
AspectJML: Modular Specification and Runtime Checking
for Crosscutting Contracts

Henrique Rebêlo, Gary T. Leavens, Mehdi Bagherzadeh, Hridesh Rajan,
Ricardo Lima, Daniel M. Zimmerman, Márcio Cornélio, and Thomas Thüm,

CS-TR-13-07
September, 2013

Keywords: Design by contract, aspect-oriented programming, crosscutting contracts, JML, AspectJ, AspectJML

2011 CR Categories: D.2.1 [Software Engineering] Requirements/ Specifications — languages, JML, AOP, AspectJ; D.2.2 [Software En-
gineering] Design Tools and Techniques — computer-aided software engineering (CASE); D.2.4 [Software Engineering] Software/Program
Verification — Assertion checkers, class invariants, formal methods, programming by contract, reliability, AOP, AspectJ; F.3.1 [Logics and
Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions, invariants, pre- and post-conditions, speci-
fication techniques.

To appear in Modularity 2014. Copyright is being transferred to the ACM.

Computer Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA

AspectJML: Modular Specification and
Runtime Checking for Crosscutting Contracts

Henrique Rebêloλ, Gary T. Leavensθ, Mehdi Bagherzadehβ , Hridesh Rajanβ ,
Ricardo Limaλ, Daniel M. Zimmermanδ, Márcio Cornélioλ, and Thomas Thümγ

λUniversidade Federal de Pernambuco, PE, Brazil
{hemr, rmfl, mlc}@cin.ufpe.br

θUniversity of Central Florida, Orlando, FL, USA
leavens@eecs.ucf.edu

βIowa State University, Ames, IA, USA
{mbagherz, hridesh}@iastate.edu

δHarvey Mudd College, Claremont, CA, USA
dmz@acm.org

γUniversity of Magdeburg, Germany
thomas.thuem@ovgu.de

Abstract
Aspect-oriented programming (AOP) is a popular technique for
modularizing crosscutting concerns. In this context, researchers
have found that the realization of design by contract (DbC) is cross-
cutting and fares better when modularized by AOP. However, pre-
vious efforts aimed at supporting crosscutting contracts modularly
actually compromised the main DbC principles. For example, in
AspectJ-style, reasoning about the correctness of a method call
may require a whole-program analysis to determine what advice
applies and what that advice does relative to DbC implementation
and checking. Also, when contracts are separated from classes a
programmer may not know about them and may break them inad-
vertently. In this paper we solve these problems with AspectJML, a
new specification language that supports crosscutting contracts for
Java code. We also show how AspectJML supports the main DbC
principles of modular reasoning and contracts as documentation.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Programming by contract, Assertion Checkers; F.3.1
[Specifying and Verifying and Reasoning about Programs]: Asser-
tions, Invariant, Pre- and postconditions, Specification techniques

General Terms Design, Languages, Verification

Keywords Design by contract, aspect-oriented programming,
crosscutting contracts, JML, AspectJ, AspectJML

1. Introduction
Design by Contract (DbC), originally conceived by Meyer [30], is
a useful technique for developing a program using specifications.
The key mechanism in DbC is the use of behavioral specifications

[Copyright notice will appear here once ’preprint’ option is removed.]

called “contracts”. Checking these contracts against the actual code
at runtime has a long tradition in the research community [7, 11,
13, 23, 25, 44, 50]. This idea of checking contracts at runtime was
popularized by Eiffel [31] in the late 80s. In addition to Eiffel, other
DbC languages include the Java Modeling Language (JML) [25],
Spec# [4], and Code Contracts [13].

It is claimed in the literature [6, 14, 20, 27–29, 40, 41, 45]
that the contracts of a system are de-facto a crosscutting concern
and fare better when modularized with aspect-oriented program-
ming [21] (AOP) mechanisms such as pointcuts and advice [20].
The idea has also been patented [28]. However, Balzer, Eugster, and
Meyer’s study [3] contradicts this intuition by concluding that the
use of aspects hinders design by contract specification and fails to
achieve the main DbC principles such as documentation and mod-
ular reasoning. Indeed, they go further to say that “no module in
a system (e.g., class or aspect) can be oblivious of the presence
of contracts” [3, Section 6.3]. According to them, contracts should
appear in the modules themselves and separating such contracts as
aspects contradicts this view [30].

However, plain DbC languages like Eiffel [31] and JML [25]
also have problems when dealing with crosscutting contracts. Al-
though mechanisms such as invariant declarations help avoid scat-
tering of specifications, the basic pre- and postcondition specifi-
cation mechanisms do not prevent scattering of crosscutting con-
tracts. For example, there is no way in Eiffel or JML to write a
single pre- and postcondition and apply it to several of methods
of a particular type. Instead, such a pre- or postcondition must be
repeated and scattered among several methods.

To cope with these problems this paper proposes AspectJML,
a simple and practical aspect-oriented extension to JML. It sup-
ports the specification of crosscutting contracts for Java code in a
modular way while keeping the benefits of a DbC language, like
documentation and modular reasoning.

In the rest of this paper we discuss these problems and our As-
pectJML solution in detail. We also provide a real case study to
show the effectiveness of our approach when dealing with cross-
cutting contracts.

JML Contracts

1 class Package {
2 double width, height;
3 //@ invariant this.width > 0 && this.height > 0;
4 double weight;
5 //@ invariant this.weight > 0;
6
7 //@ requires width > 0 && height > 0;
8 //@ requires width * height <= 400; // max dimension
9 //@ ensures this.width == width;

10 //@ ensures this.height == height;
11 //@ signals_only \nothing;
12 void setSize(double width, double height){
13 this.width = width;
14 this.height = height;
15 }
16
17 //@ requires width > 0 && height > 0;
18 //@ requires width * height <= 400; // max dimension
19 //@ requires this.width != width;
20 //@ requires this.height != height;
21 //@ ensures this.width == width;
22 //@ ensures this.height == height;
23 //@ signals_only \nothing;
24 void reSize(double width, double height){
25 this.width = width;
26 this.height = height;
27 }
28
29 //@ requires width > 0 && height > 0;
30 //@ requires width * height <= 400; // max dimension
31 //@ signals_only \nothing;
32 boolean containsSize(double width, double height){
33 if(this.width == width && this.height == height){
34 return true;
35 }
36 else return false;
37 }
38
39 //@ signals_only \nothing;
40 double getSize(){
41 return this.width * this.height;
42 }
43
44 //@ ...
45 //@ signals_only \nothing;
46 void setWeight(double weight) {
47 this.weight = weight;
48 }
49 ... // other methods
50 }
51
52 class GiftPackage extends Package {
53 //@ ...
54 //@ signals_only \nothing;
55 void setWeight(double weight) {
56 ...
57 }
58 ... // other methods
59 }
60
61 class Courier {
62 //@ ...
63 void deliver(Package p, String destination) {
64 ...
65 }
66 }

AspectJ Contracts

67 privileged aspect PackageContracts {
68 pointcut instMeth():
69 execution(!static * Package+.∗(..));
70
71 pointcut sizeMeths(double w, double h):
72 execution(void Package.∗Size(double, double))
73 && args(w, h);
74
75 pointcut setOrReSize(double w, double h):
76 execution(void Package.setSize(double, double))
77 || execution(void Package.reSize(double, double))
78 && args(w, h);
79
80 pointcut reSizeMeth(double w, double h):
81 execution(void Package.setSize(double, double))
82 && args(w, h);
83
84 pointcut allMeth(): execution(* Package+.∗(..));
85
86 before(Package obj): instMeth() && this(obj) {
87 boolean pred = obj.width > 0 && obj.height > 0
88 && obj.weight > 0;
89 Checker.checkInvariant(pred);
90 }
91
92 before(double w, double h): sizeMeths(w, h){
93 boolean pred = w > 0 && h > 0
94 && w * h <= 400; // max dimension
95 Checker.checkPrecondition(pred);
96 }
97
98 before(Package obj, double w, double h):
99 reSizeMeth(w, h) && this(obj){

100 boolean pred = obj.width != w && obj.height != h;
101 Checker.checkPrecondition(pred);
102 }
103
104 after(Package obj, double w, double h) returning():
105 setOrReSize(w, h) && this(obj){
106 boolean pre = obj.width == w
107 && obj.height == h;
108 Checker.checkNormalPostcondition(pred)
109 }
110
111 after() throwing(Exception ex): allMeth() {
112 boolean pred = false;
113 Checker.checkExceptionalPostcondition(pred);
114 }
115
116 after(Point obj): instInv() && this(obj) {
117 boolean pred = obj.width > 0 && obj.height > 0
118 && obj.weight > 0;
119 Checker.checkInvariant(pred);
120 }
121 // other advice for checking contracts
122 }
123
124 aspect GiftPackageContracts {...}
125
126 aspect CourierContracts {...}
127
128 aspect Tracing {
129 after() returning(): execution(* Package.∗(..)) {
130 System.out.println("Exiting"+thisJoinPoint);
131 }
132 }

Figure 1. The JML and AspectJ contract implementations of the delivery service system [33].

2. Design by Contract and Modularity
In this section we discuss the existing problems in modulariz-
ing crosscutting contracts in practice. The first two problems are
AOP/AspectJ [20, 21] based, and the last, but not least, problem is
related to a design by contract language like JML [25].

2.1 A Running Example
Figure 1 illustrates a simple delivery service system [33] that man-
ages package delivery. It uses contracts expressed in JML [25]
(lines 1-66) and AspectJ [20] (lines 67-126). In addition, we also

3 2013/9/26

include a tracing crosscutting concern modularized with AspectJ
(lines 128-132).

In JML specifications, preconditions are defined by the key-
word requires and postconditions by ensures. The specification
signals_only \nothing is an exceptional postcondition which
says that no exception (including runtime exceptions but excluding
errors) can be thrown. For example, all methods declared in class
Package are not allowed to throw exceptions. The invariants de-
fined in class Package restricts package’s dimension and weight to
be always greater than zero.

JML’s counterpart in AspectJ is shown on lines 67-126. The
main motivation in applying an AspectJ-like language is that we
can explore some modularization opportunities that are otherwise
not possible in a DbC language like JML. For instance, in the
PackageContracts aspect, the second before advice (lines 92-
96) checks the common preconditions, which are scattered on the
JML side, for any method with name ending in Size and taking
two arguments of type double. Similarly, the after-returning
advice (lines 104-109) checks the common postconditions for both
setSize and reSize methods. This advice only enforces the
constraints after normal termination. In JML, the postconditions
are called normal postconditions since they are only required to
hold when a method returns normally [25]. A third example is
the after-throwing advice (lines 111-114), which forbids any
method in Package or subtypes from throwing any exception. This
is illustrated in the JML counterpart with the scattered specification
signals_only \nothing. This second kind of postcondition in
JML is called an exceptional postcondition [25].

2.2 The Modular Reasoning Problem
If we consider plain JML/Java without AspectJ, the example in
Figure 1 supports modular reasoning [24, 26, 32, 39]. For example,
suppose one wants to write code that manipulates objects of type
Package. One could reason about Package objects using just
Package’s contract specifications (lines 1-50) in addition to any
inherited from its supertypes [12, 24, 26].

Consider the Java and AspectJ implementation of the delivery
service system (without the JML specifications).

In addition to the classes in the base/Java code, Figure 1 de-
fines three aspects for contract checking and one aspect for tracing.
In plain AspectJ, advice declarations are applied by the compiler
without explicit reference to aspects from a module or a client mod-
ule; therefore by definition, modular reasoning about the Package
module does not consider the advice declared by these four aspects.
The aspect behavior is only available via non-modular reasoning.
That is, in AspectJ, a programmer must consider every aspect that
refers to the Package class in order to reason about the Package
module. So the answer to the question “What advice/contract ap-
plies to the method setSize in Package?” cannot (in general)
be answered modularly. Therefore, a programmer cannot study the
system one module at a time [2, 3, 19, 35, 39, 49].

2.3 Lack of Documentation Problem
In a design by contract language the pre- and postconditions and
invariant declarations are typically placed directly in or next to
the code they are specifying. Hence, contracts increase system
documentation [3, 32, 36]. In AspectJ, however, the advising code
(that checks contracts) is separated from the code it advises and this
forces programmers to consider all aspects in order to understand
the correctness of a particular method. In addition, the physical
separation of contracts can be harmful in the sense that an oblivious
programmer can violate a method’s pre- or postconditions when
these are only recorded in aspects [3, 32, 36].

Consider now the tracing concern (Figure 1), modularized by
the aspect Tracing. It prints a message after the successful execu-

tion of any method in the Package class when called. For this con-
cern, different orders of composition with other aspects (that check
contracts) lead to different behaviors/outputs. As a consequence,
the after-returning advice (line 129) could violate Package’s
invariants and pass undetected if the advice runs after those advice
(in the PackageContracts aspect) responsible for checking the
Package’s invariant. Without either documentation or the use of
AspectJ’s declare precedence [20] to enforce a specific order
on aspects, it is quite difficult–perhaps impossible–to understand
the order in which pre- and postconditions will be executed until
they are actually executed.

Another problem caused by the lack of documentation implied
by separating contracts as aspects is discussed by Balzer, Eugster,
Meyer’s work [3]. They argue that as programmers become aware
of contracts only when using special tools like AJDT [22], they are
more likely to forget to account for the contracts when changing
the classes.

2.4 Lack of Support for Crosscutting Contract Specification
in DbC Languages

Balzer, Eugster, and Meyer’s study [3] helped crystallize our think-
ing about the goals of a DbC language and about the parts of such
languages that provides good documentation, modular reasoning,
and non-contract-obliviousness. One straightforward way to avoid
the previous two problems discussed above is to use a plain DbC
language like JML [25].

We make two about the JML specifications in Figure 1. First, a
DbC language like JML can be used to modularize some contracts.
For example, the invariant clauses (declared in Package) can
be viewed as a form of built-in modularization. That is, instead
of writing the same pre- and postconditions for all methods in a
class, we declare a single invariant that modularizes those pre- and
postconditions. Second, specification inheritance is another form
of modularization. In JML, an overriding method inherits method
contracts and invariants from the methods it overrides.1

However, DbC languages (like JML) do not capture all forms
of crosscutting contract structure [18, 20] that can arise in specifi-
cations. For example, consider the JML specifications illustrated in
lines 1-66 of Figure 1. In this example there are three ways in which
crosscutting contracts are not properly modularized with plain JML
constructs:

(1) We can write preconditions constraining the input parameters
on the methods setSize, reSize, and containsSize (in
Package) to be greater than zero and less than or equal to 400
(the package dimension) only once and apply them to these or
other methods with the same design constraint;

(2) The two normal postconditions of the methods setSize and
reSize of Package are the same. They ensure that the
both width and height fields are equal to the corresponding
method parameters. However, we cannot write a simple and
local quantified form of these postconditions and apply them to
the constrained methods; and

(3) The exceptional postcondition signals_only \nothingmust
be explicitly written for all the methods that forbid excep-
tions. This is the case for the declared methods in Package
and GiftPackage classes. There is no way to modularize such
a JML contract in one place and apply it to all constrained
methods.

1 Even though inheritance is not exactly a crosscutting structure [18, 20], a
DbC language avoids repeating contracts for overriding methods.

4 2013/9/26

2.5 The Dilemma
It is clear that we face a dilemma with respect to crosscutting
contracts. If we use AspectJ to modularize them, the result is a
poor contract documentation and compromised modular reasoning.
If we go back to a design by contract language such as JML, we
face the scattered nature of common contracts shown previously.
This dilemma leads us to the following research question: Is it
possible to have the best of both worlds? That is, can we achieve
good documentation and modular reasoning while also specifying
crosscutting contracts in a modular way?

In the following, we discuss how our AspectJML DbC language
provides constructs to specify crosscutting contracts in a modular
and convenient way and overcomes the above problems.

3. The AspectJML Language
AspectJML extends JML [25] with support for crosscutting con-
tracts [29]. It allows programmers to define additional constructs
(in addition to those of JML) to modularly specify pre- and post-
conditions and check them at certain well-defined points in the ex-
ecution of a program. We call this the crosscutting contract speci-
fication mechanism, or XCS for short.

XCS in AspectJML is based on a subset of AspectJ’s con-
structs [20]. However, since JML is a design by contract language
tailored for plain Java, we would need special support to use the
traditional AspectJ syntax. To simplify the adoption of AspectJML,
the included AspectJ constructs are based on the alternative @As-
pectJ syntax [5].

The @AspectJ (often pronounced as “at AspectJ”) syntax was
conceived as a part of the merge of standard AspectJ with As-
pectWerkz [5]. This merge enables crosscutting concern implemen-
tation by using constructs based on the metadata annotation facility
of Java 5. The main advantage of this syntactic style is that one
can compile a program using a plain Java compiler, allowing the
modularized code using AspectJ to work better with conventional
Java IDEs and other tools that do not understand the traditional
AspectJ syntax. In particular, this applies to the so-called “com-
mon” JML compiler on which ajmlc, the AspectJML compiler, is
based [8, 42, 43].

Figure 2 illustrates the @AspectJ version of the tracing cross-
cutting concern previously implemented with the traditional syn-
tax (see Figure 1). Instead of using the aspect keyword, we
use a class annotated with an @Aspect annotation. This tells
the AspectJ/ ajc compiler to treat the class as an aspect dec-
laration. Similarly, the @Pointcut annotation marks the empty
method trace as a pointcut declaration. The expression speci-
fied in this pointcut is the same as the one used in the standard
AspectJ syntax. The name of the method serves as the point-
cut name. Finally, the @AfterReturning annotation marks the
method afterReturningAdvice as an after returning ad-
vice. The body of the method is used to modularize the crosscut-
ting concern (the advising code). This code is executed after the
matched join point’s execution returns without throwing an excep-
tion.

In the rest of this section, we present the main elements of the
crosscutting contract specification support in our language. The
presentation is informal and running-example-based.

3.1 XCS with Pointcut-Specifications
This is the simplest way to modularize crosscutting contracts at
source code level. Recall that a pointcut designator enables one
to select well-defined points in a program’s execution, which are
known as join points [20]. Optionally, a pointcut can also include
some of the values in the execution context of intercepted join

@Aspect()
class Tracing {
@Pointcut("execution(* Package.∗(..))")
public void trace() {}

@AfterReturning("trace()")
public void afterReturingAdvice(JoinPoint jp) {
System.out.println("Exiting"+jp);
}
}

Figure 2. The tracing crosscutting concern implementation of Fig-
ure 1 using @AspectJ syntax.

points. In AspectJML, we can compose these AspectJ pointcuts
combined with JML specifications.

The major difference, in relation to plain AspectJ, is that a spec-
ified pointcut is always processed when using the AspectJML com-
piler (ajmlc). In standard AspectJ, a single pointcut declaration
does not contribute to the execution flow of a program unless we
define some AspectJ advice that uses such a pointcut. In Aspec-
tJML, we do not need to define an advice to check a specification
in a crosscutting fashion. Although it is possible to use advice dec-
larations in AspectJML (as we discuss in subsection 3.2), we do
not require them. This makes AspectJML simpler and a program-
mer only needs to know AspectJ’s pointcut language in addition to
the main JML features.

Specifying crosscutting preconditions
Recall our first crosscutting contract scenario described in Sub-
section 2.4. It consists of two preconditions for any method, in
Package (Figure 1) with a name ending with Size that returns
void and takes two arguments of type double. For this scenario,
consider the JML annotated pointcut with the following precondi-
tions:
//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Pointcut("execution(* Package.∗Size(double, double))"+
"&& args(width, height)")
void sizeMeths(double width, double height) {}

The pointcut sizeMeths matches all the executions of size-like
methods of class Package. As observed, this pointcut is expos-
ing the intercepted method arguments of type double. This is
done in @AspectJ by listing the formal parameters in the point-
cut method. We bind the parameter names in the pointcut’s expres-
sion (within the annotation @Pointcut) using the argument-based
pointcut args [20].

The main difference between this pointcut declaration and stan-
dard pointcut declarations in @AspectJ is that we are adding two
JML specifications (using the requires clause). In this example
the JML says to check the declared preconditions before the execu-
tions of intercepted methods.

Specifying crosscutting postconditions
We discuss now how to properly modularize crosscutting postcon-
ditions in AspectJML. JML supports two kinds of postconditions:
normal and exceptional. Normal postconditions constrain meth-
ods that return without throwing an exception. To illustrate As-
pectJML’s design, we discuss scenarios (2) and (3) from Subsec-
tion 2.4.

For scenario (2), we use the following specified pointcut:
//@ ensures this.width == width;
//@ ensures this.height == height;
@Pointcut("(execution(* Package.setSize(double, double))"+
"|| execution(* Package.reSize(double, double)))"+
"&& args(width, height)")
void setOrReSize(double width, double height) {}

5 2013/9/26

This pointcut constrains the executions of setSize and reSize
methods in Package to ensure that, after their executions, the
fields width and height have values equal to the ones passed as
arguments.

To modularize the crosscutting postcondition of scenario (3), we
use the following JML annotated pointcut declaration.

//@ signals_only \nothing;
@Pointcut("execution(* Package+.∗(..))")
void allMeth() {}

The above specification forbids the executions of any method in
Package (or a subtype, such as GiftPackage) to throw an excep-
tion. If any intercepted method throws an exception (even a runtime
exception), a JML exceptional postcondition error is thrown to sig-
nal the contract violation. In this pointcut, we do not expose any
intercepted method’s context.

Multiple specifications per pointcut
All the crosscutting contract specifications discussed above consist
of only one kind of JML specification per pointcut declaration.
However, AspectJML can include more than one kind of JML
specification in a pointcut declaration. For example, assume that
the Package type in Figure 1 does not contain the containsSize
method or its JML specifications. In this scenario, we can write a
single pointcut to modularize the recurrent pre- and postconditions
of methods setSize and reSize. Therefore, instead of having
separate JML annotated pointcuts for each crosscutting contract,
we specify them in a new version of the pointcut sizeMeths:

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
//@ ensures this.width == width;
//@ ensures this.height == height;
@Pointcut("execution(* Package.∗Size(double, double))"+
"&& args(width, height)")

void sizeMeths(double width, double height) {}

This pointcut declaration modularly specifies both preconditions
and normal postconditions of the same intercepted size methods
(setSize and reSize) of Package.

Specification of unrelated types
Another issue to consider is whether or not AspectJML can mod-
ularize inter-type2 crosscutting specifications. All the crosscutting
contract specifications we discuss are related to one type (intra-
type) or its subtypes. However, AspectJ can advise methods of dif-
ferent (unrelated) types in a system. This quantification property of
AspectJ is quite useful [51] but can also be problematic from the
point of view of modular reasoning, since one needs to consider
all the aspect declarations to understand the overall system behav-
ior [2, 19, 39, 47–49]. Instead of ruling this completely out, the
design of ApsectJML allows the specifier to use specifications that
constrain unrelated inter-types, but in a explicit and limited man-
ner (see Section 3.4 for more details about non-obliviousness in
AspectJML).

As an example, recall the running example in Figure 1. We
know that all the methods declared in Package and its sub-
type GiftPackage are forbidden to throw exceptions (see the
signals_only specification). Suppose now that the deliver
method in type Courier also has this constraint. Note that the type
Courier is not a subtype of Package. They are related in the sense
that the method deliver depends on the Package type due to the
declaration of a formal parameter. Consider further that Courier

2 Inter-types here are not the AspectJ feature [20] that allows adding meth-
ods or fields with a static crosscutting mechanism. Instead, they are unre-
lated modules in a system; that is, types that are not related to each other
but can present a common crosscutting contract structure.

contains many methods that are not dependent on Package in any
way. Consider the following type declaration:
interface CommonSignalsOnly {
class CommonSignalsOnlyXCS {
//@ signals_only \nothing;
@Pointcut("execution(* CommonSignalsOnly+.∗(..))")
void allMeth() {}
}

}

This type declaration illustrates how we specify crosscutting con-
tracts for interfaces. As we know, pointcuts are not allowed to be
declared within interfaces. We overcome this problem by adding an
inner class that represents the crosscutting contracts of the outer in-
terface declaration. As a part of our strategy, the pointcut declared
in the inner class refers only to the outer interface (see the reference
in the pointcut predicate expression). Now any type that wants to
forbid its method declarations to throw exceptions need only to im-
plement the interface CommonSignalsOnly. Such an interface acts
like a marker interface [17]. This is important to avoid oblivious-
ness and maintain modular reasoning (according to our definition).

Collected XCS examples
All the crosscutting contract specifications used so far in this sec-
tion (discussed as scenarios in Subsection 2.4) with pointcuts-
specifications are illustrated in Figure 3 (the shadowed part illus-
trates the XCS in AspectJML’s pointcuts and specifications).

3.2 XCS with Pointcut-Advice-Specifications
A second way to specify crosscutting contracts, at the source code
level is to use aspects and advice declarations in addition to point-
cuts and JML specifications.

In order to exemplify the use of pointcut-advice-specifications,
recall scenario (1) from Section 2.4 and consider the modified
version of the Package class in Figure 4. We observe an important
difference in the Package class when compared to the previous
examples. There is an inner aspect named PackageAspect with
pointcut and a before advice. We use an inner aspect is because
we cannot declare AspectJ advice inside classes. We also moved the
preconditions to the before advice. The semantics of precondition
checking in AspectJML remains the same; the preconditions are
checked before the executions of the intercepted join points by
the pointcut sizeMeths. The main difference is that we have
another behavior that will be executed just before the join point’s
executions. This is illustrated by the before advice that performs
a trace implementation for the intercepted join points.

The main advantage of the strategy in Figure 4 is that we cannot
only check the specifications in a crosscutting fashion, but also de-
fine another crosscutting implementation for the same constrained
methods.

One can argue that, based on the given AspectJML specification
in Figure 4, it would be more sensible to move the specifications of
the before advice back to the pointcut definition. That would work
as well; in Figure 4, we are intentionally showing how to achieve
the same effect using a JML specification attached to an advice
declaration.

Figure 5 shows a scenario where this technique is more useful;
since the before advice uses an anonymous pointcut [20], the only
way to constrain the join points with specifications is by adding
them directly to the advice declaration.

It is important to stress that AspectJML does not check such
preconditions within the given before advice. In addition, the
reader should not think that the above preconditions are for the
advice itself. Our crosscutting contract specifications do not check
AspectJ advice. Thus all contract specifications are for the base
code that is advised. Specifying and checking AspectJ advice is an
avenue for future research.

6 2013/9/26

1 class Package {
2 double width, height;
3 //@ invariant this.width > 0 && this.height > 0;
4 double weight;
5 //@ invariant this.weight > 0;
6
7 //@ requires width > 0 && height > 0;
8 //@ requires width * height <= 400; // max dimension
9 @Pointcut("execution(* Package.∗Size(double,double))"+

10 "&& args(width, height)")
11 void sizeMeths(double width, double height) {}
12
13 //@ ensures this.width == width;
14 //@ ensures this.height == height;
15 @Pointcut("(execution(* Package.setSize(double,double))"
16 + "|| execution(* Package.reSize(double, double)))"+
17 "&& args(width, height)")
18 void setOrReSize(double width, double height) {}
19
20 //@ signals_only \nothing;
21 @Pointcut("execution(* Package+.∗(..))")
22 void allMeth() {}
24
25 void setSize(double width, double height){...}
26
27 //@ requires this.width != width;
28 //@ requires this.height != height;
29 void reSize(double width, double height){...}
30
31 boolean containsSize(double width, double height){...}
32 double getSize(){...}
33
34 //@ ...
35 void setWeight(double weight) {...}
36 ... // other methods
37 }
38 class GiftPackage extends Package {
39 //@ ...
40 void setWeight(double weight) {...}
41 ... // other methods
42 }

Figure 3. The crosscutting contract specifications used so far for
the delivery service system [33] with AspectJML.

class Package {
@Aspect()
static class PackageAspect {
@Pointcut("execution(* Package.∗Size(double,double))"+
"&& args(width, height)")
void sizeMeths(double width, double height) {}

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Before("sizeMeths(width, height)")
public void beforeAdvice(JoinPoint jp, double width,
double height) {
System.out.println("Entering: "+jp);

}
}
// ... other specified methods
}

Figure 4. A crosscutting precondition specification using
pointcuts-advice-specifications.

3.3 AspectJML Expressiveness
So far we have used the execution and within pointcut desig-
nators to select join points. This conforms with the supplier-side
checking adopted by most DbC/runtime assertion checkers (RAC).
Such RAC compilers typically operate by injecting code to check
each method’s precondition at the beginning of its code, and inject-
ing code to check the method’s postcondition at the end of its code.

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Before("execution(* Package.∗Size(double, double))"+
"&& args(width, height)")
public void beforeAdvice(JoinPoint jp, double width,
double height) {
System.out.println("Entering: "+jp);

}

Figure 5. Specifications added to advice with an anonymous
pointcut.

This checking code is then run from within the method’s body at
the supplier side.

AspectJML also includes other primitive pointcut designators
that identify join points in different ways [20]. For instance, we
can use the call pointcut. This would provide runtime checking at
the call site. Code Contracts [13] is an example of a DbC language
that provides runtime checking at the call site. However, it supports
only precondition checking. Since JML also supports client-side
checking [38], the call pointcut enables client-side checking for
AspectJML in relation to specified crosscutting contracts.

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Pointcut("(execution(* Package.∗Size(double, double))"+

"|| call(void Package.∗Size(double, double)))"
"&& args(width, height)")

void sizeMeths(double width, double height) {}

This is an example of a crosscutting precondition specification, in
AspectJML, that takes into account both execution and call
pointcut designators.

AspectJML also supports AspectJ’s control-flow based point-
cuts (e.g., cflow) [20].

3.4 AspectJML’s Benefits
As mentioned, design by contract is a recurrent concern and sev-
eral authors claim that it could be better modularized and handled
by means of aspect-oriented mechanisms like those we find in As-
pectJ [6, 14, 20, 27–29, 40, 41, 45]. After that, Balzer, Eugster,
and Meyer [3] argued against the aspectization of contracts, saying
that documentation and modular reasoning are compromised when
using an AspectJ-like language. Indeed, AOP/AspectJ themselves
have been focus of a grand debate involving modularity and modu-
lar reasoning [2, 19, 39, 47–49].

Enabling modular reasoning
Recall that our notion of modular reasoning means that one can
soundly verify a piece of code in a given module, such as a class,
using only the module’s own specifications, its own implemen-
tation, and the interface specifications of modules that it refer-
ences [12, 24, 26, 32, 39].

With respect to whether or not AspectJML supports modular
reasoning like a DbC language such as JML, consider the client
code, which we will imagine is written by Cathy, shown in Figure 6.

// written by Cathy
public class ClientClass {
public void clientMeth(Package p)
{ p.setSize(0, 1); }

}

Figure 6. setSize’s Client code.

To verify the call to setSize, Cathy must determine what spec-
ifications to use. If she uses the definition of modular reasoning,
she must use the specifications for setSize in Package. Let us

7 2013/9/26

assume that she uses the JML specifications of Figure 1. Hence,
she uses:

(1) The pre- and postconditions located at the method setSize
(lines 7-11);

(2) The first invariant definition on line 3, which constrains the
Package dimension (width and height) fields; and

(3) The second invariant (line 5) related to the Package’s weight.

Cathy only needs these three steps, including 7 JML pre- and
postcondition, and invariant specifications, when using plain JML
reasoning. (Package has no supertype; otherwise, she would also
need to consider specifications inherited from such supertypes.)
After obtaining these specifications, she can see that there is a
precondition violation regarding the width value of 0 passed to
setSize (in Figure 6).

Suppose now that Cathy wants to perform again the same mod-
ular reasoning task, but using the AspectJML specifications in Fig-
ure 3 instead of the JML specifications in Figure 1. In this case she
needs to find the following pieces of specified code:

(1) The first invariant definition on line 3, that constrains the
Package dimension (width and height) fields;

(2) The second invariant (line 5) related to the Package’s weight;

(3) The preconditions of the pointcut (lines 7-8) sizeMeths, since
it intercepts the execution of method setSize;

(4) The normal postconditions (lines 13-14) located at the pointcut
setOrReSize; and

(5) The exceptional postcondition (line 20) of pointcut allMeth.

As before, this involves only modular reasoning and she can
still detect the potential precondition violation related to Package’s
width. In this case, Cathy needed the same 7 specifications, but with
two more steps (five in total) to reason about the correctness the call
to setSize. So, although AspectJML supports modular reasoning,
Cathy must follow a slightly more indirect process to reason about
the correctness of a call. This confirms that the obliviousness issue
present in AspectJ-like languages [15] does not occur in this exam-
ple. Cathy is completely aware of the contracts of Package class,
though it does take her longer to determine them.

Enabling documentation
This example shows that, despite the added indirection, reasoning
with AspectJML specifications does not necessarily have a mod-
ularity difference compared to reasoning with JML specifications.
Only the location where these specifications can appear can be dif-
ferent, due to the use of pointcut declarations in AspectJML.

Our conclusion is that an inherent cost of crosscutting contract
modularization and reuse is the cost of some indirection in finding
contract specifications, which is necessary to avoid scattering (re-
peated specifications). However, using AspectJML, users also have
several new possibilities for crosscutting contracts.

Taming obliviousness
Since AspectJML allows pointcut declarations in AspectJ-style,
one can argue that a programmer can specify several unrelated
modules in one single place. This phenomenon brings into focus
again whether AspectJML allows the controversial obliviousness
property of AOP [2, 19, 39, 47–49].

The answer is no. AspectJML rules out this possibility. If one
tries to write such pointcuts, they will have no effect with respect
to crosscutting specification and runtime checking. This happens
because AspectJML associates the specified pointcut with the type
in which it was declared (see the discussion in the next section and

/** Generated by AspectJML to check the precondition of

* method(s) intercepted by sizeMeths pointcut. */
before (Package object$rac, final double width,
final double height) :
(execution(* p.Package.∗Size(double,double))
&& this(object$rac) && args(width, height)) {
boolean rac$b = (((width > +0.0D) && (height > +0.0D))
&& ((width * height) <= 400.0D));

JMLChecker.checkPrecondition(rac$b, "errorMsg");
}

Figure 7. Generated before advice to check the crosscutting pre-
conditions of Package in Figure 3.

the generated code in Figure 7). Hence, only join points within
the given type or its subtypes are allowed. The cross-references
generated by AspectJML (see Subsection 3.6) can help visualize
the intercepted types.

Even though there is no way in AspectJML to specify unre-
lated modules anonymously, the declared pointcuts can still be used
within aspect types that can crosscut unrelated types. Those point-
cuts can be used to modularize other kinds of crosscutting concerns
using the standard AspectJ pointcuts-advice mechanisms [20].

3.5 Runtime Assertion Checking
We implemented the AspectJML crosscutting contract specification
technique in our JML/ajmlc compiler [42, 43], which is available
online at: http://www.cin.ufpe.br/˜hemr/JMLAOP/ajmlc.htm.
This is the first runtime assertion checking compiler to support
crosscutting contract specifications.

Compilation strategy
The ajmlc compiler itself was described in a previous work [43].
Unlike the classical JML compiler, jmlc [8, 10], it generates as-
pects to check specifications. It also has various code optimizations
[42] and better error reporting. The main difference between the
previous ajmlc and the new one is support for AspectJML features
like specified pointcuts. Instead of saying JML/ajmlc, we now say
AspectJML/ajmlc.

Figure 7 shows the before advice generated by the ajmlc com-
piler to check the crosscutting preconditions of class Package de-
fined in Figure 3.3 The variable rac$b denotes the precondition to
be checked. This variable is passed as an argument to JMLChecker-
.checkPrecondition, which checks such preconditions; if it is
not true, then a precondition error is thrown. As discussed in Sub-
section 3.4, note that the exposed object type is Package. Hence,
this precondition can only be checked to join points of Package or
its subtypes like GiftPackage (see Figure 1).

Ordering of checks
As ajmlc generates AspectJ aspects to check contracts, it also en-
forces/declares aspect precedence. For instance, if we have advis-
ing code for other crosscutting concerns, it can only be allowed to
execute after the preconditions are satisfied; otherwise, a precondi-
tion violation is thrown.

The postconditions are only checked after all the advising
code’s execution. This ordering prevents undetected postcondition
violations, which could happen if postconditions were checked be-
fore the execution of the advising code.

3 The ajmlc compiler provides a compilation option that prints all the check-
ing code as aspects instead of weaving them.

8 2013/9/26

Figure 8. The crosscutting contract structure in the Package class
using AspectJML/AJDT [22].

Figure 9. An example of a malformed pointcut declaration in
AspectJML.

Contract violation example in AspectJML
As an example of runtime checking using AspectJML/ajmlc, recall
the client code illustrated in Figure 6. In this scenario, we got the
following precondition error in the AspectJML RAC:

Exception in thread "main"
org.jmlspecs.ajmlrac.runtime.JMLEntryPreconditionError:
by method Package.setSize regarding code at
File "Package.java", line 13 (Package.java:13), when

’width’ is 0.0

’height’ is 1.0
...

As can be seen, in this error output, the shadowed input parameter
width is displaying 0.0. But the precondition requires a package’s
width to be greater than zero. As a result, this precondition violation
occurs during runtime checking when calling such client code.

3.6 Tool Support
In aspect-oriented programming, development tools like Eclipse/A-
JDT [22], allow programmers to easily browse the crosscutting
structure of their programs. For, AspectJML, we are developing
analogous support for browsing crosscutting contract structure.
Toward this end, we use the already provided functionality of
Eclipse/AJDT with minor adjustments.

For example, consider the crosscutting contract structure of the
Package class using AspectJML/AJDT [22]. Note the arrows indi-
cating where the crosscutting contracts apply. In plain AspectJ/A-
JDT this example show no crosscutting structure information, be-
cause it has only pointcut declarations without advice. In AspectJ,
we need to associate the declared pointcuts to advice in order to
be able to browse the crosscutting structure of a system. Hence,
we have implemented an option in AspectJML that generates the
cross-references information for crosscutting contracts when we
have only pointcut declarations.

Figure 9 shows another example where the use of the Aspec-
tJ/AJDT helps an AspectJML programmer to write a valid pointcut
declaration. As depicted, the AspectJML programmer got an error
from AJDT because he/she forgot to bind the formal parameters
of the pointcut method declaration with the pointcut expression by
using the argument-based pointcut args. The well-formed point-
cut can be seen in Figure 8. All the AspectJ/AJDT IDE validation
is inherited by AspectJML.

Note that the AJDT is just a helpful functionality to assist (be-
ginners) AspectJML programmers to see where the specified point-
cuts intercept. Once pointcut language and quantification mecha-
nism are understood, this tool is not required to reason about As-
pectJML in a modular way (as discussed in Subsection 3.4).

4. The HealthWatcher Case Study
Our evaluation of the XCS feature of AspectJML involves a
medium-sized case study. The chosen system is a real health web-
based complaint system, called Health Watcher (HW) [16, 46]. The
main purpose of the HW system is to allow citizens to register com-
plaints regarding health issues. This system was selected because it
has a detailed requirements document available [16]. This require-
ments document describes 13 use cases and forms the basis for our
JML specifications.

We analyzed the crosscutting contract structure of the HW sys-
tem, comparing its specification in JML and AspectJML. Our re-
sults are available online at [37].

4.1 Understanding the Crosscutting Contract Structure
One of the most important steps in the evaluation is to recognize
how the contract structure crosscuts the modules of the HW system.
We now show some of the crosscutting contracts present in HW
using the standard JML specifications.

Crosscutting preconditions
Crosscutting preconditions occur in the HW system’s IFacade
interface. This facade makes available all 13 use cases as methods.
Consider the following code from this interface:

//@ requires code >= 0;
IteratorDsk searchSpecialitiesByHealthUnit(int code);

//@ requires code >= 0;
Complaint searchComplaint(int code);

//@ requires code >= 0;
DiseaseType searchDiseaseType(int code);

//@ requires code >= 0;
IteratorDsk searchHealthUnitsBySpeciality(int code);

//@ requires healthUnitCode >= 0;
HealthUnit searchHealthUnit(int healthUnitCode);

These methods comprise all the search-based operations that HW
makes available. The preconditions of these methods are identical,
as each requires that the input parameter, the code to be searched,
is at least zero. However, in plain JML one cannot write a single
precondition for all 5 search-based methods.

9 2013/9/26

Crosscutting postconditions
Still considering the HW’s facade interface IFacade, we focus
now on crosscutting postconditions. First, we analyze the cross-
cutting contract structure for normal postconditions:

//@ ensures \result != null;
IteratorDsk searchSpecialitiesByHealthUnit(int code);

//@ ensures \result != null;
IteratorDsk searchHealthUnitsBySpeciality(int code);

//@ ensures \result != null;
IteratorDsk getSpecialityList()

//@ ensures \result != null;
IteratorDsk getDiseaseTypeList()

//@ ensures \result != null;
IteratorDsk getHealthUnitList()

//@ ensures \result != null;
IteratorDsk getPartialHealthUnitList()

//@ ensures \result != null;
IteratorDsk getComplaintList()

As observed, all the methods in IFacade that returns IteratorDsk
should return a non-null object reference. In standard JML there are
two more ways to express this constraint [9]. The first one uses the
non-null semantics for object references. In this case we do not
need to write out such normal postconditions to handle non-null.
However, we can deactivate this option in JML if there most ref-
erence variables in the system are possibly null. In this scenario,
whenever we find a method that should return non-null, we still
need to write these normal postconditions. So, by assuming that
we are not using the non-null semantics of JML as default, these
postconditions become redundant. The second is to use the JML
type modifier non_null; however, even this would lead to some
(smaller) amount of repeated postconditions.

With respect to exceptional postconditions of IFacade inter-
face, we found an interesting crosscutting structure scenario. Con-
sider the following code:

//@ signals_only java.rmi.RemoteException;
void updateComplaint(Complaint q) throws

java.rmi.RemoteException,...;

//@ signals_only java.rmi.RemoteException;
IteratorDsk getDiseaseTypeList() throws

java.rmi.RemoteException,...;

//@ signals_only java.rmi.RemoteException;
IteratorDsk getHealthUnitList() throws

java.rmi.RemoteException,...;

//@ signals_only java.rmi.RemoteException;
int insertComplaint(Complaint complaint) throws

java.rmi.RemoteException,...;

... // all facade methods contain this constraint

As can be seen, these IFacade methods can throw the Java RMI
exception RemoteException (see the methods throws clause).
This exception is used as a part of the Java RMI API used by
the HW system. Even though we list only four methods, all the
methods contained in the IFacade interface contain this exception
in their throws clause. Because of that, the signals_only clause
shown needs to be repeated for all methods in the IFacade inter-
face. However, in JML one cannot write a single signals_only
clause to constrain all such methods in this way.

Another example of exceptional postconditions occurs with
the search-based methods discussed previously. All these search-
based methods should have a signals_only clause that al-
lows the ObjectNotFoundException to be thrown. As with the

RemoteException, one cannot write this specification once and
apply it to all search-based methods.

4.2 Modularizing Crosscutting Contracts in HW
To restructure/modularize the crosscutting contracts of the HW
system, we use the XCS mechanisms of AspectJML. By doing this,
we avoid repeated specifications, which is an improvement over
standard DbC mechanisms. In the following we show the details
of how AspectJML achieves a better separation of the contract
concern for this example.

Specifying crosscutting preconditions
We can properly modularize the crosscutting preconditions of HW
with the following JML annotated pointcut in AspectJML:

//@ requires code >= 0;
@Pointcut("execution(* IFacade.search∗(int))"+
"&& args(code)")
void searchMeths(int code) {}

With this pointcut specification, we are able to locate the pre-
conditions for all the search-based methods in a single place. To
select the search-based methods, we use a property-based point-
cut [20] that matches join points by using wildcarding. Our point-
cut matches any method starting with search and taking an int
parameter. Before the executions of such intercepted methods, the
precondition that constrains the code argument to be at least zero
is enforced during runtime; if it does not hold, then one gets a pre-
condition violation error.

Specifying crosscutting postconditions
Consider the modularization of the two kinds of crosscutting post-
conditions we discussed previously. For normal postconditions, we
add the following code in AspectJML:

//@ ensures \result != null;
@Pointcut("execution(IteratorDsk IFacade.∗(..))")
void nonNullReturnMeths() {}

With this pointcut specification, we are able to explicitly modular-
ize the non-null constraint. The pointcut expression we use matches
any method with any list of parameters returning IteratorDsk.

The AspectJML code responsible for modularizing the excep-
tional postconditions is similar:

//@ signals_only java.rmi.RemoteException;
@Pointcut("execution(* IFacade.∗(..))")
void remoteExceptionalMeths() {}

//@ signals_only ObjectNotFoundException;
@Pointcut("execution(* IFacade.search∗(..))")
void objectNotFoundExceptionalMeths() {}

These two specified pointcuts in AspectJML are responsible for
modularizing the exceptional postconditions for methods that can
throw RemoteException and methods that can throw ObjectNot-
FoundException, respectively. The first pointcut applies the spec-
ification for all methods in IFacade, whereas the second one in-
tercepts just the search-based methods.

4.3 Reasoning About Change
The main benefit of AspectJML is to allow the modular specifi-
cation of crosscutting contracts in an explicit and expressive way.
The key mechanism is the quantification property inherited from
AspectJ [20]. In addition to the documentation and modularization
of crosscutting contracts achieved by using AspectJML, another
immediate benefit of using our approach is easier software mainte-
nance.

For example, if we add a new exception that can be thrown
by all IFacade methods, instead of (re)writing a signals_only

10 2013/9/26

clause, we can add this exception to the signals_only list of
the remoteExceptionalMeths pointcut. This pointcut can be
reused whenever we want to apply constraints to methods already
intercepted by the pointcut.

Another maintenance benefit occurs during system evolution.
On one hand, we may add more methods in the IFacade inter-
face to handle system’s new use cases. On the other hand, we do
not need to explicitly apply existing constraints to the newly added
methods. The modularized contracts that apply to all methods also
automatically apply to the newly added ones, with no cost. Finally,
even if the crosscutting contracts are well documented by using
JML specifications, the AJDT tool helps programmers to visualize
the overall crosscutting contract structure. Just after a method is de-
clared, we can see which crosscutting contracts apply to it through
the cross-references feature of AJDT [22].

5. Discussion
This section discusses some issues with the AspectJML specifica-
tion language, including limitation, compatibility, open issues, and
related work.

5.1 A Limitation of AspectJML
Even though AspectJML has the benefit of modularity when han-
dling crosscutting contracts, there are some situations that Aspec-
tJML cannot currently deal with.

In order to exemplify the main drawback, consider the following
JML/Java code:

//@ requires x > 0;
public void m(int x){}

//@ requires x > 0;
//@ requires y > 0;
public void n(int x, int y){}

//@ requires y > 0;
public void o(double x, int y, double z){}

//@ requires z > 0;
public void p(double y, int z){}

In this code, we can observe that all formal parameters involv-
ing the Java primitive int types should be greater than zero (see
the preconditions). In JML, we cannot write this precondition only
once and apply it for all int arguments for the above methods. Un-
fortunately, this also cannot be done with AspectJML. The reason
is that we cannot write a pointcut that matches all methods with
int types in any position and associate a bound variable that can
be used in the precondition. This is also a limitation of AspectJ’s
pointcut mechanism.

5.2 AspectJML compatibility
One of the goals of this work is to support a substantial user com-
munity. To make this concrete, we have chosen to design crosscut-
ting contract specification in AspectJML as a compatible extension
to JML using AspectJ’s pointcut language. This takes advantage
of AspectJ’s familiarity among programmers. Our goal is to make
programming and specifying with AspectJML feel like a natural
extension of programming and specifying with Java and JML. The
AspectJML/ajmlc compiler has the following properties:

• all legal JML annotated Java programs are legal AspectJML
programs;

• all legal AspectJ programs are legal AspectJML programs;
• all legal Java programs are legal AspectJML programs; and
• all legal AspectJML programs run on standard Java virtual

machines.

5.3 JML Versus AspectJ
We have discussed the main problems of dealing with contracts
expressed in both JML and AspectJ. Indeed, this comparison was
suggested by Kiczales and Mezini [22]. They asked researchers to
explore what issues are better specified as contract/behavioral spec-
ifications and what issues are better addressed directly in pointcuts.
In this context, AspectJML goes beyond their question in the sense
that it combines both pointcuts and contracts. We showed that DbC
is better used with a design by contract language, but for situations
involving scattering of contracts it can be advantageous to provide
a form of specified pointcuts to allow crosscutting contract specifi-
cations.

5.4 Open Issues
Our evaluation of AspectJML is limited to two systems, the deliv-
ery service system [33] and the Health Watcher [46]. Although we
know of no scaling issues, larger-scale validation is still needed to
analyze more carefully the benefits and drawbacks of AspectJML.
Library specification and runtime checking studies are another in-
teresting area for future work.

Another open issue, which we intend to address in future ver-
sions of AspectJML, is related to the pointcut parameters and meth-
ods with common argument types (see Subsection 5.1).

Two more important open issues that could be explored in
AspectJML are related to specification and modular reasoning of
AspectJ programs [40]. These are interesting because we can also
program in AspectJ using AspectJML.

5.5 Other forms of Aspectized DbC
As discussed throughout the paper, there are several works in the
literature that argue in favor of implementing DbC with AOP [14,
20, 28, 41]. Kiczales opened this research avenue by showing a
simple precondition constraint implementation in one of his first
papers on AOP [20]. After that, other authors explored how to
implement and separate the DbC concern with AOP [14, 20, 28,
40, 41]. All these works offer common templates and guidelines
for DbC aspectization.

We go beyond these works by showing how to combine the
best design features of a design by contract language like JML and
the quantification benefits of AOP such as AspectJ. As a result we
conceive the AspectJML specification language that is suitable for
specifying crosscutting contracts. In AspectJML, one can specify
crosscutting contracts in a modular way while preserving key DbC
principles such as documentation and modular reasoning.

The work of Bagherzadeh et al. [2] contains “translucid” con-
tracts that are grey-box specifications of the behavior of advice. Al-
though which advice applies is unspecified, the specification allows
modular verification of programs with advice, since all advice must
satisfy the specifications given. The grey-box parts of translucid
contracts are able to precisely specify control effects, for example
specifying that a particular method must be called a certain num-
ber of times, and under certain conditions, which is not possible
with AspectJ or AspectJML. Ptolemyx [1] is an exception-aware
extension to Ptolemy/translucid contracts [2]. As with AspectJML,
Ptolemyx supports specification and modular reasoning about ex-
ceptional behaviors. The main difference is that AspectJML is used
to specify and reason about Java code. On the other hand, Ptolemyx
is used to specify and reason about event announcement and han-
dling.

Pipa [52] is a design by contract language tailored for AspectJ.
As with AspectJML, Pipa is an extension to JML. However, Pipa
uses the same approach as JML to specify AspectJ programs, with
just a few new constructs. AspectJML uses JML in addition to
AspectJ’s pointcut designators to specify crosscutting contracts.

11 2013/9/26

There are several other interface technologies that are related to
ours [19, 34, 48]. However, none of them can modularize crosscut-
ting contracts and keep DbC benefits such as documentation. None
of these checks contracts of base code.

6. Summary
AspectJML is an aspect-oriented extension to JML that enables the
explicit specification of crosscutting contracts for Java code. It uses
a mechanism called crosscutting contract specification (XCS). With
XCS, AspectJML supports specification and runtime checking for
crosscutting contracts in a modular way.

Using AspectJML, allows programmers to enable modular rea-
soning in the presence of crosscutting contracts, and to recover
the main DbC benefits such as documentation. Also, AspectJML
gives programmers limited control over modularity for specifica-
tions. An AspectJML programmer cannot implicitly add contracts
to unrelated modules. Therefore, using AspectJML, programmers
get modular reasoning benefits at any time.

Acknowledgements
We thank Eric Eide, Eric Bodden, Mario Südholt, Arndt Von Staa,
David Lorenz and Mehmet Aksit for discussions (we had during the
AOSD 2011, more specifically at the Miss 2011 workshop) about
design by contract modularization in general.

Special thanks to Mira Mezini, Ralf Lämmel, Yuanfang Cai,
and Shuvendu Lahiri for detailed discussions and for comments on
earlier versions of this paper.

References
[1] M. Bagherzadeh, H. Rajan, and A. Darvish. On exceptions, events and

observer chains. In Proceedings of the 12th annual international con-
ference on Aspect-oriented software development, AOSD ’13, pages
185–196, New York, NY, USA, 2013. ACM.

[2] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney. Translu-
cid contracts: Expressive specification and modular verification for
aspect-oriented interfaces. In Proceedings of the tenth international
conference on Aspect-oriented software development, AOSD ’11,
pages 141–152, New York, NY, USA, Mar. 2011. ACM.

[3] S. Balzer, P. T. Eugster, and B. Meyer. Can Aspects Implement
Contracts. In In: Proceedings of RISE 2005 (Rapid Implementation
of Engineering Techniques, pages 13–15, September 2005.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: an overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Post Conference Proceedings of CASSIS:
Construction and Analysis of Safe, Secure and Interoperable Smart
devices, Marseille, volume 3362 of LNCS. Springer-Verlag, 2005.

[5] J. Boner. Aspectwerks. http://aspectwerkz.codehaus.org/.
[6] L. C. Briand, W. J. Dzidek, and Y. Labiche. Instrumenting Con-

tracts with Aspect-Oriented Programming to Increase Observability
and Support Debugging. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM’05), pages
687–690, Washington, DC, USA, 2005. IEEE Computer Society.

[7] L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis
contracts to improve the testability of object-oriented code. Softw.
Pract. Exper., 33:637–672, June 2003.

[8] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools and
applications. International Journal on Software Tools for Technology
Transfer (STTT), 7(3):212–232, June 2005.

[9] P. Chalin and P. R. James. Non-null references by default in java:
alleviating the nullity annotation burden. In Proceedings of the 21st
European conference on Object-Oriented Programming, ECOOP’07,
pages 227–247, Berlin, Heidelberg, 2007. Springer-Verlag.

[10] Y. Cheon and G. T. Leavens. A runtime assertion checker for the Java
Modeling Language (JML). In H. R. Arabnia and Y. Mun, editors,

Proceedings of the International Conference on Software Engineering
Research and Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-
27, 2002, pages 322–328. CSREA Press, June 2002.

[11] L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime
assertion checking in software development. SIGSOFT Softw. Eng.
Notes, 31:25–37, May 2006.

[12] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through
specification inheritance. In Proceedings of the 18th International
Conference on Software Engineering, Berlin, Germany, pages 258–
267. IEEE Computer Society Press, Mar. 1996. A corrected version is
ISU CS TR #95-20c, http://tinyurl.com/s2krg.

[13] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract lan-
guages. In Proceedings of the 2010 ACM Symposium on Applied Com-
puting, SAC ’10, pages 2103–2110, New York, NY, USA, 2010. ACM.

[14] Y. A. Feldman et al. Jose: Aspects for Design by Contract80-89. IEEE
SEFM, 0:80–89, 2006.

[15] R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is
Quantification and Obliviousness. Technical report, 2000.

[16] P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Gar-
cia, N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, and
A. Rashid. On the impact of aspectual decompositions on design
stability: An empirical study. In Proceedings of the 21st European
conference on Object-Oriented Programming, LNCS, pages 176–200.
Springer-Verlag, 2007.

[17] S. Hanenberg and R. Unland. AspectJ idioms for aspect-oriented
software construction. In EuroPlop’03, 2003.

[18] J. Hannemann and G. Kiczales. Design pattern implementation in Java
and AspectJ. In Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
OOPSLA ’02, pages 161–173, New York, NY, USA, 2002. ACM.

[19] M. Inostroza, E. Tanter, and E. Bodden. Join point interfaces for
modular reasoning in aspect-oriented programs. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ESEC/FSE ’11, pages 508–511,
New York, NY, USA, 2011. ACM.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. Getting tarted with AspectJ. Commun. ACM, 44:59–65, October
2001.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit
and S. Matsuoka, editors, ECOOP’97 Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 220–242.
Springer Berlin / Heidelberg, 1997.

[22] G. Kiczales and M. Mezini. Aspect-oriented programming and modu-
lar reasoning. In Proceedings of the 27th international conference on
Software engineering, ICSE ’05, pages 49–58, New York, NY, USA,
2005. ACM.

[23] Y. Le Traon, B. Baudry, and J.-M. Jezequel. Design by contract to
improve software vigilance. IEEE Trans. Softw. Eng., 32(8):571–586,
Aug. 2006.

[24] G. T. Leavens. JML’s rich, inherited specifications for behavioral sub-
types. In Z. Liu and H. Jifeng, editors, Formal Methods and Soft-
ware Engineering: 8th International Conference on Formal Engineer-
ing Methods (ICFEM), volume 4260 of Lecture Notes in Computer
Science, pages 2–34, New York, NY, Nov. 2006. Springer-Verlag.

[25] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. ACM SIGSOFT
Software Engineering Notes, 2006.

[26] G. T. Leavens and D. A. Naumann. Behavioral subtyping, specifica-
tion inheritance, and modular reasoning. Technical Report CS-TR-13-
03a, Computer Science, University of Central Florida, Orlando, FL,
32816, July 2013.

[27] M. Lippert and C. V. Lopes. A study on exception detection and
handling using aspect-oriented programming. In Proceedings of the
22nd international conference on Software engineering, ICSE ’00,
pages 418–427, New York, NY, USA, 2000. ACM.

12 2013/9/26

[28] C. V. Lopes, M. Lippert, and E. A. Hilsdale. Design By Contract with
Aspect-Oriented Programming. In U.S. Patent No. 06,442,750, issued
August 27, 2002.

[29] M. Marin, L. Moonen, and A. van Deursen. A Classification of
Crosscutting Concerns. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages 673–676,
Washington, DC, USA, 2005. IEEE Computer Society.

[30] B. Meyer. Applying “design by contract”. Computer, 25(10):40–51,
1992.

[31] B. Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[32] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
PTR, 2nd edition, 2000.

[33] R. Mitchell, J. McKim, and B. Meyer. Design by contract, by example.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 2002.

[34] A. C. Neto, A. Marques, R. Gheyi, P. Borba, and F. Castor. A
Design Rule Language for Aspect-Oriented Programming. In SBLP
’09: Proceedings of the 2009 Brazilian Symposium on Programming
Languages, pages 131–144. Brazilian Computer Society, 2009.

[35] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15:1053–1058, December 1972.

[36] D. L. Parnas. Precise Documentation: The Key to Better Software. In
S. Nanz, editor, The Future of Software Engineering, pages 125–148.
Springer Berlin Heidelberg, 2011.

[37] H. Rebêlo, G. T. Leavens, M. Bagherzadeh, H. Rajan, R. Lima,
D. Zimmerman, M. Cornélio, and T. Thüm. Aspectjml: Expressive
specification and runtime checking for crosscutting contracts. 2013.
Available from:
http://www.cin.ufpe.br/˜hemr/modularity14/.

[38] H. Rebêlo, G. T. Leavens, and R. Lima. Modular enforcement of su-
pertype abstraction and information hiding with client-side checking.
Technical Report CS-TR-12-03, 4000 Central Florida Blvd., Orlando,
Florida, 32816-2362, Jan. 2012.

[39] H. Rebelo, G. T. Leavens, R. M. F. Lima, P. Borba, and M. Ribeiro.
Modular aspect-oriented design rule enforcement with XPIDRs. In
Proceedings of the 12th workshop on Foundations of aspect-oriented
languages, FOAL ’13, pages 13–18, New York, NY, USA, 2013.
ACM.

[40] H. Rebêlo, R. Lima, U. Kulesza, C. Sant’Anna, Y. Cai, R. Coelho, and
M. Ribeiro. Quantifying the Effects of Aspectual Decompositions on
Design By Contract Modularization: A Maintenance Study. Interna-
tional Journal of Software Engineering and Knowledge Engineering,
2013.

[41] H. Rebêlo, R. Lima, and G. T. Leavens. Modular Contracts with Pro-
cedures, Annotations, Pointcuts and Advice. In SBLP ’11: Proceed-
ings of the 2011 Brazilian Symposium on Programming Languages.
Brazilian Computer Society, 2011.

[42] H. Rebêlo, R. Lima, G. T. Leavens, M. Cornélio, A. Mota, and
C. Oliveira. Optimizing generated aspect-oriented assertion check-

ing code for JML using program transformations: An empirical study.
Science of Computer Programming, 78(8):1137 – 1156, 2013.

[43] H. Rebêlo, S. Soares, R. Lima, L. Ferreira, and M. Cornélio. Imple-
menting Java modeling language contracts with AspectJ. In Proceed-
ings of the 2008 ACM symposium on Applied computing, SAC ’08.
ACM, 2008.

[44] D. S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Trans. Softw. Eng., 21(1):19–31, Jan. 1995.

[45] T. Skotiniotis and D. H. Lorenz. Cona: aspects for contracts and con-
tracts for aspects. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and
applications, OOPSLA ’04, pages 196–197, New York, NY, USA,
2004. ACM.

[46] S. Soares, E. Laureano, and P. Borba. Implementing distribution and
persistence aspects with AspectJ. In Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’02, pages 174–190, New York,
NY, USA, 2002. ACM.

[47] F. Steimann. The Paradoxical Success of Aspect-Oriented Program-
ming. In OOPSLA 2006: Proceedings of the 21st International Con-
ference on Object-oriented Programming Systems, Languages, and
Applications, ACM SIGPLAN Notices, pages 481–497, New York,
NY, Oct. 2006. ACM.

[48] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types and modu-
larity for implicit invocation with implicit announcement. ACM Trans.
Softw. Eng. Methodol., 20(1):1:1–1:43, July 2010.

[49] K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, M. Shonle,
and N. Tewari. Modular aspect-oriented design with XPIs. ACM
Transactions on Software Engineering and Methodology, 20(2):5:1–
5:42, Sept. 2010.

[50] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and G. Saake. Applying
design by contract to feature-oriented programming. In Proceedings
of the 15th international conference on Fundamental Approaches to
Software Engineering, FASE’12, pages 255–269, Berlin, Heidelberg,
2012. Springer-Verlag.

[51] M. T. Valente, C. Couto, J. Faria, and S. Soares. On the benefits of
quantification in AspectJ systems. Journal of the Brazilian Computer
Society, 16(2):133–146, 2010.

[52] J. Zhao and M. Rinard. Pipa: a behavioral interface specification lan-
guage for AspectJ. In Proceedings of the 6th international conference
on Fundamental approaches to software engineering, FASE’03, pages
150–165, Berlin, Heidelberg, 2003. Springer-Verlag.

A. Online Appendix
We invite researchers to replicate our case study. Source code of
the JML and AspectJML versions of the running example and HW
systems, and other resources are available at
http://www.cin.ufpe.br/˜hemr/modularity14.

13 2013/9/26

