ε1, ε
ε1 is a write or read effect

$
Γ ε ď ε, ε1

$
Γ fresh RE, ε ď ε

false $Γ ε ď ε1
P $Γ ε1 ď ε2 P $Γ ε2 ď ε3

P $Γ ε1 ď ε3

P 1 ñ P P $Γ ε1 ď ε2

P 1 $Γ ε1 ď ε2

P $Γ ε1 ď ε2

P $Γ ε1, ε ď ε2, ε
$

Γ modifies RE1,RE2
ă
ą modifies RE1 ` RE2

$
Γ reads RE1,RE2

ă
ą reads RE1 ` RE2

$
Γ modifies filtertRE, T, fu ď modifies RE

$
Γ modifies filtertRE, T u ď modifies RE

RE1 ď RE2 $
Γ modifies RE1 ď modifies RE2

RE1 ď RE2 $
Γ reads RE1 ď reads RE2 $

Γ E?ε1 : ε2 ď ε1, ε2

P && E1 && E2 $
Γ ε1 ď ε3 P && E1 && E2 $

Γ ε2 ď ε3

P && E1 && E2 $
Γ ε1 ď ε4 P && E1 && E2 $

Γ ε2 ď ε4

P $Γ E1?ε1 : ε2 ď E2?ε3 : ε4

Figure 3.4: The sub-effect rules

• writeR discards all but region expressions in write effects; for example, writeRpreads x,

modifies y, modifies regiontx.fuq is equal to regiontx.fu.

• readR discards all but region expressions in read effects; e.g., readRpreads x, reads

regiontx.fuq “ regiontx.fu.

• freshR discards all but region expressions in fresh effects; e.g., freshRpreads x, modifies

regiontx.fu, fresh regionty.˚uq = regionty.˚u.

• readVar discards all but variables in read effects; for example, readVarpreads x, reads

27

regiontx.fuq “ x.

• regRW unions together all the region expressions in both read and write effects; for example,

regRWpreads x, modifies regiontx.fu, reads regionty.fuq “ regiontx.fu `

regionty.fu.

Write effects and fresh effects make sense for two consecutive states, written pσ, hq ãÑ pσ1, h1q. The

following defines the semantics of write effects and fresh effects. It allows changes for variables

and in the heaps of the pre-state. However, fresh effects are evaluated in the post-state. Regions

specified in a fresh effect do not exist in the pre-state.

Definition 3 (Changes allowed by write and fresh effects). Let Γ be a well-formed type environ-

ment. Let ε be well-formed effects in Γ, and pσ, hq and pσ1, h1q be Γ-states. The effect ε allows

change from pσ, hq to pσ1, h1q, written pσ, hqÑpσ1, h1q (Γ ε if and only if pσ, hq ãÑ pσ1, h1q and the

following holds:

1. for all x P dompΓq, either σpxq “ σ1pxq or modifies x is in ε;

2. for all po, fq P σpallocq, either hro, f s “ h1ro, f s or there is RE such that modifies RE

is in ε, such that po, fq P ErrΓ $ RE : regionsspσq;

3. for all RE such that freshpREq is in ε, it must be true that ErrΓ $ RE : regionsspσ1q Ď p

σ1pallocq ´ σpallocq q.

Def. 4 says that if two states agree on a read effect, δ, then the values that depend on δ are identical.

As the programming language defined so far does not have subclassing or subtyping, a variable’s

static type is also its dynamic type. There is no need to state that types are congruent in the two

states. This definition is generalized in Chapter 8, where the language is extended with inheritance.

28

Definition 4 (Agreement on Read Effects). Let Γ be a well-formed type environment. Let δ be a

well-formed effect in Γ. Let Γ1 ě Γ and Γ2 ě Γ. Let pσ1, h1q and pσ2, h2q be a Γ1-state and a Γ2-

state respectively. Then it is said that pσ1, h1q and pσ2, h2q agree on δ, written pσ1, h1q
δ
” pσ2, h2q,

when the following holds:

1. for all reads x P δ :: σ1pxq “ σ2pxq

2. for all reads RE P δ: po, fq P ErrΓ1 $ RE : regionsspσ1q : h1ro, f s “ h2ro, f s.

3.3 Framing

Let R be the region that the frame condition of a method, m, specifies in a given state; these

locations may be modified bym. The locations that are preserved are the complement ofR, written

R̄. Let R1 be locations that may be used in evaluating an assertion, P , written readsR1 frm P . If

R1 ď R̄, i.e., R1 !! R, then P ’s validity is preserved after m is called. The function efsp´q shown

in Fig. 3.5 inductively defines R1 for expressions, region expressions, and atomic assertions. For

example, efspx.f “ yq “ reads x, regiontx.fu, y.

efspxq “ reads x efspnq “ H efspnullq “ H
efspE1 ‘ E2q “ efspE1q, efspE2q efspregiontuq “ H
efspregiontx.fuq “ reads x efspregiontx.˚uq “ reads x
efspE ? RE1 : RE2q “ efspEq,E ? efspRE1q : efspRE2q

efspfiltertRE, fuq “ efspREq efspfiltertRE, T, fuq “ efspREq
efspRE1 b RE2q “ efspRE1q, efspRE2q efspE1 “ E2q “ efspE1q, efspE2q

efspE1 ‰ E2q “ efspE1q, efspE2q efspx.f “ Eq “ reads x,regiontx.fu, efspEq
efspRE1 ď RE2q “ efspRE1q, efspRE2q efspRE1 !! RE2q “ efspRE1q, efspRE2q

Figure 3.5: The read effects of expressions, region expressions and atomic assertions

29

The framing judgment, P $Γ δ frm Q, means that read effects, δ, contains the variables and

locations that are needed to evaluate Q in a Γ-state that satisfies P . Fig. 3.6 shows the judgment

for assertions.

(FrmFtpt)
true $Γ efspP q frm P
where P is atomic

(FrmNeg)
true $Γ efspP q frm P
where P is atomic

(FrmSub)
R $Γ δ1 frm Q Q $Γ δ1 ď δ2

P $Γ δ2 frm Q
where P ñ R

(FrmConj)
P $Γ δ frm Q1 P && Q1 $

Γ δ frm Q2

P $Γ δ frm pQ1 && Q2q

(FrmDisj)
P $Γ δ frm Q1 P $Γ δ frm Q2

P $Γ δ frm pQ1 || Q2q

(FrmEq)
P $Γ δ frm Q1

P $Γ δ frm Q2

where Q1 ðñ Q2

(FrmProjCtx)
P && Q $Γ δ frm Q

P $Γ δ frm Q

(Frm@1)
P $Γ,x:int

pδ,reads xq frm Q

P $Γ δ frm @ x : int :: Q

(Frm@2)
P $Γ reads efspREq ď δ P ^ regiontx.fu ď RE $Γ,x:T

pε, xq frm Q

P $Γ δ frm @ x : T : regiontx.fu ď RE : Q

(FrmD1)
P $Γ,x:int

pδ,reads xq frm Q

P $Γ δ frm D x : int :: Q

(FrmD2)
P $Γ reads efspREq ď δ P && regiontx.fu ď RE $Γ,x:T

pδ, xq frm Q

P $Γ δ frm D x : T : regiontx.fu ď RE : Q

Figure 3.6: The inference rules for the framing judgment

The following defines the meaning of a framing judgment.

Definition 5 (Frame Validity). Let Γ be a well-formed type environment. Let P and Q be asser-

30

tions, and δ be a read effect. The framing judgment P $Γ δ frm Q is valid, written P (Γ δ frm Q,

if and only if for all Γ-states pσ, hq and pσ1, h1q, if pσ, hq
δ
” pσ1, h1q and σ, h (Γ P && Q, then

σ1, h1 (Γ Q.

The framing judgment is stateful. For example, the judgment x “ y $Γ preadsy,regiontx.fuq

frm px.f “ 5q is valid, but $Γ preads y,regiontx.fuq frm px.f “ 5q may not.

Lemma 3 (Framing Soundness for Expressions). Let Γ be a well-formed type environment. Let

pσ, hq and pσ1, h1q be two Γ-states. Let G be an expression. If pσ, hq
efspGq
” pσ1, h1q, then it must be

true that ErrΓ $ G : T sspσq “ ErrΓ $ G : T sspσ1q.

Proof. The proof is straightforward by structural induction on expressions, thus is omitted.

Lemma 4 (Framing Soundness for Assertions). Every derivable framing judgment is valid.

Proof. By induction on a derivation of a framing judgment P $Γ δ frm Q.

3.4 Separator and Immune

The notation, ¨{̈ , is used to define the disjointness on effects in Fig. 3.7 on the following page,

where δ is a read effect and ε is a write effect. δ ¨{̈ ε means that the read effects in δ are disjoint

with the write effects in ε. The effect, reads δ, where δ is not a conditional effect, is treated

as reads if true then δ else H. For example, let RE be if x.f“0 then regionty.fu

else regiontu. Suppose x ‰ y and x.f ‰ 0. The separation of reads regionty.fu and

modifies RE can be derived to reads regionty.fu ¨{̈ modifies regiontu by the rule

ConMask introduced in the next section.

31

δ ¨{̈ H “ true
H ¨{̈ ε “ true

reads y ¨{̈ modifies x “ y ı x
reads y ¨{̈ modifies RE “ true
reads RE1

¨{̈ modifies x “ true
reads RE1

¨{̈ modifies RE2 “ RE1 !! RE2

δ ¨{̈ pε, ε1q “ pδ ¨{̈ εq ^ pδ ¨{̈ ε1q
pδ, δ1q ¨{̈ ε “ pδ ¨{̈ εq ^ pδ1 ¨{̈ εq

δ ¨{̈ pE ? ε1 : ε2q “

"

δ ¨{̈ ε1 if E
δ ¨{̈ ε2 if E

pE ? δ1 : δ2q ¨{̈ ε “

"

δ1
¨{̈ ε if E

δ2
¨{̈ ε if E

Figure 3.7: The definition of separator

The following lemma says if read effects, δ, and write effects, ε are separate, then the values on δ

are preserved.

Lemma 5 (Separator Agreement). Let Γ be a well-formed type environment. Let ε and δ be effects

in Γ. Let pσ, hq and pσ1, h1q be two Γ-states. If pσ, hqÑpσ1, h1q (Γ ε and pσ, hq (Γ δ ¨{̈ ε, then

pσ, hq
δ
” pσ1, h1q.

Proof. According to the definition of agreement on read effects (Def. 4), there are two cases.

1. Let reads x in δ be arbitrary. Since pσ,Hq (Γ δ ¨{̈ ε, modifies x R ε. By the assump-

tion pσ, hqÑpσ1, h1q (Γ ε and the definition of changes allowed by write and fresh effects

(Def. 3), it must be true that σpxq “ σ1pxq.

2. Let reads RE in δ be arbitrary. It is to show that for all po, fq P ErrΓ $ RE : regionsspσq,

hro, f s “ h1ro, f s. By the definition of separator (Fig. 3.7), for any modifies RE1 in ε,

it must be true that σ, h (Γ RE !! RE1. By the assumption that σ, h (Γ δ ¨{̈ ε, it must be

32

true that po, fq R ErrΓ $ RE 1 : regionsspσ, hq. So by the definition of changes allowed by

write and fresh effects (Def. 3), it must be true that hro, f s “ h1ro, f s.

To prevent interference of the effects of two sequential statements, immunity of two effects under

certain condition is introduced. Consider the statement: x :“ y;x.f :“ 5. The write effect

of the first statement is modifies x, and that of the second statement is regiontx, fu. The

effect of their composition is not necessarily modifies (x, regiontx, fu), as regiontx.fu

may denote different locations after x is assigned to the value of variable y. To reason about

this example, a rule of state-dependent effect subsumption is used, ascribing to x.f := 5 the effect

modifies regionty.fu which is sound owing to the postcondition of x := y, which is x = y.

The effect modifies regionty.fu is immune from updating x. Immunity is used in the proof

of Theorem 1 on page 49 .

Definition 6 (Immune). Let RE be a region expression, P be an assertion, and ε and δ be two

effects. Then RE is immune from ε under P , written RE is P {ε-immune, if and only if P implies

efspREq¨{̈ε.

Effect δ is immune from ε under P, if and only if for all modifies RE in δ :: RE is P {ε-immune.

This notion is used to prevent naive accumulation of write effects. To explain this, let ε1 and ε2 be

the two write effects of two sequential statements. Intuitively, if the variables and regions that ε1

contains overlap with the variables and regions that ε2 depends on, then ε2 is not ε1-immune.

Consider the example x.f := x; x.f := x;. Assume the precondition of the first update statement is

x ‰ null. The write effects of both update statements, ε1 and ε2, are modifies regiontx.fu.

33

The proof obligation is to show that ε2 is x ‰ null{ε1-immune. Informally, the write effect ε2

relies on the variable x. But, the write effect ε1 does not contain modifies x. Therefore,

modifies regiontx.fu is x ‰ null{modifies regiontx.fu-immune. A proof of this is

calculated as follows.

modifies regiontx.fu is x ‰ null{modifies regiontx.fu-immune

iff xby the definition of Immune (Def. 6)y

for all modifies RE in modifies regiontx.fu :: RE is

x ‰ null{modifies regiontx.fu-immune

iff xby RE is region{x.f}y

regiontx.fu is x ‰ null{modifies regiontx.fu-immune

iff xby the definition of Immune (Def. 6)y

x ‰ null implies efspregiontx.fuq¨{̈modifies regiontx.fu

iff xby the definition of read effects (Fig. 3.5)y

x ‰ null implies reads x¨{̈modifies regiontx.fu

iff xby the definition of separator (Fig. 3.7)y

true

However, note that if the first statement were x :“ y, then the effect modifies regiontx.fu

would not be x ‰ null{modifies x-immune.

34

To make a comparison, consider another example x.f.g := x; x.f := x;. (This is not syntactically

correct, but one can desugar it to z := x.f; z.g := x; x.f := x, where z is fresh.) Assume the

precondition of the first update statement is x ‰ null && x.f ‰ null. In this case, ε1 is

modifies regiontx.f.gu, and ε2 is modifies regiontx.fu. The following shows that

modifies regiontx.f.gu is x ‰ null{modifies regiontx.fu-immune is false.

modifies regiontx.f.gu is x ‰ null{modifies regiontx.fu-immune

iff xby the definition of Immune (Def. 6)y

for all modifies RE P modifies regiontx.f.gu :: RE is

x ‰ null{modifies regiontx.fu-immune

iff xby RE is region{x.f.g}y

regiontx.f.gu is x ‰ null{modifies regiontx.fu-immune

iff xby the definition of Immune (Def. 6)y

x ‰ null implies efspregiontx.f.guq¨{̈modifies regiontx.fu

iff xby the definition of read effects (Fig. 3.5 on page 29)y

x ‰ null implies preads x,regiontx.fuq¨{̈modifies regiontx.fu

iff xby the definition of separator (Fig. 3.7 on page 32)y

false

Lemma 6. Let Γ be a well-formed type environment. Let ε an effect, RE be a region expres-

sion, and P be an assertion, such that RE is P {ε-immune. Then for all Γ-states, pσ, hq and

pσ1, h1q, such that pσ, hq Ñ pσ1, h1q (Γ ε, if σ, h (Γ P , then ErrΓ $ RE : regionsspσq “

ErrΓ $ RE : regionsspσ1q.

Proof. By the assumption that RE is P {ε-immune, and by the definition of immunity (Def. 6),

it must be true that σ, h (Γ P ñ efspREq¨{̈ε. By the assumption that pσ, hq Ñ pσ1, h1q (Γ ε

and by the separator agreement (Lemma 5), it must be true that pσ, hq
efspREq
” pσ1, h1q. Then by the

35

soundness of framing for expressions (Lemma 3), it must be true that ErrΓ $ RE : regionsspσq “

ErrΓ $ RE : regionsspσ1q.

The effects of a sequence statement S1S2 are gained from the effects of the two constituent state-

ments, S1 and S2, where the write effect of S2 may contain regions that are allocated by S1. Then

such write effect can be dropped by the effect of S1S2. This idea is described in the following

lemma, which is used in proving the soundness theorem (Theorem 1).

Lemma 7 (Effect Transfer). Let Γ0, Γ1 and Γ2 be well-formed type environments. Let pσ0, h0q,

pσ1, h1q, pσ2, h2q be Γ0, Γ1 and Γ2-states respectively. Let ε1 and ε2 be two effects, and P and P 1

be two assertions. If the following hold:

1. σ0, h0 (
Γ0 P and σ1, h1 (

Γ1 P 1;

2. pσ0, h0q Ñ pσ1, h1q (
Γ0 ε1;

3. pσ1, h1q Ñ pσ2, h2q (
Γ1 ε2,modifies RE;

4. ε2 is P {ε1-immune;

5. for all fresh(RE1) P ε1 :: RE1 is P {pε2,modifies REq-immune;

6. ErrΓ1 $ RE : regionsspσ1, h1q X σ0pallocq “ H.

Then pσ0, h0q Ñ pσ2, h2q (
Γ0 ε1, ε2.

Proof. To prove the conclusion, it needs to show that all the conditions defined in Def. 3 hold.

For condition (1) in Def. 3, let x be a variable, such that σ0pxq ‰ σ2pxq. It is the case that either

σ0pxq ‰ σ1pxq or σ1pxq ‰ σ2pxq or both. By the assumption 2 and 3, modifies x is either in ε1

or in ε2 or both.

36

For condition (2) in Def. 3, let po, fq P σ0pallocq, such that h0ro, f s ‰ h2ro, f s. There are two

cases:

1. h0ro, f s ‰ h1ro, f s: By assumption 2, there is a region expression RE0, such that modifies

RE0 in ε1 and po, fq P ErrΓ0 $ RE0 : regionsspσ0, h0q. Thus, modifies RE0 in pε1, ε2q.

2. h1ro, f s ‰ h2ro, f s: By assumption 2, there are two cases.

• there is a region expression RE1 in ε2 and po, fq P ErrΓ1 $ RE1sspσ1, h1q. By assumption

(4) and Lemma 6, it is true that ErrΓ0 $ RE1sspσ0, h0q “ ErrΓ1 $ RE1sspσ1, h1q. Thus,

modifies RE1 in pε1, ε2q.

• po, fq P ErrΓ1 $ REsspσ1, h1q. By assumption (6), ErrΓ1 $ REsspσ1, h1qXσ0pallocq “

H. That implies po, fq R σ0pallocq, which contradicts the assumption that po, fq P

σ0pallocq.

For condition (3) in Definition 3, let r1 “ ErrΓ1 $ REsspσ1, h1q and r2 “ ErrΓ2 $ REsspσ2, h2q.

There are two cases:

1. Suppose freshpREq P ε1. By assumption 2, it is true that r1 Ď pσ1pallocq´σ0pallocqq

and pσ1pallocq Ď σ2pallocqq. By assumption 3, r1 “ r2. Thus, it is true that r2 Ď

pr2 ´ σ0pallocqq. So pσ0, h0q Ñ pσ1, h1q (
Γ0 ε1, ε2.

2. Suppose freshpREq P ε2. By assumption 2, it is true that r2 Ď pσ2pallocq´σ1pallocqq,

and σ1pallocq Ď σ0pallocq. Thus, it is true that r2 Ď pr2 ´ σ0pallocqq. So pσ0, h0q Ñ

pσ2, h2q (
Γ0 ε1, ε2.

37

CHAPTER 4: FINE-GRAINED REGION LOGIC1

This chapter defines the correctness judgment in FRL, and presents the proof axioms and rules for

statements and structural rules.

The correctness judgment of FRL, a Hoare-formula of form tP1uStP2urεs, means that S is partially

correct, its write effects are contained in ε, and the locations specified to be fresh in ε are newly

allocated. Following the work on RL [2, 5] a statement S is partially correct if it cannot encounter

an error when started in a pre-state satisfying the specified precondition, however S may still loop

forever.

Definition 7 (Valid FRL Hoare-Formula). Let Γ be a well-formed type environment. Let S be

a statement, let P1 and P2 be assertions, let ε be effects, and let pσ,Hq be a Γ-state. Then

tP1u S tP2urεs is valid in pσ,Hq, written σ,H (Γ
r tP1u S tP2urεs, if and only if whenever σ,H (Γ

P1, then

1. MSrrΓ $ S : okpΓ1qsspσ,Hq ‰ err;

2. if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,Hq, then

• σ1, H 1 (Γ1

P2

• for all x P dompσq : σ1pxq ‰ σpxq : modifies x P ε

• for all po, fq P dompHq : H 1ro, f s ‰ Hro, f s :

po, fq P ErrΓ $ writeRpεq : regionsspσq, and

• for all po, fq P ErrΓ1 $ freshRpεq : regionsspσ1q:: po, fq P pdompH 1q ´ dompHqq.

1The content in this chapter is submitted to Formal Aspects of Computing.

38

A Hoare-formula tP1u S tP2urεs is valid, written (Γ
r tP1u S tP2urεs, if and only if for all Γ-states

pσ,Hq :: σ,H (Γ
r tP1u S tP2urεs.

Note that the region expressions in the write effects are evaluated in the pre-state, since frame

conditions only specify changes to pre-existing locations, not changes to freshly allocated ones.

On the other hand, the region expressions in the fresh effects are evaluated in the post-state. Note

that write effects are permissions to change locations, as write effects may leave the values in

locations unchanged, but specified fresh effects are indeed obligations.

Write effects in FRL can specify both variables (in stores) and heap regions. Write effects do not

restrict a statement’s access to the heap, since in FRL statements can implicitly access all of the

program’s heap, whose domain is written alloc.

4.1 Axioms and Inference Rules

Fig. 4.1 on the following page shows the axioms and inference rules for statements. The predicate

true is syntactic sugar for 1 “ 1. The axioms for variable assignment, field access, field update

and allocation are “small” [71] in the sense that the union of write effects and read effects describe

the least upper bound of variables and locations that S accesses, and the write effects describe the

least upper bound of the variables and locations that S may modify. The fresh effects in the rule of

the new statement accounts to a newly allocated object. Fig. 4.2 and Fig. 4.3 show the structural

rules. In the rules, the notation, newpT, xq, means that x.f1 “ defaultpT1q && . . . && x.fn “

defaultpTnq, where the fi : Ti are defined by pf1 : T1, . . . , fn : Tnq “ fieldspT q.

39

(SKIPr)
$

Γ
r ttrueuskip; ttrueurHs

(VARr)
$

Γ
r ttrueuvar x : T ; tx “ defaultpT qurHs

(ALLOCr)

$
Γ
r

ttrueu x :“ new T ; tnewpT, xqu
r modifies x,modifies alloc,freshpregiontx.˚uqs

(ASGNr)
$

Γ
r ttrueu x :“ G; tx “ Gu r modifies xs where x R FVpGq

(ACCr)
$

Γ
r tx

1
‰ nullu x :“ x1.f ; tx “ x1.fu r modifies xs where x ‰ x1

(UPDr)
$

Γ
r tx ‰ nullu x.f :“ G; tx.f “ Gur modifies regiontx.fus

(SEQ1r)
$

Γ
r tP u S1 tP1urε1,freshpREqs $

Γ1

r tP1u S2 tP
1
urε2, modifies RE1s

$
Γ
r tP u S1S2 tP

1
ur ε1, ε2,freshpREqs

where S1 ‰ var x : T ; , ε1 is fresh-free, ε2 is P {ε1-immune,
RE is P1{pε2,modifies RE1q-immune and P1 ñ RE1 ď RE

(SEQ2r)
$

Γ, x:T
r tP && x “ defaultpT qu S tQur modifies x, εs

$
Γ
r tP u var x : T ; S tQurεs

(IFr)
$

Γ
r tP && Eu S1 tP

1
urεs $

Γ
r tP && Eu S2 tP

1
urεs

$
Γ
r tP uif E then tS1u else tS2utP

1
urεs

(WHILEr)
$

Γ
r tP && Eu S tP u rε, modifies REs

$
Γ
r tP && r “ allocu while E tSu tP && Eu rεs ,

where P ñ RE !! r, ε is fresh-free, ε is P {ε-immune, and modifies r R ε

Figure 4.1: The correctness axioms and proof rules for statements in FRL

40

(FRMr)
$

Γ
r tP u S tP 1urεs P $Γ δ frm Q

$
Γ
r tP && Qu S tP 1 && Qurεs

where P && Qñ δ¨{̈ε

(SUBEFFr)
$

Γ
r tP u S tP

1
urεs P $Γ ε ď ε1

$
Γ
r tP u S tP

1
urε1s

(CONSEQr)
$

Γ
r tP1u S tP

1
1urεs

$
Γ
r tP2u StP

1
2urεs

where P2 ñ P1 and P 11 ñ P 12

(ConEff r)
$

Γ
r tP && Eu S tP 1urε1s $

Γ
r tP && Eu S tP 1urε2s

$
Γ
r tP u S tP

1
urE ? ε1 : ε2s

(ConMask1r)
$

Γ
r tP u S tP

1
urε,modifies pE ? ε1 : ε2qs

$
Γ
r tP u S tP

1
urε, ε1s

where P ñ E and modifies b R pε, ε1, ε2q

(ConMask2r)
$

Γ
r tP u S tP

1
urε,modifies pE ? ε1 : ε2qs

$
Γ
r tP u S tP

1
urε, ε2s

where P ñ E and modifies b R pε, ε1, ε2q

(PostToFrr)
$

Γ
r tP u S tP

1
urεs

$
Γ
r tP u S tP

1
urε,E ? freshpRE1q : freshpRE2qs

where P ñ r “ alloc, P ñ pE && RE1 !! rq, P ñ p E && RE2 !! rq and
modifies r R ε

Figure 4.2: The structural rules in FRL (1)

41

(FrToPostr)
$

Γ
r tP u S tP

1
urε,E ? freshpRE1q : freshpRE2qs

$
Γ
r

tP u S tP 1 && pbñ RE1 !! rq && p bñ RE2 !! rqu
rε,E ? freshpRE1q : freshpRE2qs

where P ñ b “ E, P ñ b, P ñ r “ alloc,modifies b R ε and modifies r R ε

(VarMask1r)
$

Γ
r tP u S tP

1
urE ? modifies x, ε1 : ε2s

$
Γ
r tP u S tP

1
urE ? ε1 : ε2s

where P ñ E, P || P 1 ñ x “ y and P && E ñ reads y¨{̈px, εq

(VarMask2r)
$

Γ
r tP u S tP

1
ur E ? ε1 : pmodifies x, ε2qs

$
Γ
r tP u S tP

1
urif E then ε1 else ε2s

where P ñ E, P || P 1 ñ x “ y and P && E ñ reads y¨{̈px, εq

(FieldMask1r)
$

Γ
r tP u S tP

1
urε,E ? pmodifies regiontx.fu, ε1q : ε2s

$
Γ
r tP u S tP

1
urε,E ? ε1 : ε2s

where P ñ E, P || P 1 ñ x.f “ y, P 1 && E ñ reads x¨{̈ modifies ε,
P 1 && E ñ reads y¨{̈modifies ε

(FieldMask2r)
$

Γ
r tP u S tP

1
urε,E ? ε1 : modifies regiontx.fu, ε2s

$
Γ
r tP u S tP

1
urε,E ? ε1 : ε2s

where P ñ E, P || P 1 ñ x.f “ y, P 1 && E ñ reads x¨{̈ modifies ε
and P 1 && E ñ reads y¨{̈modifies ε

Figure 4.3: The structural rules in FRL (2)

4.1.1 The Sequence Rules

This subsection explains the use of the two sequence rules with examples. The rule SEQr may

look complicated. However, the complication arises from the side conditions that handle how the

effects of S1S2 are collected from those of S1 and S2. To understand SEQ1r, it may be helpful to

42

consider two cases:

1. S1 allocates some new objects, which are updated by S2. This is the case where the freshly

allocated region RE is not empty. Then the write effects of S1S2 can drop RE from the write

effects of S2. For example, consider the sequence: x :“ new T ;x.f :“ 5;. Assume f is the

only field of the reference type T for simplicity. Using the axioms ALLOCr and UPDr, Eq. (4.1)

must be true, which is

$
Γ
r

ttrueux := new T;tnewpT, xqu

r modifies x,modifies alloc,freshpregiontx.˚uqs
(4.1)

$
Γ
r tx ‰ nullux.f :“ 5; tx.f “ 5ur modifies regiontx.fus (4.2)

Then, the SubEff r rule is used to loosen the write effect of Eq. (4.2), and get

$
Γ
r tx ‰ nullux.f :“ 5; tx.f “ 5ur modifies regiontx.˚us (4.3)

Then, using the CONSEQr rule on Eq. (4.1), the following is derived

$
Γ
r

ttrueux := new T;tx ‰ nullu

r modifies x,modifies alloc,freshpregiontx.˚uqs
(4.4)

In order to use the rule SEQ1r on Eq. (4.4) and Eq. (4.3), the rule SEQ1r is instantiated with

RE :“ regiontx.˚u, RE1 :“ regiontx.˚u, ε1 :“ modifies x,modifies alloc and

ε2 :“ H. Then, the immune side conditions has to be true, which are:

modifies x is true{modifies x,modifies alloc-immune (4.5)

and

H is true{modifies x,modifies alloc-immune (4.6)

43

Eq. (4.6) is obviously true. By the definition of immune (Def. 6 on page 33), to prove Eq. (4.5)

is to show

for all modifies RE P pmodifies xq :: RE is

true{modifies x,modifies alloc-immune (4.7)

Eq. (4.7) is vacuously true, since no region expression RE can be a variable x. Now, using the

rule SEQ1r, the following is derived

$
Γ
r

ttrueux :“ new T ;x.f :“ 5; tx.f “ 5u

r modifies x,modifies alloc,freshpregiontx.˚uqs

In this case, the write effect of the second statement, modifies regiontx.˚u, is dropped in

that of the sequence statement, as the fresh effect of the first statement become the fresh effect

of the sequence.

2. S1 does not allocate any new objects. Then the sequence rule can be simplified as:

$
Γ
r tP u S1 tP1urε1s $

Γ
r tP1u S2 tP

1
urε2s

$
Γ
r tP u S1S2 tP

1
urε1, ε2s

where ε1 is fresh-free and ε2 is P {ε1-immune

The two side conditions on immunity are to prevent interference of the effects of two sequential

statements. For the write effect, variables and regions that ε1 contains have to be disjoint with

those that ε2 depends on. Examples have been given in Section 3.4 in Chapter 3. Similarly,

for the read effect, variables and regions that ε1 contains have to be disjoint with those that δ2

depends on. Consider the statements: y :“ z; x :“ y.f ;. The read and write effects of the

first statement are reads z and modifies y respectively, and the read effect of the second

statement is reads y, reads regionty.fu. The read effects of their composition may not be

preads z,reads y,reads regionty.fuq, as regionty.fu may denote a different location

44

after y is assigned to the value of z. To reason about this example, a rule of state-dependent

effect subsumption is used, ascribing to x :“ y.f ; the read effect reads regiontz.fu, which is

immune from updating y.

Consider again the example in Section 3.4, x.f :“ x; x.f :“ x;. There, it has been proved that ε2

is P {ε1-immune, where ε1 and ε2 are both modifies regiontx.fu, and P is x ‰ null. Here

shows that δ2 is P {ε1-immune as follows, where δ2 is reads x.

reads x is x ‰ null{modifies regiontx.fu-immune

iff xby the definition of Immune (Def. 6)y

for all reads RE P reads x :: RE is x ‰ null{modifies regiontx.fu-immune

iff xby there does not exist such REy

true

The following example shows the use of the rule SEQ2r. Consider the program var y : int;

y := 5;. After using the axiom VARr, the following is derived

$
Γ
r ttrueuvar y : int; ty “ 0urHs (4.8)

After using the axiom ASGNr, the following is derived

$
Γ
r ttrueu y :“ 5; ty “ 5u r modifies ys (4.9)

By the rule CONSEQr on Eq. (4.9), the following is derived

$
Γ
r ty “ 0uy :“ 5; ty “ 5u r modifies ys (4.10)

Using the rule SEQ2r on Eq. (4.8) and Eq. (4.10), the following is derived $Γ
r ttrueuvar y :

int; y :“ 5; ty “ 5u rHs

45

4.1.2 The Loop Rule

For the rule WHILEr, P is the loop invariant and r stores the locations in the pre-state of the loop.

The side condition P ñ RE !! r indicates that RE specifies the locations that may be allocated by

the loop body. An example shows how to instantiate r in the rule WHILEr. Consider the following

program in program context Γ “ alloc : region, f : region, y : int, x : C:

B
def
“ x :“ new T ; f :“ f ` regiontx.˚u; y :“ y ´ 1;

S def
“ f :“ regiontu; y :“ 5; while y tBu

The proof obligation is to show that

$
Γ
r

ttrueu S ty “ 0u

r modifies f,modifies alloc,modifies x,modifies y,freshpfqs
(4.11)

After using the axiom ASGNr, once for each of the following, the following is derived

$
Γ
r ttrueu f :“ regiontu; tf “ regiontuur modifies f s (4.12)

$
Γ
r ttrueu y :“ 5; ty “ 5ur modifies ys (4.13)

After using the rule FRMr on Eq. (4.13), the following is derived

$
Γ
r tf “ regiontuu y :“ 5; tf “ regiontu && y “ 5ur modifies ys (4.14)

From Eq. (4.12) and Eq. (4.14), the rule SEQ1r is instantiated with RE :“ regiontu. As the

immunity conditions are vacuously true, the following is derived

$
Γ
r ttrueu f :“ regiontu; y :“ 5; tf “ regiontu && y “ 5ur modifies f,modifies ys

(4.15)

46

Now, consider the loop. Let variable g be fresh; g is used to snapshot the initial value of alloc.

For the loop body B, the proof obligation is to derive

$
Γ
r tg !! fuBtg !! furmodifiesf,modifiesx,modifiesy,modifiesallocs (4.16)

From Eq. (4.16), the rule WHILEr is instantiated with r :“ g and RE “ regiontu. Because the

immunity conditions are vacuously true, the following is derived.

$
Γ
r

tg !! f && g “ allocu while y tBu tg !! f && y “ 0u

r modifies x,modifies y,modifies f,modifies alloc s
(4.17)

The rule PostToFrr is instantiated with r :“ g and RE :“ f . The following is derived.

$
Γ
r

tg !! f && g “ allocu while y tBu tg !! f && y “ 0u

r modifies x,modifies y,modifies f,modifies alloc, freshpfqs
(4.18)

After using the rule CONSEQr from the above, the following is derived.

$
Γ
r

tg !! f && g “ allocu while y tBu ty “ 0u

r modifies x,modifies y,modifies f,modifies alloc, freshpfqs
(4.19)

The postcondition of Eq. (4.15) implies the precondition of Eq. (4.19). After using the rule CON-

SEQr on Eq. (4.15), the following is derived.

$
Γ
r

ttrueu f :“ regiontu; y :“ 5; tg !! f && g “ allocu

r modifies f,modifies ys
(4.20)

From Eq. (4.20) and Eq. (4.19), the rule SEQ1r is instantiated with RE “ regiontu. As the

immunity conditions are vacuously true, Eq. (4.11) is derived.

Here shows the proof of Eq. (4.16). After using the axiom ALLOCr, the following is derived.

$
Γ
r

ttrueu x :“ new T ; tnewpT, xqu

r modifies x,modifies alloc,freshpregiontx.˚uqs
(4.21)

47

Then by the rule FRMr from the above, the following is derived.

$
Γ
r

tg !! fu x :“ new T ; tnewpT, xq && g !! fu

r modifies x,modifies alloc,freshpregiontx.˚uqs
(4.22)

The rule FrToPostr is instantiated with r :“ g and RE “ regiontx.˚u. And reads g ¨{̈

pmodifies x, modifies allocq is true. After applying the rule, the following is derived.

$
Γ
r

tg !! fu x :“ new T ; tnewpT, xq && g !! f && g !! regiontx.˚uu

r modifies x,modifies alloc,freshpregiontx.˚uqs
(4.23)

Let f 1 be a fresh variable and is used to snapshot the initial value of f . Then the assignment

statement is written as f :“ f 1 ` regiontx.˚u;. After using the rule ASGNr, the following is

derived.

$
Γ
r ttrueu f :“ f 1 ` regiontx.˚u; tf “ f 1 ` regiontx.˚uu r modifies f s (4.24)

After using the rule FRMr, the following is derived.

$
Γ
r

tnewpT, xq && g !! f && g !! regiontx.˚uu

f :“ f 1 ` regiontx.˚u;

tf “ f 1 ` regiontx.˚u && newpT, xq && g !! f && g !! regiontx.˚uu

r modifies f s

(4.25)

From Eq. (4.23) and Eq. (4.25), the rule SEQ1r is instantiated with RE “ regiontu. As the

immunity conditions are vacuously true, the following is derived.

$
Γ
r

tg !! fu

x :“ new T ; f :“ f 1 ` regiontx.˚u;

tf “ f 1 ` regiontx.˚u && newpT, xq && g !! f && g !! regiontx.˚uu

r modifies f,modifies x,modifies alloc,freshpregiontx.˚uqs

(4.26)

48

Then by the rules CONSEQr and SubEff r, the following is derived.

$
Γ
r

tg !! fu x :“ new T ; f :“ f 1 ` regiontx.˚u; tg !! fu

r modifies f,modifies x,modifies allocs
(4.27)

Let y1 be a fresh variable and is used to snapshot the initial value of y. Then the assignment is

written as y :“ y1 ´ 1;. Then, using the axiom ASGNr, the following is derived. $Γ
r ttrueu y :“

y1 ´ 1; ty “ y1 ´ 1ur modifies f s Then, by the rules FRMr, SEQ1r and CONSEQr, Eq. (4.16)

is derived.

4.2 Soundness

Theorem 1. The judgment $Γ
r tP uStQurεs that is derivable by the axioms and inference rules in

Fig. 4.1 and the structural rules in Fig. 4.2 and Fig. 4.3, is valid.

The proof is done by induction on the derivation and by cases on the last rule used. In each axiom,

it is shown that the judgment is valid according to the statement’s semantics. In each inference

rule, it is shown that the proof rule derives valid conclusions from valid premises when its side

conditions is satisfied. The proof can be found in Appendix B.

49

CHAPTER 5: UNIFIED FINE-GRAINED REGION LOGIC1

This chapter generalizes FRL to UFRL. It defines the correctness judgment in UFRL, and presents

the proof axioms and rules for statements and structural rules.

Unified Fine-Grained Region Logic (UFRL) was created to enable using FRL and SL together.

UFRL has explicit read and write effects. It is a generalization of FRL; thus UFRL’s assertion and

programming languages (Chapter 2 and Chapter 3) are the same as those in FRL.

However, Hoare-formulas in UFRL are different. The correctness judgment in UFRL has the form

rδstP1uStP2urεs, where δ are read effects (on the heap) and ε are write effects; thus pε, δq contains

all the heap locations that S may access. Note that δ and ε may have locations in common.

Validity of UFRL Hoare-formulas uses the same notion of partial correctness as in FRL: statements

must not encounter an error when started in a pre-state satisfying the specified precondition, but

may still loop forever.

Definition 8 (Validity of UFRL Hoare-formula). Let Γ be a well-formed type environment. Let S

be a statement. Let P1 and P2 be assertions. Let ε be effects and δ be read effects, let pσ,Hq be a

Γ-state. Then rδstP1uStP2urεs is valid in pσ,Hq, written σ,H (Γ
u rδstP1uStP2urεs, if and only if

whenever σ,H (Γ P1, then:

1. MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ regRWpε, δq : regionsspσqq ‰ err, and

2. if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ regRWpε, δq : regionsspσqq, then the fol-

lowing all hold:

• σ1, H 1 (Γ1

P2,

1The content in this chapter is submitted to Formal Aspects of Computing.

50

• for all x P dompσq : σ1pxq ‰ σpxq : modifies x P ε,

• for all po, fq P dompHq : H 1ro, f s ‰ Hro, f s :

po, fq P ErrΓ $ writeRpεq : regionsspσq, and

• for all po, fq P ErrΓ1 $ freshRpεq : regionsspσ1q:: po, fq P pdompH 1q ´ dompHqq.

A UFRL Hoare-formula rδstP1uStP2urεs is valid, written (Γ
u rδstP1uStP2urεs, if and only if for

all states pσ,Hq :: σ,H (Γ
u rδstP1uStP2urεs.

The above definition limits the heap that a statement can access. Consider the following formula

rreads regiontx.fustx ‰ nulluy :“ x.f ; ty “ x.fur modifies ys. (5.1)

Eq. (5.1) is a valid UFRL Hoare-formula, because regRWpreads regiontx.fu,modifies yq “

regiontx.fu. The region regiontx.fu is the least set of locations that the statement needs to

make sure that its execution does not cause an error. On the contrary, the formula rHstx ‰

nulluy :“ x.f ; ty “ x.furmodifies ys is not a valid UFRL Hoare-formula, as regRWpreads

H,modifies yq “ regiontu. As another example, consider the following formula:

rHstx ‰ nullux.f :“ y; tx.f “ yur modifies regiontx.fus. (5.2)

Eq. (5.2) is a valid UFRL Hoare-formula, because regRWpH,modifies regiontx.fuq “

regiontx.fu.

For the purpose of framing, which is the focus of this work, there is no need to track read effects,

although the above definition does limit to the heap which the statement can access to. However,

read effects (on the heap) are needed for future work; e.g., for framing of specifications with pure

method calls [3].

51

5.1 Axioms and Inference Rules

This section shows the axioms and proof rules for proving statements correct in UFRL. Fig. 5.1

shows the axioms and proof rules. Fig. 5.2 and Fig. 5.3 show the structural rules. These are based

on FRL, but with read effects (δ and η) specified.

The axioms for variable declaration, variable assignment, field access, field update and allocation

are “small” [71] in the sense that the union of write effects and read effects describe the least upper

bound of variables and locations that S accesses, and the write effects describe the least upper

bound of the set of variables and locations that S may modify. The proof system does not split the

store, as variables are discarded by regRW (Def. 8).

The structural rules are shown in Fig. 5.2 and Fig. 5.3. The rule FRMu follows the FRMr rule.

The rule SubEff u allows approximations of effects; it can be used to match up the effects for the

rule IFu, where different branches may have different effects. The rule SubEff u also allows a

correctness proof to switch from a smaller to a larger heap. The rule CONSEQu is the standard

consequence rule. The rule FrToPostu and PostToFru are dual; the first allows one to add fresh

effects and the second allows one to eliminate fresh effects. To make the PostToFru rule clear, the

following from the rule FrToPostu is derived.

$
Γ
u rδstP u S tP

1
urε,freshpREqs

$
Γ
u rδstP u S tP

1 && r !! REurεs
where P ñ r “ alloc

This uses the subeffect rule, because regRWpδ,freshpREq, εq ď regRWpδ, εq, and regRW ignores

fresh effects.

52

(SKIPu)
$

Γ
u rHsttrueuskip; ttrueurHs

(VARu)
$

Γ
u rHsttrueuvar x : T ; tx “ defaultpT qurHs

(ALLOCu)

$
Γ
u

rHs

ttrueu x :“ new T ; tnewpT, xqu
r modifies x,modifies alloc,freshpregiontx.˚uqs

(ASGNu)
$

Γ
u rηsttrueu x :“ G; tx “ Gu r modifies xs where x R FVpGq and η “ efspGq

(UPDu)
$

Γ
u rx, ηs tx ‰ nullu x.f :“ G; tx.f “ Gur modifies regiontx.fuswhere η “ efspGq

(ACCu)
$

Γ
u rηstx

1
‰ nullu x :“ x1.f ; tx “ x1.fu r modifies xs , where x ‰ x1 and η “ efspx1.fq

(IFu)
$

Γ
u rδstP && Eu S1tQu rεs $

Γ
u rδstP && Eu S2tQu rεs

$
Γ
u rδ, δEstP u if E tS1uelsetS2utQu rεs where δE “ efspEq

(SEQ1u)
$

Γ
u rδ1stP u S1 tP1urε1,freshpREqs

$
Γ1

u rδ2,reads RE1stP1u S2 tP
1
ur ε2,modifies RE2s

$
Γ
u rδ1, δ2stP u S1S2 tP

1
urε1, ε2,freshpREqs

where S1 ‰ var x : T ; , ε1 is fresh-free, δ2 is P {ε1-immune, ε2 is P {ε1-immune,
RE is P1{pmodifies RE2, ε2q-immune,RE1 ď RE and RE2 ď RE

(SEQ2u)
$

Γ, x:T
u rδ,reads xstP && x “ defaultpT qu S tQur modifies x, εs

$
Γ
u rδstP u var x : T ; S tQurεs

(WHILEu)
$

Γ
u rδstP && Eu StP u rε,modifies REs

$
Γ
u rδ, δEstP && r “ allocu while E tSu tP && Eu rεs

where δE “ efspEq, P ñ RE !! r, ε is fresh-free,modifies r R ε, δ is P {ε-immune and
ε is P {ε-immune

Figure 5.1: The correctness axioms and proof rules for statements in UFRL
53

(FRMu)
$

Γ
u rδstP u S tP 1urεs P $Γ η frm Q

$
Γ
u rδstP && Qu S tP 1 && Qurεs where P && Qñ η¨{̈ε

(SubEff u)
$

Γ
u rδstP1uStP2urεs $P1 ε ď ε1

$
Γ
u rδ

1
stP1uStP2urε

1
s where P1 ñ regRWpε, δq ď regRWpε1, δ1q

(CONSEQu)
$

Γ
u rδstP1u S tP

1
1urεs

$
Γ
u rδstP2u StP

1
2urεs where P2 ñ P1 and P 11 ñ P 12

(ConEff u)
$

Γ
u rδstP && Eu S tP 1urε1s $

Γ
u rδstP && Eu S tP 1urε2s

$
Γ
u rδstP u S tP

1
urE ? ε1 : ε2s

(ConMask1u)
$

Γ
u rδstP u S tP

1
urε,E ? ε1 : ε2s

$
Γ
u rδstP u S tP

1
urε, ε1s where P ñ E

(ConMask2u)
$

Γ
u rδstP u S tP

1
urε,E ? ε1 : ε2s

$
Γ
u rδstP u S tP

1
urε, ε2s where P ñ E

(PostToFru)
$

Γ
u rδstP u S tP

1
urεs

$
Γ
u rδstP u S tP

1
urε,E ? freshpRE1q : freshpRE2qs

where P ñ pE && RE1 !! allocq and P ñ p E ^ RE2 !! allocq

(FrToPostu)
$

Γ
u rδstP u S tP

1
urε,E ? freshpRE1q : freshpRE2qs

$
Γ
u

rδs
tP u S tP 1 && pbñ RE1 !! rq && p bñ RE2 !! rqu
rε,E ? freshpRE1q : freshpRE2qs

where P ñ b “ E, P ñ r “ alloc, P ñ E,modifies b R ε and modifies r R ε

Figure 5.2: The structural rules in UFRL (1)

54

(VarMask1u)
$

Γ
u rδstP u S tP

1
ur E ? pmodifies x, ε1q : ε2s

$
Γ
u rδstP u S tP

1
ur E ? ε1 : ε2s

where P ñ E, P || P 1 ñ x “ y and P && E ñ reads y¨{̈px, εq,

(VarMask2u)
$

Γ
u rδstP u S tP

1
ur E ? ε1 : pmodifies x, ε2qs

$
Γ
u rδstP u S tP

1
ur E ? ε1 : ε2s

where P ñ E, P || P 1 ñ x “ y and P && E ñ reads y¨{̈px, εq

(FieldMask1u)
$

Γ
u rδstP u S tP

1
urε, E ? pmodifies regiontx.fu, ε1q : ε2s

$
Γ
u rδstP u S tP

1
urε, E ? ε1 : ε2s

where P ñ E, P || P 1 ñ x.f “ y, P 1 && E ñ reads x¨{̈ modifies ε
and P 1 && E ñ reads y¨{̈modifies ε

(FieldMask2u)
$

Γ
u rδstP u S tP

1
urε, E ? ε1 : pmodifies regiontx.fu, ε2qs

$
Γ
u rδstP u S tP

1
urε, E ? ε1 : ε2s

where P ñ E, P || P 1 ñ x.f “ y, P 1 && E ñ reads x¨{̈ modifies ε
and P 1 && E ñ reads y¨{̈modifies ε

Figure 5.3: The structural rules in UFRL (2)

5.1.1 The Sequence Rules

The complication arising from read effects is discussed. Consider the case where S1 allocates

some new objects, which are read by S2. This is the case where the freshly allocated region RE is

not empty. Then the read effects of S1S2 can drop RE from the read effects of S2. For example,

consider the sequence: x :“ new T ; y :“ x.f , where x ‰ y. Assume that f is the only field of

55

reference type T for simplicity. Using the rules ALLOCu and ACCu, the following must be true:

$
Γ
u

rHs

ttrueux :“ new T ; tnewpT, xqu

r modifies x,modifies alloc,freshpregiontx.˚uqs

(5.3)

$
Γ
u rreads x,regiontx.fustx ‰ nulluy :“ x.f ; ty “ x.fur modifies ys (5.4)

Then, after using the SubEff u rule to loosen the read effect of Eq. (5.4), the following is derived:

$
Γ
u rreads x,regiontx.˚ustx ‰ nulluy :“ x.f ; ty “ x.fur modifies ys (5.5)

Then, after using the CONSEQu rule on Eq. (5.3), the following is derived:

$
Γ
u

rHs

ttrueux :“ new T ; tx ‰ nullu

r modifies x,modifies alloc,freshpregiontx.˚uqs

(5.6)

In order to use the SEQ1u rule on Eq. (5.6) and Eq. (5.5), it is instantiated with RE :“ regiontx.˚u,

RE1 :“ regiontx.˚u, RE2 :“ regiontu, ε1 :“ modifies x,modifies alloc and ε2 :“

modifies y. Then, the proof obligation is to check the immune side conditions, which are:

reads x is true{pmodifies x,modifies allocq-immune (5.7)

and

modifies y is true{pmodifies x,modifies allocq-immune (5.8)

By the definition of immune (Def. 6 on page 33), to prove Eq. (5.7) and Eq. (5.8) is to show

for all reads RE P preads xq :: RE is

true{pmodifies x,modifies allocq-immune (5.9)

56

and

for all modifies RE P pmodifies yq :: RE is

true{pmodifies x,modifies allocq-immune (5.10)

Eq. (5.9) and Eq. (5.10) are vacuously true. Now, using the rule SEQ1u, the following is derived

$
Γ
u

rreads xs

ttrueux := new T; y := x.f;ty “ x.fu

r modifies x,modifies alloc,modifies y,freshpregiontx.˚uqu

In this case, the regiontx.˚u of the read effect in the second statement is dropped in that of

the sequence statement, as the fresh effects of the first statement become the fresh effect of the

sequence.

5.2 Soundness

Theorem 2. The judgment $Γ
u rδstP uStQurεs that is derivable by the axioms and inference rules

in Fig. 5.1, and the structural rules in Fig. 5.2 and Fig. 5.3 is valid.

Proof. Using the result of Theorem 1 on page 49, the proof only needs to check the read effects.

Let S be a statement and pσ, hq be Γ-state. Assume $Γ
r tP u S tQurεs and σ, h (Γ P . Then it

needs to be true that MSrrΓ $ S : okpΓ1qsspσ, hæErrΓ $ regRWpε, δq : regionsspσqq ‰ err.

1. (SKIPu) In this case, S is skip;, P is true, and δ and ε are both H. As it is known that

hæErrΓ $ regRWpε, δq : regionsspσq “ H, by the program semantics Fig. 2.4, it must be

true that MSrrΓ $ skip; : okpΓqsspσ,Hq ‰ err.

57

2. (VARu) In this case, S is var x : T ;, P is true, and δ and ε are both H. As it is known that

hæErrΓ $ regRWpε, δq : regionsspσq “ H, by the program semantics Fig. 2.4, it must be

true that MSrrΓ $ var x : T ; : okpΓ, x : T qsspσ,Hq ‰ err.

3. (ALLOCu) In this case, S is x :“ new T ;, P is true and ε and δ are both H. As it is known

that hæErrΓ $ regRWpε, δq : regionsspσq “ H, by the program semantics Fig. 2.4, it must

be true that MSrrΓ $ x :“ new T ; : okpΓqsspσ,Hq ‰ err.

4. (ASSGNu) In this case, S is x :“ G;, P is x “ x1 and δ is efspGq and ε is modifiesx, where

x R FVpGq. Since it is known that hæErrΓ $ regRWpε, δq : regionsspσq “ H, by the pro-

gram semantics Fig. 2.4 on page 23, it must be true that MSrrΓ $ x :“ G; : okpΓqsspσ,Hq ‰

err.

5. (UPDu) In this case, S is x.f :“ G;, P is x ‰ null, δ is preads x, efspGqq and ε is

modifies regiontx.fu. By the precondition, it is known that σpxq ‰ null. Since it

is known that ErrΓ $ regRWpε, δq : regionsspσq “ tpσpxq, fqu, by the program semantics

Fig. 2.4, it must be true that MSrrΓ $ x.f :“ G; : okpΓqsspσ, hætpσpxq, fquq ‰ err.

6. (ACCu) In this case, S is x :“ x1.f ;, P is x1 ‰ null, δ is (reads x1,regiontx1.fu)

and ε is modifies x, where x ‰ x1. The precondition implies that σpx1q ‰ null. As

ErrΓ $ regRWpε, δq : regionsspσq “ tpσpx1q, fqu, by the program semantics shown in

Fig. 2.4, it must be true that MSrrΓ $ x :“ x1.f ; : okpΓqsspσ, hætpσpx1q, fquq ‰ err.

Other inductive cases follow inductive hypotheses.

58

CHAPTER 6: Interoperability1

This chapter shows the connections of UFRL, FRL and SL. Section 6.1 shows that FRL is just an

instance of UFRL. Section 6.2 shows how to encode SL to UFRL. Section 6.3 presents another

way to allow SL style assertions to appear in UFRL (or FRL itself) without using the somewhat

verbose encoding of separating conjunction.

6.1 FRL - An Instance of UFRL

The section shows that FRL Hoare formulas can be translated into UFRL by using the read effect

reads allocÓ.

Lemma 8. Let Γ be a well-formed type environment. Let S be a statement, and let P1 and P2 be

assertions. Let ε be effects, and let pσ,Hq be a Γ-state. Then

σ,H (
Γ
r tP1uStP2urεs iff σ,H (

Γ
u rreads allocÓstP1uStP2urεs.

Proof. The lemma is proved as follows, starting from the left side.

σ,H (Γ
r tP1u S tP2urεs

iff xby the definition of FRL valid Hoare-formula (Def. 7).y

1The content in this chapter is submitted to Formal Aspect of Computing.

59

σ,H (Γ P1 implies MSrrΓ $ S : okpΓ1qsspσ,Hq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,Hq, then σ1, H 1 (Γ1

P2 and

pfor all x P dompσq :: σ1pxq ‰ σpxq implies modifies x P εq and

pfor all po, fq P dompHq :: pH 1ro, f s ‰ Hro, f s implies

po, fq P ErrΓ $ writeRpεq : regionsspσqq and

pfor all po, fq P ErrΓ1 $ freshRpεq : regionsspσ1q :: po, fq P pdompH 1q ´ dompHqqqq

iff xby H “ HædompHq, dompHq “ ErrΓ $ regRWpε,allocÓq : regionsspσqy

σ,H (Γ P1 implies MSrrΓ $ S : okpΓ1qsspσ,Hq ‰ err and if

pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ regRWpε,allocÓq : regionsspσqq,

then pσ1, H 1 (Γ1

P2q and pfor all x P dompσq :: σ1pxq ‰ σpxq implies modifies x P εq and

pfor all po, fq P dompHq :: pH 1ro, f s ‰ Hro, f s implies

po, fq P ErrΓ $ writeRpεq : regionsspσqqq and

pfor all po, fq P ErrΓ1 $ freshRpεq : regionsspσ1q :: po, fq P pdompH 1q ´ dompHqqqq

iff xby the definition of UFRL valid Hoare-formula (Def. 8)y

σ,H (Γ
u tP1u S tP2urεsrreads allocÓs

Corollary 1. Let Γ be a well-formed type environment. Let S be a statement, and let P1 and P2 be

assertions. Let ε be effects, and η be read effects. Then

σ,H (
Γ
u rηstP1uStP2urεs implies σ,H (

Γ
r tP1uStP2urεs.

Def. 9 shows a syntactic mapping from the axioms and rules of FRL to those of UFRL. Recall that

the assertions in FRL and URL have the same syntax.

Definition 9 (Syntactic Mapping from FRL to UFRL). Let Γ be a well-formed type environment.

Let P1 and P2 be assertions in FRL. Let ε be effects. A syntactic mapping TRRrr´ss from FRL rules

60

to those of UFRL is defined below:

For the FRL axioms: TRRrr $Γ
r tP1u S tP2urεsss “ $Γ

u rreads allocÓstP1u S tP2u rεs.

For the FRL rules, let h1, . . . , hn be hypotheses and c be a conclusion; then the syntactic mapping

from a FRL rule to a UFRL rule is defined as follows:

TRRrr
$

Γ
r h1 . . . $

Γ
r hn

$
Γ
r c

ss “
TRRrr $

Γ
r h1ss . . .TRRrr $

Γ
r hnss

TRRrr $
Γ
r css

Theorem 3. Let Γ be a well-formed type environment. Let S be a statement. Let P1 and P2 be

assertions. Let ε be effects. Then

$Γ
r tP1uStP2urεs iff $Γ

u rreads rÓstP1uStP2urεs

where P1 ñ r “ alloc and modifies r R ε

The proof is found in Appendix C.

Corollary 2. The meaning of a FRL judgment is preserved by the syntactic mapping.

Corollary 3. Let Γ be a well-formed type environment. Let S be a statement. Let P1 and P2 be

assertions. Let ε be effects and η be read effects. Then

$
Γ
u rηstP1uStP2urεs implies $Γ

r tP1uStP2urεs.

The proof uses the subeffect rule to convert η into reads r, where P1 ñ r “ alloc, and then

applies Theorem 3.

61

6.2 Encoding Separation Logic

6.2.1 Separation Logic Review

To understand the relationship between SL and UFRL, their semantics are connected by defining

the semantics of SL in terms of a heap and a region. This section is inspired by Parkinson and

Summers’ work [77]. They connect the semantics of separation logic and implicit dynamic frames

[82] by a “total heap semantics” [77]. However, our heap is a partial function.

Separation logic introduces separating conjunction and magic wand (separating implication). The

separating conjunction, a1˚a2, denotes that assertions a1 and a2 hold in separate parts of the current

heap. The separating implication, a1 ˚́a2, denotes that if assertion a1 holds in an extra part of the

heap, then a2 will hold in a heap that is a combination of the extra heap and the current heap.

Definition 10 (Separation Logic Assertions (SL)). Let x be variables and f be field names. The

syntax of assertions in separation logic is as follows:

e ::“ x | null | n

a ::“ e = e | x.f ÞÑe | a*a | a ´̊ a | a^a | a_a | a ñ a | Dx.a

The semantics given below assumes that expressions and assertions are properly typed. Expres-

sions are pure, meaning that they are independent of the heap. Intuitionistic separation logic

[42, 76] is considered in this dissertation. Recall that its semantics [42, 76] is as follows.

Definition 11 (Separation Logic Semantics). Assuming that N is the standard meaning function

62

for numeric literals and pσ, hq is a state, then the semantics of expressions in separation logic is:

Es : Typing Judgment Ñ eÑ State Ñ Value

EsrrΓ $ x : T sspσ, hq “ σpxq EsrrΓ $ n : intsspσ, hq “ N rrnss

EsrrΓ $ null : T sspσ, hq “ null

And the validity of assertions in separation logic is defined by:

σ, h (Γ
s e “ e1 ðñ EsrrΓ $ e : T sspσq “ EsrrΓ $ e1 : T sspσq

σ, h (Γ
s x.f ÞÑ e ðñ pσpxq, fq P domphq and hrpσpxq, fqs “ EsrrΓ $ e : T sspσq

σ, h (Γ
s a1 ˚ a2 ðñ exists h1, h2.ph1Kh2 and h “ h1 ¨ h2 and σ, h1 (

Γ
s a1 and

σ, h2 (
Γ
s a2q

σ, h (Γ
s a1 ˚́ a2 ðñ for all h1.ph1Kh and σ, h1 (Γ

s a1 implies σ, h ¨ h
1 (Γ

s a2q

σ, h (Γ
s a1 ^ a2 ðñ σ, h (Γ

s a1 and σ, h (
Γ
s a2

σ, h (Γ
s a1 _ a2 ðñ σ, h (Γ

s a1 or σ, h (
Γ
s a2

σ, h (Γ
s a1 ñ a2 ðñ for all h1.pσ, h ¨ h1 (Γ

s a1 implies σ, h ¨ h
1 (Γ

s a2q

σ, h (Γ
s Dx.a ðñ exists v.pσrx ÞÑ vs, h (Γ

s aq

The points-to assertion specifies the least segment of the current heap that makes it true. Magic

wand and logical implication both involve all possible extensions of the current heap.

Given a fixed program state, assertions in UFRL are all evaluated by the same heap. However,

in SL nested sub-assertions of an assertion may be evaluated by a subheap, and the heap can be

split and recombined during the evaluation process. This splitting and recombining of heaps can

be modeled in the semantics using a heap H , various regions, and region operators along with the

heap restriction operator (æ) from Def. 1. Indeed the definitions of the semantics of separation

logic and validity of assertions can be given using this idea. That is, when r Ď dompHq, define

63

σ,Hær (Γ
sl a if and only if σ, pHærq (Γ

s a, however, for clarity, the following definitions of validity

for separating conjunction and implication are used.

Let r be a region such that r Ď dompHq. The semantics for the separating conjunction expresses

the required splitting of partial heaps by restricting the heap to the split regions.

σ,Hær (Γ
sl a1 ˚ a2 iff exists r1, r2 :: pr1 X r2 “ H and r “ r1 Y r2 and σ,Hær1 (

Γ
sl a1 and

σ,Hær2 (
Γ
sl a2q

The semantics for the magic wand and logical implication consider all possible extensions of the

partial heap Hær. The extensions are not necessarily disjoint with the heap H , but must be disjoint

with the subheap Hær, so that the extended heap h1 satisfies domph1q X r “ H.

σ,Hær (Γ
sl a1 ˚́ a2 iff for all h1, r1 :: pdomph1q X r “ H and σ, h1ær1 (Γ

sl a1 implies

σ, pH Y h1qæpr Y r1q (Γ
sl a2q

σ,Hær (Γ
sl a1 ñ a2 iff for all h1, r1 :: pdomph1q X r “ H and σ, pH Y hqæpr Y r1q (Γ

sl a1

implies σ, pH Y h1qæpr Y r1q (Γ
sl a2q

The following theorem is used to justify a semantic of SL in terms of a heap and a region.

Theorem 4. Let Γ be a well-formed type environment. Let σ be a store, h and H be heaps, and r

be a region, such that r Ď dompHq and h “ Hær, then σ, h (Γ
s a iff σ,Hær (Γ

sl a.

The above theorem chooses domphq to be r, but this requires the user of the theorem to know

exactly the heap that a SL assertion talks about in order to encode it. However, the intuitionistic se-

mantics of SL do not precisely prescribe a unique solution to h, thus it is difficult to use Theorem 4.

Therefore, in the next section, another candidate for r, which is more constructive, is found.

64

6.2.2 Supported Separation Logic

This section shows that the semantic footprint is another candidate for the region r needed in

Theorem 4. Moreover, this section establishes the relationship between semantic footprints and

supported separation logic (SSL), which is a fragment of SL where all assertions are supported

[73].

The semantics of the points-to assertion, x.f ÞÑ e in a state pσ, hq indicates that there is a col-

lection of heaps that make it true and those are all supersets of the heap with the singleton cell

tpσpxq, fq ÞÑ EsrrΓ $ e : T sspσqu. Since intuitionistic SL is used, this heap is the greatest lower

bound (glb) of the heaps in which the assertion holds. The semantic footprint for SL assertions is

defined, which capture this glb. Validities are congruent on the heaps ranging from the glb to h. It

is said that validity is closed under heap extension as are the semantics of the semantic footprint,

as any extension to the glb will preserve validity. But some assertions in SL do not have a semantic

footprint, because the glb does not exist.

The semantic footprint of a SL assertion a is the glb of (heap) locations on which a depends. The

notion of the glb is formalized by the intersection of the regions of the given heap on which the

given assertion a is true:

MinRegpa, σ, hq “
č

tr | r Ď domphq and pσ, h (Γ
s a implies σ, phærq (Γ

s aqu,

where pσ, hq is a state. However, σ, phæMinRegpa, σ, hqq (Γ
s a is not always true. For example,

consider px.f ÞÑ 5q _ py.g ÞÑ 6q in a state where both disjuncts are true; note that the intersection

of regions whose domains are tpσpxq, fqu and tpσpyq, gqu is an empty set. But σ, ph æHq (Γ
s

px.f ÞÑ 5q_ py.g ÞÑ 6q is false. So, some assertions containing disjunction do not have a semantic

footprint. Semantic footprints are defined as follows.

Definition 12 (Semantic Footprint). Let Γ be a well-formed type environment. Let a be an assertion

65

in SL, and pσ, hq be a Γ-state. Then MinRegpa, σ, hq is the semantic footprint of a if and only if

σ, phæMinRegpa, σ, hqq (Γ
s a. In this case, it is said a has a semantic footprint.

In general, formulas that use disjunction do not have a semantic footprint, neither do formulas that

use negation, due to DeMorgan’s law for conjunctions. Similarly, general existential assertions

do not always have a semantic footprint. Eliminating these types of assertions leaves a fragment

of separation logic, which includes just the supported assertions in the work of O’Hearn et al.

[73]. This fragment is called supported separation logic (SSL). This is the biggest subset of the

syntax in Def. 10, where all assertions are necessarily supported. This syntax is the core fragment

of separation logic that contains or corresponds with the SL syntax used by automated reasoning

or analysis work [15, ?, 17, 20, 26, 31, 77].2 To avoid introducing new notations, the syntax of

separation logic (Def. 10) is reused. From now on, those notations mean supported separation

logic.

Definition 13 (Supported Separation Logic). The syntax of supported separation logic has expres-

sions (e), Boolean expressions (b) and assertions (a) defined as follows:

e ::“ x | null | n

b ::“ e1 = e2 | e1 ‰ e2

a ::“ b | x.f ÞÑe | a1 ˚ a2 | a1 ^ a2 | b ñ a | D x.(y.f ÞÑ x ˚ a)

The first semantic lemma below states that the truth of assertions is closed under heap extension.

That means if an assertion a is true in a heap h, then it is also true in an extension of h. The proof

of encoding separating conjunction, a1 ˚ a2, needs this property. Given the truth of a1 ˚ a2 on heap

h, where a1 and a2 hold on partitions of h, h1 and h2 respectively, the evaluation of the encoded

expression is on each partition’s extension to h. However, the witnesses for h1 and h2, regions r1

2For the work with classical separation logic, the emp predicate is needed.

66

and r2, must satisfy r1 Y r2 “ domphq, which is required by its semantics. Picking hær1 as the

witness for h1 pushes the proof to take hæpdomphq´ r1q as the witness for h2. Lemma 9 below can

be applied in this scenario as hær2 Ď hæpdomphq ´ r1q, as r1 Ď domphq and r2 Ď domphq.

Lemma 9. Let Γ be a well-formed type environment. Let a be an SSL assertion, and pσ, hq be a

Γ-state. Let h1 be a heap, such that h Ď h1. Then σ, h (Γ
s añ σ, h1 (Γ

s a.

The semantic footprints for assertions in SSL are derived in Lemma 10 based on the SL semantics

in terms of a heap and a region.

Lemma 10. Let Γ be a well-formed type environment. Let pσ, hq be a state, and let e, b and a be

an SSL expression, a Boolean expression, and an assertion. Then:

1. MinRegpb, σ, hq “ H.

2. if σ, h (Γ
s x.f ÞÑ e, then MinRegpx.f ÞÑ e, σ, hq “ tpσpxq, fqu.

3. if σ, h (Γ
s a1 ˚ a2, then MinRegpa1 ˚ a2, σ, hq “ MinRegpa1, σ, hq Y MinRegpa2, σ, hq.

4. if σ, h (Γ
s a1 ^ a2, then MinRegpa1 ^ a2, σ, hq “ MinRegpa1, σ, hq Y MinRegpa2, σ, hq.

5. if σ, h (Γ
s bñ a and σ, h (Γ

s b, then MinRegpbñ a, σ, hq “ MinRegpa, σ, hq.

6. if σ, h (Γ
s bñ a and σ, h *Γ

s b, then MinRegpbñ a, σ, hq “ H.

7. if σ, h (Γ
s Dx.py.f “ x ˚ aq, then MinRegpDx.py.f “ x ˚ aq, σ, hq “ MinRegpy.f ÞÑ

x ˚ a, σrx ÞÑ hrEsrrΓ $ y : T sspσq, f ss, hq;

Moreover, σ, h (Γ
s a iff σ, phæMinRegpa, σ, hqq (Γ

s a.

67

The proof from the left to the right of the above equivalences can be proved by cases on the

structure of a, which is the seven cases in Lemma 10 on the previous page, and the converse can

be proved using Lemma 9 on the preceding page.

O’Hearn et al. [73] note that for the soundness of proofs under hypothesis, assertions used in

preconditions and resource invariants need to be supported (Theorem 26 [73, p. 11:44]). Thus to

reason about programs using specifications of other modules specified by SL, only supported asser-

tions should be considered. This section establishes the connection between supported assertions

and assertions in SSL.

The following recalls the definition of supported and intuitionistic assertions in the work of O’Hearn

et al. [73].

Definition 14 (Supported). Let Γ be a well-formed type environment. An assertion a is supported

if and only if for all Γ-states pσ, hq, when h has a subheap h0 Ď h such that σ, h0 (
Γ
s a, then there

is at least subheap ha Ď h with σ, ha (Γ
s a such that for all subheaps h1 Ď h, if σ, h1 (Γ

s a, then

ha Ď h1.

The definition means that, given a state pσ, hq and an assertion a, for any pair of h’s sub heaps, h1

and h2, such that σ, h1 (
Γ
s a and σ, h2 (

Γ
s a, if ha “ h1 X h2 and σ, ha (Γ

s a, then a is supported.

In other words, a has a greatest lower bound heap that makes it a true, then a is supported.

The definition of semantic footprint can be interpreted in a similar way. Consider a given state

pσ, hq, and any pair of regions r1 and r2 where r1 Ď domphq and r2 Ď domphq, and a separation

logic assertion a, such that σ, phær1q (
Γ
s a and σ, phær2q (

Γ
s a. Let r be the glb of r1 and r2, such

that such that r Ď r1Xr2. If σ, phærq (Γ
s a, then a has a semantic footprint. The following theorem

summaries this. The proof is found in Appendix D.

Theorem 5. An assertion in SL is supported if and only if it has semantic footprint.

68

SSL assertions are supported by Theorem 5. This property provides the soundness of the hypo-

thetical frame rule for Hoare triple judgment under certain hypothesis [72, 73].

6.2.3 Encoding SSL Assertions

This section constructs region expressions that can syntactically denote semantic footprints for SSL

assertions, and shows the translation from SSL to UFRL (or FRL). The footprint of an implication

bñ a technically should include the footprint of b. However, since b’s footprint is region{}, the

definition ignores it.

Definition 15 (Semantic Footprint Function for SSL). Let e, b and a be an SSL expression, a

Boolean expression, and an assertion. Then the semantic footprint function for each SSL assertion

is defined as follows.

fptspbq “ regiontu

fptspx.f ÞÑ eq “ regiontx.fu

fptspbñ aq “ b ? fptspaq : regiontu

fptspa1 ˚ a2q “ fptspa1q ` fptspa2q

fptspa1 ^ a2q “ fptspa1q ` fptspa2q

fptspDx.py.f “ x ˚ aqq “ regionty.fu ` fptspaqry.f{xs

However, the defining clause for implication is technically suspect, because the SSL Boolean ex-

pression b is technically not an UFRL expression. However, it is obvious that the identity map is a

semantics-preserving translation of pure Boolean expressions as shown below.

Definition 16 (Mapping from SSL to UFRL (or FRL) assertions). A function, TR, syntactically

69

maps from SSL to UFRL as follows:

TRrrxss “ x TRrrnss “ n TRrrnullss “ null

TRrre1 “ e2ss “ TRrre1ss “ TRrre2ss

TRrre1 ‰ e2ss “ TRrre1ss ‰ TRrre2ss

TRrrx.f ÞÑ ess “ TRrrxss.f “ TRrress

TRrra1 ˚ a2ss “ TRrra1ss && TRrra2ss && pfptspa1q !! fptspa2qq

TRrra1 ^ a2ss “ TRrra1ss && TRrra2ss

TRrrbñ ass “ TRrrbss ñ TRrrass

TRrrDx.py.f ÞÑ x ˚ aqss “ Dx.pTRrry.f ÞÑ xss && TRrrass && pregionty.fu !! fptspaqqq

Lemma 11 and Lemma 12 state that the meaning of pure expressions and pure Boolean assertions

are preserved in this translation, and are preserved under heap extension. Hence, e and TRrress, as

well as b and TRrrbss can be used interchangeably.

Lemma 11. Let Γ be a well-formed type environment. Let σ be a store. Let e be an expression in

SSL. Then EsrrΓ $ e : T sspσq “ ErrΓ $ TRrress : T sspσq.

Lemma 12. Let Γ be a well-formed type environment. Let pσ, hq be a Γ-state, andH be a heap such

that h Ď H . Let b be a pure assertion in SSL. Then σ, h (Γ
s b iff σ, h (Γ TRrrbss iff σ,H (Γ TRrrbss.

The following theorem shows that the semantics of the semantic footprint function, fptspaq, is

its semantic footprint in a given state, where a is true. Its proof can be done by induction on

the structure of assertions. With this theorem, henceforth, a semantic footprint is just called the

“footprint”.

Theorem 6. Let Γ be a well-formed type environment. Let a be an assertion in SSL, and let pσ, hq

be a Γ-state. If σ, h (Γ
s a, then a has a semantic footprint in pσ, hq, and this semantic footprint is

MinRegpa, σ, hq “ ErrΓ $ fptspaq : regionsspσq.

70

The following corollary show that given a state where a is true, a’s semantic footprint is a subset

of the domain of the heap. This property is essential for the proof of the encoding for separating

conjunction in Theorem 7.

Corollary 4. Let Γ be a well-formed type environment. Let a be an assertion in SSL. Let pσ, hq be

a Γ-state. If σ, h (Γ
s a, then ErrΓ $ fptspaq : regionsspσq Ď domphq.

The following corollary shows that ErrΓ $ fptspaq : regionsspσq is another candidate for the re-

gion r needed in Theorem 4. As fptspaq gives the semantic footprint for each a, the corollary can

be proved by Lemma 10 and Theorem 6.

Corollary 5. Let Γ be a well-formed type environment. Let a be an assertion in SSL. Let pσ, hq be

a Γ-state. Then σ, h (Γ
s a iff σ, hæpErrΓ $ fptspaq : regionsspσqq (Γ

s a.

The following theorem shows that TR is an isomorphism of SSL assertions into UFRL in the

sense that the translation preserves validity. The proof about separating conjunction is the most

interesting one as it partitions heaps. The translated expression consists of two conjunctions. The

first one checks the value of the two assertions. The second one says that their footprints are

disjoint. The proof for this separating conjunction case is found in appendix E. The proof for the

existential case needs the substitution laws for assertions that are not surprising and are found in

the KIV formal proof [7], and thus are omitted.

Theorem 7. Let Γ be a well-formed type environment. Let pσ, hq be a Γ-state. Let a be an assertion

in SSL. Then σ, h (Γ
s a iff σ, h (Γ TRrrass.

Fig. 6.1 summarizes the previous results, where h “ H æpErrΓ $ fptspaq : regionsspσqq. The

r is found for the SL’s semantics for Theorem 4, which is ErrΓ $ fptspaq : regionsspσq; since

it has been proved that σ, h (Γ
s a if and only if σ,H æpErrΓ $ fptspaq : regionsspσqq (Γ

s a, it

71

must be that h “ H æ pErrΓ $ fptspaq : regionsspσqq. In addition, by Corollary 5, it must be

true that σ, h (Γ
s a iffσ, hæpErrΓ $ fptspaq : regionsspσqq (Γ

s a. Furthermore, by Theorem 7

on the preceding page twice, it must be true that σ, hæpErrΓ $ fptspaq : regionsspσqq (Γ
s a iff

(Γ σ, hæpErrΓ $ fptspaq : regionsspσqqTRrrass, and σ, h (Γ
s a iff σ, h (Γ TRrrass. Therefore, by

transitivity, it must be true that σ, h (Γ TRrrass iff σ,HæpErrΓ $ fptspaq : regionsspσqq (Γ TRrrass

iff σ,HæpErrΓ $ fptspaq : regionsspσqq (Γ
sl a.

σ, h (Γ
s a σ, hæpErrΓ $ fptspaq : regionsspσqq (Γ

s a σ,HæpErrΓ $ fptspaq : regionsspσqq (Γ
sl a

σ, h (Γ TRrrass σ, hæpErrΓ $ fptspaq : regionsspσqq (Γ TRrrass

Theorem 7

Corollary 5 Theorem 4

Theorem 7

Figure 6.1: A summary of results on encoding assertions

6.2.4 SSL Proofs Review and Approach

This section encodes SSL’s axioms and rules into those in UFRL, and shows that encoded SSL

axioms are derivable and that the encoding translates proofs in SSL into proofs in UFRL.

The correctness judgment of SSL, a Hoare-formula tau S ta1u, means that S is partially correct,

and S can only access the regions that are guaranteed by a. Consider the region guaranteed by a as

its implicit frame. Thus, the proof obligation is to show that the following encoding into UFRL is

valid (in Section 6.2.5):

$Γ
s tauSta

1u iff

$Γ
u rreads fptspaqs tTRrrassu S tTRrra1ssur modifies pMVpSq, fptspaqq,freshpfptspa

1q ´ rqs

where r is a region variable, such that TRrrass ñ r “ fptspaq and r R MVpSq
(6.1)

where MVpSq is the set of variables that S may modify, and r snapshots the set of locations of

fptspaq in the pre-state. This translation is not the only way to establish the equivalence, e.g., the

72

read effects can be anything from H to fptspaq. This encoding corresponds to the definition of

validity for Hoare-formula in SSL, which is presented next.

The definition of validity for SL Hoare-formulas uses the notion of partial correctness that are

used for FRL and UFRL: statements are not permitted to encounter errors in states that satisfy the

precondition, but may still loop forever.

Definition 17 (Validity of SSL Hoare-formula). Let Γ be a well-formed type environment. Let

S be a statement. Let a and a1 be assertions in SSL. Let pσ,Hq be a Γ-state. Then tauSta1u

is valid in pσ,Hq, written σ,H (Γ
s tauSta1u, if and only if whenever σ,H (Γ

s a, then

MSrrΓ $ S : okpΓ1qsspσ,Hq ‰ err and if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,Hq, then σ1, H 1 (Γ1

s

a1.

A SSL Hoare-formula tauSta1u is valid, written (Γ
s tauSta

1u, if and only if for all states pσ,Hq ::

σ,H (Γ
s tauSta

1u.

The locality properties [73, 86] of SSL Hoare-formula are:

1. Safety Monotonicity: for all states pσ,Hq and heaps H 1, such that HKH 1, if

MSrrΓ $ S : okpΓ1qsspσ,Hq ‰ err, then MSrrΓ $ S : okpΓ1qsspσ,H ¨H 1q ‰ err.

2. Termination Monotonicity: for all states pσ,Hq and heaps H 1, such that HKH 1, if

MSrrΓ $ S : okpΓ1qsspσ,Hq terminates normally, then MSrrΓ $ S : okpΓ1qsspσ,H ¨H 1q ter-

minates normally.

3. Frame Property: for all states pσ,H0q and heaps H1, such that H0KH1, if

MSrrΓ $ S : okpΓ1qsspσ,H0q ‰ err and MSrrΓ $ S : okpΓ1qsspσ,H0 ¨H1q “ pσ1, H 1q,

then there is a subheap H 1
0 Ď H 1 such that H 1

0KH1, H 1
0 ¨ H1 “ H 1, and

MSrrΓ $ S : okpΓ1qsspσ,H0q “ pσ
1, H 1

0q.

Hoare-style proof rules for SSL are found in Fig. 6.2, following Parkinson’s work [76]. In the

figure, the shorthand newspT, xq means x.f1 ÞÑ defaultpT1q ˚ ¨ ¨ ¨ ˚ x.fn ÞÑ defaultpTnq, where

73

the fi : Ti are defined by pf1 : T1, . . . , fn : Tnq “ fieldspT q. SSL expressions (e) are used in the

syntax of the statements, instead of FRL expressions (E), although the statements of SSL are those

of FRL, the expressions have the same syntax and meaning, by Lemma 11.

The following lemma states the frame property of SL Hoare-formulas semantically. It is used in

the proof of Lemma 8 later. The proof is found in Appendix F.

Lemma 13. Let Γ be a well-formed type environment. Let a and a1 be assertions and S

be a statement, such that (Γ
s tauSta1u. Let pσ,Hq be a Γ-state. If σ,H (Γ

s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q, then:

1. for all x P dompσq, if σ1pxq ‰ σpxq, then x P MVpSq.

2. for all po, fq P dompHq, if H 1ro, f s ‰ Hro, f s, then po, fq P ErrΓ $ fptspaq : regionsspσq.

3. for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq, it is that

po, fq P pdompH 1q ´ dompHqq.

There are several lemmas connecting FRL and UFRL separation operator (¨{̈) to SL’s separating

conjunction operator (˚). These lemmas are used to prove the frame rule case of the Theorem that

the translation between SSL and UFRL preserves provability (Theorem 9 in Section 6.2.5).

The following lemma says that the footprints of assertions in a separating conjunction are also

separated in the sense of FRL’s separation operator.

Lemma 14. Let Γ be a well-formed type environment. Let pσ, hq be a Γ-state. Let a1 and a2 be

assertions in SSL. Then

σ, h (Γ
s a1 ˚ a2 implies σ, h (Γ

u efspTRrra2ssq¨{̈modifies fptspa1q

Informally, the proof goes as follows. By the semantics of separating conjunction, it is known that

a1 and a2 hold on disjoint heaps, say h1 and h2, respectively. By Corollary 4, it must be true that

74

(SKIPs) $Γ
s ttrueuskip; ttrueu

(VARs) $Γ
s ttrueuvar x : T ; tx “ defaultpT qu

(ALLOCs) $Γ
s tau x :“ new T ; ta ˚ newspT, xqu, where x R FVpaq

(ASGNs) $Γ
s ttrueu x :“ e; tx “ eu, where x R FVpeq

(UPDs) $Γ
s tx.f ÞÑ u x.f :“ e; tx.f ÞÑ eu

(ACCs) $Γ
s tx

1.f ÞÑ zux :“ x1.f ; tx “ z ˚ x1.f ÞÑ zu, where x ‰ x1, x1 ‰ z and x ‰ z

(IFs)
$

Γ
s ta^ eu S1 ta

1
u, $

Γ
s ta^ eu S2 ta

1
u

$
Γ
s tau if e tS1uelsetS2u ta

1
u

(WHILEs)
$

Γ
s tI ^ eu S tIu

$
Γ
s tIu while e tSu tI ^ eu

(SEQs)
$

Γ
s tau S1 tbu, $

Γ1

s tbu S2 ta
1
u

$
Γ
s tau S1S2 ta

1
u

FVpxq “ txu FVpnullq “ H FVpnq “ H
FVpe1 “ e2q “ FVpe1q Y FVpe2q FVpe1 ‰ e2q “ FVpe1q Y FVpe2q

FVpx.f ÞÑ eq “ txu Y FVpeq FVpa1 ˚ a2q “ FVpa1q Y FVpa2q

FVpa1 ^ a2q “ FVpa1q Y FVpa2q FVpbñ aq “ FVpbq Y FVpaq
FVpD x.y.f “ x ˚ aq “ ptyu Y FVpaqq ´ txu

Figure 6.2: The axioms and proof rules for statements in SSL [76]

75

ErrΓ $ fptspa1q : regionsspσq Ď domph1q. So the following holds.

for all reads RE ď efspTRrra2ssq :: RE !! fptspa1q. (6.2)

In addition, by definition of separator (Fig. 3.7), the following must be true

for all readsX ď efspTRrra2ssq :: readsX ¨{̈modifies fptspa1q. (6.3)

Using Eq. (6.3) together with Eq. (6.2) and the definition of separator (Fig. 3.7), proves that

efspTRrra2ssq ¨{̈ modifies fptspa1q.

The above lemma handles locations on the heap, but the frame rule also concerns variables, which

are the subject of the following two lemmas.

The following lemma states that free variables are preserved by the encoding. It can be proved by

induction on the structure of SSL assertions.

Lemma 15. Let a be an assertion in SSL. Then FVpaq “ FVpTRrrassq.

The following lemma shows that the set of variables in a framed assertion (c in the frame rule

of SSL) are such that readVarpefspTRrrcssqq is a subset of FVpTRrrcssq. The lemma is proved by

induction on the structure of SSL assertions.

Lemma 16. Let c be an assertion in SSL, then readVarpefspTRrrcssqq Ď FVpTRrrcssq.

6.2.5 Translating SSL Proofs into UFRL

The following theorem shows that SSL Hoare formulas of the form tau Sta1u can be translated

into UFRL, by using read effect fptspaq, write effect pfptspaq,MVpSqq and fresh effect pfptspa
1q´rq,

where r snapshots the set of locations of fptspaq in the pre-state, and that the translation preserves

validity. As can be seen in the lemma, a kind of converse holds, as some forms of UFRL Hoare

formula translate back into SSL. The proof is found in Appendix G.

76

Theorem 8. Let Γ be a well-formed type environment. Let S be a statement, and let a and a1 be

assertions in SSL, such that (Γ
s tauSta

1u. Let r be a region variable. Let pσ,Hq be Γ-state. If

σ,H (Γ TRrrass ñ r “ fptspaq and r R MVpSq, then

σ,H (Γ
s tau Sta1u iff

σ,H (Γ
u

rreads fptspaqs

tTRrrassuStTRrra1ssu

r modifies pfptspaq,MVpSqq,fresh pfptspa
1q ´ rqs

Def. 18 shows a syntactic mapping from the axioms and rules of SSL to those of UFRL. This

mapping translates SSL axioms and rules into those of UFRL, however, the encoded ALLOC rule

is an exception. UFRL has a special variable, alloc, that keeps track of the set of allocated

locations globally; i.e. alloc is the domain of the heap. It is updated when executing the new

statement. However, SSL does not have such a variable. Thus, the write effect of the encoded

ALLOCs adds “modifies alloc” to the frame condition.

Definition 18 (Syntactic Mapping from SSL to UFRL). Let Γ be a well-

formed type environment. Let a and a1 be assertions in SSL. A syntactic map-

ping, TRsrr´ss, from SSL axioms and rules to those of UFRL is defined below:

TRsrr $Γ
s tau x := new T; ta ˚ newspT, xqss “

$Γ
u

rreads fptspaqs

tTRrrassu x := new T; tTRrra ˚ newspT, xqssu

r modifies x, modifies alloc, freshpfptspnewspT, xqqqs

TRsrr $Γ
s tau S ta1uss “

$Γ
u rreads fptspaqstTRrrassu S tTRrra1ssu rmodifies pfptspaq,MVpSqq,freshpfptspa

1q ´ rqs,

where r is a region variable such that r R MVpSq,TRrrass ñ r “ fptspaq and

S ‰ x :“ new T ; .

77

For the SSL rules, let h1, . . . , hn be hypotheses and c be conclusion; then the syntactic mapping

from a SSL rule to a UFRL rule is defined as below:

TRsrr
$

Γ
s h1, . . . , $

Γ
s hn

$
Γ
s c

ss “
TRsrr $

Γ
s h1ss, . . . ,TRsrr $

Γ
s hnss

TRsrr $
Γ
s css

Theorem 9. Each translated SSL axiom is derivable, and each translated rule is admissible in the

UFRL proof system.

The proof is by induction on the derivation and by cases in the last rule used, and can be found in

Appendix H. The sequential case is not intuitive. An example is to show that how to use SEQ1u

to prove that the encoded sequence rule is admissible in UFRL. Particularly, the proof strategy

of proving the side conditions on immunity is explained. Consider the example x :“ y;x.f :“

5;x.f :“ 6;. Assume y.f ÞÑ 3 before executing the first statement. In the proof, the following

derivation can be achieved in SSL.

$
Γ
s ty.f ÞÑ 3ux :“ y;x.f :“ 5; tx “ y ˚ x.f ÞÑ 5u

$
Γ
s tx “ y ˚ x.f ÞÑ 5ux.f :“ 6; tx “ y ˚ x.f ÞÑ 6u

$
Γ
s ty.f ÞÑ 3ux :“ y;x.f :“ 5;x.f :“ 6; tx “ y ˚ x.f ÞÑ 6u

(SEQs)

By Def. 18, the two premises are encoded to

$
Γ
u

rreads regionty.fus

ty.f “ 3u x :“ y;x.f :“ 5; tx “ y && x.f “ 5u

r modifies x,modifies regionty.fus

(6.4)

$
Γ
u

rreads regiontx.fus

tx “ y && x.f “ 5ux.f :“ 6; tx “ y && x.f “ 6u

r modifies regiontx.fus

(6.5)

78

And the proof obligation is to show that from Eq. (6.4) and Eq. (6.5), the translated conclusion

below can be derived.

$
Γ
u

rreads regionty.fus

ty.f “ 3u x :“ y;x.f :“ 5;x.f :“ 6; tx “ y && x.f “ 6u

rmodifies x,modifies regionty.fus

(6.6)

The immune side conditions are not satisfied. However, according to the postcondition of Eq. (6.4),

it is known that y “ x and y is not modified by the statement in Eq. (6.4). Hence, the variable y is

substituted for x in the effects of Eq. (6.5), using the consequence rule, and get:

$
Γ
u

rreads regionty.fus

tx “ y && x.f “ 5ux.f :“ 6; tx “ y && x.f “ 6u

r modifies regionty.fus

(6.7)

Now the side conditions about immunity are true. Eq. (6.6) is derived by using the rule SEQ1u. The

proof strategy generalizes the approach used in the example. Let S1S2 be a sequential statement.

The effects of S2 is re-written by replacing all the variables in MVpS1q, i.e., x, with the variables

z, such that a1 ñ z “ x and z X MVpS1q “ H, where a1 is the postcondition for S1. The detailed

proof is shown in Appendix H.

Corollary 6. The meaning of a SSL judgment is preserved by the syntactic mapping.

6.3 Extending the UFRL (FRL) Proof System with Separating Conjunction

This section presents another way to allow SL and UFRL (or FRL) to interoperate. SL style

assertions can appear in UFRL (or FRL itself), without using the somewhat verbose encoding of

separating conjunction discussed previously. Thus, this section adds separating conjunction to the

syntax of the assertions. The semantics of separating conjunction in UFRL (or FRL) is defined, and

is proved equivalent to the one in SSL. Then the read effects of separating conjunction is defined.

And the framing judgment is proved sound.

79

6.3.1 Extending the Syntax and the Semantics

To have the ability to write SL style specifications in UFRL (or FRL), there is no need to add the

points-to assertion to the syntax, because the points-to assertion, x.f ÞÑ e, has the same semantics

as the equality assertion x.f “ e. Thus, the syntax of assertions shown in Fig. 3.2 is extended as

follows:

P ::“ . . . | P1 ˚ P2

In the syntax, dots “. . .” denotes the material defined previously. Given a SSL assertion a, TRrrass,

which replaces each occurence of ÞÑ in a with “, is a valid assertion in the extended UFRL (or

FRL). To ease the notational burden, sometimes, the points-to assertion and the equality assertion

are used interchangeably in examples when the context is clear.

The separating conjunction is a supported UFRL (or FRL) assertion in the following sense.

Definition 19 (Supported UFRL (or FRL) Assertions). Let P be an assertion in UFRL (or FRL).

P is supported if there exists an SSL assertion, a, such that P “ TRrrass.

Defining the semantics of separating conjunction, P1 ˚ P2, in UFRL (or FRL) requires a definition

of its footprint, fptpP1 ˚ P2q. The semantics of fpt is defined by using the inverse of the translation

function, TR´1. This inverse exists because, by definition, TR is injective, as can be shown by

induction on the structure of SSL assertions (see Def. 16). So, for each supported UFRL (or FRL)

assertion, P , by definition there is some SSL assertion a such that TRpaq “ P ; thus for each

supported UFRL (or FRL) assertion P , TR´1rrP ss is defined to be the SSL assertion a such that

TRpaq “ P .

Using TR´1, here defines the semantic footprint function for supported UFRL (or FRL) assertions,

P , by fptpP q “ fptspTR
´1rrP ssq.

Finally, the semantics of separating conjunction is defined as follows for supported UFRL (or FRL)

80

assertions P1 and P2:

σ,H (
Γ P1 ˚ P2 iff σ,H (

Γ P1 and σ,H (
Γ P2 and σ,H (

Γ fptpP1q !! fptpP2q (6.8)

The following lemma shows that Eq. (6.8) is a correct semantics.

Lemma 17. Let Γ be a well-formed type environment. Let pσ,Hq be a Γ-state. Let P1 and P2 be

supported assertions in extended UFRL (or FRL). Then

σ,H (
Γ P1 ˚ P2 iff σ,H (

Γ
s TR

´1
rrP1ss ˚ TR

´1
rrP2ss.

Proof. We assume σ,H (Γ P1 ˚ P2 and calculate it as follows.

σ,H (Γ P1 ˚ P2

iff xby Eq. (6.8)y

σ,H (Γ P1 and σ,H (Γ P2 and σ,H (Γ fptpP1q !! fptpP2q

iff xby definition fptpP q “ fptspTR
´1rrP ssqy

σ,H (Γ P1 and σ,H (Γ P2 and σ,H (Γ fptspTR
´1rrP1ssq !! fptspTR

´1rrP2ssq

iff xby semantics of assertions in Fig. 3.2y

σ,H (Γ P1 && P2 && fptspTR
´1rrP1ssq !! fptspTR

´1rrP2ssq

iff

C

by definition of the syntactical mapping from SSL to UFRL (Def. 16), as P1 and

P2 are supported

G

σ,H (Γ TRrrTR´1rrP1ss ˚ TR´1rrP2ssss

iff xby Theorem 7y

σ,H (Γ
s TR

´1rrP1ss ˚ TR´1rrP2ss

Effects, Framing and Separator for SSL Formulas Recall that UFRL supports local reasoning by

proving that the write effects of a statement are disjoint with the read effects of the predicates that

describe the property of the program state. We define the read effects for P1 ˚ P2 as follows:

efspP1 ˚ P2q “ efspP1q, efspP2q (6.9)

81

Lemma 18 shows that the soundness of the frame validity (Def. 5), i.e., true $Γ efspP1 ˚

P2q frm pP1 ˚ P2q is valid. The proof is by induction on the structure of assertions.

Lemma 18 (Frame Soundness of Extended Assertions). Let Γ be a well-formed type environ-

ment. Let pσ, hq and pσ1, h1q be two Γ-states. Let P be a supported assertion in extended UFRL.

If pσ, hq
efspPq
” pσ1, h1q, then ErrΓ $ fptpP q : regionsspσq “ ErrΓ $ fptpP q : regionsspσ1q, and

σ, h (Γ P iff σ1, h1 (Γ P .

The separating conjunction proves some properties about the separator (defined in Fig. 3.7).

Lemma 19. Let Γ be a well-formed type environment. Let pσ, hq be a Γ-state. Let P1 and P2 be

supported assertions in extended UFRL. Then

σ, h (Γ P1 ˚ P2 implies σ, h (Γ efspP2q¨{̈modifies fptpP1q

Note that it is not valid that σ, h (Γ P1 ˚ P2 ñ σ, h (Γ

efspP2q¨{̈modifies readVarpefspP1qq, readRpefspP1qq. For example, let P1 be x.f1 “ 4

and P2 be x.f2 “ 5, and P1 ˚ P2 is valid. Because efspP2q “ reads x, regiontx.f2u, and

modifies readVarpefspP1qq, readRpefspP1qq “ modifies x, regiontx.f1u, they are not

disjoint sets.

6.3.2 Proof Rules

In the following , assume that all UFRL assertions involved in separating conjunctions are sup-

ported. This section discusses the introduction rule for separating conjunction, which is as follows:

(Isc)
$

Γ
u rδstP u S tQurεs

$
Γ
u rδstP ˚Ru S tQ ˚Rurεs where

P && Rñ efspRq¨{̈modifies fptpP q,

P && Rñ efspRq¨{̈ε and

Q && Rñ efspRq¨{̈modifies fptpQq

The two extra side conditions are used to conclude P ˚ R and Q ˚ R, which is justified by the

following lemma:

82

Lemma 20 (Soundness). Isc is admissible in the extended UFRL proof system.

Proof. Isc can be derived as follows:

(CONSEQu)

(FRMu)
$

Γ
u rδstP u S tQurεs

$
Γ
u rδstP && Ru S tQ && Rurεs

where P && Rñ efspRq¨{̈ε

$
Γ
u rδstP ˚Ru S tQ ˚Rurεs

where p˚q

p˚q is P && Rñ efspRq¨{̈modifies fptpP q and Q && Rñ efspRq¨{̈modifies fptspQq

Lemma 21. Let Γ be a well-formed type environment. Let P1 and P2 be supported assertions

in extended UFRL proof system, and pσ, hq be a Γ-state. If σ, h (Γ P1 and σ, h (Γ P2 and

efspP2q¨{̈modifies fptpP1q, then σ, h (Γ P1 ˚ P2.

Consider the example in Fig. 6.3. The example specifies a linked-list using the separating con-

junction while the method append is specified in the style of UFRL, where its read effects are

omitted, and are considered as reads allocÓ. Adopting the convention of VeriFast [?], ?v

and ?vlst declare (universally-quantified) variables v and vlst respectively that scope over the

entire specification of append. In the body of append, right after the loop, the following must

be true:

plst(this,vlst) && plstseg(this,curr) ˚ plst(curr,?cvlst) &&

curr.next = nullqqq ˚ lst(n,[v]), (6.10)

which (by the definition of the predicate lst) implies:

plst(this,vlst) && plstseg(this,curr) ˚ curr.val ÞÑ ?cv ˚

curr.next ÞÑ nullqq ˚ lst(n,[v]), (6.11)

83

predicate lst(n : Node<T>, se : seq<T>)
reads fpt(lst(n, se));
decreases |se|;

{
(n = null ñ se = []) &&
(n ‰ null ñ n.val ÞÑ se[0] ˚ lst(n.next, se[1..])

}

predicate lstseg(s: Node<T>, e : Node<T>, se : seq<T>)
reads fpt(lstseg(s, e, se));
decreases |se|;

{
(s = e && se = []) ||
(s ‰ e && (s.val ÞÑ se[0] ˚ lstseg(s.next, e, se[1..])))

}

class Node<T> {
var val: T; var next: Node<T>;

method append(n: Node<T>)
requires lst(n, [?v]) ˚ lst(this, ?vlst);
modifies region{last().next};
ensures this.valst = old(this.valst) + [n.val];
ensures this.repr = old(this.repr) + n.repr;
ensures this.valid();

{
var curr: Node<T>; curr := this;;

while (curr.next ‰ null)
invariant lstseg(this, curr) ˚ lst(curr, ?cvlst);
invariant fpt(lstseg(this, curr)) + fpt(lst(curr, cvlst)) =

fpt(lst(this, vlst));
{ curr := curr.next; }
curr.next := n;

}

function last() : Node<T>
{ /* ... */ }

/* ... other methods omitted */
}

Figure 6.3: A linked-list example written in UFRL with separating conjunction

84

which implies the precondition of the rule UPDu. Using the rules UPDu and SubEff u, the following

is derived:

$
Γ
u

rreads curr, allocÓs

tcurr ‰ nullu curr.next := n; tcurr.next “ nu

r modifies regiontcurr.nextus

(6.12)

By CONSEQu and Isc, the following is derived:

$
Γ
u

rreads curr, allocÓs

tcurr ‰ null ˚ lstsegpthis, currq ˚ curr.val ÞÑ ?cv ˚ lstpn, rvsqu

curr.next := n;

tcurr.next “ n ˚ lstsegpthis, currq ˚ curr.val ÞÑ ?cv ˚ lstpn, rvsqu

r modifies regiontcurr.nextus

(6.13)

and the postcondition of Eq. (6.13) implies, by the definition of lst,

lst(curr,[curr.val]+[v]) && lseg(this,n) (6.14)

To prove the postcondition, consider the second loop invariant in Fig. 6.3:

fptplstseg(this, curr)q ` fptplst(curr,[curr.val])q “ fptplst(this,vlst)q, (6.15)

Together with Eq. (6.14), at the end of the method body, it must be true that

fpt(lstseg(this,curr)) + fpt(lst(curr,[curr.val]+[v])) = fpt(lst(this, vlst + [v])), which im-

plies the postcondition of the procedure.

85

6.3.3 Encoding SSL specifications:

Using separating conjunctions in extended UFRL, the SSL Hoare-formulas are encoded by substi-

tuting “ for ÞÑ as follows:

$Γ
s tau x := new T; ta ˚ newspT, xq iff

$Γ
u

rreads fptspaqs

tar“{ÞÑsu x := new T; tpa ˚ newspT, xqqr“{ÞÑsu

r modifies x, modifies alloc, freshpfptspnewspT, xqqqs

$s tauSta1u iff

$Γ
u rreads fptspaqstar“{ÞÑsu S ta1r“{ÞÑsurmodifiespMVpSq, fptspaqq,fresh pfptspa

1q ´ rqs,

where ar“{ÞÑs ñ r “ fptspaq, r R MVpSq and S ‰ x :“ new T ;

where MVpSq is the set of variables that S may modify, and r snapshots the set of locations of fptspaq

in the pre-state. The encoded ALLOC rule has the similar exception to Section 6.2.5.

To avoid complicated formulas due to the translation, proofs of later examples use the rule Isc

if frames are constructed by separating conjunctions, otherwise, the rule FRMu is used in the

examples. The places where the rule Isc is used can be considered as using the rule FRMu as well

due to our results.

6.3.4 Summary

We have introduced two approaches to supporting separating conjunctions: (1) encoding them into

assertions in UFRL; (2) adding them to the syntax and extending the UFRL proof system. The

second approach takes advantage of the first one’s results, and makes the UFRL assertions more

concise.

86

CHAPTER 7: RECURSIVE PREDICATES1

This chapter presents the treatment for inductive predicates. Many examples in SL feature induc-

tive predicates, as do some examples in this dissertation. Thus, the connection between SL and

UFRL (or FRL) needs to treat such inductively-defined predicates. As part of this treatment, the

syntax of assertions is extended with a limited form of recursive predicates. And it is shown how

to translate abstract function definitions and calls in SL to recursive predicate definitions and calls

in UFRL (or FRL).

7.1 Recursive Predicated in UFRL (FRL)

The following grammar shows the extension of the assertions defined in Fig. 3.1. In the syntax,

dots “. . .” denotes the material defined previously. The extension allows predicate declarations and

calls to predicates in assertions (P).

Predicate ::“ predicate p(x : T) reads δ; [decreases G;]{ P }

P ::“ . . . | ppGq | x.ppGq

where p is the predicate name and G is either an expression or a region expression (as in Fig. 2.1).

Assume that predicate names are unique in each program.A restricted form of recursive definition

is allowed; mutual recursion is not allowed. The decreases clause is used to prescribe an

argument that becomes strictly smaller each time a recursive predicate is called. This treatment is

similar to Dafny [57, 34]. The body of a predicate is just an assertion. To make sure the predicate

is monotonic, recursive calls of predicates can only appear in positive positions (e.g., not on the

left side of an implication). And the recursive calls to predicates are not allowed inside unbounded

universal quantifiers [34].

1The content in this chapter is submitted to Formal Aspects of Computing.

87

To keep the spirit of a two-valued logic, a recursive predicate is allowed to be used only if it is

provably terminating. To prove it terminates, a well-founded relation on the domain of a recursive

predicate is enforced, e.g., a subregion relation (ď) is defined on the type region. One of the

proof obligations of its body is to show that the argument, which the decreases clause specifies, to

each recursive predicate call goes down in this ordering [34].

The semantic function bodypT, pq maps a pair of a type T and a predicate name p to its definition,

where T is a reference type. Global predicates are considered to be wrapped in a distinguished

class Object. The semantic function formalspT, pq maps a pair of a type T and a predicate name

p to its declared formal parameters, where T is a reference type. The semantic function rd maps

a predicate name to its read effect. The notation x ÞÑ y means pointwise mapping. A semantic

function for assertion is defined below:

Ep : Assertion Typing Judgment Ñ Storeˆ Heap Ñ ttrue, falseu

The satisfaction relation defined in Fig. 3.2 is defined by

EprrΓ $ P : boolsspϕqσ,H iff σ,H (
Γ P

The semantics of a predicate call is defined as follows.

EprrΓ $ ppGq : boolsspσ,Hq “

pfixλpσ1, H 1
q . EprrΓ $ bodypObject, pq : boolsspσ1, H 1

qqpσpformalspobject, pq ÞÑ vq, Hq

where v “ ErrΓ $ G : T sspσq

(7.1)

EprrΓ $ x.ppGq : boolsspσ,Hq “ σpxq “ o and o ‰ null and

pfixλpσ1, H 1
q . EprrΓ $ bodypT, pq : boolsspσ1, H 1

qqpσpthis, formalspT, pqq ÞÑ po, vqq, Hq

where T “ typepoq and v “ ErrΓ $ G : T sspσq

(7.2)

88

The read effects of predicate calls are defined as follows:

efspppF qq “ efspF q, δrF {zs where δ “ rdppq and z “ formalspObject, pq

efspx.ppF qq “ reads x, efspF q, δrpx, F q{pthis, zqs

where δ “ rdppq and z “ formalsptypepσpxqq, pq

The rules LIntro1u and LIntro2u introduce the form of a predicate call to left-hand side of the

judgment. The rules RIntro1u and RIntro2u introduce the form of a predicate call to the right-hand

side of the judgment. The type environment Γpxq is omitted in the judgment.

(LIntro1u)
P 1 $Γ

u P

ppF q $Γ
u P

where P 1 “ bodypObject, pqrF {formalspObject, pqs

(LIntro2u)
x ‰ null && P 1 $Γ

u P

x.ppF q $Γ
u P

where P 1 “ bodypΓpxq, pqrF {formalspΓpxq, pqs

(RIntro1u)
P $Γ

u P
1

P $Γ
u ppF q

where P 1 “ bodypObject, pqrF {formalspObject, pqs

(RIntro2u)
P $Γ

u x ‰ null && P 1

P $Γ
u x.ppF q

where P 1 “ bodypΓpxq, pqrF {formalspΓpxq, pqs

Lemma 22. The rules LIntro1u, LIntro2u, RIntro1u and RIntro2u are sound.

Proof. As the meaning of a predicate is defined by its body, i.e., the predicate is true if and only if

its body is true, the four proof rules are sound.

7.2 Inductive Definition in SSL

The following grammar shows the extension of the SSL syntax given in Def. 13. It allows predicate

calls in assertions.

89

a ::“ . . . | ps(e)

where ps is the predicate name and e are arguments. Apply the definition of “inductive definition

set” from Brotherston’s work [23] to SSL as follows:

Definition 20 (Inductive Definition). Let an inductive predicate pspz : T q in SSL. Then ps is a set

of conjunction of inductive cases. Each inductive case is in the form bñ a.

The following shows a valid inductive definition in SSL, which has two inductive cases, where

Def. 20 is instantiated with b1 :“ pn “ nullq, a1 :“ pse “ rsq, b2 :“ pn ‰ nullq and a2 :“

pDm. n.val ÞÑ ser0s ˚ n.next ÞÑ m ˚ listpm, ser1..sqq, where se is a sequence.

listpn, seq
def
“pn “ null ñ se “ rsq^

pn ‰ null ñ pDm. n.val ÞÑ ser0s ˚ n.next ÞÑ m ˚ listpm, ser1..sqqq

(7.3)

The semantic function idf maps a predicate name to its induction definition, which is the con-

junction of inductive cases. The semantic function formalss maps a predicate name to its formal

parameters.

A semantic function for assertion is defined below:

Ea : aÑ Storeˆ Heap Ñ ttrue, falseu

The satisfaction relation defined by Def. 11 is defined by

EarrΓ $ asspσ, hq iff σ, h (Γ
s a

The semantics of inductive predicate pspeq is defined as follows:

EarrΓ $ pspeqsspσ, hq “ pfixλpσ1, h1q . EarrΓ $ idfppsqsspσ1, h1qqpσpformalssppsq ÞÑ v, hq

where v “ EsrrΓ $ e : T sspσq

(7.4)

Let b ñ a be one of the inductive cases of predicate pspzq, then the rules LIntros and RIntros

introduce the form of a predicate call to the left-hand side and the right-hand side of the judgment

90

respectively.

(LIntros)
a $Γ

s a
1

pspeq $
Γ
s a

1

where a “ pbñ aqre{formalssppsqs

(RIntros)
a1 $Γ

s a

a1 $Γ
s pspeq

where a “ pbñ aqre{formalssppsqs

7.3 Encoding

The translation of recursive predicate call is defined as follows:

TRrrpspeqss “ pspTRrressq. (7.5)

Assume an inductive predicate ps has n inductive cases. Fig. 7.1 on the following page shows the

encoding of ps’s inductive definition to a recursive predicate declaration in UFRL. The body of

the generating recursive predicate is a conjunction of each encoded inductive case. The notation

RE1 !! . . . !! REn means pairwise region disjointness. For each inductive predicate ps : z : T ÞÑ

bool, there is a region function with the signature region ps : z : T ÞÑ region that computes the

semantic footprint of the predicate ps’s definition. The function’s body is the semantic footprint of

ps’s definition. The region function is also used in the decreases clause. Fig. 7.2 on the next

page shows the encoding of the inductive predicate in Eq. (7.3). Note that the invalid syntax can

be solved by program instruments.

By the definition of regionps and the results in Section 6.2.3, it is known that TRrrpsss $Γ
u

region ps frm TRrrpsss.

Lemma 23. Let Γ be a well-formed type environment. Let pσ, hq be a Γ-state, and ps be an

inductive predicate in SSL. Then

EarrΓ $ pspeq : boolsspσ, hq “ EprrΓ $ TRrrpspeqss : boolsspσ, hq.

91

TRrrpsss =

predicate ps(z : T)
reads region_ps(z);
decreases region_ps(z);

{ && n
i“1 TRrrbi ñ aiss }

function region_ps(z : T) : region
reads region_ps(z);
decreases region_ps(z));

{
ret := fpt(

Źn
i“1 bi ñ ai);

}

Figure 7.1: Translation of inductive definition in SSL to recursive predicates in UFRL

predicate list(n : Node<T>, se: sequence<T>)
reads region_list(n, se);
decreases region_list(n, se);

{
(n = null ñ se = []) &&
(n ‰ null ñ (D m. n.val = se[0] && n.next = m && list(m, se[1..])

&& region{n.val} !! region{n.next} !! region_list(m, se[1..]))
}
function region_list(n : Node<T>, se: sequence<T>)
reads region_list(n, se);
decreases region_list(n, se);

{
ret :=

if (n = null) then region{} +
if (n ‰ null) then

region{n.val} + region{n.next} + region_list(n.next, se[1..]);
}

Figure 7.2: The encoding of the predicate Eq. (7.3)

The proof is found in Appendix I. By the syntactic mapping from SSL to UFRL proofs Def. 18,

92

the induction rule in SSL (LIntros and RIntros) is encoded to the followings:

(TRrrLIntrosss)
TRrrass $Γ

u TRrra
1
ss

TRrrpspeqss $
Γ
u TRrra

1
ss

where a “ pbñ aqre{formalssppsqs

(TRrrRIntrosss)
TRrra1ss $Γ

u TRrrass

TRrra1ss $Γ
u TRrrpspeqss

where a “ pbñ aqre{formalssppsqs

The encoded rules are admissible in the UFRL proof system by Theorem 7 and Lemma 23.

93

CHAPTER 8: REASONING ABOUT SUBTYPING

This chapter extends the programming language defined in Chapter 2 and Chapter 3 with inher-

itance, in a way that is similar to Java. To handle dynamic types, the FRL logic framework is

extended by adding axioms and rules for dynamic and static method calls. A semantic model for

behavior subtyping with explicit frame conditions is defined and proved sound.

8.1 Programming Language Extended with Inheritance

Fig. 8.1 shows the extensions of the program syntax from Fig. 2.1 and Fig. 3.1. In the syntax, dots

“. . .” denotes the material defined previously. It contains typical object-oriented features, such as

interface declarations, inheritance and method calls in statements. For simplicity, exception han-

dling and overloading (e.g., field overloading and method overloading) are not provided. Recursive

predicates presented in the previous chapter are not included for simplicity as well.

Prog ::“ Interface Class S
Class ::“ . . . | class C [extends C1][implementsI] { Field Method }

Interface ::“ interface I [extends I1] { Field MHead }
MHead ::“ method m(x : T) [:T 1]

T ::“ . . . | I
Expr ::“ . . . | x is T

S ::“ . . . | x := (T)y; | x := y.m(G);
P ::“ . . . | x:T

Figure 8.1: The extended syntax with OO features

There is a designated variable super that is used to access members of the superclass of the

current derived class. And there is a distinguished class named Object, which is the default

superclass of a class that does not declare a superclass explicitly with the extends clause. Class

94

Table 8.1: Auxiliary functions used in the semantics

Notation Description
implementspT q The interface names that are directly and transitively implemented by T ,

where T is a class name or an interface name, where T R implementspT q
superpCq The class name that C directly extends (if any)
superspCq The class names and interface names that are directly and transitively

extended and implemented by class C, where C R superspCq
formalspT,mq The method T.m’s formal parameters, where T is a class name or

an interface name
bodypC,mq The method C.m’s body, where C is a class name

names and interface names are unique in each program. Interfaces may contain fields that are used

in specifications.

For simplicity, all fields are protected and all methods are public.1 All classes (except Object)

inherit from exactly one class and may implement multiple interfaces. Nested class declarations

are not allowed for simplicity. All methods defined in a superclass are inherited by its subclasses.

A method defined in a subclass with the same signature in the superclass overrides the superclass’s

declaration.

Recall that each well-formed type environment, written Γ, maps from identifiers to types:

Γ P VarTypeEnv “ Ids fin
Ñ T

The collection of types T contains primitive types and reference types that are class names and

interface names. The type of a method is of the form T Ñ T 1. To streamline the presentation, the

auxiliary functions defined in Table. 8.1 are used.

The subtype relation, ď:, is a partial, reflexive and transitive relation on types. Object is the

top of the subtype relation. The subtyping for a function type is contravariant for parameters and

1This treatment simplifies the formalization.

95

covariant for the result. This is formalized as follows:

C ď: Object C ď: C
T P superspCq

C ď: T

I 1 P implementspIq

I ď: I 1

T1 ď: T2 T2 ď: T3

T1 ď: T3

T2 ď: T1 T 11 ď: T 12

T1 Ñ T 11 ď: T2 Ñ T 12

The functions dfieldspCq and dmethspCq define the type of fields and methods that the class C

defines respectively. The functions dfieldspIq and dmethspIq define the type of fields and methods

that the interface I defines, respectively. The functions ifieldspT q and imethspT q define the type of

fields and methods that the type T inherits, respectively. The function fieldspT q is re-defined as the

type of fields that the type T defines or inherits. This definition is compatible with the definition in

Chapter 2, as the language defined there does not have inheritance. The function methspT q defines

the type of methods that the type T defines or inherits.

dfieldspT q “ tpf : T 1q| pvar f : T 1q is declared in the reference typeT u

ifieldspT q “

$

’

’

&

’

’

%

Ť

c1PsuperspT q dfieldspC 1q Y
Ť

IPimplementspT q dfieldspIq if T is a class name

dfieldspObjectq Y
Ť

IPimplementspT q dfieldspIq if T is an interface name

fieldspT q “ dfieldspT q Y ifieldspT q

dmethspT q “ tpT,mq ÞÑ pT Ñ T 1q|mpT q : T 1 is declared in the reference type T u

imethspT q “

$

’

’

&

’

’

%

Ť

CPsuperspT q dmethspCq Y
Ť

IPimplementspT q dmethspIq if T is a class name

dmethspObjectq Y
Ť

IPimplementspT q dmethspIq if T is an interface name

methspT q “ dmethspT q Y imethspT q

The typing rule for the type test expression is shown as follows:

Γ $ x : T 1

Γ $ x is T : bool where isRefpT 1q and T ď: T 1

96

Typing rules for other expressions and region expressions are unchanged; see Appendix A. The

following shows the typing rules for statements. They are adjusted from Fig. A.2. The typing rules

for statements that are not shown here are unchanged.

Γ $ x : T 1 Γ $ G : T

Γ $ x :“ G; : okpΓq

where x ‰ this and T ď: T 1

Γ $ x : T 1

Γ $ x :“ new T ; : okpΓq

where x ‰ this and T ď: T 1

Γ $ x : T 1

Γ $ x :“ y.f ; : okpΓq

where x ‰ this, pf : T q P fieldspΓpyqq

and T ď: T 1

Γ $ y : T

Γ $ x.f :“ y; : okpΓq

where x ‰ this, pf : T 1q P fieldspΓpxqq

and T ď: T 1

The typing rules for the type cast and method call statements are shown as follows. Note that the

form super.mpEq can only be called from code in a subclass, i.e., this P dompΓq.

Γ $ x : T 1

Γ $ x :“ pT qy; : okpΓq

where x ‰ this, isRefpT 1q

and T ď: T 1

Γ $ E : T1 Γ $ x : T 2

Γ $ x :“ y.mpEq : okpΓq

where ppΓpyq,mq ÞÑ pT Ñ T 1qq P methspΓpyqq,

T 1 ď: T 2 and T1 ď: T

Γ $ E : T1 Γ $ x : T 2

Γ $ x :“ super.mpEq : okpΓq

where this P dompΓq, C “ superpΓpthisqq,

pC,mq ÞÑ pT Ñ T 1qq P methspCq, T 1 ď: T 2 and T1 ď: T

97

The typing rules for assertions are adjusted as follows:

Γ $ E1 : T1 Γ $ E2 : T2

Γ $ E1 “ E2 : bool

where T1 ď: T2 or T2 ď: T1

Γ $ E1 : T1 Γ $ E2 : T2

Γ $ E1 ‰ E2 : bool

where T1 ď: T2 or T2 ď: T1

Γ $ x : T 1 Γ $ E : T2

Γ $ x.f “ E : bool

where isRefpT 1q, pf : T1q P fieldspT 1q and pT1 ď: T2 or T2 ď: T1q

The typing rule for a dynamic type test assertion is shown as follows:

Γ $ x : T 1

Γ $ x : T : bool where isRefpT 1q and T ď: T 1

8.2 Semantics

The function, RefCtx, is used to denote sets of reference contexts that map references, Ref , to class

names:

ρ P RefCtx “ Ref fin
Ñ ClassName

A program Γ-state is extended to either be a triple of a store, a reference context, and a heap or an

error:

s P State “ Storeˆ RefCtxˆ HeapY terru

A Γ-state pρ, σ,Hq is a state such that dompΓq “ dompσq.

There is a method environment, θ, which is a table of meanings of methods in all classes indexed

by a pair of a class name and its method name, such that

θ “ fix pλg . λpC,mq . λs .MSrrΓ $ bodypC,mq : okpΓ1qsspgqpsqq

98

The underlined lambda (λ) denotes a strict function that cannot recover form a nonterminating

computation [80]. The semantic functions are re-defined as follows.

E : Expression Typing Judgment Ñ Storeˆ RefCtx Ñ Value

MS : Statement Typing Judgment Ñ S Ñ MethEnv Ñ State Ñ StateK

The semantics of a type test expression is defined as follows:

ErrΓ $ x is T : boolsspσ, ρq “ σpxq ‰ null and ρpσpxqq ď: T

The semantics of other expressions is re-defined by using ρ in place of the function type. By

the definition of ρ and type, this chapter’s ErrΓ $ G : T sspσ, ρq is equivalent to the previous

ErrΓ $ G : T sspσq in Fig. 2.3. The semantics of statements is similar to Fig. 2.4, except the one for

allocation:

MSrrΓ $ x :“ new T ; : okpΓqsspθqpσ, ρ, hq “ let pl, h1q “ allocatepT, hq in

let pf1 : T1, . . . , fn : Tnq “ fieldspT q in

let σ1 “ σrx ÞÑ ls in

let ρ1 “ Extendpρ, l, T q in

pσ1, ρ1, h1rpσ1pxq, f1q ÞÑ defaultpT1q, . . . , pσ
1pxq, fnq ÞÑ defaultpTnqsq

The semantics for a type cast statement is defined below:

MSrrΓ $ x :“ pT qy; : okpΓqsspθqpσ, ρ, hq “

if σpyq “ null or ρpσpyqq ď: T then pσrx ÞÑ σpyqs, ρ, hq else err

99

The semantics for a dynamic method call is defined below:

MSrrΓ $ x :“ y.mpGq; : okpΓqsspθqpσ, ρ, hq “

if σpyq ‰ null then

let z “ formalspρpσpyqq,mq in

let σ2 “ Extendpσ, pthis, zq, pσpyq, ErrΓ $ G : T sspσ, ρqqqin

if pρpσpyqq,mq P θ then

let v “ pθpρpσpyq,mqqpσ2, ρ, hqin

if v “ pσ1, ρ1, h1q then pσrx ÞÑ σ1pretqs, ρ1, h1q

else if v “ err then err else K

else err

else err

The semantics for a static method call does not need to pass the this parameter, as this points

to the subclass that invokes super.m(G).

MSrrΓ $ x :“ super.mpGq; : okpΓqsspθqpσ, ρ, hq “

let C “ superpΓpthisqq in

let z “ formalspC,mq in

let σ2 “ Extendpσ, z, ErrΓ $ G : T sspσ, ρqqin

if pC,mq P θ then

let v “ pθpC,mqqpσ2, ρ, hqin

if v “ pσ1, ρ1, h1q then pσrx ÞÑ σ1pretqs, ρ1, h1q

else if v “ err then err else K

else err

Lemma 1 is adjusted with the new definition of the semantic state as follows:

Lemma 1A. Let Γ and Γ1 be two well-formed type environments. Let S be a statement, such that

Γ $ S : okpΓ1q. Let Γ2 be a well-formed type environment, such that dompΓq X dompΓ2q “ H and

dompΓ1q X dompΓ2q “ H. Then

100

1. if MSrrΓ $ S : okpΓ1qsspσ, ρ, hq ‰ err, then MSrrΓ,Γ2 $ S : okpΓ1,Γ2qsspσ, ρ, hq ‰ err.

2. if MSrrΓ $ S : okpΓ1qsspσ, ρ, hq “ pσ1, ρ1, h1q, then MSrrΓ,Γ2 $ S : okpΓ1,Γ2qsspσ, ρ, hq “

pσ1, ρ1, h1q.

The semantics of assertions is re-defined by using ρ in place of the function type. By the definition

of ρ and type, this chapter’s σ, ρ, h (Γ P is equivalent to the previous σ, h (Γ P in Fig. 3.2. The

semantics of dynamic type test assertion is defined below:

σ, ρ, h (Γ x : T iff σpxq ‰ null and ρpσpxqq “ T

Also Lemma 2 is adjusted with the new definition of the semantic state as follows:

Lemma 2A. Let Γ and Γ1 be two well-formed type environments such that dompΓqXdompΓ1q “ H.

Let pσ, ρ, hq be a Γ-state. Then σ, ρ, h (Γ P implies pσ, ρ, hq (Γ, Γ1

P .

8.3 Effects

The definition of agreement needs to consider the reference context as well, i.e., if two states agree

on a read effect, δ, then the two states must agree on its dynamic types of objects as well.

Definition 4A (Agreement on Read Effects). Let Γ be a well-formed type environment. Let δ

be an effect that is well-typed in Γ. Let Γ1 ě Γ and Γ2 ě Γ. Let pσ1, ρ1, h1q and pρ2, σ2, h2q

be a Γ1-state and a Γ2-state respectively. Then pσ1, ρ1, h1q and pρ2, σ2, h2q agree on δ, written

pσ1, ρ1, h1q
δ
” pρ2, σ2, h2q, if and only if:

1. for all (reads x) P δ :: σ1pxq “ σ2pxq, and if σ1pxq P dompρ1q, then ρ1pσ1pxqq “ ρ2pσ2pxqq.

2. for all (reads regiontx.fu) P δ and for all o such that o “ σ1pxq and o ‰ null and

pf : T 1q P fieldspρ1poqq, h1ro, f s “ h2ro, f s and if ρ1ph1ro, f sq P dompρ1q, then ρ2ph2ro, f sq P

dompρ2q and ρ1ph1ro, f sq “ ρ2ph2ro, f sq.

101

The read effects of the type test expression is defined as efspx is T q “ reads x. The read effects

of other expressions and atomic assertions are unchanged.

8.3.1 The read effect of a class

In program verification, it is common practice to use an object invariant expressed by logical

formulas and “abstract” data [39] to describe all possible states of the object. An invariant is either

encoded through methods’ pre- and postconditions, or is explicitly specified (e.g., by the keyword

invariant). To frame an invariant, ghost fields are commonly used in the dynamic frames

based approaches, e.g., RL, FRL and Dafny. Ghost fields are specification-only fields that can

be manipulated by specifications as a program runs, but cannot change a program’s (non ghost)

data or execution path. Consider the example in Fig. 8.2. The predicate valid is an invariant

of the class Node<T>. The field fpt is a ghost field that computes the regions that frame the

predicate valid. The method add prepends the node n to the linked-list. At the last line of its

implementation, the ghost field fpt of the object ret is updated to frame its predicate valid. It

is said that reads fpt is the read effects of the class Node<T>. For ease of the discussion, it is

assumed that there is a function bnd that maps a class name to its read effects.

8.4 Supertype Abstraction and Local Reasoning

Supertype abstraction [50] allows one to use a supertype’s method specification to reason about

calls to a subtype’s method. Leavens and Naumann [49] have shown that behavioral subtyping is

necessary and sufficient for the validity of supertype abstraction. They define behavioral subtyping

in terms of specification refinement, and define specification refinement in terms of preconditions

and postconditions, but give no explicit treatment of frame conditions. To apply their result to the

framework of local reasoning, the constraints for frame conditions are needed. This section defines

the problem in the framework of FRL and achieves behavioral subtyping by using the techniques

102

class Node<T> {
var val : T; var next : Node<T>;
var fpt: region;

predicate valid()
reads this, this.fpt;

{
region{this.*} ď this.fpt &&
(this.next = null ñ region{this.*} = this.fpt) &&
(this.next ‰ null ñ region{this.next.*} ď this.fpt &&

next.fpt < this.fpt && region{this.*} !! next.fpt &&
this.fpt = region{this.*} + next.fpt && next.valid())

}

method add(n: Node<T>) : Node<T>
requires n ‰ null && n.next = null;
requires n.valid() && this.valid();
requires n.fpt !! this.fpt;
modifies region{n.next}, region{n.fpt};
ensures ret = n && ret.valid();
ensures ret.fpt = region{ret.*} + this.fpt;

{
ret := n;
ret.next := this;
ret.fpt := region{ret.*} + this.fpt;

}
}

Figure 8.2: An example of framing invariant

of encapsulation and specification inheritance [30].

8.4.1 Problem

Suppose m is an instance of T ’s method with specification tPT u T.mpx : T 1q tQT urεT s in FRL.

Let R be a predicate whose read effects are separate from the write effects of εT . In the spirit of

103

supertype abstraction, it would be ideal if the following were valid:

for all o : T :: to ‰ null && PT && Ru o.mpGq tQT && RurεT s. (8.1)

Eq. (8.1) means that the method m’s implementations in T ’s subtypes have to comply with T.m’s

specification. Let S be a subtype of T and tPSumpx : T 1qtQSurεSs be m’s specification in S. To

make Eq. (8.1) valid, a behavioral subtyping constraint is enforced on the specification of S.m

[49], i.e., tPSumpx : T 1qtQSurεSs refines tPT u T.mpx : T 1q tQT urεT s. According to result in the

work of Leavens and Naumann [49], such constrains are PT ñ PS and oldpPT q ^QS ñ QT .

Because their work ignores frame conditions with the assumption that they could be encoded to

postconditions, the relation between εT and εS is not clear. Therefore, this dissertation focus on

the effects of overridden methods and formalizes this framing problem in the FRL proof system.

Let δ be the read effect of R in a state where PT holds, i.e., such that PT $Γ δ frm R. As R is

preserved during the execution of the method T.m, then it must be true that PT && R ñ δ¨{̈εT .

As PT ñ PS , using the rule FrmProjCtx in Fig. 3.6, it must be that PS $Γ δ frm R.

Write effects only make sense when the precondition is true. Furthermore, for supertype abstrac-

tion, one can assume that the supertype’s precondition is true; so suppose that PT is true, in which

case PT && R && δ¨{̈εS is true. Consider different cases of the relation between εS and εT .

1. Suppose εS “ εT . This is the case where PT && R && δ¨{̈εS . As PT ñ PS , for validity it

must be that PS && R && δ¨{̈εS . Thus, S.m automatically preserves R.

2. Suppose εS ă εT . As PT &&R && δ¨{̈εT , it must be that PT &&R && δ¨{̈εS . And because

PT ñ PS , validity requires that PS && R && δ¨{̈εS , which also preserves R.

3. Suppose εS ę εT . In this case, εS may contain additional fields that are introduced by the

type S. This is the so called “the extended state problem” [52, 66]. A solution to the extended

state problem is to divide the effect εS into two parts: εS1 and εS2 , where εS1 ď εT and

εS2XεT “ H. Following the previous two cases, validity requires that PS &&R && δ¨{̈εS1 .

104

Since reasoning at the level of the supertype knows nothing about εS2 , the regions in εS2 must

be such that R cannot possibly depend on them. Following standard software engineering

practice, it is called lack of dependency on εS2 “encapsulation”.

8.4.2 Encapsulation

In object-oriented programming, an object contains field names and methods that manipulate these

fields. The values of these fields represent the state of the object. If fields can only be accessed

through their class, in the sense that the only way to read or write these fields is by calling a method

defined in (or inherited by) the class, then those fields are encapsulated by the class. Fig. 8.3 shows

three examples of encapsulation. The examples of Cell and ReCell are adapted from the work

of Parkinson and Bierman [75]. The class Cell is the base class, and the classes ReCell and

FCell are its derived classes. The class ReCell declares an additional field bak with type int.

The class FCell declares an additional field fcc with type Cell.

Fig. 8.4 illustrates three objects of these three classes residing in disjoint parts of the heap; these

three objects are σpcq, σprcq, and σpfcq. In the store, pc : σpcqqmeans that the value of the variable

c has value σpcq. The left side of the store shows the types of variables, e.g., the variable c has

type Cell, the variable rc has type ReCell, and the variable fc has type FCell. In the heap,

ppσpcq, valq : 0q means that the location pσpcq, valq stores the value 0. The fields of the object c

and rc are integers, thus are encapsulated as they are protected. The field fcc of the object fc has

reference type, and the object fc.fcc is created by the object fc. Thus, the data of fc is encapsulated

as well.

In the figure, dashed boxes indicate regions where an object’s data is stored. Each dashed box is

said to frame the object. For example, region Rc frames the object c, Rrc frames the object rc, and

Rfc frames the object fc. The relation between these regions can be expressed as: Rc !! Rrc !! Rfc,2

2The formula R1 !! R2 !! R3 means that the three regions are pointwise disjoint.

105

class Cell {
var val : int;

method Cell(){
val := 0;

}

method set(v : int}{
this.val := v;

}

method get() : int{
ret := this.val;

}
}

class ReCell extends Cell {
val bak : int;

method ReCell(){
super(); bak := 0;

}

method set(v : int}{
this.bak := super.get();
super.set(v);

}
}

class FCell extends Cell {
var fcc : Cell;

method FCell(){
super();
fcc := new Cell();

}
}

Figure 8.3: Classes Cell, ReCell and FCell

i.e., there is no sharing among those objects. Since these fields are all protected, this relation also

implies that the objects are encapsulated.

An object is always encapsulated if for all states, either its frame is a subregion of other objects’

frames, or its frame is disjoint with them. If all the objects of type C are encapsulated, then the

type C is said to be encapsulated. This idea is formalized in the following two definitions.

Definition 21 (Class C encapsulates RE). Let Γ be a well-formed type environment, and C be a

class. Let RE be a subregion of bndpCq, i.e., RE ă bndpCq. Then the class C encapsulates RE

only if for all Γ-states pσ, ρ, hq and for all x : C, x1 : C 1, x ‰ x1 pσ, ρ, hq (Γ RErx{thiss !!

bndpC 1qrx1{thiss.

Definition 22 (Encapsulation). Let Γ be a well-formed type environment, and C be a class. Then

106

Figure 8.4: Encapsulation example

the class C is encapsulated only if for all x : C, x1 : C 1, Γ-states pσ, ρ, hq, such that x ‰ x1,

either pσ, ρ, hq (Γ bndpCqrx{thiss ă bndpC 1qrx1{thiss or for all subregions of bndpCq, RE, C

encapsulates RE.

In Def. 22, the case where bndpCqrx{thiss ă bndpC 1qrx1{thiss is that one object is a substruc-

ture of the other, i.e., in Fig. 8.4, the class Cell is a substructure of the class FCell.

The following lemma shows that if RE is encapsulated by a class, then the regions in the read effect

of RE are encapsulated as well. This property is used in the definition of specification refinement.

Lemma 24. Let x and x1 be two variables whose types are some class C and C 1 respectively,

where x ‰ x1. Let RE be a region expression such that C encapsulates RE. Then RErx{thiss is

P {modifies bndpC 1qrx1{thiss-immune,

Proof. Let regiontx.f1.fnu in RE be arbitrary. By the definition of read effect in Fig. 3.5,

efspregiontx.f1.fnuq “ reads x,regiontx.f1u.regiontx.f1.fn´1u. Let R

be the union of all regions in efspregiontx.f1.fnuq. Let r1 “ regiontx1.g1.gmu in

107

bndpC 1q be arbitrary. By the definition of immune (Def. 6), the proof obligation is to show

that regions in R are all disjoint from r1. The rest of the proof proceeds by contradiction. Let

regiontx.f1.fiu P R, where 1 ă i ď n ´ 1, such that x.f1.fi “ x1.g1.gm. Then,

there are two cases: (1) when i “ n ´ 1, then it must be that x1.g1.gm.fn “ x.f1.fn;

(2) i ă n ´ 1, then it must be that x1.g1.gm.fi`1.fn “ x.f1.fn. The two cases both

contradict the definition that RE is encapsulated by the class C, i.e., RE !! RE1.

However, aliasing may break representation encapsulation by argument exposure and representa-

tion exposure [60, 67, 70]. Argument exposure happens when a type T ’s representation is aliased

by the reference to a client, through arguments of T ’s methods. Consider the example in Fig. 8.5.

The class ECell inherits the class Cell, and declares an additional field ecc with type Cell.

Its constructor is an example of argument exposure as the field ecc is aliased with the object c

passed to it.

Consider the following client code.

var c : Cell; c := new Cell; var e : ECell; e := new ECell(c);

In the client code, the object c is used to construct the object e, which leads to the alias-

ing between the object e and the object c. Thus, changing the states of the object c may

change the states of the object e. At the end of the client code, the read effect of the ob-

ject c is bndpCellqrc{thiss “ reads regiontc.valu, and the read effect of the object e is

bndpECellqre{thiss “ preads regionte.valu`regionte.eccu`regionte.ecc.valuq. Let

P be c ‰ null && e ‰ null && e.ecc ‰ null. At the end of the client code, where c “ e.ecc,

shown in Fig. 8.6, the frame of the object c is a subregion of the frame of the object e. Thus, the

object c is encapsulated. But the object e is not encapsulated, as its frame is either not a subregion

or not disjoint from the frame of c.

Representation exposure happens when a type T ’s representation object is aliased by its clients

through T ’s methods’ return values. An example is the following method declaration:

108

class ECell extends Cell {
var ecc : Cell;

ECell(c : Cell)
requires c‰null;
modifies region{this.*};
ensures this.get() = 0 && this.ecc = c;

{
this.val := 0; this.ecc := c;

}

function wf_set() : region {
ret := super.wf_set() + region{ecc.val};

}

method set(v : int)
requires this.ecc‰null;
modifies wf_set();
ensures this.get() = v && this.ecc.get() = v;

{ super.set(v); ecc.set(v); }
}

Figure 8.5: The specification of the class ECell

.

class C{ var f : T; method m () : T { ret := this.f; } }

where f has reference type. In this case, a subregion of the the class C’s frame may be shared with

other objects. Thus, the class C is not encapsulated. Section 8.6 introduces the methodology of

capturing exposed regions in the case of argument exposure and representation exposure.

8.5 The Proof System

Recall that previously the effect, εS in a subtype S is divided into two parts, εS1 and εS2 , where

εS1 ď εS2 , εS2 X εT “ H and writeRpεS2q, are encapsulated by S. As those locations may

frame parts of the extended state, thus, it must be true that for each method of S, writeRpεS2q ď

109

Figure 8.6: Argument exposure example

pbndpSq ´ bndpT qq.

The previous analysis leads to the following definition of specification refinement.

Definition 23 (Specification Refinement). Let S and T be two types, such that S ď: T . Let

tPT u T.mpx : T 1q tQT urεT s and tPSu S.mpx : T 1q tQSurεS,modifies REs be specifications

of a method m in T and in S respectively, where x : T 1 are its formal parameters. Then the

specification of S.m refines the specification of T.m if PT ñ PS , oldpPT q ^QS ñ QT , εS ď εT ,

modifies RE R εT and RE is PT {εT -immune.

To make sure S.m’s specification is refined by T.m’s specification, this dissertation adopts specifi-

cation inheritance [30] as in JML [47]. The formula tPT u tQT urεT s also tPSu tQSurεS,REs is

defined as follows, where εS ď εT , modifies RE R εT and RE is PT {εT -immune:

tPT || PSu tpoldpPT q ñ QT q && poldpPSq ñ QSqur εT , εS,REs, (8.2)

The following lemma justifies the definition of the semantics of also.

Lemma 25. Let T and S be two types, such that S ď: T and S ‰ T . Let T 1s method m be spec-

ified as: tPT uT.mpx : T 1qtQT urεT s. Let S.m be specified by tPT uS.mpx : T 1qtQT urεT s also

110

tPSuS.mpx : T 1qtQSurεS,REs, where εS ď εT , modifies RE R εT and RE is PT {εT -immune.

Then the specification of T.m is refined by the specification of S.m

Proof. Let Γ be a well-formed type environment. Define R as @ regiontxi, yiu P RE :: xi.fi “

zi, where zi is fresh; this R is implicitly always true by the program semantics. The proof is shown

in the following derivation.

(CONSEQr)

(FieldMaskr)

(CONSEQr)

(SUBEFFr)

(CONSEQr)

(CONSEQr)

$
Γ
r tPT || PSu tpoldpPT q ñ QT q && poldpPSq ñ QSqurεT , εS,REs

where PT ñ PT || PS and PT && poldpPT q ñ QT q ñ QT

$
Γ
r tPT u tQT && poldpPSq ñ QSqurεT , εS,REs

where QT && poldpPSq ñ QSq ñ QT

$
Γ
r tPT u tQT urεT , εS,REs

$
Γ
pεT , εS,REq ď pεT ,REq where εs ď εT

$
Γ
r tPT u tQT urεT ,REs where PT ô pPT && Rq

$
Γ
r tPT && Ru tQT urεT ,modifies REs

where modifies RE R εT and RE is PT {εT -immune

$
Γ
r tPT && Ru tQT urεT s

where PT ô pPT && Rq

$
Γ
r tPT u tQT urεT s

8.5.1 Correctness Judgment

A judgment with hypothesis is written as follows:

∆ $
Γ
r tP u S tQurεs

where ∆ is a specification context that maps pairs of class and method names to the corresponding

method’s specification. Each method specification is written in the form tP uT.mpx : T 1qtQurεs.

111

The specifications are obtained from declared specifications and combinations of specification

from supertypes, e.g., a specification inheritance in JML [47]. A specification context ∆ is Γ-

valid if all the specifications in ∆ are well-typed under Γ. A ∆-method environment θ means

domp∆q “ dompθq.

Definition 24 (Behaviorally-Subtyped Specification Context). Let Γ be a well-formed type envi-

ronment. A specification context ∆ is Γ-valid behaviorally-subtyped if for all specifications in

domp∆q are well-typed under Γ, and for each pT,mq P domp∆q, if S ď: T , then pS,mq P domp∆q

and ∆pS.mq refines ∆pT.mq.

Def. 25 defines the meaning of a specification context.

Definition 25 (Specification Context Interpretation). Let Γ be a well-formed type environment,

and ∆ be a Γ-valid behaviorally-subtyped specification context. Then, θ is a ∆-interpretation if

for each ∆pT,mq “ tP u T.mpx : T 1q tQurεs, for all Γ-states, pσ, ρ, hq:

1. pθpT,mqqpσ, ρ, hq ‰ err ðñ pσ, ρ, hq (Γ P

2. if pσ, ρ, hq (Γ P and pσ1, ρ1, h1q “ pθpT,mqqpσ, ρ, hq, then pσ1, ρ1, h1q (Γ1

Q and

(a) for all x P dompσq, if σpxq ‰ σ1pxq, then modifies x P ε

(b) for all po, fq P domphq, if h1po, fq ‰ hpo, fq, then po, fq P

ErrΓ $ writeRpεq : regionsspσ, ρq

(c) for all po, fq P ErrΓ1 $ freshRpεq : regionsspσ1, ρ1q, po, fq P pdomph1q ´ domphqq

In a verification logic, a method call is interpreted by checking its precondition, havocing its frame

condition, and assuming its postcondition. If its precondition is not true, the verification fails.

Following the Banerjee and Naumann’s work [2], this case is called a p-fault. To capture p-fault in

the semantics, the semantic function for statements is re-defined as follows.

MS : Typing Judgment Ñ S Ñ MethEnv Ñ Specification Context Ñ State Ñ StateK ` tp-faultu

112

The method environment, θ, is re-defined as follows:

θ “ fix pλg . λ∆ . λpC,mq . λs .MSrrΓ $ bodypC,mq : okpΓ1qsspθqp∆qpgqpsqq

This chapter’s MSrrΓ $ S : okpΓ1qsspθqp∆qpσ, ρ, hq is equivalent to the previous

MSrrΓ $ S : okpΓ1qsspθqpσ, ρ, hq except for the semantics of a dynamical method call:

MSrrΓ $ x :“ y.mpGq; : okpΓqsspθqp∆qpσ, ρ, hq “

if σpyq ‰ null then

let z “ formalspρpσpyqq,mq in

let v “ ErrΓ $ G : T sspσ, ρq in

let σ2 “ Extendpσ, pthis, zq, pσpyq, vqqin

let tP u tQurεs “ ∆pρpσpyqq,mq in

if σ, ρ, h (Γ P rv{zs then

if pρpσpyqq,mq P θ then

let v “ pθpρpσpyq,mqqp∆qpσ2, ρ, hqin

if v “ pσ1, ρ1, h1q then pσrx ÞÑ σ1pretqs, ρ1, h1q

else if v “ err then err else K

else err

else p-fault

else err

113

and a static method call:

MSrrΓ $ x :“ super.mpGq; : okpΓqsspθqp∆qpσ, ρ, hq “

let C “ superpΓpthisqq in

let z “ formalspC,mq in

let v “ ErrΓ $ G : T sspσ, ρq in

let σ2 “ Extendpσ, z, vqin

let tP u tQurεs “ ∆pC,mq in

if σ, ρ, h (Γ P rv{zs then

if pC,mq P θ then

let v “ pθpC,mqqp∆qpσ2, ρ, hqin

if v “ pσ1, ρ1, h1q then pσrx ÞÑ σ1pretqs, ρ1, h1q

else if v “ err then err else K

else err

else p-fault

else err

A valid FRL Hoare-Formula is defined as follows.

Definition 26 (Valid FRL Hoare-Formula with Hypothesis). Let Γ be a well-formed type environ-

ment, and ∆ be a Γ-valid behaviorally-subtyped specification context, and θ be a ∆-interpretation.

Let S be a statement. Let P and Q be assertions, ε be effects, and pσ, ρ, hq be a Γ-state. Then

tP u S tQurεs is valid in pσ, ρ, hq under Γ and θ written pσ, ρ, hq; θ (Γ
r tP u S tQurεs, if and only if

whenever pσ, ρ, hq (Γ P , then

1. MSrrΓ $ S : okpΓ1qsspθqp∆qpσ, ρ, hq ‰ err,

2. MSrrΓ $ S : okpΓ1qsspθqp∆qpσ, ρ, hq ‰ p-fault,

3. if pσ1, ρ1, h1q “MSrrΓ $ S : okpΓ1qsspθqp∆qpσ, ρ, hq, then pσ1, ρ1, h1q (Γ1

Q and

114

(a) for all x P dompσq: σ1pxq ‰ σpxq : modifies x P ε

(b) for all po, fq P domphq, if h1ro, f s ‰ hro, f s, then po, fq P

ErrΓ $ writeRpεq : regionsspσ, ρq

(c) for all po, fq P ErrΓ1 $ freshRpεq : regionsspσ1, ρ1q:: po, fq P pdomph1q ´ domphqq.

A FRL judgment ∆ $Γ
r tP u S tQurεs is valid if and only if for all ∆-interpretation θ, and all

Γ-states s :: s; θ (Γ
r tP u S tQurεs.

The axioms and inference rules defined in Fig. 4.1 are unchanged. Structural rules defined in

Fig. 4.2 and Fig. 4.3 are adjusted by adding hypothesis. The axiom for the type cast statement is

shown below:

(TypeCastr) $Γ
r ty “ null || y : T 1u x :“ pT qy; tx “ yu r modifies xs where T 1 ď: T

The axiom for dynamic method calls that is adapted from Banerjee and Naumann’s work [2] as

follows:
(DCallr) ∆, tP u T.mpz : T q tQurεs $Γ

r tx ‰ null && P rG{zsu x.mpGq tQrG{zsurεrG{zss

where Γpxq “ T

where P rG{zs simultaneously substitutes G for z in P . The axiom for static method calls is:

(SCallr) ∆, tP u C.mpz : T qQurεs $Γ
r tP rG{zsu C.mpGq tQrG{zsurεrG{zss

The following two structural rules show that additional type declarations and method declarations

do not invalidate proved statements.

(TypeExtr)
∆ $

Γ
r tP u S tQurεs

∆ $
Γ, Γ1

r tP u S tQurεs
(MethExtr)

∆ $
Γ
r tP u S tQurεs

∆,∆1
$

Γ
r tP u S tQurεs

Lemma 26. The rules TypeCastr, DCallr, SCallr, TypeExtr and MethExtr are sound.

Proof. Each rule is proved in turn. Let pσ, ρ, hq and pσ1, ρ1, h1q be pre- and post-state respectively.

TypeCastr: In this case, the precondition, y “ null || y : T 1, is assumed. There are two cases:

115

• y “ null: By its semantics, σ1 “ σrx ÞÑ σpyqs, ρ1 “ ρ and h1 “ h. It must be true that

pσ1, ρ1, h1q (Γ x “ y. Moreover, the write effect modifies x is correct as x is the only

variable that is modified.

• y : T 1: In this case, ρpσpyqq “ T 1. By the side condition, T 1 ď: T , it is true that ρpσpyqq ď:

T . By its semantics, σ1 “ σrx ÞÑ σpyqs, ρ1 “ ρ and h1 “ h. It must be true that pσ1, ρ1, h1q (Γ

x “ y. Moreover, the write effect modifies x is correct as x is the only variable that is

modified.

DCallr: In this case, the precondition, x ‰ null && P rG{zs, is assumed. By the side condition,

the static type of x is T . Let the dynamic type of x be S, such that S ď: T , and ∆pS,mq “

tPSumpz : T qtQSurεSs. Because ∆ is a behaviorally-subtyped specification context, ∆pS,mq

refines ∆pT,mq. Let pσ, ρ, hq be a state such that σ, ρ, h (Γ PT , suppose m terminates, the proof

obligation is to check the following:

1. σ, ρ, h (Γ PS , which is true, by the definition of specification refinement, PT ñ PS .

2. θpS,mqp∆qpσ, ρ, hq ‰ err, which is true by the definition of θ.

3. θpS,mqp∆qpσ, ρ, hq ‰ p-fault, which is true by the definition of θ.

4. let pσ1, ρ1, h1q be θpS,mqp∆qpσ, ρ, hq. It needs to show that pσ1, ρ1, h1q (Γ1

QT , which is true

because by the definition of θ, pσ1, ρ1, h1q (Γ1

QS , and σ, ρ, h (Γ PT and pσ1, ρ1, h1q (Γ1

QS

implies pσ1, ρ1, h1q (Γ1

QT .

(a) for all x P dompσq, σ1pxq ‰ σpxq : modifies x P ε

(b) for all po, fq P domphq, if h1ro, f s ‰ hro, f s, then po, fq P

ErrΓ $ writeRpεq : regionsspσ, ρq

(c) for all po, fq P ErrΓ1 $ freshRpεq : regionsspσ1, ρ1q:: po, fq P pdomph1q ´ domphqq.

116

Because ∆ is behaviorally-subtyped, it is sound to use the specification of T.m as hypothesis. Let θ

be its interpretation, such that pT,mq P dompθq. By the definition of specification context interpre-

tation (Def. 25) and the assumption that the precondition is true, it is true pθpT,mqqpσ, ρ, hq ‰ err,

pσ1, ρ1, h1q “ pθpT,mqqpσ, ρ, hq and pσ1, ρ1, h1q (Γ QrG{zs. And the effect, εrG{zs, is correct.

SCallr: As the statement explicitly indicate the method C.m is called, it is sound to use the speci-

fication of C.m as hypothesis. The proof is similar to the proof of the rule DCallr, thus, is omitted.

TypeExtr: By definition of a well-formedness type environment, dompΓq X dompΓ1q “ H.

By Lemma 2, it must be true that σ, ρ, h (Γ P implies σ, ρ, h (Γ,Γ1

P . By Lemma 1,

MSrrΓ,Γ1 $ S : okpΓ2qsspσ, ρ, hq “ pσ1, ρ1, h1q. By Lemma 2, the postcondition follows as well.

As the original specification is well-typed, dompΓ1q X FVpSq “ H. Thus, the effect is just ε as

well.

MethExtr Let Γ1 “ tPT 1uT 1.mpx : T qtQT 1urεT 1s. There are two cases.

1. the method T 1.m inherits from T.m, where S ď: T . By the definition of behaviorally-

subtyped specification context, the specification of T 1.m refines the specification of T.m.

The result follows supertype abstraction.

2. the method T 1.m is new and does not inherit from any supertype’s methods. Thus, T 1.m

cannot be invoked by S.

Definition 27 (Modular Soundness). Let Γ be a type environment. Let ∆ be a Γ-valid behaviorally-

subtyped specification context. Let P and Q be assertions, S be a statement, and ε be effects. The

judgment, ∆ $Γ
r tP u S tQurεs, is modularly sound if and only if for all Γ1 ě Γ, for all Γ1-valid

behaviorally-subtyped specification contexts, ∆1, such that ∆1 ě ∆, and for all ∆1-interpretations,

θ1,

∆ $
Γ
r tP u S tQurεs ñ θ1 (Γ1

r tP u S tQurεs.

117

Theorem 10. Let Γ be a well-formed type environment. Let ∆ be a Γ-valid behaviorally-subtyped

specification context. Let P and Q be assertions, S be a statement, and ε be effects. The judgment,

∆ $Γ
r tP u S tQurεs, is modularly sound.

Proof. Assume ∆ $Γ
r tP u S tQurεs. By Lemma 26, it must be true that ∆,∆1 $Γ,Γ1

r tP u S tQurεs

Then the theorem is proved by the soundness theorem (Theorem 1).

8.6 Examples

This section explains how encapsulation is specified and proved by examples. To capture exposed

regions, each reference type is equipped with a field, df, which stores an object’s frame, e.g., df

stores the dynamic frames of a linked-list. Another field exposed is used to store the locations

that may be shared with other objects. It has default value regiontu as fields are protected in this

dissertation. It is updated in the methods where arguments exposures and representation exposure

may happen. Since all the objects have these two fields, this dissertation assumes that they are

declared in the class Object such that:

class Object{ var df : region; var exposed : region; }

As all the classes inherit from the class Object, the two fields are inherited in all types. A type’s

invariant, which is the condition that an object has to hold for all states, is specified by explicit pre-

and postconditions of all the methods of the type.

In addition, to make sure εS ď εT , incrementally defined region functions are used to simulate data

groups [52]. Incremental definition can be enforced by syntactically checking, i.e., the function

declared in the superclass has to be invoked in its subclasses.

Protected field names cannot be used in the specification of public methods, as they are invisible

and meaningless to non-privileged clients. Therefore, the keyword spec public is used in the

field declaration. The declaration

118

var spec_public val : int;

is a shorthand for the declaration

var val : int;

public var abstract _val : int;

rep _val <- val;

The spec public modifier is adopted from JML [24]. The abstract modifier defines fields

that are only used for specifications. The meaning of an abstract field is defined by an abstraction

function whose body is declared by the rep clause. As abstraction is not what this dissertation

focuses on, it is not formalized. Functions are just methods without side effects. For simplicity,

formalizing functions and pure methods are not provided. The theoretical foundation for these can

be found in the work of Banerjee et al. [3].

Fig. 8.7 shows the specifications of the classes Cell. The field df in the class Cell stores the

regions that frame its data representation, which is the region regiontthis.valu. As its type

is not a reference type, the field exposed is always regiontu. This condition is defined in the

body of the predicate inv.

Fig. 8.8 shows the revised specification of the class ECell. The field df in the class ECell

stores the regions that frame its data representation, which are the regions regiontthis.valu

that inherits from its supertype, regiontthis.eccu that is introduced by the class ECell, and

also the frame of the object this.ecc, when it is not null. This is specified by the first assertion

in the body of the predicate inv. The assertion this.ecc ‰ null ? ecc.df : regiontu

is a conditional region expression, which abbreviates the assertion this.ecc “ t && t ‰

null ? ecc.df : regiontu, where t is fresh.

The method ECell.set updates both val and ecc.val with the new value. Its write effects

is specified by the function wf set. To make sure an incremental definition of the function,

super.wf set is forced to be called in its body. This is enforced by a syntactic check. Its

119

class Cell{
var spec_public val : int;

function wf_set() : region
reads wf_set();

{ ret := region{this.val}; }

predicate inv()
reads this.df;

{ df = region{this.val} && this.exposed = region{} }

method Cell()
modifies this.df;
ensures this.val = 0 && inv();

{
this.val := 0;
this.df := region{this.val};
this.exposed := region{};

}

function get() : int
requires inv();
reads wf_set();
ensures ret = this.val;

{ ret := val; }

method set(v : int)
requires inv();
modifies wf_set();
ensures this.val = v && inv();

{ val := v; }
}

Figure 8.7: The specification of class Cell

body adds the region regiontecc.valu as well, which belongs to the extended state of the

class ECell. By the definition of specification refinement (Def. 23), the proof obligation is to

show that the region regiontecc.valu is encapsulated, i.e., it is disjoint from what may be

120

exposed, i.e., this.exposed. This disjointness condition has to be true for all the states of the

class ECell’s objects. Therefore, this condition is defined in the predicate inv, which is enforced

to be true before and after each method after the object is constructed. However, the postcondition

of the constructor implies that this.exposed “ ecc.df, and by the specification of the class

Cell, ecc.val “ ecc.df. Therefore, the disjointness condition is violated and the error is

captured.

121

class ECell extends Cell {
var spec_public ecc : Cell;

predicate inv() {
this.df = region{this.val} + region{this.ecc} +

(this.ecc ‰ null ? ecc.df : region{}) &&
this.exposed !! region{ecc.val}

}

function wf_set() : region
reads wf_set();

{ ret := super.wf_set() + region{ecc.val}; }

method ECell(c : Cell)
requires c ‰ null;
modifies region{this.*};
ensures this.val = 0 && this.ecc = c;
ensures this.exposed = ecc.df;
ensures inv();

{
this.val := 0;
this.ecc := c;
this.df := region{this.val} + region{this.ecc} + ecc.df;
this.exposed = ecc.df;

}

method set(v : int)
also

requires inv() && this.ecc ‰ null;
modifies wf_set();
ensures this.get() = v && ecc.get() = v;
ensures inv();

{
super.set(v);
ecc.set(v);

}
}

Figure 8.8: The revised specification of class ECell

122

CHAPTER 9: APPLICATIONS1

This chapter shows several potential applications of the results in this dissertation.

9.1 A Footprint Function

The specification language can be further extended with a footprint function, say fpt, for sup-

ported assertions. However, such a footprint function would not be well-defined for arbitrary

assertions, since not all are supported, and thus not all footprints would be semantic footprints.

Note that, by construction, an SSL assertion a and its translation TRrrass have the same semantic

footprints, i.e., fptspaq “ ftptpTRrrassq, where ftpt is the semantic footprint function for the UFRL

(or FRL) assertions. The specification of the method mark (Fig. 9.4) is one example of using the

fpt function. In this case, fpt(dag(d)) returns the set of locations of the DAG d that satisfy

the predicate dag.

9.2 Intraoperation of FRL and SSL

The results in this dissertation allow specifications written in the style of either UFRL, FRL or SSL

to be understood in one UFRL proof system. A program verifier built in UFRL should identify

specifications written in FRL and SSL, and encode them to UFRL by using the corresponding

translating rules automatically. This section introduces a scheme that interprets these styles of

specifications. Given a method specification, there are two cases.

1. If both the read effect the and write effect (including the fresh effect) of the method are

specified, then verifies check the implementation of the method by using the axioms and

proof rules in UFRL. There is no translation involved.

2. If the read effect of the method is not specified, then there are two cases.

1Part of the content in this chapter is submitted to Formal Aspect of Computing.

123

(a) If the write effect of the method is specified, or if the method is decorated by the key-

word pure (that is a shorthand for a frame of modifiesH), then verifiers consider

that the specification is written in the style of FRL, set the read effects to the default

value, reads alloc Ó, and verify the implementation of the method by using the

axioms and proof rules in UFRL.

(b) Otherwise, the specifications are considered as written in the style of SSL. After a

syntactical check on the assertions appear in the specification, i.e., they should be all

supported, verifiers translate the specification to UFRL and verify the implementation

by using the axioms and proof rules in UFRL.

9.3 Hypothetical Reasoning and Interoperation between Modules

A program may conceptually consist of distinct modules or components, each of which manipu-

lates a separate internal resources, e.g., part of the heap. Different modules’ specifications may

be specified in the style of either SSL or FRL. This section shows how these different styles of

specifications interoperate with each other.

Assume the form of program correctness judgment with hypothesis in UFRL is ∆u $Γ
u

rδstP1u S tP2urεs, which states that S satisfies its Hoare-formula under certain hypotheses, ∆u,

which map pairs of a class and a method name to the corresponding method’s specification. Hy-

potheses are given by the grammar:

∆u ::“ H | ∆u1,∆u2 | [δ]{P}T.m(x : T){Q}[ε]

Recall the hypotheses defined in Section 8.5 as follows:

∆r ::“ H | ∆r1,∆r2 | {P}T.m(x : T){Q}[ε]

Hypotheses specified by SSL are given by the following grammar [73]:

∆s ::“ H | ∆s1,∆s2 | ssl{a}T.m(x : T){a’}[X]

124

where X “ MVpSq and S “ bodypC,mq.

There is a syntactic translation function, TR∆, that maps the hypotheses in FRL and SSL to those

in UFRL as follows:

TR∆rrHss “ H

TR∆rr∆r1 ,∆r2ss “ TR∆rr∆r1ss,TR∆rr∆r2ss

TR∆rrtP uT.mpx : T qtQurεsss “ rreads allocÓstP uT.mpx : T qtQurεs

TR∆rr∆s1 ,∆s2ss “ TR∆rr∆s1ss,TR∆rr∆s2ss

TR∆rrssltauT.mpx : T qta1urXsss “ rreads rÓstTRrrassuT.mpx : T qtTRrra1ssu

r modifies prÓ, Xq,freshpfptspa
1q ´ rqs

where TRrrass ñ r “ fptspaq and r R X

Another way to encode SSL hypotheses would be

TR∆rrssltauT.mpx : T qta1urXsss “

rreads rÓstTRrrass && r “ fptspaquT.mpx : T qtTRrra1ssu

r modifies prÓ, Xq,freshpfptspa
1q ´ rqs

where r R X

Consider the example shown in Fig. 9.1 and Fig. 9.2 that define two classes, NumberS and

NumberR. They are specified in the style of SSL and FRL respectively. The method setX de-

clared in the class NumberR does not need precondition, as this ‰ null is implicit by the pro-

gram’s semantics. However, the precondition of the method setX declared in the class NumberS

is needed, because the location regiontthis.xu has to be requested there, otherwise, it is not

a valid SSL Hoare-formula. The method addOne declared in the class NumberR adds one to

the value stored in the region regiontn.xu and assigns to this.x. Thus, its write effect is just

regiontthis.xu. Consider the following client code.

125

class NumberS{
var x : int;

method NumberS()
ensures this.x ÞÑ 0;

{ this.x := 0; }

method setX(v: int)
requires D y.this.x ÞÑ y;
ensures this.x ÞÑ v;

{ this.x := v; }

method getX() : int
requires D v.this.x ÞÑ v;
ensures this.x ÞÑ v ˚ ret = v;

{ ret := this.x; }

}

Figure 9.1: The class NumberS specified in the style of SSL

class NumberR{
var x : int;

method NumberR()
ensures this.x = 0;

{ this.x := 0; }

method setX(v: int)
ensures this.x = v;

{ this.x := v; }

method addOne(n : NumberS)
requires n ‰ null;
modifies region{this.x};
ensures this.x = n.x + 1;

{ this.x := n.getX() + 1; }

method getX() : int
modifies H;
ensures ret = this.x;

{ ret := this.x; }
}

Figure 9.2: The class NumberR specified in the style of FRL

var sNumber; sNumber := new NumberS();

var rNumber; rNumber := new NumberR();

sNumber.setX(5); rNumber.addOne(sNumber);

assert sNumber.getX() = 5; assert rNumber.getX() = 6;

To prove the assertion is true, the two styles of specifications are translated to the specifications in

UFRL shown in Fig. 9.3.

The read effects of ∆u1 and ∆u2 can be extended to alloc Ó by using the rule SubEff u.

126

∆u1 “

rreads regiontthis.xus
tD y.this.x “ yu NumberS.setX(v:int); tthis.x “ vu
r modifies regiontthis.xus

∆u2 “

rreads regiontthis.xus
tD v.this.x “ vu NumberS.getX(); tthis.x “ v && ret “ vu
rmodifies regiontthis.xus

∆u3 “

rreads allocÓs
ttrueu NumberR.setX(v:int); tthis.x “ vu
r modifies regiontthis.xus

∆u4 “

rreads allocÓs
tn ‰ nullu NumberR.addOne(n:NumberS); tthis.x “ n.x` 1u
r modifies regiontthis.xus

∆u5 “ rreads allocÓs ttrueu getX(); tret “ this.xu rHs

Figure 9.3: Translating method specifications in the class NumberS and NumberR

After the declaration and initialization (var sNumber; sNumber := new NumberS;

var rNumber; rNumber := new NumberR;), it must be true that sNumber.x “

0 && rNumber.x “ 0, which implies the precondition of sNumber.setSX(5). Thus, its

postcondition is assumed right after it. As the read effects of rNumber.x “ 0 is separate from the

method’s write effects, using the rule FRMu, it must be true that sNumber.x “ 5 && rNumber.x “

0, which implies the precondition of rNumber.addOne(sNumber). Thus its postcondition is

assumed right after it. As the read effects of sNumber.x “ 5 is separate from the method’s write

effects, using the rule FRMu, it must be true that sNumber.x “ 5 && rNumber.x “ 6. In order to

use the rule SEQ1u, the following side condition has to be true:

regiontrNumber.xu is sNumber.x ÞÑ 0{modifies regiontsNumber.xu-immune. (9.1)

127

By the definition of immune (Def. 6), the proof obligation is to show:

efspregiontrNumber.xuq ¨{̈ modifies regiontsNumber.xu, (9.2)

which is true. Then the two statements’ write effects are accumulated by using CONSEQu and

SEQ1u:

∆ $
Γ
u

rallocÓs

tsNumber.x “ 0u

sNumber.setX(5); rNumber.addOne(sNumber);

tsNumber.x “ 5 && rNumber.x “ sNumber.x` 1u

r modifies regiontsNumber.xu,regiontrNumber.xus

(9.3)

where ∆ “ ∆u1 ,∆u2 ,∆u3 ,∆u4 ,∆u5 . Thus, it can be proved that sNumber.getX() “ 5 and

rNumber.getX() “ 6.

9.4 The DAG Example

This section specifies and verifies marking a directed acyclic graph. Fig. 9.4 on the following

page specifies directed acyclic graphs (DAGs), where sharing is permitted between sub-DAGs, but

cycles are not permitted. A predicate dag describes its structure written in the style of SL. The use

of the conjunction (instead of separating conjunction) indicates that sub-DAGs may share some

locations.

It is proved that the body of the method mark satisfies its specification under the hypothesis that

recursive calls satisfy the specification being proved. Another method hypothesis is the specifi-

cation of unmarked. When reasoning about mark, the specification of the method unmarked is

used, instead of its body, i.e., if unmarked’s precondition is satisfied, its postcondition is assumed

after calling it. Because mark’s precondition implies the one of unmarked, the function unmarked

can be used to specify the write effect of the method mark. Its read effect is not specified, thus

128

class Dag { var mark : int; var l : Dag; var r : Dag };

predicate dag(d:Dag)
reads fpt(dag(d));
decreases fpt(dag(d));

{ d ‰ null ñ D i, j,k.(d.mark ÞÑ i ˚ d.l ÞÑj ˚ d.rÞÑk ˚

(dag(j)^dag(k)))}

function unmarked(d: Dag) : region
requires dag(d);
reads fpt(dag(d));
ensures @ n : Dag.(region{n.mark} ď fpt(dag(d)) && n.mark ÞÑ 0 ðñ

region{n.mark} ď ret)
decreases fpt(dag(d));

{
if (d == null) ret := region{};
else{

ret := region{};
if (d.mark = 0) {

ret := ret + region{d.mark};
}
ret := ret + unmarked(d.l);
ret := ret + unmarked(d.r);

}
}

method mark (d: Dag)
requires dag(d);
requires d ‰ null ^ d.mark ÞÑ 1 ñ

@ n:Dag.(region{n.mark} ď fpt(dag(d)) ñ n.mark ÞÑ 1);
modifies unmarked(d);
ensures d ‰ null ñ

@ n:Dag.(region{n.mark} ď fpt(dag(d)) ñ n.mark ÞÑ 1);
decreases fpt(dag(d));

{
if (d ‰ null && d.mark = 0) {

d.mark := 1; mark(d.l); mark(d.r);
}

}

Figure 9.4: The specification of marking a DAG

129

is allocÓ by default. Assume all the nodes in a DAG are not marked before mark is invoked.

The algorithm marks its left sub-DAGs first. Suppose the node n is shared by the left and right

sub-DAGs. n and n’s sub-DAGS are marked when marking the left sub-DAGs. Therefore, the

second precondition is true. Proving the body of the method mark considers the following three

cases.

1. d “ null: The second precondition is vacuously true; the write effect is an empty set. The call

does not do anything, which is consistent with its write effects. The postcondition is vacuously

true.

2. dagpdq ^ d ‰ null ^ d.mark ÞÑ 1: According to the precondition, the DAG d is all marked,

which is also what the postcondition describes. For the write effects, also under this assumption

that the DAG is marked, the set of locations that satisfies the postcondition of unmarked is an

empty set. The call does not do anything, which is consistent with its write effects. Similar to

the previous case, the precondition implies the postcondition.

3. dagpdq ^ d ‰ null ^ d.mark ÞÑ 0: This case means that the current node is not marked and

its sub-DAGs may not be marked. Assume i and j are the witnesses of the existential variables

in the predicate dag. The following must be true:

d.mark ÞÑ 0 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqq, (9.4)

which implies the precondition of the rule UPDu, the following is derived:

$
Γ
u

r reads ds

td ‰ nullu d.mark := 1;td.mark ÞÑ 1u

r modifies regiontd.markus

(9.5)

One can translate Eq. (9.5) into a formula in UFRL by Def. 16, or use the result in Section 6.3

130

without translation. To avoid big formulas, the second approach is explored:

d ‰ null $Γ
u

preads d,regiontd.lu,regiontd.ru,fptpdagpd.lq ^ dagpd.rqqq

frm pd.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq
(9.6)

Thus, the read effects are separate from the write effects, regiontd.marku. Using the rule

Isc, the following is derived:

$
Γ
u

rreads ds

td ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqu

d.mark := 1;

td.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqu

r modifies regiontd.markus

(9.7)

which implies the precondition of mark(d.l). Thus the following must be true (noting that

preconditions, or postconditions, written on different lines of a method specification are con-

joined):

$
Γ
u

rreads allocÓs
$

’

&

’

%

dagpd.lq ^ pd ‰ null ^ d.mark ÞÑ 1 ñ

@ n : Node.pregiontn.marku ď fptpdagpdqq ñ n.mark ÞÑ 1qq

,

/

.

/

-

mark(d.l);

td.l ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ n.mark ÞÑ 1qu

r modifies unmarkedpd.lqs
(9.8)

The rule SubEff u is used on Eq. (9.7) and Eq. (9.8) to match up the effects for the rule SEQ1u.

Then the rule CONSEQu is used on Eq. (9.8) to match up the postcondition of d.mark :=

1 and the precondition of mark(d.l) and to get rid of the implication in the precondition.

131

Thus, the following is derived:

$
Γ
u

rreads allocÓ, ds

td ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqu

d.mark := 1;

td.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqu

r modifies regiontd.markus

(9.9)

and

$
Γ
u

rreads allocÓ, ds

tdagpd.lqu

mark(d.l);

td.l ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ n.mark ÞÑ 1qu

r modifies unmarkedpd.lqs
(9.10)

By using the rule Isc, FRMu and CONSEQu for Eq. (9.10), the following is derived:

$
Γ
u

rreads allocÓ, ds

td.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqu

mark(d.l);
$

’

&

’

%

pd.l ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ

n.mark ÞÑ 1qq ^ pd.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq

,

/

.

/

-

r modifies unmarkedpd.lqs
(9.11)

In order to use the rule SEQ1u, the following side condition has to be true:

unmarkedpd.lq is pd ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqq{

regiontd.marku-immune (9.12)

132

By the definition of immune (Def. 6), the proof obligation is to show that for allmodifiesRE

in unmarked(d.l):

pd ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqq implies efspREq¨{̈regiontd.marku.

Here shows the above is true by contradiction. Suppose that there is some RE, such that efspREq

contains the location regiontd.marku. Then RE must have the form d.mark.f , for some field

name f , by definition of effects (Fig. 3.5). Because the type of mark is int, not a reference,

this is impossible.

Now the two statements’ write effects can be accumulated. And the following is derived:

$
Γ
u

r reads allocÓ, ds

td ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqu

d.mark := 1; mark(d.l);
$

’

&

’

%

pd.l ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ

n.mark ÞÑ 1qq ^ pd.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq

,

/

.

/

-

r modifies regiontd.marku, unmarkedpd.lqs
(9.13)

The postcondition of the above implies the precondition of the method mark(d.r). Using the

rule CONSEQu (getting rid of the implication in the precondition), the following must be true:

$
Γ
u

rreads allocÓs

tdagpd.rqu

mark(d.r);

td.r ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.rqq ñ n.mark ÞÑ 1qu

r modifies unmarkedpd.rqs
(9.14)

133

As the function unmarked only collects unmarked locations, the following must be true:

pd.l ‰ null ñ p@n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ n.mark ÞÑ 1qqq

ñ reads fptpdagpd.lqq ¨{̈ modifies unmarkedpd.rq
(9.15)

By using the rules Isc, FRMu, CONSEQu and SubEff u, the following is derived.

$
Γ
u

r reads allocÓ, ds
$

’

&

’

%

pd.l ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ

n.mark ÞÑ 1qq ^ pd.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq

,

/

.

/

-

mark(d.r);
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pd.r ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.rqq ñ

n.mark ÞÑ 1qq ^

pd.l ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ

n.mark ÞÑ 1qq ^ pd.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

r modifies unmarkedpd.rqs
(9.16)

Again, the side condition has to be true in order to use the rule SEQ1u, i.e., unmarkedpd.rq is

pd ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq{

pregiontd.marku, unmarkedpd.lqq-immune (9.17)

By the definition of immune (Def. 6), the proof obligation is to show:

• for all modifies RE P regiontd.marku:

pd ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq implies efspREq¨{̈unmarkedpd.rq.

In this case, RE is just regiontd.marku, by the assumption, which is disjoint with

fptpdagpd.lq ^ dagpd.rqq that is unmarkedpd.rq’s superset.

134

• for all modifies RE P unmarkedpd.lq:

pd ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq implies efspREq¨{̈unmarkedpd.rq.

It is proved by contradiction. Suppose under the assumption, there is some RE that has the form

regiontd.f1.fn.marku, then efspREq is regiontd.f1.fnu, where fi P tl, ru, and

1 ď i ď n. Moreover d.f1.fn has the type Dag. However, all the regions in unmarkedpd.rq

has the form regiontd.f1.fm.marku, and d.f1.fm.mark has the type int, where

fj P tl, ru, and 1 ď j ď m. Thus, there is no overlapping between the two sets of locations.

Now by using the rule SEQ1u, the following is derived:

$
Γ
u

rreads allocÓ, ds

td ‰ null ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqu

d.mark := 1; mark(d.l); mark(d.r);
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pd.r ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.rqq ñ

n.mark ÞÑ 1qq^

pd.l ‰ null ñ @n : Dag.pregiontn.marku ď fptpdagpd.lqq ñ

n.mark ÞÑ 1qq ^ pd.mark ÞÑ 1 ˚ d.l ÞÑ i ˚ d.r ÞÑ j ˚ pdagpd.lq ^ dagpd.rqqq

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

r modifies regiontd.marku, unmarkedpd.lq, unmarkedpd.rqs
(9.18)

The postcondition above can imply the one for mark, thus the program is verified.

Remark: in this example, the write effects of mark are not necessarily precise. Let εl and εr be the

write effects of markpd.lq and markpd.rq respectively. Suppose the location regiontx.marku

is contained in both write effects. To use the sequence rule, the proof obligation is to show that

εr is dagpdq{εl-immune. By the definition of immune (Def. 6), the proof obligation is to show

that for all modifies RE P εr :: RE is dagpdq{εl-immune. In this case, the proof obligation

is to show that dagpdq implies efspregiontx.markuq ¨{̈ε1, by Def. 6. By the definition of read

effects, efspregiontx.markuq “ reads x. There are two cases.

135

1. x “ d. In this case, the proof obligation is to show that dagpdq implies reads d ¨{̈

regiontd.marku, which is true.

2. x “ d.f1.fn, where f1 . . . fn are either the field name l or the field name r. In this

case, the proof obligation is to show that dagpdq implies preads regiontd.f1.fnu,

efspd.f1.fn´1qq ¨{̈ regiontd.f1.fn.marku, which is true because, the field

fn has type Dag, the field mark has the type bool, thus regiontd.f1.fnu

!! regiontd.f1.fn.marku. Similarly, the regions contained in the read effect

efspd.f1.fn´1q are all disjoint with the region regiontd.f1.fn.marku.

9.5 An Integrated Example

This subsection demonstrates mixed specification and verification in FRL and SSL, using an order

program for a coffee shop as an example. Parts of this program are specified in the style of FRL,

parts in SSL, and parts in a mixed style. Consider a client code shown in Fig. 9.5.

var menu : Menu; menu := new Menu;
var shop : CoffeeShop; shop := new CoffeeShop(menu);
var shop1 : CoffeeShop; shop1 := new CoffeeShop(menu);

shop.takeOrder(1,1); shop.takeOrder(1,3); shop.takeOrder(2,3);
shop.takeOrder(4,5); shop1.takeOrder(3,3); shop1.takeOrder(1,1);
shop1.takeOrder(2,4); shop1.takeOrder(4,6);

shop.service();

Figure 9.5: A client code of a coffee shop

Two shop objects share one menu object. Taking orders and performing services only read the

menu. Thus, it can be proved that executing shop1’s method service preserves shop2’s

property, as the write effects of shop1.service in Fig. 9.11 do not overlap the read effects

136

of shop2’s predicate. In particular, the read effects of menu’s predicate are separate from the

write effects of shop1.service. This is credited to FRL’s flexibility of specifying write ef-

fects. Another example that showcases such a benefit is the specification of iterator written in FRL

in Fig. 9.7. The keyword pure is another way to specify that hasNext does not have write ef-

fects. If the iterator methods hasNext and next were specified in SSL, then their frames would

contain the footprints of their preconditions, so the underlying data structure would be modifiable.

These larger write effects would also propagate to service, since that method needs to call the

iterator methods, so its write effects of servicewould have to contain the footprint of the iterator

methods. These larger write effects could cause trouble in some cases.

In addition, the SSL style of specifications has been used in the example as well, i.e., the speci-

fication of add in Fig. 9.6. Moreover, the use of separating conjunction makes the specifications

concise.

Here explains the example in detail. The program is deployed to a digital device on each table.

Customers or waiters order coffee by choosing item numbers from the menu. For each item on the

menu, the system will look for its identifier (which is used in some other internal systems). For

simplicity, assume that each order only contains one item. Each table may have multiple orders.

The coffee shop maintains a list of orders and the menu; each order stores a table number, the

menu item number, and whether it has already been served. The list of orders is implemented

by a generic linked-list List<T> in Fig. 9.6. The class List<T> is implemented by a list of

Node<T> that may be invisible to clients. For the convenience, the specifications of the class

Node<T> that are used to verify the implementation of the class List<T> are summarized in

Table. 9.1. The specifications and implementations of the class List<T> are shown in Fig. 9.6

on the following page. One can add a node to the list by invoking the method add, test whether

a list is empty or not by invoking the pure method isEmpty, and obtain its iterator by invoking

the pure method iterator. Fig. 9.7 shows an implementation of List<T>’s iterator. The field

curr denotes the cursor position.

137

class List<T>{
var h : Node<T>;

predicate vList(se: seq<T>)
reads fpt(vList(se));

{ lst(h, se) }

method List<T>()
requires true;
modifies region{this.*};
ensures vList([]);

{ h := null; }

method add(t : T)
requires vList(?vlst);
ensures vList(vlst + [t]);

{
var n: Node<T>;
n := new Node<T>(t);
if h = null then h := n;
else h.append(n);
/* calls append method of node h */

}

method isEmpty() : int
requires vList(?vlst);
reads region{this.*};
ensures (h = null ñ ret = 1) &&

(h ‰ null ñ ret = 0)
{ if(h = null) ret := 1; else ret := 0; }

method iterator() : ListIterator<T>
requires vList(?vlst);
fresh region{ret.˚};
ensures ret ‰ null && ret.list = this

&& ret.curr = this.h && ret.vLIter(vlst);
{ ret := new ListIterator<T>(this); }

/* ... other methods omitted */
}

Figure 9.6: The specification of a generic linked-list written in a mixed style

138

class ListIterator<T>{
var list : List<T>; var curr : Node<T>;

method ListIterator(l : List<T>)
requires l ‰ null && l.vList(?vlst);
modifies region{this.*};
ensures list = l && curr = l.h

&& vLIter(vlst);
{ list := l; curr := l.h; }

method hasNext() : int
requires vLIter();
ensures (curr ‰ null ñ ret = 1)

&& (curr = null ñ ret = 0);
{

if (curr ‰ null) then ret := 1;
else ret := 0;

}

method next() : T
requires vLIter() && hasNext();
modifies region{this.curr};
ensures (curr = old(curr.next)) &&

ret = old(curr.get());
{ ret := curr.get(); curr := curr.next; }

predicate vLIter()
reads fpt(vLIter());

{ list ‰ null && list.vList(?vlst)
&& vLIter(vlst) }

predicate vLIter(vlst: seq<T>)
reads fpt(vLIter(vlst));

{
list.vList(vlst) &&
region{curr.*} ď fpt(list.vList(vlst))

}
/* ... other methods omitted */

}

Figure 9.7: The class ListIterator specified in the style of FRL

139

Table 9.1: Selected specifications for the class Node<T>

Method Precondition Postcondition Write effects
NodeăTą(v) true lst(this, [v]) region{this.˚}
get() true ret = this.val H

append(n) lst(n, [?v]) ˚ lst(this, ?vlst) lst(this, vlst + [v]) region{last().next}

Fig. 9.8 specifies a generic dictionary as a mapping. The generic Dictionary<Key,Value>

is implemented by an acyclic list of Pair<Key,Value> that may be invisible to the clients. A

generic mathematical sequence map<Key,Value> is used as an abstract model of the values

stored in Dictionary<Key,Value>. Operations and formulas for a map are defined in Table.

2.1. The pure method lookup returns a value for a given key. Its precondition makes sure that

the key is in the domain of the dictionary.

The class order contains table, itemId and served. The field table records the number

of the table in an order. The field itemId stores a coffee’s identifier. The field served tracks

whether the order is served. The class CoffeeShop maintains a List of Order and a menu

that is initialized by the parameter of the constructor of CoffeeShop, and stores the mapping

between Coffee’s numbers and identifiers. For simplicity, the details of Menu is omitted. The

method takeOrder looks up the coffee’s identifier in the menu, generates a new order and adds

it to the order list. The method service sets the orders to be served. The predicate cshop

specifies the structure of a CoffeeShop. The formal parameter lseq specifies the sequence of

Order. The formal parameter oseq specifies the contents of orders in the list. The following

formula specifies that the sequence of Order contains the expected contents:

@i.0 ă“ i && i ă |lseq| ñ lseqris.vOrderposeqr3 ˚ i..3 ˚ i` 2sq,

where oseqri..js generates a new sequence that starts from the element oseqris and end with the

element oseqrjs. It is well-formed if 0 ă“ i ă“ j ă“ |oseq|. The sequence oseq is the

140

predicate dic(p : Pair<Key, Value>, m : map<Key, Value>)
reads fpt(dic(p, m));
decreases |m|;

{
(p = null ñ |m| = 0) ^

p ‰ null ñ p.key P m ˚ p.val ÞÑ m[p.key] ˚

dic(p.next,(map i | i P m ^ i ‰ p.key :: m[i]))
}

class Pair<Key, Value>{
var key : Key; var val : Value;
var next : Pair<Key, Value>;

}

class Dictionary<Key, Value>{
var head : Pair<Key, Value>;

predicate vDic(m: map<Key, Value>)
reads vDic(m);

{
dic(head, m)

}

method lookup(k: Key) : Value
requires vDic(?m) ^ k P m;
ensures vDic(m) ^ ret = m[k];

{ /* ... omitted */ }

/* ... other methods omitted */
}

Figure 9.8: The specification of a generic dictionary written in the style of SSL

flattened sequence of 3-element array. Each array corresponds the three fields of an order. The

formal parameter m specifies the menu. In the dynamic frames approach [45, 46], this can be

specified by declaring these three parameters as ghost fields and updating them when it is needed.

Abstraction: Although information hiding and abstraction are not a focus of this dissertation, they

141

class Order{
var table int;
var itemId : int;
var served : int;

predicate vOrder(se: seq<int>)
reads region{this.*};

{
|se| = 3 &&
this.table ÞÑ se[0] ˚

this.itemId ÞÑ se[1] ˚

this.served ÞÑ se[2]
}

method Order(t: int, item: int)
modifies region{this.˚};
ensures vOrder([t, item, 0]);

{
this.table := t; this.itemId := item;
this.served := 0;

}

method served()
requires this.served ÞÑ _;
ensures this.served ÞÑ 1;

{ this.served := 1; }

method isServed() : int
reads region{this.served};
ensures ret = served;

{ if(served = 1) then ret := 1; else ret := 0; }

/* ... other methods omitted */
}

Figure 9.9: The class Order

142

class CoffeeShop{
var orders : List<Order>; var menu : Dictionary<int, int>;

predicate cshop(lseq: seq<Order>, oseq: seq<int>, m: map<int, int>)
reads fpt(cshop(lseq, oseq, m));

{ orders ‰ null ˚ menu ‰ null ˚ orders.vList(lseq) ˚ menu.vDis(m) ˚

@ i. 0 <= i && i <|lseq| ñ lseq[i].vOrder(oseq[3*i..3*i+2])
}

function severd_seq(se: seq<T>) : seq<T>
requires D i. (i >= 0 ñ |seq| = 3 * i);
reads H;
decreases |se|;

{
if se = [] then ret := [];
else ret := se[2 := 1] + serverd_seq(se[3..])

}

method CoffeeShop(menu : Menu)
requires menu ‰ null && menu.vDic(?m);
modifies region{this.˚};
ensures cshop([], [], m);

/* ... omit the postcondition about menu */
{ orders = new List<Order>(); /* ... omitted */ }

method takeOrder(item: int, table: int) : Order
requires cshop(?lseq, ?oseq, ?m) && item P m;
ensures cshop(lseq + [ret], oseq + [table, item, m.[item]], m)

{
var itemId = menu.lookup(item);
ret := new Order(table, itemId);
orders.add(ret);

}

Figure 9.10: The specification of an application program written in a mixed style (part 1)

143

method service()
requires cshop(?lseq, ?oseq, ?m);
modifies filter(fpt(cshop(lseq, oseq, m)), Order, served);
ensures cshop(lseq, severd_seq(oseq),m);

{
var iter := orders.iterator();
while (iter.hasnext()){

var o = iter.next();
if (o.isServed ‰ 1)

o.served();
}

}

/* ... other methods omitted */
}

Figure 9.11: The specification of an application program written in a mixed style (part 2)

figure prominently in other works on SL [74, 75]. This technique can also be handled. In the

example, assume that the classes List<T> and Dictionary<Key, Value> are libraries,

and are declared in a separate module from clients. Their implementations are hidden from its

clients. Thus, their clients can only see their predicate names. Table. 9.2 summarizes the set of

predicate names that are used to visible to clients.

Therefore, the class CoffeeShop uses the name of predicates vList and vDis to define its

own predicate; the actual formulas that are defined by those predicated are abstracted away. Thus,

CoffeeShop does not know the internal representation of List, thus is not influenced by the

change of List’s representation, i.e., replacing a linked list with an array.

However, some specifications use the hidden fields to describe observable behaviors of methods.

For example, the write effects of the method next in Fig. 9.7 exposes the field curr that is

supposed to be a private field. This can be solved by (at least) two established methodologies:

data groups [52, 61] and model variables [25, 51]. Following JML [47], the second approach is

144

Table 9.2: The predicates that are used by clients

Class Name Predicate Name
ListăTą vList(se : seqăTą)
ListIteratorăTą vLIter(vlst :seqăTą)
DictionaryăKey, Valueą vDic(m : mapăKey, Valueą)

explored. Model variables are used to define abstract values. For example, the specifications of

ListIterator<T> can be revised by declaring

public model var _curr; private represents _curr <- curr;

Here curr is a model variable represented by the private field curr. The represents clause

says that the value of curr is the value of the field curr. That is, the value of curr changes

immediately when the value of curr changes. Moreover, the location this. curr is connected

with the location this.curr implicitly. Thus the write effects of the method next can be rewritten

as:

modifies region{this._curr};

And also the specifications that use this.curr can be rewritten by substituting this. curr

for it. For simplicity, in the remainder of this dissertation, program fields are used and are consid-

ered to be publicly accessible in specifications.

Interoperation: The specifications in this example are written in different styles, nevertheless, they

can be combined and used in verification. The example is used to show how to verify that the

implementation of the method takeOrder satisfies its specification.

A preliminary step in making the different styles interoperate with each other (following Section

9.2) is to translate specifications without explicit effects into UFRL, giving them explicit read and

write effects. For the SL specifications, these effects are derived from the footprint of the SL

145

precondition. For example, the specification of the method lookup in Fig. 9.8 is encoded in

UFRL as:

rreads fptpvDicpmq ^ k P mqs

tvDicp?mq ^ k P mu v := lookup(k:Key);tvDicpmq ^ v “ mrksu

r modifies fptpvDicpmq ^ k P mqs

(9.19)

By using the rule SubEff u, the following is derived:

$
Γ
u

rreads allocÓs

tvDicp?mq ^ k P mu

lookuppk : Keyq returns pv : V alueq

tvDicpmq ^ v “ mrksu

r modifies fptpvDicpmq ^ k P mqs

(9.20)

Specifications with explicit write effects are encoded into those in UFRL with read effects that are

reads allocÓ. For example the specification of takeOrder is encoded in UFRL as:

$
Γ
u

rreads allocÓs

tcshopp?lseq, ?oseq, ?mq && item P mu

takeOrderpitem : int, table : intqreturnspret : Orderq

tcshopplseq ` rrets, oseq ` rtable, item,m.ritemss,mqu

r modifies fptpcshopplseq, oseq,mq && item P mqs

(9.21)

Proceeding to the verification of the body of takeOrder, its precondition is assumed:

cshopplseq, oseq,mq && item P m, (9.22)

which implies the precondition of menu.lookup by using the definition of the predicate cshop

in Fig. 9.10. For the write effects, by the definition of the predicate cshop again, it must be true

that fptpvDicpmqq ď fptpcshopplseq, oseq,mq && item P mq.

146

Thus, the method call menu.lookup is allowed in the body of the method takeOrder. After

finishing executing method menu.lookup, its postcondition gets assumed: menu.vDispmq ^

itemId “ mritems.

As the precondition of the constructor of Order is true, and it only changes the values in the

newly allocated locations on the heap; it does not change existing locations. Thus, it is allowed

in the body of the method takeOrder. After it finishes executing, and by using the rule Isc, it

must be true that pmenu.vDispmq ^ itemId “ mritemsq ˚ ret.vOrderprtable, itemId, 0sq ˚

orders.vListplseqq, which implies the precondition of the method orders.add(ret). For the

write effects, according to Section 9.2, its specification is encoded as:

rreadsallocÓstvListp?vlstqu add(t); tvListpvlst` rtsqurmodifiesfptpvListpvlstqqs.

(9.23)

Together with the definition of the predicate cshop in Fig. 9.10, the following must be true:

fptporders.vlstplseqqq ď fptpcshopplseq, oseq,mq && item P mq, (9.24)

Thus, orders.add is allowed in the body of takeOrder. After finishing executing it, its

postcondition gets assumed. And using the rule Isc, it must be true that pmenu.vDispmq ^

itemId “ mritemsq ˚ ret.vOrderprtable, itemId, 0sq ˚ orders.vListplseq ` rretsq, which

implies the postcondition of takeOrder. Thus, the implementation is verified.

Verifying a Client of CoffeeShop: For simplicity, assume the items that customers chose are

all available, i.e., always exist in the internal system. Using the specification of CoffeeShop,

consider the client code in Fig. 9.5. Although the two instances, shop and shop1, share menu,

the write effects of service claim that only the fields served of the object Order may be

modified. Thus, the following is true:

reads fptpshop1.cshopp?l, ?o,mqq¨{̈

modifies filterpfptpshop.cshopplseq, oseq,mqq, Order, servedq. (9.25)

147

class DCell extends Cell
{

method set(v : int)
also

requires inv();
modifies wf_set();
ensures this.val = 2*v;

{ super.set(2*v); }
}

Figure 9.12: The specification of the class DCell

Then using the rule FRMu and the rule CONSEQu, it can be proved that shop1 is not served. Note

that in the body of service, an iterator is used. As it only reads the underlying data structure that

is traversing, the iterator is specified in the style of FRL; the underlying data structure is specified

to be untouched. That allows the write effects of service to be precise.

9.6 Examples on Behavioral Subtyping

This section presents examples of reasoning about inheritance. Fig. 9.12, Fig. 9.13 and Fig. 9.14

are examples adapted from Parkinson and Bierman’s work [75]. The class DCell reuses the field

name val of its superclass and stores double the value which is passed to. There is no need to

override the pure method wf set and the predicate inv as there is no additional fields.

The combined specification of DCell.set is shown below:

tthis.invpqu

DCell.set(v : int)

tthis.val “ v && this.inv() && this.val “ 2 ˚ vu

r modifies this.wf set()s

The postcondition implies false. Thus, the body of DCell.set is not a correct implementa-

tion against its specification. If the implementation is while true { skip; }, then it would

148

satisfy the specification, as the definition of the correctness judgment assumes termination. This

implementation does not terminate, so the specification is vacuously satisfied.

The class ReCell extends from class Cell in Fig. 8.7 by introducing the field bak. The method

ReCell.set overrides the one declared in its superclass; it updates val with the new value x

and stores its old value in the field bak. Its write effect is specified by the pure method wf set()

that overrides Cell.wf set() as well, where super.wf set is invoked in its body.

The specification of ReCell.set is shown below. Following the definition of specification in-

heritance (Eq. (8.2)), they are the combination of the one specified in the class ReCell and the

one of Cell.set.

tsuper.inv() || pD d.this.val “ dq && this.inv()u

ReCell.set(v :int)

tpoldpsuper.inv()q ñ this.val “ v && super.inv()q &&

oldppDd.this.val “ dq && this.inv()q ñ this.val “ v && this.bak “ du

r modifies this.wf set()s

By the program semantics, the assertion D d.this.val “ d is implicit. Thus, by the rule CON-

SEQr, the above specification is derived to

tD d.this.val “ d && this.inv()u

ReCell.set(v :int)

tthis.val “ v && this.bak “ du

r modifies this.wf set()s

Fig. 9.14 shows the specification of the class TCell. It declares an additional field val2. A

type invariant, this.val “ this.val2, restricts the behavior of its super class Cell [75]. The

149

combined specification of TCell.set is shown below:

tsuper.inv() || this.inv()u

TCell.set(v:int)

tpoldpsuper.invpqq ñ this.val “ v && super.inv()q &&

poldpthis.inv()q ñ this.val “ v && this.inv()qu

r modifies this.wf set()s

By the rule CONSEQr, the above specification is derived to

tthis.inv()u

TCell.set(v:int)

tpoldpthis.inv()q ñ this.val “ v && this.inv()qu

r modifies this.wf set()s

It can be proved that the implementation of the method TCell.set satisfies the above specifica-

tion.

Fig. 9.15 declares the class OCell that inherits from the class Cell, and declares two additional

fields, c and o. Together with the inherited field val, they compose OCell’s data representation.

The field c is created by OCell’s constructor and is encapsulated. But the field o is initialized

by the constructor’s parameter. That causes argument exposure. Therefore, the last line of the

constructor updates the field exposed by o.df.

The method OCell.set updates both this.val and this.c.val with the new value. Its

write effects is specified by the function wf set. Its definition returns regions that come from

two parts: one part is from its supertype, i.e., super.wf set(); the other is from the ex-

tended state, i.e., c.df. Thus, the definition of the predicate inv describes the disjointness,

i.e., this.exposed!!c.df, which means that c.df is encapsulated by OCell. Therefore,

the specification of OCell.set refines the specification of Cell.set.

150

class ReCell extends Cell
{

var spec_public bak : int;

predicate inv()
reads this.df;

{
this.df = region{this.val} + region{this.bak} &&
this.exposed = region{}

}

pure method wf_set() : region
reads wf_set;

{
ret := super.wf_set() + region{this.bak};

}

method ReCell()
modifies region{this.*};
ensures this.val = 0 && this.bak = 0;
ensures inv();

{
this.val := 0;
this.bak := 0;
this.df := region{this.val} + region{this.bak};
this.exposed := region{};

}

method set(v : int)
also

requires (D d.this.val = d) && inv();
modifies wf_set();
ensures val = v && bak = d;

{
bak := val; super.set(v);

}
}

Figure 9.13: The specification of the class ReCell

151

class TCell extends Cell {
var spec_public val2 : int;

predicate inv()
reads this.df;

{
this.df = region{this.val} + region{this.val2} &&
this.exposed = region{} &&
this.val = this.val2

}

pure method wf_set() : region
reads wf_set;

{
ret := super.wf_set() + region{this.val2};

}

method TCell()
modifies region{this.*};
ensures this.val = 0 && this.val2 = 0;
ensures inv();

{
this.val := 0;
this.val2 := 0;
this.df := region{this.val} + region{this.val2};
this.exposed := region{};

}

method set(v : int)
also

requires inv();
modifies wf_set();
ensures this.val = v && inv();

{
super.set(v);
this.val2 := v;

}
}

Figure 9.14: The specification of the class TCell

152

class OCell extends Cell {
var spec_public c : Cell;
var spec_public o : Object;

pure wf_set() : region
reads wf_set();

{ ret := super.wf_set() + c.df }

predicate inv()
reads this.df;

{
(df = region{this.val} + region{this.c} + region{this.o} +

(c ‰ null ? c.df : region{}) +
o ‰ null ? o.df : region{}) &&

(this.exposed !! c.df)
}

method OCell(o : Object)
requires o ‰ null;
modifies region{this.*}
ensures this.o = o && inv();

{
this.o := o;
this.c := new Cell();
this.df := region{this.*} + c.df + o.df;
this.exposed := this.o.df + this.c.exposed;

}

method set(v : int)
also

requires c ‰ null && inv();
modifies wf_set();
ensures v = this.val && v = c.get() && inv();

{ c.set(this.v); super.set(v); }
}

Figure 9.15: The specification of the class OCell

153

CHAPTER 10: CONCLUSION AND FUTURE WORK

This dissertation has presented the logic, UFRL, which is able to reason about object-based pro-

grams specified in the styles of FRL and SSL. This is accomplished by a translation from SSL to

UFRL which preserves not only the meaning of assertions, but which can also translate proofs in

SSL into UFRL proofs. Thus, UFRL provides a single mechanism that allows FRL and SSL to

interoperate with each other, allowing designers flexibility in writing specifications in either style

or in a mix of styles. Also, a frame condition for behavioral subtyping is defined and proved sound.

10.1 Future Work

10.1.1 Formalization

The programming language defined in this dissertation lacks many features, such as exceptions,

access modes, module declarations, etc. The problems of data abstraction and information hiding

are not addressed in this dissertation. Extending the language with these features would make the

programs closer to the programs used in practice, such as Java programs. That would ease the

transfer of the ideas from this dissertation on UFRL into JML [24].

This dissertation only formalized a restricted form of recursive predicates. Mutual recursive predi-

cates, functions and pure methods [3] that are used in the examples should be added to the assertion

language.

10.1.2 Encoding or incorporating other methodologies

Parkinson and Bierman [74, 75] develop abstract predicate families to reason about inheritance

based on the separation logic that requires a second-order quantifier. UFRL could be extended to

encode these abstract predicate families as well. Then, it would be possible to compare the results

on reasoning about inheritance. One way of encoding would use model fields or pure methods.

154

The ownership model has been extensively studied in many works, such as [9, 11, 65, 68, 70].

It is valuable to connect FRL or UFRL with one of these ownership models. In particular, FRL

or UFRL specifications could be simplified if they could generate equivalent conditions for some

properties and proof obligations that are generated by the Universe Type System [65].

Another methodology that FRL or UFRL could incorporate is the work on typestate [18, 19, 29,

84]. Typestates provide a way to more abstractly write specifications. A typestate transition graph

can be generated, which give designers and programmers intuitions about the object. FRL may use

ghost variables to express typestates.

10.1.3 Implementation

Both FRL and UFRL can be encoded into first-order logic with modular verification. Firstly, the

quantifiers in FRL (UFRL) are first-order. This allows implementations to use a theorem prover

like a SMT solver, such as Z3 [28] or CVC4 [13]. Secondly, the type region in FRL (UFRL) is

a set of locations. Region operators, i.e., union, difference and intersection, are translated into cor-

responding set operations, which are first-order operations. Thirdly, automated verification tools

prove programs in a method-modular way. When verifying a method body, its precondition is as-

sumed. Automated verification tools check whether the locations that are intended to update by a

method body are a subset of the method’s frame conditions. Instead of directly accumulating ef-

fects and composing each proof rule similarly to the approach used in the dissertation, verification

tools for FRL (UFRL) can be implemented by computing weakest preconditions or by symbolic

execution.

The intermediate verification language Boogie [9, 54] can be used to generate verification condi-

tions. The fpts function would be encoded to an uninterpreted function and axioms in the generated

Boogie program [37].

155

APPENDIX A: TYPING RULES

156

This section shows the typing rules. The predicate isRefpT q returns true just when T is a reference

type in the program. Typing rules for expressions and region expressions are shown Fig. A.1.

Typing rules for statements are shown in Fig. A.2. The typing rules for assertions are defined in

Fig. A.3.

Γ $ n : int
Γ $ x : T
where Γpxq “ T

Γ $ null : T
where isRefpT q

Γ $ E1 : T1 Γ $ E2 : T2 Γ $ ‘ : T1 Ñ T2 Ñ T

Γ $ E1 ‘ E2 : T
Γ $ regiontu : region

Γ $ x : T

Γ $ regiontx.fu : region
where pf : T 1q P fieldspT q and isRefpT q

Γ $ x : T

Γ $ regiontx.˚u : region
where isRefpT q

Γ $ E : bool Γ $ RE1 : region Γ $ RE2 : region

Γ $ E ? RE1 : RE2 : region

Γ $ RE : region

Γ $ filtertRE, T, fu : region
where isRefpT q

Γ $ RE : region

Γ $ filtertRE, T u : region
where isRefpT q

Γ $ RE1 : region Γ $ RE2 : region

Γ $ RE1 b RE2 : region

Figure A.1: The typing rules for pure expressions and region expressions

157

Γ $ skip; : okpΓq
Γ $ var x : T ; : okpΓ, x : T q
where x R dompΓq

Γ $ x : T Γ $ G : T

Γ $ x :“ G; : okpΓq
where x ‰ this

Γ $ x : T Γ $ y : T 1

Γ $ x :“ y.f ; : okpΓq
where x ‰ this, isRefpT 1q and pf : T q P fieldspT 1q

Γ $ x : T 1 Γ $ G : T

Γ $ x.f :“ G; : okpΓq
where isRefpT 1q and pf : T q P fieldspT 1q

Γ $ x : T

Γ $ x :“ new T ; : okpΓq
where x ‰ this and isRefpT q

Γ $ E : bool Γ $ S1 : okpΓ1q Γ $ S2 : okpΓ2q

Γ $ if E then tS1u else tS2u : okpΓq

Γ $ E : bool Γ $ S : okpΓ1q

Γ $ while E tSu : okpΓq

Γ $ S1 : okpΓ2q Γ2 $ S2 : okpΓ1q

Γ $ S1S2 : okpΓ1q

Figure A.2: The typing rules for statements

158

Γ $ E1 : T Γ $ E2 : T

Γ $ E1 “ E2 : bool

Γ $ E1 : T Γ $ E2 : T

Γ $ E1 ‰ E2 : bool

Γ $ x : T 1 Γ $ E : T

Γ $ x.f “ E : bool
where isRefpT 1q and pf : T q P fieldspT 1q

Γ $ RE1 : region Γ $ RE2 : region

Γ $ RE1 ď RE2 : bool

Γ $ RE1 : region Γ $ RE2 : region

Γ $ RE1 !! RE2 : bool

Γ $ P1 : bool Γ $ P2 : bool

Γ $ P1 && P2 : bool

Γ $ P1 : bool Γ $ P2 : bool

Γ $ P1 || P2 : bool

Γ $ P : bool

Γ $ P : bool

Γ, x : int $ P : bool

Γ $ @x : int :: P : bool

Γ $ RE : region Γ, x : T $ P : bool

Γ $ @x : T : regiontx.fu ď RE : P : bool
where isRefpT q and pf : T 1q P fieldspT q

Γ, x : int $ P : bool

Γ $ Dx : int :: P : bool

Γ $ RE : region Γ, x : T $ P : bool

Γ $ Dx : T : regiontx.fu ď RE : P : bool
where isRefpT q and pf : T 1q P fieldspT q

Figure A.3: The typing rules for assertions

159

APPENDIX B: PROOF OF THEOREM 1

160

Theorem 1: The judgment $Γ
r tP uStQurεs that is derivable by the axioms and inference rules

in Fig. 4.1, and the structural rules in Fig. 4.2 and Fig. 4.3 are valid.

Proof. The proof is done by induction on the derivation and by cases on the last rule used. In

each axiom, it is shown that the judgment is valid according to the statement’s semantics. In each

inference rule, it is shown that the proof rule derives valid conclusions from valid premises when

its side conditions is satisfied. Let S be a statement and pσ, hq be an arbitrary state, and without

loss of generality, let pσ1, h1q “ MSrrΓ $ S : okpΓ1qsspσ, hq. Assume $Γ
r tP u S tQurεs, and

σ, h (Γ P . Then the proof obligation is to prove σ1, h1 (Γ1

Q, and that all the changed locations

are in ε. There are 6 base cases.

1. (SKIPr) In this case, S is skip;, P is true, Q is true, ε is H. By the program semantics

Fig. 4.1, σ1 “ σ, h1 “ h and Γ1 “ Γ Thus, σ1, h1 (Γ1

true. For the frame condition, S does

not change anything, thus, it isH.

2. (VARr) In this case, S is varx : T ;, P is true, Q is x “ defaultpT q and ε is H. By the

program semantics Fig. 4.1, Γ1 “ Γ, px : T q, σ1 “ Extendpσ, x, defaultpT qq and h1 “ h.

Thus pσ1, h1q entails Q. For the frame condition, as the statement does not change anything

existing in the prestate, thus, it isH.

3. (ALLOCr) In this case, S is x :“ new T ;, P is true, Q is x.f “ defaultpT q and ε “

modifiesx, alloc, freshpregiontx.˚uq. By the program semantics Fig. 4.1, Γ1 “ Γ,

σ1 “ σpx ÞÑ lq and h1 “ h2rpl, fq ÞÑ defaultpT qs, where pl, h2q “ allocatepT, hq. Thus,

pσ1, h1q entails Q.

For the frame condition, S only updates the variable x and alloc. By the semantics, the

function allocate returns a new heap. So freshpregiontx.˚uq is the fresh effect.

4. (ASSGNr) In this case, S is x :“ G;, P is x “ x1, Q is tx “ G{px ÞÑ x1qu and ε “

modifies x, where x R FVpGq. By the program semantics Fig. 4.1, Γ1 “ Γ, pσ1, h1q “

161

pσrx ÞÑ ErrΓ $ G : T sspσqs, hq, which entails Q.

For the frame condition, this statement only updates variable x. Therefore, ε is modifiesx

is correct.

5. (UPDr) In this case, S is x.f :“ G;, P is x ‰ null, Q is x.f “ G and ε is

modifies regiontx.fu. By the program semantics Fig. 4.1, Γ1 “ Γ, pσ1, h1q “

pσ, hrpErrΓ $ x : T sspσq, fq ÞÑ ErrΓ $ G : T 1sspσqsq, which entails Q.

For the frame condition, this statement changes the singleton heap location pσpxq, fq. There-

fore, ε is modifies regiontx.fu is correct.

6. (ACCr) In this case, S is x :“ x1.f ;, P is x1 ‰ null, Q is x “ x1.f , and ε is modifies

x, where x ‰ x1. By the program semantics Fig. 4.1, Γ1 “ Γ, pσ1, h1q “ pσrx ÞÑ

hrpErrΓ $ x1 : T sspσq, fqss, hq, which entails Q.

For the frame condition, this statement only updates variable x. Therefore, ε “ modifies

x is correct.

The inductive hypothesis is that for all substatements Si, if $Γi
r tPiuSi tQiurεis, and σi, hi (Γi Pi,

then σ1i, h
1
i (

Γ1
i Qi.

1. (IFr) In this case, S is if E then tS1u elsetS2u. There are two cases:

• E. By the inductive hypothesis, it must be true that σ, h (Γ P && E, pσ1, h1q “

MSrrΓ $ S1 : okpΓ1qsspσ, hq, which entails Q. And the frame condition is correct.

• E. By the inductive hypothesis, it must be true that σ, h (Γ P && E, pσ2, h2q “

MSrrΓ $ S2 : okpΓ2qsspσ, hq, which entails Q. And the frame condition is correct.

By the program semantics Fig. 4.1, if P holds in the prestate, no matter which path the

program takes, if the program terminates, Q holds.

162

2. (WHILEr) In this case, S is while E do tSu. P “ I , Q “ I && E and the frame conditions

is ε. The premise is $Γ
r tI && Eu tSu tIurεs.

By the program semantics Fig. 4.1, let g be a recursive point function, such that

g “ λs.if ErrΓ $ E : boolsspσq ‰ 0then lets1 “MSrrΓ $ S : okpΓ1qsspσ,Hqing˝s1else s

By definition, fix is a fixed point function, so fix pgq “ g. Then the following proves

fix pgqpσ, hq (Γ1

I by fixed-point induction.

Base Case: K (Γ1

I holds vacuously. It requires to prove all members in K implies I , but

there is nothing in K. Hence it is vacuously true.

Inductive Case: Let pσ2, h2q (Γ1

I hold for an arbitrary iteration of g, and ε is the frame

condition. Then the proof obligation is to show that fix pgqpσ2, h2q (Γ1

I holds, and the

changed locations on the heap is ε.

There are two cases:

• E. By the semantics, fix pgqpσ2, h2q “ gpMSrrΓ $ S : okpΓ1qsspσ2, h2qq. By

the inductive hypothesis, gpMSrrΓ $ S : okpΓ1qsspσ2, h2qq (Γ1

I holds. Hence

fix pgqpσ2, h2q (Γ1

I holds. For the frame condition, since the fixed point function

always returns the same function g, which is framed by ε by the induction hypothesis,

therefore ε is the frame condition for an arbitrary iteration.

• E. By the semantics, fix pgqpσ2, h2q “ pσ2, h2q. Therefore, by the inductive hypothe-

sis, fix pgqpσ2, h2q (Γ1

I holds. For the frame condition, since the state does not change,

the frame is regiontu, which is the subset of ε.

Now it has been shown that if the loop exits, which means that E holds, the loop invariant

I holds. Therefore, Q holds and ε is its frame condition.

163

3. (SEQ1r) In this case, S is S1S2, where S1 ‰ var x : T ;. Let pσ, hq be a state,

such that pσ, hq (Γ P . By the inductive hypothesis for S1 and S2, pσ2, h2q “

MSrrΓ $ S1 : okpΓ2qsspσ, hq, and pσ2, h2q (Γ2

P1. By the second premise and the seman-

tics, pσ1, h1q “MSrrΓ2 $ S2 : okpΓ1qsspσ2, h2q. Hence pσ1, h1q (Γ1

P 1.

For the frame condition, the proof obligation is to show pσ, hq Ñ pσ1, h1q (Γ

pε1, ε2,freshpREqq, which is proved by Lemma 7. It is instantiated with Γ0 :“ Γ, Γ1 :“ Γ2,

Γ2 :“ Γ1, RE1 :“ RE1, pσ0, h0q :“ pσ, hq, pσ1, h1q :“ pσ2, h2q, pσ2, h2q :“ pσ1, h1q and

ε1 :“ pε1,freshpREqq. The following conditions, which are required by the Lemma, are

satisifed:

• pσ, hq (Γ P and pσ2, h2q (Γ2

P1 from the above;

• pσ, hq Ñ pσ2, h2q (Γ pε1,freshpREqq by the inductive hypothesis;

• pσ2, h2q Ñ pσ1, h1q (Γ2

pε2, modifies RE1q by the inductive hypothesis.

• ε2 is P {ε1-immune by the given side condition;

• for all fresh(RE) P ε1 :: RE is P {pε2,modifies RE1q-immune by the given side

condition.

• ErrΓ2 $ RE1 : regionsspσ2q X σpallocq “ H, RE are freshly allocated regions by

S1, i.e., ErrΓ2 $ RE1 : regionsspσ2q Ď pσ2pallocq ´ σpallocqq.

4. (SEQ2r) In this case, S is var x : T ; S2. This case follows the inductive hypothesis and the

program semantics.

5. (SUBEFFr) By the inductive hypothesis, (Γ
r tP uStQurεs. Hence when applying the frame

condition ε1 ě ε, the locations that may be changed are also contained in ε1. Therefore ε1 is

a correct frame.

6. (FRMr) In this case, by the inductive hypothesis, it must be true that (Γ
r tP uStQurεs. And

164

by the assumption, it must be true that P (Γ δ frm Q and P && R ñ δ¨{̈ε. The proof

obligation is to show (Γ
r tP && RuStQ && Rurεs. Because P && R implies P , Thus,

it must be true that (Γ
r tP && RuStQurεs. Let pσ1, H 1q “ MSrrΓ $ S : okpΓ1qsspσ,Hq.

The proof obligation is to show that pσ1, H 1q (Γ1

R. By pσ,Hq (Γ P && R and the side

condition P && R ñ δ¨{̈ε, it must be true that pσ,Hq (Γ δ¨{̈ε. As the write effect is

pσ,HqÑpσ1, H 1q (Γ ε, it must be true that pσ,Hq
δ
” pσ1, H 1q. By the definition of framing

(Def. 5) and pσ,Hq (Γ P && R, it must be true that pσ1, H 1q (Γ1

R.

7. (CONSEQr) In this case, by the inductive hypothesis, it must be true that (Γ
r tP

1uStQ1urεs.

By the premise, P ñ P 1 and Q1 ñ Q. Hence (Γ
r tP uStQurεs is valid.

165

APPENDIX C: PROOF OF THEOREM 3

166

Theorem 3: Let Γ be a well-formed type environment. Let S be a statement. Let P1 and P2 be

assertions. Let ε be effects. Then

$Γ
r tP1uStP2urεs iff $Γ

u rreads rÓstP1uStP2urεs

where P1 ñ r “ alloc and modifies r R ε

Proof. The left hand side implies the right hand side is firstly proved; i.e., that if there is a proof

in FRL, then the encoded proof is in UFRL. The proof is done by the induction on FRL derivation

and by cases on the last rule used. There are 6 base cases.

1. SKIP: In this case, suppose that the FRL proof consists of the axiom SKIPr, which is

$Γ
r ttrueuskip; ttrueurHs. Then, the proof obligation is to show that the judgment

$Γ
u rreads rÓsttrueuskip; ttrueurHs, where true ñ r “ alloc, is derivable in UFRL.

It can be done by using the axiom SKIPu and the structural rule SubEff u.

2. VAR: In this case, suppose that the FRL proof consists of the axiom VARr, which is $Γ
r

ttrueuvar x : T ; tx “ defaultpT qurHs. Then, the proof obligation is to show that the judg-

ment $Γ
u rreads rÓsttrueuvar x : T ; tx “ defaultpT qurHs, where true ñ r “ alloc,

is derived in UFRL. It can be done by using the axiom VARu and the structural rule SubEff u.

3. ALLOC: In this case, suppose that the FRL proof consists of the axiom ALLOCr, which

is $Γ
r ttrueu x :“ new T ; tnewpT, xqurmodifies x,alloc,freshpregiontx.˚uqs.

Then, the proof obligation is to show the following judgment is derivable in UFRL.

$Γ
u

rreads rÓs

ttrueu x :“ new T ; tnewpT, xq r modifies x,alloc,freshpregiontx.˚uqs

where true ñ r “ alloc

It can be done by using the axiom ALLOCu and the structural rule SubEff u.

4. UPD: Suppose that the FRL proof consists of the axiom UPDr, which is $Γ
r tx ‰

nullu x.f :“ G; tx.f “ Gurmodifies regiontx.fus, where x R FVpGq. Then, the

167

proof obligation is to show that the following judgment is derivable.

$Γ
u rreads rÓstx ‰ nullu x.f :“ G; tx.f “ Gurmodifies regiontx.fus

where x R FVpGq and x ‰ null ñ r “ alloc

It can be done by using the axiom UPDu and the structural rule SubEff u.

5. ASGN: Suppose that the FRL proof consists of the axiom ASGNr: $Γ
r ttrueux :“ G; tx “

Gu rmodifies xs, where x R FVpGq. Then, the proof obligation is to show that the follow-

ing judgment is derivable.

$Γ
u rreads rÓsttrueu x :“ G; tx “ Gu rmodifies xs

where x R FVpGq and true ñ r “ alloc

It can be done by using the axiom ASGNu and the structural rule SubEff u.

6. ACC: Suppose that the FRL proof consists of the axiom ACCr, which is $Γ
r tx

1 ‰ nullux :“

x1.f ; tx “ x1.fu rmodifies xs, where x ‰ x1. Then, the proof obligation is to show that

the following judgment is derivable.

$Γ
u rreads rÓstx

1 ‰ nullu x :“ x1.f ; tx “ x1.fu rmodifies xs

where x ‰ x1 and x1 ‰ null ñ r “ alloc

It can be done by using the axiom ACCu and the structural rule SubEff u.

The inductive hypothesis is that for all substatements Si, it is true that $Γ
r tPiuSitQiurεis iff $Γ

u

rreads rÓstPiuSitQiurεis, where Pi ñ r “ alloc and and modifies r R ε.

1. IF: In this case, suppose that the FRL proof consists of the rule IFr, which is

$
Γ
r tP && Eu S1 tP

1
urεs $

Γ
r tP && Eu S2 tP

1
urεs

$
Γ
r tP uif E then tS1u else tS2utP

1
urεs

168

Then the proof obligation is to show that the following is derivable.

$
Γ
u rreads rÓstP && Eu S1 tP

1
urεs $

Γ
u rreads rÓstP && Eu S2 tP

1
urεs

$
Γ
u rreads rÓstP uif E then tS1u else tS2utP

1
urεs

where P ñ r “ alloc

By the inductive hypothesis, the two premises are assumed. Using the rule IFu, the following

is derived

$
Γ
u rreads rÓstP && Eu S1tQu rεs $

Γ
u rreads rÓstP && Eu S2tQu rεs

$
Γ
u rreads rÓ, δEstP u if E tS1uelsetS2utQu rεs

where δE “ efspEq, P ñ r “ alloc and modifies r R ε

Then, using the rule SubEff u, the conclusion of is derived.

2. WHILE: Suppose that the FRL proof consists of the rule WHILEr, which is

$
Γ
r tP && Eu StP u rε,freshpREqs

$
Γ
r tP && r “ allocu while E tSu tP && Eu rεs

,

where P ñ RE !! r, ε is fresh-free, ε is P {ε-immune and modifies r R ε

where r snapshots the domain of the heap in the pre-state. Then the proof obligation is to

show the following is derivable.

$
Γ
u rreads rÓstP && Eu StP u rε,freshpREqs

$
Γ
u rreads rÓstP && r “ allocu while E tSu tP && Eu rεs

where P ñ r “ alloc and modifies r R ε

By the inductive hypothesis, the premises is assumed. To use the rule WHILEu, its side

conditions have to be true. In addition to the side condition that is given by the assumption,

it needs to prove that reads r is P {ε-immune, which is true because modifiesr R ε.

169

Then, using the rule WHILEu, the following is derived

$
Γ
u rreads rÓstP && Eu StP u rε,freshpREqs

$
Γ
u rreads rÓ, δEstP && r “ allocu while E tSu tP && Eu rεs

,

where P ñ r “ alloc, P ñ RE !! r, ε is fresh-free, ε is P {ε-immune

and modifies r R ε,

where δE “ efspEq. Then, the conclusion is derived by using the structural rule SubEff u.

3. SEQ1: Suppose that the FRL proof consists of the rule SEQ1r, which is

$
Γ
r tP u S1 tP1urε1,freshpREqs $

Γ
r tP1u S2 tP

1
urε2,REs

$
Γ
r tP u S1S2 tP

1
ur ε1, ε2,freshpREqs

where S1 ‰ var x : T ; , ε1 is fresh-free, ε2 is P {ε1-immune, and

RE is P1{pmodifies RE, ε2q-immune

Then the proof obligation is to show that the following is derivable.

$
Γ
u rreads rÓstP u S1 tP1urε1,freshpREqs $

Γ
u rreads rÓstP1u S2 tP

1
urε2,REs

$
Γ
u rreads rÓstP u S1S2 tP

1
ur ε1, ε2,freshpREqs

where P ñ r “ alloc and modifies r R pε1, ε2q

By the inductive hypothesis, the two premises are assumed. To use the rule SEQ1u, check

the side condition reads r is P {ε1-immune, which is true because modifiesr R pε1, ε2q

by the inductive hypothesis. Then, the conclusion is derived by using the rule SEQ1u.

4. SEQ2: Suppose that the FRL proof consists of the rule SEQ1r:

$
Γ
r tP && x “ defaultpT qu : S tQurmodifies x, εs

$
Γ
r tP u var x : T ;S tP 1ur εs

170

Then, the proof obligation is to show that the following is derivable.

$
Γ
u rreads rÓstP && x “ defaultpT qu S tQur modifies x, εs

$
Γ
u rreads rÓstP u var x : T ; S tP 1ur εs

where P ñ r “ alloc and r ‰ x;

By the inductive hypothesis, the assumption is assumed. Then the conclusion is derived by

using the rule SEQ2u.

5. FRM: Suppose that the FRL proof consists of the rule FRMr:

$
Γ
r tP u S tP 1urεs P $Γ δ frm Q

$
Γ
r tP && Qu S tP 1 && Qurεs

where P && Qñ δ¨{̈ε

Then the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP 1urεs P $Γ δ frm Q

$
Γ
u rreads rÓstP && Qu S tP 1 && Qurεs

where P && Qñ δ¨{̈ε, P ñ r “ alloc and reads r R ε

By inductive hypothesis, the two premises of the above equations are assumed. Then, the

conclusion can be derived by using the rule FRMu.

6. SubEff: Suppose that the FRL proof consists of the rule SubEff r:

$
Γ
r tP u S tP

1
urεs P $Γ ε ď ε1

$
Γ
r tP u S tP

1
urε1s

Then the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP 1urεs P $Γ ε ď ε1

$
Γ
u rreads rÓstP u S tP 1urε1s

where P ñ r “ alloc and reads r R ε

171

By the inductive hypothesis, the two premises are assumed. Then, the conclusion can

be derived by using the rule SubEff u, because the side condition regRWpε,reads rq ď

regRWpε1,reads rq is true.

7. CONSEQ: suppose that the FRL proof consists of the rule CONSEQr:

P2 ñ P1 $
Γ
r tP1u S tP

1
1urεs P 11 ñ P 12

$
Γ
r tP2u StP

1
2urεs

Then, the proof obligation is to show that the following is derivable.

P2 ñ P1 $
Γ
u rreads rÓstP1u S tP

1
1urεs P 11 ñ P 12

$
Γ
u rreads rÓstP2u StP

1
2urεs

where P ñ r “ alloc and reads r R ε

By the inductive hypothesis, the two premises are assumed. Then, its conclusion can be

derived by using the rule CONSEQu.

8. ConEff: suppose that the FRL proof consists of the rule ConEff r:

$
Γ
r tP && Eu S tP 1urε1s $

Γ
r tP && Eu S tP 1urε2s

$
Γ
r tP u S tP

1
ur E ? ε1 : ε2s

Then, the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP && Eu S tP 1urε1s $

Γ
u rreads rÓstP && Eu S tP 1urε2s

$
Γ
u rreads rÓstP u S tP

1
ur E ? ε1 : ε2s

where P ñ r “ alloc and reads r R ε

By the inductive hypothesis, the two premises are assumed. Then, its conclusion can be

derived by using the rule ConEff u

9. ConMask1: Suppose that the FRL proof consists of the rule ConMask1r:

$
Γ
r tP u S tP

1
urε, E ? ε1 : ε2s

$
Γ
r tP u S tP

1
urε, ε1s

where P ñ E

172

Then, the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP

1
urε, E ? ε1 : ε2s

$
Γ
u rreads rÓstP u S tP

1
urε, ε1s

where P ñ E, P ñ r “ alloc and reads r R ε

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using

the rule ConMask1u

10. ConMask2: suppose that the FRL proof consists of the rule ConMask2r:

$
Γ
r tP u S tP

1
urε, E ? ε1 : ε2s

$
Γ
r tP u S tP

1
urε, ε2s

where P ñ E

Then, the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP

1
urε, E ? ε1 : ε2s

$
Γ
u rreads rÓstP u S tP

1
urε, ε2s

where P ñ E, P ñ r “ alloc and reads r R ε

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using

the rule ConMask2u.

11. PostToFr: Suppose that the FRL proof consists of the rule PostToFrr :

$
Γ
r tP u S tP

1
urεs

$
Γ
r tP u S tP

1
urε, E ? freshpRE1q : freshpRE2qs

where P ñ pE && RE1 !! allocq and P ñ p E && RE2 !! allocq

Then, the proof obligation is to show the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP

1
urεs

$
Γ
u rreads rÓstP u S tP

1
urε, E ? freshpRE1q : freshpRE2qs

where P ñ r “ alloc,reads r R ε, P ñ pE && RE1 !! allocq

and P ñ p E && RE2 !! allocq

173

By the inductive hypothesis, the premise is assumed. Then, the conclusion is derived by

using the rule PostToFru.

12. FrToPost: Suppose that the FRL proof consists of the rule FrToPostr:

$
Γ
r tP u S tP

1
urε, E ? freshpRE1q : freshpRE2qs

$
Γ
r

tP u S tP 1 && pbñ RE1 !! rq && p bñ RE2 !! rqu

rε, E ? freshpRE1q : freshpRE2qs

where P ñ r “ alloc, P ñ b “ E,modifies b R ε and modifies r R ε

Then, the proof obligation is to show that the following is derivable

$
Γ
u rreads rÓstP u S tP

1
urε, E ? freshpRE1q : freshpRE2qs

$
Γ
u

rreads rÓs

tP u S tP 1 && pbñ RE1 !! rq && p bñ RE2 !! rqu

rε, E ? freshpRE1q : freshpRE2qs

where P ñ r “ alloc, P ñ b “ E,modifies b R ε and modifies r R ε

By the inductive hypothesis, the premise is assumed. Then, the conclusion can be derived

by using the rule FrToPostu.

13. VarMask1: suppose that the FRL proof consists of the rule VarMask1r:

$
Γ
r tP u S tP

1
ur E ? pmodifies x, ε1q : ε2s

$
Γ
r tP u S tP

1
ur E ? ε1 : ε2s

where P ñ b “ E, P ñ b, P || P 1 ñ x “ y, P && bñ reads y¨{̈px, εq

and modifies b R pε1, ε2q

174

Then, the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP

1
ur E ? pmodifies x, ε1q : ε2s

$
Γ
u rreads rÓstP u S tP

1
ur E ? ε1 : ε2s

where P ñ r “ alloc, P ñ b “ E, P ñ b, P || P 1 ñ x “ y,

P && bñ reads y¨{̈px, εq,modifies r R pε1, ε2q and modifies b R pε1, ε2q

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using

the rule VarMask1u.

14. VarMask2: Suppose that the FRL proof consists of the rule VarMask2r:

$
Γ
r tP u S tP

1
ur E ? ε1 : pmodifies x, ε2qs

$
Γ
r tP u S tP

1
ur E ? ε1 : ε2s

where P ñ b “ E, P ñ b, P || P 1 ñ x “ y, P && bñ reads y¨{̈px, εq

and modifies b R pε1, ε2q

Then, the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP

1
ur E ? ε1 : pmodifies x, ε2qs

$
Γ
u rreads rÓstP u S tP

1
ur E ? ε1 : ε2s

where P ñ r “ alloc, P ñ b “ E, P ñ b, P || P 1 ñ x “ y,

P && bñ reads y¨{̈px, εq,reads r R pε1, ε2q and modifies b R pε1, ε2q

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using

the rule VarMask2u.

175

15. FieldMask1: Suppose that the FRL proof consists of the rule FieldMask1r:

$
Γ
r tP u S tP

1
urε, E ? pmodifies regiontx.fu, ε1q : ε2s

$
Γ
r tP u S tP

1
urε, E ? ε1 : ε2s

where P ñ b “ E, P ñ b, P || P 1 ñ x.f “ y,

P 1 && bñ reads x¨{̈ modifies ε,

P 1 && bñ reads y¨{̈modifies ε and modifies b R pε, ε1, ε2q

Then, the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP

1
urε, E ? pmodifies regiontx.fu, ε1q : ε2s

$
Γ
u rreads rÓstP u S tP

1
urε, E ? ε1 : ε2s

where P ñ r “ alloc, P ñ b “ E, P ñ b, P || P 1 ñ x.f “ y,

P 1 && bñ reads x¨{̈ modifies ε, P 1 && bñ reads y¨{̈modifies ε

modifies r R pε, ε1, ε2q and modifies b R pε, ε1, ε2q

(C.1)

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using

the rule FieldMask1u.

16. FieldMask2: Suppose that the FRL proof consists of the rule FieldMask2r:

$
Γ
r tP u S tP

1
urε, E ? ε1 : pmodifies regiontx.fu, ε2qs

$
Γ
r tP u S tP

1
urε, E ? ε1 : ε2s

where P ñ b “ E, P ñ b, P || P 1 ñ x.f “ y,

P 1 && bñ reads x¨{̈ modifies ε,

P 1 && bñ reads y¨{̈modifies ε and modifies b R pε, ε1, ε2q

176

Then the proof obligation is to show that the following is derivable in UFRL.

$
Γ
u rreads rÓstP u S tP

1
urε, E ? ε1 : pmodifies regiontx.fu, ε2qs

$
Γ
u rreads rÓstP u S tP

1
urε, E ? ε1 : ε2s

where P ñ r “ alloc, P ñ b “ E, P ñ b, P || P 1 ñ x.f “ y,

P 1 && bñ reads x¨{̈ modifies ε, P 1 && bñ reads y¨{̈modifies ε

modifies r R pε, ε1, ε2q and modifies b R pε, ε1, ε2q

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using

the rule FieldMask2u.

Next, it is proved from the right side of the left side. It means that if there is a proof $Γ
u

rreads rÓstP1uStP2urεs in UFRL, where P1 ñ r “ alloc and modifies r R ε, then there is

a proof $Γ
r tP1uStP2urεs in FRL. The proof is done by the induction on the UFRL derivation and

by cases on the last rule used, and is omitted.

177

APPENDIX D: PROOF OF THEOREM 5

178

Theorem 5: An assertion in SL is supported if and only if it has semantic footprint.

Proof. Let Γ be a well-formed type environment. Let pσ, hq be a state and a be an assertion in SL,

such that σ, h (Γ
s a. Let H def

“ th1|h1 Ď h ^ σ, h1 (Γ
s au. Any subset of H defines a partial order,

i.e., H1 ď H2 iff H1,H2, P PpHq andH1 Ď H2. Define pÓ Hiq
def
“ tH1|H1 ď Hi ^H1 P PpHqu,

where Hi P PpHq. For any pair of H1 and H2, pÓ H1q X pÓ H2q is a partial order. Let
Ű

H define

the greatest lower bound of any subset of the intersection. Let
Ű

H define the greatest lower bound

of any subset of the intersection. If it has a greatest lower bound of H1 and H2, then

Ha ď pH1

ę

H
H2q iff pHa ď H1 andHa ď H2q.

Thus, Ha is the least subheap for an assertion a in Definition 14. Next, it is shown that dompHaq is

a’s semantic footprint. Let R def
“ tr|σ, hær (Γ

s au. Any subset of R defines a partial order in a way

similar to H. Let
Ű

R define the greatest lower bound of any subset of R. Let DOM be a functor

from PpHq to PpRq, such that DOMpth1, h2, . . . , hnuq “ tdomph1q, domph2q, . . . , domphnqu.

If pH1q ď pH2q, then DOMpH1q ď DOMpH2q. Thus Hp ď pH1

Ű

H H2q iff DOMpHpq ď

DOMpH1q
Ű

RDOMpH2q.

179

APPENDIX E: PROOF OF THEOREM 7

180

Theorem 7: Let Γ be a well-formed type environment. Let a be an assertion in SSL. Then σ, h (Γ
s

a iff σ, h (Γ
u TRrrass.

Proof. The proof is by the induction on the assertion’s structure. Here it is only shown the most

interesting case that encodes the separating conjunction. Other proofs are found in the KIV project

[7]. It is an inductive case when a is of the form a1 ˚ a2. The inductive hypothesis is that for all

subassertions ai, σ, h (Γ
s ai iff σ, h (Γ

u TRrraiss.

From the left side to the right side is firstly proved. Assume σ, h (Γ
s a1 ˚ a2. The proof obligation

is to show that σ, h (Γ
u TRrra1ss && TRrra2ss && pfptspa1q !! fptspa2qq.

σ, h (Γ
s a1 ˚ a2

iff xby the semantics of separation logic (Def. 11)y

exists h1, h2 :: ph1Kh2 and h “ h1 ¨ h2 and σ, h1 (
Γ
s a1 and σ, h2 (

Γ
s a2q

iff xby let fresh variables, h1 and h2, be the witnesses of the existential variables.y

h1Kh2 and h “ h1 ¨ h2 and σ, h1 (
Γ
s a1 and σ, h2 (

Γ
s a2

impliesxby truth of assertions is preserved under heap extension (Lemma 9)y

h1Kh2 and h “ h1 ¨ h2 and σ, h1 (
Γ
s a1 and σ, h2 (

Γ
s a2 and σ, h (Γ

s a1 and σ, h (Γ
s a2

impliesxby let r1 and r2 be fresh, and by Theorem 6y

h1Kh2 and h “ h1 ¨ h2 and σ, h1 (
Γ
s a1 and σ, h2 (

Γ
s a2 and σ, h (Γ

s a1 and σ, h (Γ
s a2 and

ErrΓ $ fptspa1q : regionsspσq “ r1 and ErrΓ $ fptspa2q : regionsspσq “ r2

impliesxby Corollary 4 and h1Kh2y

h1Kh2 and h “ h1 ¨ h2 and σ, h1 (
Γ
s a1 and σ, h2 (

Γ
s a2 and σ, h (Γ

s a1 and σ, h (Γ
s a2 and

ErrΓ $ fptspa1q : regionsspσq “ r1 and ErrΓ $ fptspa2q : regionsspσq “ r2 and r1 !! r2

iff xby inductive hypothesisy

h1Kh2 and h “ h1 ¨ h2 and σ, h1 (
Γ
s a1 and σ, h2 (

Γ
s a2 and σ, h (Γ

s a1 andσ, h (Γ
s a2 and

ErrΓ $ fptspa1q : regionsspσq “ r1 and ErrΓ $ fptspa2q : regionsspσq “ r2 and r1 !! r2

and σ, h (Γ
u TRrra1ss and σ, h (Γ

u TRrra2ss

181

iff xby the semantics of assertions (Fig. 3.2)y

σ, h (Γ
u TRrra1ss && TRrra2ss && pfptspa1q !! fptspa2qq

iff xby Mapping from SSL to UFRL (Def. 16)y

σ, h (Γ
u TRrra1 ˚ a2ss

Next, it is proved it from the right side to the left side. Assume

σ, h (Γ
u TRrra1ss && TRrra2ss && pfptspa1q !! fptspa2qq. The proof obligation is to show that

σ, h (Γ
s a1 ˚ a2.

σ, h (Γ
u TRrra1ss && TRrra2ss && pfptspa1q !! fptspa2qq

iff xby the semantics of assertions (Fig. 3.2)y

σ, h (Γ
u TRrra1ss and σ, h (Γ

u TRrra2ss and ErrΓ $ fptspa1q : regionsspσq “ r1 and

ErrΓ $ fptspa2q : regionsspσq “ r2 and r1 !! r2

iff xby inductive hypothesisy

σ, h (Γ
u TRrra1ss and σ, h (Γ

u TRrra2ss and ErrΓ $ fptspa1q : regionsspσq “ r1 and

ErrΓ $ fptspa2q : regionsspσq “ r2 and r1 !! r2 and σ, h (Γ
u a1 and σ, h (Γ

u a2

iff xby Corollary 5y

σ, h (Γ
u TRrra1ss and σ, h (Γ

u TRrra2ss and ErrΓ $ fptspa1q : regionsspσq “ r1 and

ErrΓ $ fptspa2q : regoinsspσq “ r2 and r1 !! r2 and σ, hær1 (
Γ
u a1 and σ, hær2 (

Γ
u a2

implies

C

by hær2 Ď hæpdomphq ´ r1q and truth of assertions is closed under heap extension

(Lemma 9)

G

σ, h (Γ
u TRrra1ss and σ, h (Γ

u TRrra2ss and ErrΓ $ fptspa1q : regionsspσq “ r1 and

ErrΓ $ fptspa2q : regionsspσq “ r2 and r1 !! r2

and σ, hær1 (
Γ
u a1 and σ, hær2 (

Γ
u a2 and σ, hæpdomphq ´ r1q (

Γ
u a2

implies

C

by Corollary 4, r1 Y pdomh ´ r1q “ domphq, and h1 “ hær1 and h2 “ hæ

pdomphq ´ r1q

G

exists h1, h2 :: ph1Kh2 and h “ h1 ¨ h2 and σ, h1 (
Γ
s a1 and σ, h2 (

Γ
s a2q

iff xby the semantics of separation logic (Def. 11)y

182

σ, h (Γ
s a1 ˚ a2

183

APPENDIX F: PROOF OF LEMMA 13

184

Lemma 13: Let Γ be a well-formed type environment. Let a and a1 be assertions and S be

a statement, such that (Γ
s tauSta1u. Let pσ,Hq be an arbitrary state. If σ,H (Γ

s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q, then:

1. for all x P dompσq:: σ1pxq ‰ σpxq implies x P MVpSq.

2. for all po, fq P dompHq:: H 1ro, f s ‰ Hro, f s implies po, fq P ErrΓ $ fptspaq : regionsspσq.

3. for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq:: po, fq P

pdompH 1q ´ dompHqq.

Proof. Let a, a1, S, pσ,Hq be given, such that (Γ
s tauSta

1u. Let pσ1, H 1q be such that pσ1, H 1q “

MSrrΓ $ S : okpΓ1qsspσ,Hq.

For property 1,it must be shown that for all x P dompσq:: σ1pxq ‰ σpxqimpliesx P MVpSq. The

proof is by induction on the structure of the statement S and the definition of MV(S). There are 6

base cases.

1. (SKIP) In this case, S has the form skip;. According to its semantics Fig. 2.4, σ “ σ1.

Thus, it is vacuously true.

2. (VAR) In this case, S has the form var x : T ;. According to its semantics Fig. 2.4, σ1 “

Extendpσ, x, defaultpT qq. Thus, it is vacuously true, as Extend only extends σ by definition.

3. (ALLOC) In this case, S has the form y :“ new T ;, for some variable y. According to

the semantics Fig. 2.4, σ1 “ σry ÞÑ ls, where l is some new location. Thus, no other

variables are mapped to different values by σ1. For y, it must be true that σ1pyq ‰ σpyq, and

y P MVpy :“ new T ; q “ tyu, according to Fig. 6.2.

4. (ASGN) In this case, S has the form y :“ e; for some variable y. According to its semantics

Fig. 2.4, σ1 “ σry ÞÑ vs, where v is the value of e. For y, σ1pyq ‰ σpyq, and y P MVpy :“

eq “ tyu, according to Fig. 6.2.

185

5. (UPD) In this case, S has the form y.f :“ e;. According to its semantics Fig. 2.4, σ1 “ σ.

Thus, it is vacuously true.

6. (ACC) In this case, S has the form y :“ x1.f ;. According to its semantics Fig. 2.4, σ1 “

σry ÞÑ vs, where v is the value of x1.f . Thus, σ1pyq ‰ σpyq, and y P MVpy :“ x1.fq “ tyu,

according to Fig. 6.2.

The inductive hypothesis is that for all substatements Si, pσi, Hiq, and pσ1i, H
1
iq, for all x P

dompσiq :: σ1ipxq ‰ σipxq implies x P MVpSiq. There are 3 inductive cases.

1. (IF) In this case, S has the form if e tS1uelse tS2u. According to its semantics Fig. 2.4, if

ErrΓ $ e : boolsspσq ‰ 0, then the result follows from the inductive hypothesis applied to

S1. Similarly if ErrΓ $ e : boolsspσq, the result also follows similarly.

2. (WHILE) In this case, S has the form while e tSu. According to its semantics Fig. 2.4 on

page 23, there exists n ě 0, such that σ1 “ σn and ErrΓ $ e : boolsspσnq. The proof is

done by induction on n. The base case is n “ 0. According to the semantics Fig. 2.4, σ1 “ σ.

Thus, it is vacuously true. For the inductive case, assume for all x P dompσq :: σn´1pxq ‰

σpxq implies x P MVpSq. And by the inductive hypothesis, for all x P dompσn´1q :: σnpxq ‰

σn´1 implies x P MVpSq. Thus, for all x P dompσq :: σpxq ‰ σ1pxq implies x P MVpSq.

3. (SEQ) In this case, S has the form S1S2. By definition, MVpS1S2q “ MVpS1q Y MVpS2q.

According to the statement’s semantics Fig. 2.4, assume σ1 is the post-states of S1. By

the inductive hypothesis, for all x P dompσq :: σ1pxq ‰ σpxq implies x P MVpS1q, and

for allx P dompσ1q :: σ1pxq ‰ σ1pxq impliesx P MVpS2q. Thus, for allx P dompσq :: σ1pxq ‰

σpxq implies px P MVpS1S2qq.

186

For property 2, it must be shown that for all po, fq P dompHq:: H 1ro, f s ‰ Hro, f s implies po, fq P

ErrΓ $ fptspaq : regionsspσq. Assume that σ,H (Γ
s tau S ta1u, σ,H (Γ

s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q. The proof is done in calculational style, starting from

the assumptions.

σ,H (Γ
s tau S ta1u and σ,H (Γ

s a and MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q

iff

C

by assumption (Γ
s tauSta

1u,

thus pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u iff σ,H (Γ
s tau S ta1u

G

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q

iff xby Corollary 5: σ,H (Γ
s a iff pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ

s ay

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q and pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s a

iff xby the definition of SSL valid Hoare-formula (Def. 17)y

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q and pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and if

ppσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then σ1, H2 (Γ1

s a1q.

iff xby frame property of SLy

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q and pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

ppσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, and σ1, H2 (Γ1

s a1q

and H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq

impliesxby A and B implies By

187

H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq

iff

C

by
for all po, fq P ErrΓ $ fptspaq : regionsspσq :: . . . implies

po, fq P ErrΓ $ fptspaq : regionsspσq is a tautology

G

H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

for all po, fq P ErrΓ $ fptspaq : regionsspσq :: H2ro, f s ‰

HæErrΓ $ fptspaq : regionsspσqro, f s implies po, fq P ErrΓ $ fptspaq : regionsspσq

implies

C

by
H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and pdompHq´

ErrΓ $ fptspaq : regionsspσqq X ErrΓ $ fptspaq : regionsspσq “ H

G

H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq

and for all po, fq P ErrΓ $ fptspaq : regionsspσq :: H 1ro, f s ‰

HæErrΓ $ fptspaq : regionsspσqro, f s implies po, fq P ErrΓ $ fptspaq : regionsspσq

impliesxby Corollary 4, ErrΓ $ fptspaq : regionsspσq Ď dompHq, twicey

H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

for all po, fq P dompHq :: H 1ro, f s ‰ Hro, f s implies po, fq P ErrΓ $ fptspaq : regionsspσq

impliesxby A and B impliesBy

for all po, fq P dompHq :: H 1ro, f s ‰ Hro, f s implies po, fq P ErrΓ $ fptspaq : regionsspσq

For property 3, it must be shown that for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσq ´

ErrΓ $ fptspaq : regionsspσqq:: po, fq P pdompH 1q ´ dompHqq. Assume that σ,H (Γ
s tau S ta1u,

σ,H (Γ
s a and MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q. The proof is done in calculational style,

starting from the assumptions.

σ,H (Γ
s tau S ta1u and σ,H (Γ

s a and MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q

188

iff

C

by assumption (Γ
s tauSta

1u,

thus pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u iff σ,H (Γ
s tau S ta1u

G

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q

iff xby Corollary 5: σ,H (Γ
s a iff σ,HæErrΓ $ fptspaq : regionsspσq (Γ

s ay

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q and σ,HæErrΓ $ fptspaq : regionsspσq (Γ
s a

iff xby the definition of SSL valid Hoare-formula (Def. 17)y

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q and σ,HæErrΓ $ fptspaq : regionsspσq (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and if

ppσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then σ1, H2 (Γ1

s a1q.

iff xby frame property of SLy

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u and σ,H (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,Hq “ pσ1, H 1q and σ,HæErrΓ $ fptspaq : regionsspσq (Γ
s a and

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

ppσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, and σ1, H2 (Γ1

s a1q

and H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq

impliesxby A^B implies By

σ1, H2 (Γ1

s a1 and H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq

iff xby pfor all po, fq P pr1 ´ rq :: po, fq P pr1 ´ rqq is a tautologyy

189

σ1, H2 (Γ1

s a1 and H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq

impliesxby Corollary 4, ErrΓ $ fptspaq : regionsspσq Ď dompHqy

σ1, H2 (Γ1

s a1 and H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q´

ErrΓ $ fptspaq : regionsspσqq :: po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ dompHqq

impliesxby H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and Corollary 4y

σ1, H2 (Γ1

s a1 and H2KHæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

H 1 “ H2 ¨HæpdompHq ´ ErrΓ $ fptspaq : regionsspσqq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ dompHqq

impliesxby A and B implies By

pfor all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ dompHqqq

190

APPENDIX G: PROOF OF THEOREM 8

191

Theorem 8: Let Γ be a well-formed type environment. Let S be a statement, and let a and a1 be

assertions in SSL, such that (Γ
s tauSta

1u. Let r be a region variable. Let pσ,Hq be a Γ-state. If

σ,H (Γ TRrrass ñ r “ fptspaq and r R MVpSq, then

σ,H (Γ
s tau Sta1u iff

σ,H (Γ
u rfptspaqstTRrrassuStTRrra

1ssur modifies fptspaq,MVpSq,fresh pfptspa
1q ´ rqs

Proof. Assume that σ,H (Γ
s tauSta

1u. The lemma is proved by mutual implication. First it is

proved that the left side implies the right side.

σ,H (Γ
s tau S ta1u

iff

C

by assumption (Γ
s tauSta

1u,

thus pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u iff σ,H (Γ
s tau S ta1u

G

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u

iff xby the definition of SSL valid Hoare-formula (Def. 17)y

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s a implies

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then σ1, H 1 (Γ1

s a1

impliesxby Lemma 13y

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s a implies

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then σ1, H 1 (Γ1

s a1

and for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P ErrΓ $ fptspaq : regionsspσq :

H 1ro, f s ‰ HæErrΓ $ fptspaq : regionsspσqro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ ErrΓ $ fptspaq : regionsspσqqq

192

implies

C

by termination monotonicity as pH ´HæErrΓ $ fptspaq : regionsspσqqK

HæErrΓ $ fptspaq : regionsspσq and H “

pH ´HæErrΓ $ fptspaq : regionsspσqq ¨HæErrΓ $ fptspaq : regionsspσq

G

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s a implies

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

s a1 andpσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and

for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P ErrΓ $ fptspaq : regionsspσq : H 1ro, f s ‰

HæErrΓ $ fptspaq : regionsspσqro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ ErrΓ $ fptspaq : regionsspσqqq

impliesxby the frame property of SLy

pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s a implies

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

s a1 and pσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and

H2 “ H 1 ¨ pH ´HæErrΓ $ fptspaq : regionsspσqq and

H 1KpH ´HæErrΓ $ fptspaq : regionsspσqq and

for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P ErrΓ $ fptspaq : regionsspσq : H 1ro, f s ‰

HæErrΓ $ fptspaq : regionsspσqro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ ErrΓ $ fptspaq : regionsspσqqq

impliesxby Corollary 5y

193

σ,H (Γ
s a implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then σ1, H 1 (Γ1

s a1

and pσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and

H2 “ H 1 ¨ pH ´HæErrΓ $ fptspaq : regionsspσqq and

H 1KpH ´HæErrΓ $ fptspaq : regionsspσqq and

for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P ErrΓ $ fptspaq : regionsspσq : H 1ro, f s ‰

HæErrΓ $ fptspaq : regionsspσqro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ ErrΓ $ fptspaq : regionsspσqqq

iff xby Theorem 7, twicey

σ,H (Γ
u TRrrass implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

TRrra1ss and pσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and

H2 “ H 1 ¨ pH ´HæErrΓ $ fptspaq : regionsspσqq and

H 1KpH ´HæErrΓ $ fptspaq : regionsspσqq and

for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P ErrΓ $ fptspaq : regionsspσq : H 1ro, f s ‰

HæErrΓ $ fptspaq : regionsspσqro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ ErrΓ $ fptspaq : regionsspσqq

implies

C

by dompH 1q ´ ErrΓ $ fptspaq : regionsspσq “ dompH 1q ´ dompHq, because

ErrΓ $ fptspaq : regionsspσq Ď dompHq by Corollary 4, and

H 1KpH ´HæErrΓ $ fptspaq : regionsspσqq

G

194

σ,H (Γ
u TRrrass implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

TRrra1ss and pσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and H2 “

H 1 ¨ pH ´HæErrΓ $ fptspaq : regionsspσqq and H 1KpH ´HæErrΓ $ fptspaq : regionsspσqq

and for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P ErrΓ $ fptspaq : regionsspσq : H 1ro, f s ‰

HæErrΓ $ fptspaq : regionsspσqro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ dompHqq

implies

C

by tpo, fq P ErrΓ $ fptspaq : regionsspσq ::

H 1ro, f s ‰ HæErrΓ $ fptspaq : regionsspσqro, f su “

tpo, fq P dompHq :: H 1ro, f s ‰ Hro, f su, because

ErrΓ $ fptspaq : regionsspσq Ď dompHq

by Corollary 4, and H 1KpH ´HæErrΓ $ fptspaq : regionsspσqq

G

σ,H (Γ
u TRrrass implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

TRrra1ss and pσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and

for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P dompHq : H 1ro, f s ‰ Hro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ fptspaq : regionsspσqq ::

po, fq P pdompH 1q ´ dompHqq

iff xby assumption ErrΓ $ fptspaq : regionsspσq “ ErrΓ $ r : regionsspσqy

195

σ,H (Γ
u TRrrass implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

TRrra1ss and pσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and

for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P dompHq : H 1ro, f s ‰ Hro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P pErrΓ1 $ fptspa
1q : regionsspσ1q ´ ErrΓ $ r : regionsspσqq ::

po, fq P pdompH 1q ´ dompHqq

iff xby ErrΓ $ r : regionsspσq “ ErrΓ1 $ r : regionsspσ1q because r R MVpSqy

σ,H (Γ
u TRrrass implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

TRrra1ss and pσ1, H2q “MSrrΓ $ S : okpΓ1qsspσ,Hq and

for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P dompHq : H 1ro, f s ‰ Hro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P ErrΓ1 $ pfptspa
1q ´ rq : regionsspσ1q :: po, fq P pdompH 1q ´ dompHqq

implies

C

by the definition of UFRL valid Hoare-formula (Def. 8),

as freshRpmodifies fptspaq,MVpSq,fresh pfptspa
1q ´ rqq is pfptspa

1q ´ rq

G

σ,H (Γ
u rfptspaqstTRrrassuStTRrra

1ssur modifies fptspaq,MVpSq,fresh pfptspa
1q ´ rqqs

where TRrrass implies r “ fptspaq

Next, let r “ fptspaq. The proof goes from the right side to the left side.

σ,H (Γ
u rfptspaqstTRrrassuStTRrra

1ssur modifies fptspaq,MVpSq,fresh pfptspa
1q ´ rqqs

implies

C

by the definition of UFRL valid Hoare-formula (Def. 8),

as freshRpmodifies fptspaq,MVpSq,fresh pfptspa
1q ´ rqq is pfptspa

1q ´ rq

G

196

σ,H (Γ
u TRrrass implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ
u TRrra

1ss and for all x P dompσq : σ1pxq ‰ σpxq : x P MVpSq and

for all po, fq P dompHq : H 1ro, f s ‰ Hro, f s : po, fq P ErrΓ $ fptspaq : regionsspσq and

for all po, fq P ErrΓ1 $ pfptspa
1q ´ rq : regionsspσ1q :: po, fq P pdompH 1q ´ dompHqq

impliesxby A and B implies Ay

σ,H (Γ
u TRrrass implies MSrrΓ $ S : oksspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then

σ1, H 1 (Γ1

TRrra1ss

iff xby Theorem 7, twicey

σ,H (Γ
s a implies MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then σ1, H 1 (Γ1

s a1

impliesxby Corollary 5y

σ,HæErrΓ $ fptspaq : regionsspσq (Γ
s a implies

MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq ‰ err and

if pσ1, H 1q “MSrrΓ $ S : okpΓ1qsspσ,HæErrΓ $ fptspaq : regionsspσqq, then σ1, H 1 (Γ1

s a1

iff xby the definition of SL validity Hoare-formula (Def. 17)y

σ,HæErrΓ $ fptspaq : regionsspσq (Γ
s tau S ta1u

iff

C

by assumption (Γ
s tauSta

1u,

thus pσ,HæErrΓ $ fptspaq : regionsspσqq (Γ
s tauSta

1u iff σ,H (Γ
s tau S ta1u

G

σ,H (Γ
s tau S ta1u

197

APPENDIX H: PROOF OF THEOREM 9

198

Theorem 9: Each translated SSL axiom is derivable, and each translated rule is derivable in the

UFRL proof system.

Proof. The proof is by the induction on the derivation and by cases in the last rule used. In each

case, it is shown that the translated proof axioms and rules are derivable in UFRL.

1. SKIP: by Def. 18, the encoded axiom is the axiom SKIPu.

2. VAR: by Def. 18, the encoded axiom is the axiom VARu.

3. ALLOC: by the rule ALLOCs and Def. 18, the translated rule is is shown below:

$Γ
u

rreads fptspaqs

tTRrrassux :“ new T ; tTRrra ˚ newspT, xqssu

r modifies fptspaq, x,alloc,freshpfptspnewspT, xqqqs

where x R FVpaq

(H.1)

By definition of the predicate newspT, xq, it is known that fptspnewspT, xqq “ regiontx.˚u.

Given the axiom ALLOCu, the translated rule is derived by using the rules FRMu and SubEff u.

The derivation is shown in Fig. H.1. The program semantics assumes that the location for each

field in a class is disjoint with each other, thus newpT, xq iff newspT, xq.

4. ACC: by the rule ACCs and Def. 18, the translated rule is shown below:

$Γ
u

rregiontx1.fus

tx1.f “ zu x := x’f; tx1.f “ z && x “ zu

r modifies regiontx1.fu, xs

where x ‰ x1, x1 ‰ z and x ‰ z

(H.2)

where the fresh effect is empty, thus, it is omitted; it is true that fptspx “ zq !! fptspx
1.f ÞÑ zq,

thus, it is omitted. Given the axiom ACCu, by definition of read effects for assertions in Fig. 3.5,

it must be true that px1.f “ zq $Γ preads x1,regiontx1.fu, zq frm x1.f “ z. By the side

199

conditions and the definition of separator, it must be true that preads px1, regiontx1.fu, zq ¨{̈

modifies x. Hence x.1f “ z is the frame. Using the rules FRMu and SubEff u, the translated

rule is derived in Fig. H.2.

5. UPD: by the rule UPDs and Def. 18, the translated rule is derived as follows:

$Γ
u

rreads regiontx.fus

tD z.x.f “ zux.f :“ E; tx.f “ Eur modifies regiontx.fus

where x R FVpEq

(H.3)

where the fresh effect is empty, thus, it is omitted. Note that x.f ÞÑ is an abbreviation for

D z.x.f ÞÑ . Thus x.f ÞÑ is translated to D z.x.f “ z. The translated rule is derived by using

the rules SubEff u and CONSEQu. The derivation is shown in Fig. H.3.

6. SEQ: by the rule SEQs and Def. 18, the translated rule is derived as follows:

$
Γ
u

rreads r1Ós

tTRrrassu S1 tTRrrbssur modifies r1Ó,MVpS1q,fresh pr2 ´ r1qs

$
Γ
u

rreads r2Ós

tTRrrbssu S2 tTRrra
1
ssur modifies r2Ó,MVpS2q,fresh pfptspa

1
q ´ r2qs

$
Γ
u

rreads r1Ós

tTRrrassu S1S2 tTRrra
1
ssur modifies r1Ó,MVpS1S2q,fresh pfptspa

1
q ´ r1qs

where TRrrass ñ r1 “ fptspaq, r1 R MVpS1q,TRrrbss ñ r2 “ fptspbq and r2 R MVpS2q

(H.4)

There are two cases:

(a) S1 “ var x T ;: In this case, by the rule VARs, it must be true that b “ a ˚ defaultpT q,

200

MVpvar x : T q “ H and r1 “ r2 “ fptspaq. Then the proof obligation is to show

$
Γ
u rreads r1ÓstTRrrassu var x : T ; tTRrra ˚ defaultpT qssur modifies r1Ós

$
Γ
u

rreads r1Ós

tTRrra ˚ defaultpT qssu S2 tTRrra
1
ssu

r modifies r1Ó,MVpS2q,fresh pfptspa
1
q ´ r1qs

$
Γ
u

rreads r1Ós

tTRrrassu var x : T ; S2 tTRrra
1
ssu

r modifies r1Ó,MVpS2q,fresh pfptspa
1
q ´ r1qs

where TRrra ˚ defaultpT qss ñ r2 “ fptspaq and r2 R MVpS2q

(H.5)

Using the rule SubEff u on the second premise, the following is derived

$
Γ
u

rreads r1Ó s

tTRrra ˚ defaultpT qssu S2 tTRrra1ssu

r modifies r1Ó, x,MVpS2q,fresh pfptspa
1q ´ r1qs

(H.6)

Using the rule SEQ2u, the conclusion of Eq. (H.5) is derived.

(b) S1 ‰ var x : T ;: consider the following cases:

• S1 does not allocate new locations, i.e., r1 “ r2. The rule SEQ1u is instantiated with RE :“

regiontu, RE1 :“ regiontu and RE2 :“ regiontu. If the immunity side conditions

are satisfied, then the conclusion of (H.4) is derived by using the rule SEQ1u. Otherwise,

for all x P MVpS1q and x in FVpbq, there exists z, such that b implies x “ z and z R MVpS1q. The

variable z is substituted for x in fptspbq. Then the second premise of Eq. (H.4) is re-written as:

$
Γ
u

rreads r1Ó rz{MVpS1qss

tTRrrbssu S2 tTRrra1ssu

r modifies r1Ó rz{MVpS1qs,MVpS2q,fresh pfptspa
1q ´ r1qs

(H.7)

where r1Ó rz{MVpS1qs means that for all RE P r1Ó:: RErMVpS1q{zs. From the first premise of

Eq. (H.4) and Eq. (H.7), the immunity side conditions are satisfied. After using the rule SEQ1u,

201

the following is derived.

$
Γ
u

rreads r1Ó, r1Ó rz{MVpS1qss

tTRrrassuS1S2tTRrra1ssu

r modifies r1Ó, r2Ó rMVpS1q{zs,MVpS1S2q,freshpfptspa
1q ´ r1Ó rMVpS1q{zsqs

(H.8)

Because for all RE P r1 :: RE in r2Ó ry{xs, Eq. (H.8) can be simplified to

$
Γ
u

rreads r1Ós

tTRrrassuS1S2tTRrra1ssu

r modifies r1Ó,MVpS1S2q,freshpfptspa
1q ´ r1qs

• S1 allocates some new locations. Then the second premise of Eq. (H.4) can be re-written as:

$
Γ
u

rreads r1Ó, pr2 ´ r1qs

tTRrra ˚ defaultpT qssu S2 tTRrra1ssu

r modifies r1Ó, pr2 ´ r1q,MVpS2q,fresh pfptspa
1q ´ r2qs

The rule SEQ1u is instantiated with RE :“ r2 ´ r1, RE1 :“ r2 ´ r1 and RE2 :“ r2 ´ r1. If

the immunity side conditions are satisfied, then union the fresh effects of the two statements

and get fptspa
1q ´ r1. Hence, the conclusion of Eq. (H.4) is derived by using the rule SEQ1u.

Otherwise, the treatment is similar to the previous case.

202

7. IF: by the rule IFs and Def. 18, the translated rule is shown as follows:

$
Γ
u

rreads fptspaqs

tTRrrass && Eu S1 tTRrra
1
ssu

r modifies fptspaq,MVpS1q,fresh pfptspa
1
q ´ rqs

$
Γ
u

rreads fptspaqs

tTRrrass && Eu S2 tTRrra
1
ssu

r modifies fptspaq,MVpS2q,fresh pfptspa
1
q ´ rqs

$
Γ
u

rreads fptspaqs

tTRrrassu if E thentS1uelsetS2u tTRrra
1
ssu

r modifies fptspaq,MVpS1q,MVpS2q,freshpfptspa
1
q ´ rqs

where TRrrass ñ r “ fptspaq and r R MVpS1q Y MVpS2q

(H.9)

Note that fptspEq and fptsp Eq are both regiontu, thus are omitted. By the inductive hypoth-

esis, the premise of Eq. (H.9) is assumed. Then, using the rule IFu, the following is derived.

$
Γ
u

rreads fptspaq,reads efspEqs

tTRrrassu if E thentS1uelsetS2u tTRrra1ssu

r modifies fptspaq,MVpS1q,MVpS2q,freshpfptspa
1q ´ rqs

(H.10)

Now, consider to use the rule SubEff u. Because regRWpreads fptspaq, reads efspEq,

modifies fptspaq, MVpS1q, MVpS2q, freshpfptspa
1q´ rqq “ fptspaq, the following side condi-

tion is true:

fptspaq ď regRWpreads fptspaq, modifies fptspaq,MVpS1q,MVpS2q,freshpfptspa
1
q ´ rqq

Therefore, after using the rule SubEff u, the conclusion of Eq. (H.9) is derived.

203

8. WHILE: by the rule WHILEs and Def. 18, the translated rule is shown below:

$
Γ
u rreads fptspIqstTRrrIss && uStTRrrIssur modifies fptspIq,MVpSqs

$
Γ
u

rreads fptspIqs

tTRrrIssuwhile E tSutTRrrIss && Eu

r modifies fptspIq,MVpSqs (H.11)

The rule WHILEu is instantiated with RE :“ regiontu. The treatment about the immunity

side condition is similar to that of the sequence rule. If it is satisfied, then the rule WHILEu is

used and the following is derived.

$
Γ
u

rreads fptspIq, efspEqs

tTRrrIssu while E{S} tTRrrIss && Eu

r modifies fptspIq,MVpSqs

(H.12)

Similarly to the case of the rule IFu, using the rule SubEff u, the conclusion of Eq. (H.11) is

derived.

If the immunity side condition is not satisfied, for all x P MVpSq and x P FVpIq, there exists

z, such that I implies x “ z and z R MVpSq. The variable z is substituted for x in fptspIq.

Then the immunity side condition is satisfied. the rules WHILEu and SubEff u are used and the

conclusion is derived.

204

9. FRM: by the rule FRMs and Def. 18, the translated rule is shown as follows:

$
Γ
u

rreads r1Ós

tTRrrassu S tTRrra1ssu

r modifies r1Ó,MVpSq,fresh pfptspa
1
q ´ r1qs

$
Γ
u

rreads r1 ` r2s

tTRrrass && TRrrcss && pr1 !! r2qu S tTRrra1ss && TRrrcss && pfptspa
1
q !! r2qu

r modifies fptspaq ` r,MVpSq,fresh pfptspa
1
q ` r2 ´ r

1
qs

where TRrrass ñ r1 “ fptspaq,TRrrcss ñ r2 “ fptspcq, r1 R MVpSq, r2 R MVpSq,

TRrrass && TRrrcss && pfptspa
1q !! r2q ñ r1 “ r1 ` r2, and MVpSq X FVpcq “ H

(H.13)

By the inductive hypothesis, the premise of Eq. (H.13) is assumed. The rule FRMu is instanti-

ated with Q :“ TRrrcss and η :“ efspTRrrcssq. The proof obligation is to show the side condition,

which is:

TRrrass && TRrrcss && pr1 !! r2q implies efspTRrrcssq¨{̈pmodifies MVpSq, fptspaqq (H.14)

By Lemma 14 and by the definition of separator (Fig. 3.7), Eq. (H.14) is true. After using the

rule FRMu, the following is derived.

$
Γ
u

rreads r1 Ós

tTRrrass && TRrrcss && pr1 !! r2qu S tTRrra1ss && TRrrcssu

r modifies r1 Ó,MVpSq,fresh pfptspa
1q ´ r1qs

(H.15)

Now, consider to use the rule FRMu again. It is instantiated with Q :“ r1 !! r2 and η :“

reads r1,reads r2. The proof obligation is to show the side condition is true, which is:

pTRrrass && TRrrcss && pr1 !! r2qq implies preads r1,reads r2q¨{̈pmodifies r1 Ó,MVpSqq

(H.16)

By r1 R MVpSq and r2 R MVpSq, Eq. (H.16) is true. Note that modifies r1 Ó means that values

in the locations contained in r1 may be modified. The variable r1 is not changed. After using

205

the rule FRMu, the following is derived.

$
Γ
u

rreads r1 Ós

tTRrrass && TRrrcss && pr1 !! r2qu S tTRrra1ss && TRrrcss && pr1 !! r2qu

r modifies r1 Ó,MVpSq,fresh pfptspa
1q ´ r1qs

(H.17)

Because TRrrcss is preserved by S, r2 “ fptspcq in the post-state. Thus, after using the rule

CONSEQu, the following is derived.

$
Γ
u

rreads r1 Ós

tTRrrass && TRrrcss && pr1 !! r2qu S tTRrra1ss && TRrrcss && pr1 !! fptspcqqu

r modifies r1 Ó,MVpSq,fresh pfptspa
1q ´ r1qs

(H.18)

Now the proof obligation is to show that fptspa
1q !! fptspcq in the poststate. By the definition of

SSL Hoare-formula, it is known that fptspa
1q “ r1 ` RE, where RE are possibly empty regions

that do not exist in the pre-state, hence RE !! fptspcq. Hence, fptspa
1q !! fptspcq is true. Then,

after using the rule CONSEQu, the following is derived.

$
Γ
u

rreads r1 Ós

tTRrrass && TRrrcss && pr1 !! r2qu S tTRrra1ss && TRrrcss && pfptspa
1q !! fptspcqqu

r modifies r1 Ó,MVpSq,fresh pfptspa
1q ´ r1qs

(H.19)

Now, consider the fresh effects. By the side condition r1 “ r1 ` r2, it must be true that

fptspa
1
q ´ r1 “ fptspa

1
q ` r2 ´ r1 ´ r2 “ fptspa

1
q ` r2 ´ r

1.

Finally, using the rule SubEff u to loosen the read effects, the conclusion of Eq. (H.13) is derived.

206

(SubEff u)

(SubEff u)

(SubEff u)

(FRMu)

(ALLOCu) $Γ
u

rHs

ttrueu x := new T; tnewpT, xqu
r modifies x,alloc,freshpregiontx.˚uqs

true $Γ
u efspTRrrassq frm TRrrass

where TRrrass ñ efspTRrrassq¨{̈px,allocq and
FVpaq X txu “ H ñ FVpTRrrassq X txu “ Hp Lemma 15q

$
Γ
u

rHs

tTRrrassu x := new T; tTRrrass && newpT, xqu
r modifies x,alloc,fresh regiontx.˚us

(Subeffect) $Γ
H ď reads fptspaq

$
Γ
u

rreads fptspaqs
tTRrrassu x := new T; tTRrrass && newpT, xqu
r modifies x,alloc,fresh regiontx.˚us

(Subeffect) TRrrass $Γ
pmodifies x,allocq ď pmodifies x,alloc, fptspaqq

$
Γ
u

rreads fptspaqs
tTRrrassu x := new T; tTRrrass && newpT, xqu
r modifies x,alloc, fptspaq,fresh regiontx.˚us

where TRrrass ñ r “ alloc and fptspaq ď r

(FrToPostu) $Γ
u

rreads fptspaqs
tTRrrassu
x := new T;
tTRrrass && newpT, xq && pfptspaq !! regiontx.˚uqu
r modifies x,alloc, fptspaq,freshpregiontx.˚uqs

Figure H.1: The derivation of rule TRRrrALLOCsss

207

(SubEff u)

(SubEff u)

(FRMu)

(ACCu) $Γ
u refspx1.fqstx1 ‰ nullu x:= x’.f; tx “ x1.fur modifies xs

px1.f “ zq $Γ
u pregiontx

1.fu, x1, zq frm px1.f “ zq where p1q
$

Γ
u refspx1fqstx1.f “ zu x:= x’.f; tx “ z && x1.f “ zur modifies xs
(Subeffect) $Γ modifies x ď modifies x,regiontx1.fu

$
Γ
u

refspx1.fqs
tx1.f “ zu x:= x’.f; tx “ z && x1.f “ zu
r modifies x,regiontx1.fus

where p2q

$
Γ
u

rreads regiontx1.fus
tx1.f “ zu x:= x’.f; tx “ z && x1.f “ zu
r modifies x,regiontx1.fus

p1q is x1.f “ z && x ‰ y && x1 ‰ y ñ ppregiontx1.fu, x1, yq¨{̈xq and
x1 ‰ null ñ Dz.px1.f “ zq

p2q is x1 ‰ null ñ regRWpefspx1.fq, x,regiontx1.fuq ď regRWpregiontx1.fu, xq

Figure H.2: The derivation of rule TRRrrACCsss

(SubEff u)

(CONSEQu)

(UPDu) $Γ
u

rreads x, efspEqs
tx ‰ nullu x.f := E; tx.f “ Eu
rregiontx.fus where p1q

$
Γ
u

rreads x, efspEqs
tD z.x.f “ zu x.f :“ E; tx.f “ Eu
r modifies regiontx.fus

(Subeffect)
$

Γ
u reads readRpreads x, efspEqq ď reads regiontx.fu

where readRpreads x, efspEqq ď readRpreads regiontx.fuq

$
Γ
u

rreads regiontx.fus
tD z.x.f “ zu x.f := E; tx.f “ Eu
r modifies regiontx.fus

p1q is x ‰ null ñ D z.x.f “ z

Figure H.3: The derivation of rule TRRrrUPDsss

208

APPENDIX I: PROOF OF LEMMA 23

209

Lemma 23:Let pσ, hq be a state, and ps be an inductive predicate in SSL. Then

EarrΓ $ pspeq : boolsspσ, hq “ EprrΓ $ TRrrpspeqss : boolsspσ, hq.

Proof. The proof is an inductive case of the proof of Theorem 7. The inductive hypothesis is that

for all subassertions ai, EarrΓ $ ai : boolsspσ, hq “ EprrΓ $ TRrraiss : boolsspσ, hq. Let b1 ñ

a1 ¨ ¨ ¨ bn ñ an be inductive cases for ps. We prove it as follows.

EarrΓ $ pspeq : boolsspσ, hq

iff xby semantics of inductive predicates Eq. (7.4)y

pfixλpσ1, h1q . EarrΓ $ pb1 ñ a1q ^ ...^ pbn ñ anq : boolsspσ1, h1qq

pσpformalssppsq ÞÑ EsrrΓ $ e : T sspσqq, hq

iff xby semantics of assertions Def. 11y

pfixλpσ1, h1q . pEarrΓ $ b1 ñ a1 : boolsspσ1, h1q and ... and

EarrΓ $ bn ñ an : boolsspσ1, h1qqqpσpformalssppsq ÞÑ EsrrΓ $ e : T sspσqq, hq

iff xby inductive hypothesisy

pfixλpσ1, h1q . pEprrΓ $ TRrrb1 ñ a1ss : boolsspσ1, h1q and ... and

EprrΓ $ TRrrbn ñ anss : boolsspσ1, h1qqqpσpformalssppsq ÞÑ EsrrΓ $ e : T sspσqq, hq

iff xby Lemma 11: EsrrΓ $ e : T sspσq “ ErrΓ $ TRrress : T sspσqy

pfixλpσ1, h1q . pEprrΓ $ TRrrb1 ñ a1ss : boolsspσ1, h1q and ... and

EprrΓ $ TRrrbn ñ anss : boolsspσ1, h1qqqpσpformalssppsq ÞÑ ErrΓ $ TRrre : T sssspσqq, hq

iff xby the semantics of assertions (Fig. 3.2)y

pfixλpσ1, h1q . pEprrΓ $ TRrrb1 ñ a1 : boolss && ... && TRrrbn ñ anss : boolsspσ1, h1qqq

pσpformalssppsq ÞÑ ErrΓ $ TRrress : T sspσqq, hq

iff xby the definition of encoding inductive predicates in Fig. 7.1y

pfixλpσ1, h1q . pEprrΓ $ TRrridfppsqss : boolsspσ1, h1qqq

pσpformalssppsq ÞÑ ErrΓ $ TRrre : T sssspσqq, hq

iff xby semantics of recursive predicate.y

210

EprrΓ $ TRrrpspeqss : boolsspσ, hq

211

LIST OF REFERENCES

[1] P. America. A behavioural approach to subtyping in object-oriented programming languages.

Technical Report 443, Philips Research Laboratories, Nederlandse Philips Bedrijven B. V.,

Apr. 1989. Revised from the January 1989 version.

[2] A. Banerjee and D. A. Naumann. Local reasoning for global invariants, part ii: Dynamic

boundaries. Journal of the ACM, 60(3):19:1–19:73, June 2013.

[3] A. Banerjee, D. A. Naumann, and M. Nikouei. A logical analysis of framing for specifications

with pure method calls. ACM Trans. Prog. Lang. Syst., under review. https://www.cs.

stevens.edu/˜naumann/publications/lafsp2.pdf.

[4] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning about

global invariants. In J. Vitek, editor, European Conference on Object-Oriented Programming

(ECOOP), volume 5142 of Lecture Notes in Computer Science, pages 387–411, New York,

NY, 2008. Springer-Verlag.

[5] A. Banerjee, D. A. Naumann, and S. Rosenberg. Local reasoning for global invariants, part

i: Region logic. Journal of the ACM, 60(3):18:1–18:56, June 2013.

[6] Y. Bao and G. Ernst. A KIV project for defining semantics for intuitionistic separation

logic. http://www.eecs.ucf.edu/˜ybao/project/sl-semantics/index.

xml, 2016.

[7] Y. Bao and G. Ernst. A KIV project for proving encoding supported separation logic into

unified fine-grained region logic. http://www.eecs.ucf.edu/˜ybao/project/

frl-sep-expr/index.xml, 2016.

212

https://www.cs.stevens.edu/~naumann/publications/lafsp2.pdf
https://www.cs.stevens.edu/~naumann/publications/lafsp2.pdf
http://www.eecs.ucf.edu/~ybao/project/sl-semantics/index.xml
http://www.eecs.ucf.edu/~ybao/project/sl-semantics/index.xml
http://www.eecs.ucf.edu/~ybao/project/frl-sep-expr/index.xml
http://www.eecs.ucf.edu/~ybao/project/frl-sep-expr/index.xml

[8] Y. Bao, G. T. Leavens, and G. Ernst. Conditional effects in fine-grained region logic. In

Proceedings of the 17th Workshop on Formal Techniques for Java-like Programs, FTfJP ’15,

pages 5:1–5:6, New York, NY, USA, 2015. ACM.

[9] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular

reusable verifier for object-oriented programs. In Formal Methods for Components and Ob-

jects (FMCO) 2005, Revised Lectures, volume 4111 of Lecture Notes in Computer Science,

pages 364–387, New York, NY, 2006. Springer-Verlag.

[10] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of object-

oriented programs with invariants. Journal of Object Technology, 3(6):27–56, 2004.

[11] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.

In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Construction and

Analysis of Safe, Secure, and Interoperable Smart devices (CASSIS 2004), volume 3362 of

Lecture Notes in Computer Science, pages 49–69, New York, NY, 2005. Springer-Verlag.

[12] M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants over shared

state. In D. Kozen, editor, Mathematics of Program Construction (MPC), volume 3125 of

Lecture Notes in Computer Science, pages 54–84. Springer-Verlag, July 2004.

[13] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and

C. Tinelli. Cvc4. In Proceedings of the 23rd International Conference on Computer Aided

Verification, CAV’11, pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[14] B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-Oriented Software: The

KeY Approach, volume 4334 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

2007.

213

[15] J. Berdine, C. Calcagno, and P. OHearn. A decidable fragment of separation logic. In K. Lo-

daya and M. Mahajan, editors, FSTTCS 2004: Foundations of Software Technology and Theo-

retical Computer Science, volume 3328 of Lecture Notes in Computer Science, pages 97–109.

Springer Berlin Heidelberg, 2005.

[16] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic assertion check-

ing with separation logic. In Proceedings of the 4th International Conference on Formal

Methods for Components and Objects, FMCO’05, pages 115–137, Berlin, Heidelberg, 2006.

Springer-Verlag.

[17] J. Berdine, C. Calcagno, P. W. Ohearn, and Q. Mary. Symbolic execution with separation

logic. In In APLAS, pages 52–68. Springer, 2005.

[18] K. Bierhoff and J. Aldrich. Lightweight object specification with typestates. SIGSOFT Softw.

Eng. Notes, 30(5):217–226, Sept. 2005.

[19] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In Proceedings of

the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and

Applications, OOPSLA ’07, pages 301–320, New York, NY, USA, 2007. ACM.

[20] F. Bobot and J.-C. Filliâtre. Formal Methods and Software Engineering: 14th International

Conference on Formal Engineering Methods, ICFEM 2012, Kyoto, Japan, November 12-16,

2012. Proceedings, chapter Separation Predicates: A Taste of Separation Logic in First-Order

Logic, pages 167–181. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[21] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure specifications.

IEEE Transactions on Software Engineering, 21(10):785–798, Oct. 1995.

[22] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation

logic. In Principles of Programming Languages (POPL), pages 259–270. ACM, Jan. 2005.

214

[23] J. Brotherston. Formalised inductive reasoning in the logic of bunched implications. In

Proceedings of the 14th International Conference on Static Analysis, SAS’07, pages 87–103,

Berlin, Heidelberg, 2007. Springer-Verlag.

[24] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions: Advanced specification

and verification with JML and ESC/Java2. In Formal Methods for Components and Objects

(FMCO) 2005, Revised Lectures, volume 4111 of Lecture Notes in Computer Science, pages

342–363, Berlin, 2006. Springer-Verlag.

[25] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards. Model variables: Cleanly supporting

abstraction in design by contract. Software—Practice & Experience, 35(6):583–599, May

2005.

[26] B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. CONCUR 2011 – Concurrency

Theory: 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-9,

2011. Proceedings, chapter Tractable Reasoning in a Fragment of Separation Logic, pages

235–249. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[27] B. J. Cox. Object Oriented Programming: an Evolutionary Approach. Addison-Wesley

Publishing Co., Reading, Mass., 1986.

[28] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the

Construction and Analysis (TACAS), volume 4963 of Lecture Notes in Computer Science,

pages 337–340, Berlin, 2008. Springer-Verlag.

[29] R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP 2004 — Object-Oriented

Programming, 18th European Conference, volume 3086 of Lecture Notes in Computer Sci-

ence, pages 465–490. Springer Verlag, June 2004.

215

[30] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification inher-

itance. Technical Report 95-20c, Department of Computer Science, Iowa State University,

Ames, Iowa, 50011, Dec. 1997. Also in Proceedings of the 18th International Conference

on Software Engineering, Berlin, Germany, 1996, pp. 258–267. Available by anonymous ftp

from ftp.cs.iastate.edu, and by e-mail from almanac@cs.iastate.edu.

[31] D. Distefano, P. W. O'Hearn, and H. Yang. A local shape analysis based on separation

logic. In Proceedings of the 12th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’06, pages 287–302, Berlin, Heidelberg, 2006.

Springer-Verlag.

[32] G. Ernst, J. Pfhler, G. Schellhorn, D. Haneberg, and W. Reif. KIV: overview and verifythis

competition. International Journal on Software Tools for Technology Transfer, pages 1–18,

2014.

[33] M. Fahndrich and R. DeLine. Adoption and focus: Practical linear types for imperative

programming. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementation, PLDI ’02, pages 13–24, New York, NY, USA, 2002.

ACM.

[34] R. L. Ford and K. R. M. Leino. Dafny reference manual (draft).

https://github.com/Microsoft/dafny/blob/master/Docs/DafnyRef/out/DafnyRef.pdf.

[35] J.-Y. Girard. Linear logic: A survey. In F. L. Bauer, W. Brauer, and H. Schwichtenberg, edi-

tors, Logic and Algebra of Specification, volume 94 of NATO ASI Series. Series F : Computer

and System Sciences, pages 63–112. Springer-Verlag, New York, NY, 1993.

[36] J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch family of specification languages.

IEEE Software, 2(5):24–36, Sept. 1985.

216

[37] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification condition generation for

permission logics with abstract predicates and abstraction functions. In European Conference

on Object-Oriented Programming, pages 451–476. Springer, 2013.

[38] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–

580, Oct. 1969.

[39] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271–281,

1972.

[40] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming language Pascal.

Acta Informatica, 2(4):335–355, 1973.

[41] A. Hobor and J. Villard. The ramifications of sharing in data structures. In Proceedings of the

40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’13, pages 523–536, New York, NY, USA, 2013. ACM.

[42] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In

Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’01, pages 14–26, New York, NY, USA, 2001. ACM.

[43] B. Jacobs, J. Smans, and F. Piessens. The VeriFast program verifier: A tutorial, 2010.

[44] C. B. Jones. Systematic software development using VDM. International Series in Computer

Science. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1986.

[45] I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without

restrictions. In E. S. J. Misra, T. Nipkow, editor, Formal Methods (FM), volume 4085 of

Lecture Notes in Computer Science, pages 268–283, Berlin, 2006. Springer-Verlag.

[46] I. T. Kassios. The dynamic frames theory. Formal Aspects of Computing, 23(3):267–288,

May 2011.

217

[47] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface

specification language for Java. Technical Report 98-06q, Iowa State University, Department

of Computer Science, Dec. 2001. This is an obsolete version.

[48] G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and

modular reasoning. ACM Trans. Program. Lang. Syst., 37(4):13:1–13:88, Aug. 2015.

[49] G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and

modular reasoning. TOPLAS, 37(4):13:1–13:88, Aug. 2015.

[50] G. T. Leavens and W. E. Weihl. Specification and verification of object-oriented programs

using supertype abstraction. Acta Informatica, 32(8):705–778, Nov. 1995.

[51] K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of

Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[52] K. R. M. Leino. Data groups: Specifying the modification of extended state. In OOPSLA ’98

Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices, pages 144–153, New

York, NY, Oct. 1998. ACM.

[53] K. R. M. Leino. Specification and verification of object-oriented software. Lecture

notes from Marktoberdorf Internation Summer School, available at http://research.

microsoft.com/en-us/um/people/leino/papers/krml190.pdf, 2008.

[54] K. R. M. Leino. This is Boogie 2. Manuscript KRML 178, 2008. Available at http:

//research.microsoft.com/˜leino/papers.html.

[55] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In Logic for

Programming, Artificial Intelligence, and Reasoning, 16th International Conference, LPAR-

16, volume 6355 of Lecture Notes in Computer Science, pages 348–370. Springer-Verlag,

2010.

218

http://research.microsoft.com/en-us/um/people/leino/papers/krml190.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml190.pdf
http://research.microsoft.com/~leino/papers.html
http://research.microsoft.com/~leino/papers.html

[56] K. R. M. Leino. Logic for Programming, Artificial Intelligence, and Reasoning: 16th In-

ternational Conference, LPAR-16, Dakar, Senegal, April 25–May 1, 2010, Revised Selected

Papers, chapter Dafny: An Automatic Program Verifier for Functional Correctness, pages

348–370. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[57] K. R. M. Leino and R. Monahan. Dafny meets the verification benchmarks challenge. In

Proceedings of the Third international conference on Verified software: theories, tools, ex-

periments, volume 6217 of Lecture Notes in Computer Science, pages 112–126, Berlin, 2010.

Springer-Verlag.

[58] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky, editor,

European Conference on Object-Oriented Programming (ECOOP), volume 3086 of Lecture

Notes in Computer Science, pages 491–516, Berlin, June 2004. Springer-Verlag.

[59] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In G. Castagna,

editor, Programming Languages and Systems, 18th European Symposium on Programming,

ESOP 2009, volume 5502 of Lecture Notes in Computer Science, pages 378–393, Berlin,

Mar. 2009. Springer-Verlag.

[60] K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM Trans. Prog.

Lang. Syst., 24(5):491–553, Sept. 2002.

[61] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and check

side effects. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Lan-

guage Design and Implementation (PLDI’02), volume 37(5) of ACM SIGPLAN Notices,

pages 246–257, New York, NY, June 2002. ACM.

[62] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Prog. Lang.

Syst., 16(6):1811–1841, Nov. 1994.

219

[63] B. Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY, second

edition, 1997.

[64] W. Mostowski and M. Ulbrich. Dynamic dispatch for method contracts through abstract pred-

icates. In Proceedings of the 14th International Conference on Modularity, MODULARITY

2015, pages 109–116, New York, NY, USA, 2015. ACM.

[65] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262

of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2002.

[66] P. Müller and A. Poetzsch-Heffter. Modular specification and verification techniques for

object-oriented software components. In G. T. Leavens and M. Sitaraman, editors, Founda-

tions of Component-Based Systems, chapter 7, pages 137–159. Cambridge University Press,

2000.

[67] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of frame properties

in JML. Concurrency and Computation: Practice and Experience, 15(2):117–154, Feb. 2003.

[68] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object

structures. Sci. Comput. Programming, 62(3):253–286, Oct. 2006.

[69] L. Nistor, J. Aldrich, S. Balzer, and H. Mehnert. Object propositions. In FM 2014: Formal

Methods, pages 497–513. Springer, 2014.

[70] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor, ECOOP ’98 –

Object-Oriented Programming, 12th European Conference, Brussels, Belgium, volume 1445

of Lecture Notes in Computer Science, pages 158–185. Springer-Verlag, July 1998.

[71] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data struc-

tures. In Proceedings of CSL’01, volume 2142 of Lecture Notes in Computer Science, pages

1–19, Berlin, 2001. Springer-Verlag.

220

[72] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In Proceed-

ings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’04, pages 268–280, New York, NY, USA, 2004. ACM.

[73] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. ACM Trans.

Program. Lang. Syst., 31(3):11:1–11:50, Apr. 2009.

[74] M. Parkinson and G. Bierman. Separation logic and abstraction. In J. Palsberg and M. Abadi,

editors, ACM Symposium on Principles of Programming Languages, pages 247–258, New

York, NY, Jan. 2005. ACM.

[75] M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In P. Wadler,

editor, ACM Symposium on Principles of Programming Languages, pages 75–86, New York,

NY, Jan. 2008. ACM.

[76] M. J. Parkinson. Local reasoning for Java. Technical Report 654, University of Cambridge

Computer Laboratory, Nov. 2005. The author’s Ph.D. dissertation.

[77] M. J. Parkinson and A. J. Summers. The relationship between separation logic and implicit

dynamic frames. Logical Methods in Computer Science, 8(3), 2012.

[78] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings

of the Seventeenth Annual IEEE Symposium on Logic in Computer Science, pages 55–74, Los

Alamitos, California, 2002. IEEE Computer Society Press.

[79] S. Rosenberg, A. Banerjee, and D. A. Naumann. Decision procedures for region logic. In

Verification, Model Checking, and Abstract Interpretation, pages 379–395. Springer, 2012.

[80] D. A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn

and Bacon, Inc., Boston, Mass., 1986.

221

[81] J. Smans, B. Jacobs, and F. Piessens. Heap-dependent expressions in separation logic. In Pro-

ceedings of the 12th IFIP WG 6.1 International Conference and 30th IFIP WG 6.1 Interna-

tional Conference on Formal Techniques for Distributed Systems, FMOODS’10/FORTE’10,

pages 170–185, Berlin, Heidelberg, 2010. Springer-Verlag.

[82] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans. Program. Lang.

Syst., 34(1):2:1–2:58, May 2012.

[83] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. Automatic verification of java programs

with dynamic frames. Formal Aspects of Computing, 22(3):423–457, 2010.

[84] R. Strom and S. Yemini. Typestate: A programming language concept for enhancing software

reliabiity. IEEE Transactions on Software Engineering, SE-12(1):157–171, Jan. 1986.

[85] B. Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames, Dynamic

Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Technology, 2011.

[86] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In Proceedings of the 5th

International Conference on Foundations of Software Science and Computation Structures,

FoSSaCS ’02, pages 402–416, London, UK, UK, 2002. Springer-Verlag.

222

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.1.1 Separation Logic
	1.1.2 Region Logic
	1.1.3 Supertype Abstraction

	1.2 Problems
	1.3 Contributions
	1.4 Overview
	1.5 Related Work
	1.5.1 Non-local Reasoning Approaches to Framing
	Ownership-based Model:
	Linear Logic:
	Linear Type:

	1.5.2 Dynamic Frames Approaches
	Region Logic:
	Dafny:
	The work of Smans et al.:
	The KeY Tool:

	1.5.3 Related work on Separation Logic
	Implicit Dynamic Frames

	1.5.4 Related Work on Behavioral Subtyping

	CHAPTER 2: PROGRAMMING LANGUAGE
	2.1 Syntax
	2.2 Semantics

	CHAPTER 3: ASSERTION LANGUAGES AND FRAMING
	3.1 Syntax and Semantics of Assertions
	3.2 Effects
	3.3 Framing
	3.4 Separator and Immune

	CHAPTER 4: FINE-GRAINED REGION LOGIC
	4.1 Axioms and Inference Rules
	4.1.1 The Sequence Rules
	4.1.2 The Loop Rule

	4.2 Soundness

	CHAPTER 5: UNIFIED FINE-GRAINED REGION LOGIC
	5.1 Axioms and Inference Rules
	5.1.1 The Sequence Rules

	5.2 Soundness

	CHAPTER 6: INTEROPERABILITY
	6.1 FRL - An Instance of UFRL
	6.2 Encoding Separation Logic
	6.2.1 Separation Logic Review
	6.2.2 Supported Separation Logic
	6.2.3 Encoding SSL Assertions
	6.2.4 SSL Proofs Review and Approach
	6.2.5 Translating SSL Proofs into UFRL

	6.3 Extending the UFRL (FRL) Proof System with Separating Conjunction
	6.3.1 Extending the Syntax and the Semantics
	6.3.2 Proof Rules
	6.3.3 Encoding SSL specifications:
	6.3.4 Summary

	CHAPTER 7: RECURSIVE PREDICATES
	7.1 Recursive Predicated in UFRL (FRL)
	7.2 Inductive Definition in SSL
	7.3 Encoding

	CHAPTER 8: REASONING ABOUT SUBTYPING
	8.1 Programming Language Extended with Inheritance
	8.2 Semantics
	8.3 Effects
	8.3.1 The read effect of a class

	8.4 Supertype Abstraction and Local Reasoning
	8.4.1 Problem
	8.4.2 Encapsulation

	8.5 The Proof System
	8.5.1 Correctness Judgment

	8.6 Examples

	CHAPTER 9: APPLICATIONS
	9.1 A Footprint Function
	9.2 Intraoperation of FRL and SSL
	9.3 Hypothetical Reasoning and Interoperation between Modules
	9.4 The DAG Example
	9.5 An Integrated Example
	9.6 Examples on Behavioral Subtyping

	CHAPTER 10: CONCLUSION AND FUTURE WORK
	10.1 Future Work
	10.1.1 Formalization
	10.1.2 Encoding or incorporating other methodologies
	10.1.3 Implementation

	APPENDIX A: TYPING RULES
	APPENDIX B: PROOF OF THEOREM 1
	APPENDIX C: PROOF OF THEOREM 3
	APPENDIX D: PROOF OF THEOREM 5
	APPENDIX E: PROOF OF THEOREM 7
	APPENDIX F: PROOF OF LEMMA 13
	APPENDIX G: PROOF OF THEOREM 8
	APPENDIX H: PROOF OF THEOREM 9
	APPENDIX I: PROOF OF LEMMA 23
	LIST OF REFERENCES

