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Abstract

Verification of object-oriented programs that use subtyping and dynamic dispatch faces a
fundamental difficulty: the behavior of a dynamically dispatched method call, such as E .m(),
may vary depending on the dynamic type of the receiver, E . To avoid extensive use of case
analysis in such verifications, and to allow new subtypes to be added to a program later, pro-
grammers often reason using supertype abstraction. With supertype abstraction, one reasons
about a call such as E .m() using the specification given for the static type of E . Supertype
abstraction is valid when each subtype in the program is a behavioral subtype (of all of its
supertypes). However, for languages with references and mutable objects neither supertype
abstraction nor behavioral subtyping has been rigorously formalized in isolation. The standard
informal notions have inadequacies and exact definitions are not obvious. This paper formal-
izes supertype abstraction and two forms of behavioral subtyping for a Java-like sequential
language with mutable heap objects, references, runtime type tests, exceptions, classes, in-
terfaces, and recursive types. Specifications are treated semantically, independent from any
particular assertion language or verification system. One form of behavioral subtyping is
proved sound for reasoning with supertype abstraction and indeed equivalent to it (i.e., also
semantically complete). Specification inheritance, as used in the specification language JML,
is formalized and proved to entail the other, stronger form of behavioral subtyping.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-
niques — Object-oriented design methods; D.2.3 [Software Engineering]: Coding Tools and
Techniques — Object-oriented programming; D.2.4 [Software Engineering]: Software/Program
Verification — Correctness proofs, formal methods, programming by contract, reliability, tools,
Eiffel, JML; D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement —
Documentation; D.3.1 [Programming Languages]: Definitions and Theory — Semantics; D.3.2
[Programming Languages]: Language Classifications — Object-oriented languages; D.3.3
[Programming Languages]: Language Constructs and Features — classes and objects, inher-
itance; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs — Assertions, logics of programs, pre- and post-conditions, specification tech-
niques.
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tion inheritance, modularity, specification, verification, refinement, state transformer, predicate
transformer, dynamic dispatch, Eiffel language, JML language.
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1 Introduction
In object-oriented (OO) programming, subtyping and dynamic dispatch are both useful and prob-
lematic. They are useful because supertypes can abstract away details in the specifications of
their subtypes, thus allowing variations in data structures and algorithms to be handled uni-
formly. They are problematic for modular reasoning because a dynamically-dispatched method
call E .m() seems to require a case analysis to deal with all possible dynamic types of E ’s value.
The basic idea of the modular reasoning technique called “supertype abstraction” Leavens and
Weihl [1995] is to use only the specification of m from E ’s static type to reason about such
calls. Reasoning with supertype abstraction is valid when the program’s types follow behavioral
subtyping.

Behavioral subtyping is a generalization of type checking, since it imposes constraints on
the behavior of implementations of m at all subtypes of E ’s static type. At each subtype, the
specification lets m make the same or weaker assumptions, while requiring the same or stronger
guarantees. Modular type safety conditions for dynamically-dispatched methods are well-known
Cardelli [1988]. The most well-known definition of behavioral subtyping is a straightforward
translation of those co- and contra-variant subtyping conditions into implications between pre-
and post-conditions Liskov and Wing [1994]. While sound, these implications are incomplete,
and the translation does not account for object invariants. Better definitions of behavioral sub-
typing are known and variations are embodied in some reasoning systems, though either by pos-
tulation or with indirect justification. What is lacking is principled criteria to evaluate alternate
definitions.

In order to construct specifications that have behavioral subtyping, notions of specification
inheritance have been studied and implemented, notably in JML Leavens et al. [2006]. Again
what is lacking is principled criteria to evaluate forms of specification inheritance with respect to
the informal goals of soundness and completeness for reasoning and minimal restrictiveness on
method implementations.

Our goal is to investigate the soundness and completeness of behavioral subtyping in a way
that is independent of particular proof systems, and which connects with operationally sound pro-
gram semantics as opposed to axiomatic semantics. To this end we formalize supertype abstrac-
tion, behavioral subtyping, and specification inheritance semantically, for a Java-like sequential
language. Indeed, we formalize two forms of behavioral subtyping. We prove that one form is
sound and complete for reasoning with supertype abstraction. The stronger form of behavioral
subtyping arises from specification inheritance.

1.1 Preview of related work
Remarkably, the literature provides no mathematically rigorous account of behavioral subtyp-
ing and its connection with modular reasoning about specifications and programs in conven-
tional OO programming languages —although there has been much study of the topic Alagic
and Kouznetsova [2002], America [1987; 1991], Bruce and Wegner [1986], Dhara and Leavens
[1996], Findler and Felleisen [2001], Findler et al. [2001], Leavens and Weihl [1995], Liskov
and Wing [1994], Meyer [1997], Poll [2000] (see Leavens and Dhara [2000] for a survey, and
Sect. 3). Some of the current understanding of behavioral subtyping and supertype abstraction
is embodied in program logics Müller [2002], Oheimb and Nipkow [2002], Parkinson [2005],
Pierik [2006], Poetzsch-Heffter and Müller [1999] but is difficult to disentangle from various
other complications such as specialized specification languages. Some of the current understand-
ing is embodied in languages and tools such as Eiffel Meyer [1997], ECMA International [2006],
JML Leavens et al. [2006], ESC/Java Flanagan et al. [2002], Spec# Barnett et al. [2005; 2004],
and KeY Beckert et al. [2007]. But these have unsoundnesses and incompletenesses, some by
engineering design and some for lack of adequate theory and methodology. A key source of
unsoundness is a naive treatment of object invariants, because a lack of encapsulation of an ob-
ject’s representation can invalidate the simple hierarchical notion of encapsulation on which the
standard treatment of invariants Hoare [1972], Liskov and Wing [1994] is based.

On one hand, behavioral subtyping has been rigorously studied in various applicative and
abstract models Leavens and Weihl [1995], Liskov and Wing [1994], Poll [2000]. On the other
hand, for conventional object oriented programs and contracts, various embodiments have been
implemented in static and runtime verification tools and logics that apply to rich specification
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and programming languages such as those mentioned above. The latter works cite Leavens and
Weihl [1995], Liskov and Wing [1994], and Poll [2000] as standard background for behavioral
subtyping but in terms of technical content there is almost no connection. We aim to close the
gap by providing a rigorous analysis for a realistic Java-like language and ordinary functional
specifications, on which can be based more specialized assessments and justifications of specific
tools and logics.

The achievements closest to our aim are soundness and completeness results for logics of
Java fragments that embody supertype abstraction in some form. Pierik [2006] and Parkinson
[2005] prove soundness of logics with supertype abstraction and requiring behavioral subtyping.
But these results assess the reasoning power of an entire proof system, rather than explicating the
connection between behavioral subtyping and supertype abstraction per se. Soundness (and even
completeness) of a logic that includes supertype abstraction does not imply our result, which di-
rectly connects behavioral subtyping with supertype abstraction. Their results are also somewhat
removed from the axiomatic semantics of some widely used verifiers, which simply postulate
soundness of behavioral subtyping by baking supertype abstraction into the axiomatic semantics.

1.2 Approach
The key theoretical novelty that leads to our results is a purely semantic formulation of super-
type abstraction using two denotational semantics. In one semantics, method calls are statically
dispatched; this is used to model reasoning with supertype abstraction. The other semantics is
standard and matches the runtime execution of OO languages with dynamic dispatch. Our results
also involve predicate transformer semantics derived from each denotational semantics. A crit-
ical element is the intrinsic refinement relation on specifications, defined in terms of satisfying
implementations rather than implications between pre- and post-conditions.

We give a formal treatment of many constructs of sequential OO languages, including: classes,
interfaces, mutable heap objects, assignment, exceptions, inheritance, reference equality, type
casts, type tests, and recursive types. A minimal language for our purposes would contain just
classes, interfaces, method calls, mutable objects, and sequential control structures. We have in-
cluded a few other features that are useful in practice and illustrate the generality of our technical
results. Of particular interest are shared references via expressions with differing static types, and
runtime type tests and type casts which allow programs to make observations that can distinguish
between supertype and subtype objects. We had thought that unrestricted use of such features
might invalidate supertype abstraction. However, our work shows that supertype abstraction is
valid even in a realistic Java-like language that includes these features without restriction.

Our language does not model concurrency, nested classes, (static) method overloading, re-
flection, or dynamic class loading. We omit concurrency because it involves a richer notion of
behavior1 and reflection because we know of no systems for specifying much less verifying such
programs. The rest involve complications that shed little light on our main topic.

Our results show that the connection between supertype abstraction and behavioral subtyping
is tightly linked with method calls. The use of supertype abstraction in the context of other
program constructs hinges on those constructs being compositional with respect to correctness,
and monotonic with respect to refinement. To make this entirely explicit, we would need to
abstract over the particular constructs of the programming language. Given that our main goal
is to explicate modular reasoning about conventional OO programs, we choose instead to work
with a specific programming language, while pointing out the way in which the results could be
generalized.

Our definitions make no commitment to particular specification notations or reasoning sys-
tems. Instead, we formulate modular reasoning and supertype abstraction semantically, in a
generic way that idealizes what is found in logics and tools. Using an operationally-sound, com-
positional semantics allows us to provide a foundation that will serve as a point of reference
and as a basis for assessment and further development of specification languages and verification
tools.

While we motivate many of our examples using Java and JML, the theory we present in this
paper is not specific to either language. We mention Java and JML in some examples, because

1The addition of bounded nondeterministic choice, however, would be straightforward. All of our main results would
still hold, but the semantic definitions would be slightly more complicated.
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they are well documented and widely understood, and because JML’s design matches this paper’s
theory.

1.3 Contributions
This paper makes the following contributions.

• We give a semantic characterization of supertype abstraction, which idealizes what is
found in logics and verification tools. In contrast to related work, our definition does not
rely on derived notions such as substituting one object for another Leavens [1989], Liskov
[1988], Liskov and Wing [1994] that lack a clear connection with ordinary functional spec-
ifications and imperative program behavior. We focus on total correctness, while spelling
out the similar results hold for partial correctness, because total correctness brings to light
the need for satisfiability of specifications in our main results.

• Our characterization of supertype abstraction is built on a notion of modular correctness
defined using predicate transformer semantics. Modular correctness is essentially the prop-
erty that is checked by modular static verifiers like ESC/Java and KeY, but surprisingly the
property is seldom explicit in the literature on verification theory.

• We formalize behavioral subtyping in terms of refinement of functional behavior in a re-
alistic programming model. Surprisingly, refinement does not need to hold between all
type/subtype pairs, as in prior work, but only when the subtype is an instantiable class
(as opposed to an interface or abstract class, in Java terminology). We also highlight two
distinct notions of refinement at a subtype.

• In contrast to standard proof-theoretic definitions Liskov and Wing [1994], we define re-
finement (of specifications) intrinsically, in terms of satisfying implementations. Sepa-
rately, we characterize refinement in terms of pre- and postconditions. Our characteri-
zation adapts previous work Chen and Cheng [2000], Naumann [2001] that improves on
the overly restrictive standard condition of postcondition implications that are still often
used America [1987; 1991], Liskov and Wing [1994], Meyer [1997], Findler and Felleisen
[2001], Findler et al. [2001] and it justifies the less restrictive conditions used in some
works ([Beckert et al. 2007, Section 8.1.3] Greenberg et al. [2010] [Liskov and Guttag
2001, Section 7.9.1] [ECMA International 2006, Section 8.10.5]) for specifications using
two-state postconditions. Our characterization isolates the ways in which completeness
depends on the specification language. One surprise is that the usual precondition rule is
unnecessarily strong for partial correctness specifications. An outcome of our focus on
reasoning about correctness of programs, rather than an abstract model of computation, is
that we find abstraction functions are not an integral part of behavioral subtyping (compare,
e.g., Leavens and Weihl [1995], Liskov and Wing [1994]).

• We prove soundness of behavioral subtyping for supertype abstraction. Even stronger,
our main result is a form of semantic completeness: that behavioral subtyping holds for a
collection of class and interface specifications if and only if supertype abstraction is valid.
Soundness has been proved before, as mentioned at the end of Sect. 1.1, though under
more restrictive conditions and entangled with particulars of program logics. We know of
no prior completeness result.

• We formalize specification inheritance Wills [1992] and show that it ensures behavioral
subtyping. Specification inheritance is part of the semantic definition of JML Leavens
[2006] and it embodies the proof obligations whereby some logics achieve behavioral
subtyping Müller [2002], Oheimb and Nipkow [2002], Parkinson [2005], Pierik [2006],
Poetzsch-Heffter and Müller [1999], Beckert et al. [2007]. We identify several desiderata
for specification inheritance and several variations on specification inheritance. The varia-
tion that appears most useful ensures a form of behavioral subtyping that is stronger than
the one that is equivalent to supertype abstraction. The two forms of behavioral subtyping
derive from the two notions of refinement at a subtype. In fact there are four forms. The
other dimension is whether refinement is required at interface subtypes: though it is not
necessary for supertype abstraction, it does yield stronger reasoning.
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1.4 Organization and conventions
The next section summarizes the key ideas, followed by related work in Sect. 3. Next is the
programming language syntax and semantics (Sect. 4) followed by the semantic formalization
of specifications (Sect. 5), including the characterization of refinement in terms of pre/post con-
ditions. The short Sect. 6 formalizes modular reasoning from specifications, making forward
reference to the rather long Sect. 7 that derives the weakest-precondition predicate transformer
semantics. Sect. 8 gives the central definitions of the paper —formalization of supertype abstrac-
tion and behavioral subtyping— together with the main theorem which says they are equivalent.
Sect. 9 investigates specification inheritance and shows how it ensures behavioral subtyping.
Sect. 10 shows how the results carry over to partial correctness. Sect. 11 concludes. Some tech-
nical details and proofs are in the appendix. In this version, an index and table of contents are
provided at the end.

We include considerable detail in proofs, to make it easier to read in depth and also to expose
assumptions and techniques so the results can be soundly adapted to particular programming and
specification languages. To compensate for the length, we include guideposts for more casual
reading.

2 Synopsis
In an OO language it is not obvious how to do modular reasoning, because dynamic dispatch
selects different methods depending on the exact run time class of an object. What specification
should one use to reason about a call E .m(), given that the static type of expression E , say T , is
only an upper bound on its dynamic type? While we consider formal specifications and reasoning
in this paper, the problem also applies to informal reasoning based on informal specifications.
The first expert OO programmers used T ’s specification of m to reason about such calls. This
kind of reasoning, supertype abstraction Leavens and Weihl [1995], is modular in that it does
not depend on E ’s dynamic type, and hence does not have to be changed when subtypes of T
are changed in compatible ways or are added to a program Liskov [1988]. Supertype abstraction
supports maintenance and evolutionary programming styles.

However, supertype abstraction is only valid if methods that override T ’s method m satisfy
T ’s specification for m , since that specification is the one used in reasoning about such calls.
Making overrides obey the specification of overridden methods, specification inheritance Dhara
and Leavens [1996], Wills [1992], ensures that objects of subtypes of T do not cause surprising
behavior when treated as if they are objects of type T ; that is, it ensures behavioral subtyping
America [1987; 1991], Meyer [1985]. An alternative is to check the given specifications and treat
violations of behavioral subtyping as a design error Findler and Felleisen [2001], Findler et al.
[2001]. Either way, careful analysis is needed for soundness and to avoid unnecessary restriction.

2.1 Supertype abstraction
An influential discussion of the benefits of these ideas is Liskov’s keynote at OOPSLA 1987
Liskov [1988]. Liskov stated an easily-remembered test for behavioral2 subtyping (p. 25): “If
for each object o1 of type S there is an object o2 of type T such that for all programs P defined
in terms of T , the behavior of P is unchanged when o1 is substituted for o2, then S is a subtype
of T .” This is often called the “Liskov Substitutability Principle” (LSP) and is a strong form
of supertype abstraction. The LSP as originally stated is actually too strong, because it uses
the notion of “unchanged” behavior; the point of introducing subtype objects is often to change
behavior in a way that is allowed by the supertype’s specification.

As a formulation of supertype abstraction, the LSP is not easy to apply to imperative OO
languages. It is not clear what it means to substitute one object for another: imperative programs
are not referentially transparent, object identity matters, and the state of “an object” often depends
on other objects in the heap. (Object identity is also a problem with the algebraic work on
applicative languages from which the LSP is drawn Bruce and Wegner [1986], Leavens [1989].)
A more flexible intuition defines observations that are not allowed by the supertype’s specification

2The quote refers to what we call “behavioral subtyping” simply as “subtyping.”
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as “surprising,” and says that behavioral subtyping prevents surprising behavior.3 One of the
contributions of our paper is to precisely formalize supertype abstraction in a way that captures
modular reasoning about imperative OO programs.

In a program logic, supertype abstraction can be embodied by the proof rule for method
invocation, which allows deriving the correctness judgment

{preT
m [E/self]} E .m() {postTm [E/self]} (1)

from a specification (preT
m , postTm ) associated with the static type, T , of E . Similarly, an au-

tomated verifier typically uses weakest precondition semantics and achieves modularity by re-
placing a call E .m() by the sequence “assert preT

m ; havoc; assume postTm ” (with various
optimizations Leino [2005]). Both techniques aim to produce sound conclusions about the actual
semantics of the call, independent of how m is implemented.

Our formalization of supertype abstraction says that properties of an arbitrary command can
be proved by reasoning about its method calls as if they were statically dispatched to an arbitrary
implementation that satisfies the specification associated with the static type of the receiver. The
formalization is in terms of a denotational semantics that uses static dispatch, written S[[−]], and
a static-dispatch predicate transformer semantics built from it.

To investigate the soundness and completeness of such reasoning, with respect to observable
program behavior, we also define a standard dynamic-dispatch semantics. For an arbitrary com-
mand C , its dynamic-dispatch meaning, D[[C ]], is interpreted in a method environment, η, that
gives a meaning to each method at each type. Thus D[[C ]](η) is a function from initial states to
final states. The semantics of a program’s class declarations, i.e., of its class table, CT , is given
by a method environment D[[CT ]]. Sometimes we abbreviate D[[CT ]] as η̂.

We are interested in proving that C satisfies some pre/post specification, spec. Modular rea-
soning proves that D[[C ]](η̂) satisfies spec by using only method specifications to reason about
method calls. In our formalization, such method specifications are kept in a specification table,
ST , which maps pairs of type and method names to the corresponding method specifications.
The specification table entry ST (T ,m) models the proof obligations that are imposed on im-
plementation of method m in type T . To model that only specifications are used, we use the
static dispatch semantics S[[C ]] with an arbitrary environment η that satisfies ST . Supertype
abstraction amounts to reasoning about S[[C ]](η) in order to establish properties of D[[C ]](η̂).

What makes supertype abstraction sound is behavioral subtyping. Behavioral subtyping im-
poses obligations on implementations of m in subtypes of T . The obligations can be defined in
terms of specifications, and amount to a notion of refinement.

To see how refinement of specifications in the specification table is needed for the soundness
of supertype abstraction, consider the following form of reasoning, based on a particular method
call rule, which we provisionally call supertype abstraction for invocations:

Suppose that for each type T and method m defined on T objects, its implementa-
tion, satisfies ST (T ,m), where ST (T ,m) = (preT

m , postTm ). Then for all E : T ,
the Hoare triple (1) above holds.

If a subtype, say K ≤ T , has an implementation of m , then that implementation is defined on
objects that are of type K and its subtypes, and if the value of E is exactly a K object, then the
call E .m() will dispatch to the implementation for class K , with denotationD[[CT ]](K ,m). The
point of behavioral subtyping is to reconcile the potential mismatch between the proof obligation
for D[[CT ]](K ,m), which is ST (K ,m), and the claim (1) based on ST (T ,m). The idea is that
ST (K ,m) may be different than ST (T ,m), but it should ensure that every implementation of
m at K that satisfies ST (K ,m) also satisfies ST (T ,m). That is, ST (K ,m) refines ST (T ,m)
in the intrinsic sense: spec′ refines spec iff each program satisfying spec′ also satisfies spec.

Instantiating a specification, as in (1) above, is the most basic way to reason about a method
call, but other conclusions also follow from the method’s specification, as may be obtained by
proof rules like Consequence and Invariance Apt et al. [2009]. Moreover, we are interested in the
use of supertype abstraction in proving judgments {pre}C{post} for arbitrary commands and
specifications. We want to prove the soundness of behavioral subtyping for supertype abstraction
independently from the way in which {pre}C{post} is proved, and from the language in which

3 “So programs can manipulate instances of a subtype as if they were instances of that type’s supertypes without
surprising results.” [Leavens 1989, Chapter 9].
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pre and post are expressed. So we formalize supertype abstraction in purely semantic terms as a
semantic consequence relation. The payoff is a clear notion of completeness, different from the
completeness of a reasoning system.

Our definition of supertype abstraction considers semantic consequences that hold for each
method environment η that satisfies the specification table. Whereas the actual program seman-
tics, D[[−]], uses dynamic dispatch, we formalize supertype abstraction using the static dispatch
semantics, S[[−]]. Soundness of supertype abstraction means, roughly: If S[[C ]](η) satisfies spec
for each η that satisfies the specification table, and if the program’s method environment η̂ satis-
fies the specification table, then the actual semantics D[[C ]](η̂) satisfies spec. This quantification
over all η can be avoided by using a single “least refined implementation”, which amounts to
working at the level of axiomatic semantics (predicate transformers). This is how many verifica-
tion tools work.

The main result of the paper, Theorem 53, says that specifications have behavioral subtyp-
ing if and only if they allow supertype abstraction. Furthermore, the two notions of supertype
abstraction —using predicate transformers or quantifying over environments— are equivalent,
even though one is strictly stronger when applied to a single specification and program. The
soundness proof relies on connections between the static- and dynamic-dispatch semantics that
are proved by induction over the syntax of the language, and are thus language-dependent, but
what matters is that the language constructs are refinement-monotonic. The completeness proof
relies on the above-mentioned quantification over satisfying implementations. If supertype ab-
straction holds for m at types T and K ≤ T , every implementation that satisfies ST (K ,m)
must satisfy ST (T ,m) —and that is the intrinsic refinement relation between ST (K ,m) and
ST (T ,m) required by our definition of behavioral subtyping.

2.2 Defining behavioral subtyping
Several authors have offered definitions of behavioral subtyping, but the most influential defini-
tion has been Liskov and Wing’s Liskov and Wing [1994]. We paraphrase part of their “constraint
rule” (from their Figure 4, page 1823).4 For type S to be a behavioral subtype of T :

• The subtype’s invariant must imply the supertype’s. That is, whenever S ’s invariant holds
for a subtype object5, then T ’s invariant holds:

invS (self) ⇒ invT (self), for all self : S . (2)

• “Subtype methods preserve the supertype method’s behavior.” That is, if S ’s method m
overrides T ’s method m , then the usual static typing conditions Cardelli [1988] hold, and
for all subtype objects self : S , T ’s precondition for m implies S ’s precondition:

preT
m (self) ⇒ preS

m(self) (3)

and S ’s postcondition implies T ’s:

postSm(self) ⇒ postTm (self). (4)

Liskov and Wing’s definition is intended to be part of a “descriptive and informal” presen-
tation (p. 1813), which concentrates on ideas and has only “informal justifications” (p. 1813).
However, even at a conceptual level, it can be improved.

Liskov and Wing’s postcondition rule (4), though attractively simple and memorable, is
stronger (i.e., less flexible) than necessary for the soundness of supertype abstraction Dhara and
Leavens [1996]. To see this, consider Fig. 1. The interface Tracker declares two ‘model fields’,
goal and curr, that are only used in specifications Cheon et al. [2005], Leino [1995], Leino and
Müller [2006]. They stand for the goal of a diet and the current weight. The values of these model
fields are given by the represents clauses in class WeightLoss. The clause “represents goal
:= self.g” declares part of the object invariant for WeightLoss, which says that goal = self.g.

4Their rule allows for method renamings, found in Eiffel but few other OO languages, and an abstraction function. Our
OO language semantics does not model the former. We do not need abstraction functions because we connect behavioral
subtyping to the observable properties of programs. We also ignore the part of the rule about history constraints, since
we study a sequential language.

5 Liskov and Wing state the invariant rule for object “values,” not for objects.
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interface Tracker {
public model goal, curr: int;
public invariant 0 < self.goal ∧ self.goal ≤ self.curr;
// ...
meth lose(kg: int)

requires self.goal ≤ self.curr − kg;
ensures exc = null ∧ self.curr = old(self.curr − kg);

}

class WeightLoss extends Object implements Tracker {
protected g, c: int;
protected invariant 0 < self.g ∧ self.g ≤ self.c;
protected represents goal := self.g;
protected represents curr := self.c;
// ...
meth setCurr(kg: int)

requires self.goal ≤ kg;
ensures exc = null ∧ self.curr = kg;

{ self.curr := kg
}
meth lose(kg: int)

requires true;
ensures (old(self.goal ≤ self.curr − kg) ⇒ exc =

null ∧ self.curr = old(self.curr − kg))
∧ (old(self.goal > self.curr − kg) ⇒ exc 6= null);

{ if self.g ≤ self.c − kg then self.setCurr(self.c − kg);
else throw new IAE()

}
}

Figure 1: The interface Tracker and the class WeightLoss, specified using notations from JML.
(Infix operators bind more tightly than ∧ and ∨, which in turn bind more tightly than ⇒ .)
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This is a predicate on the protected field and the inherited public model field. This is typical of
JML and other specification languages, where the connection between a data representation and
an abstraction are expressed by a hidden invariant. Frame conditions (modifies clauses) could be
encoded in the postcondition, but for brevity we ignore them in our examples.

The lose method of the class WeightLoss, a subtype of Tracker, illustrates the problem with
Liskov and Wing’s postcondition rule (4). That rule requires that lose’s postcondition implies
the postcondition in Tracker. However, this implication does not hold for this example, as can
be seen by considering the case where self.goal is strictly larger than the difference self.curr −
kg, since exc 6=null contradicts exc = null. (The specification variable exc refers to exception
results; when exc is null in a post-state, then the method has returned normally.) However, in
this example, supertype abstraction works fine, because the lose method of the class WeightLoss
obeys Tracker’s specification for lose whenever Tracker’s precondition holds. Thus clients that
reason about calls to lose using Tracker’s specification will not be surprised, and so WeightLoss
can be a behavioral subtype of Tracker. One way of expressing the most flexible sound rule for S
to be a behavioral subtype of T is to require that for all subtype objects self : S , the precondition
rule (3) holds and

old(preT
m (self)) ∧ postSm(self) ⇒ postTm (self). (5)

where old(P) refers to the value of predicate P in the pre-state of a call. The point is that the be-
havior of the subtype’s method does not need to be constrained when the supertype’s precondition
does not hold in the pre-state.

These conditions are just approximations of refinement and it is refinement that explains the
equivalence between behavioral subtyping and supertype abstraction (Sect. 2.1 and Theorem 53).
Our formulation of behavioral subtyping (Def 39) is in terms of the intrinsic refinement order on
specifications. In Sect. 5.4 we confirm that (3) and (5) are sufficient for proving refinement and
thus can be used to check behavioral subtyping. Disentangling the necessary semantic concepts
that rely on an intrinsic notion of refinement from proof-theoretic conditions for checking be-
havioral subtyping is important since the proof-theoretic conditions are sensitive to the form of
specifications, as discussed in Sects. 5.4, 9.1, and 10. There are also some technical issues that
relate to the changing type of self in subtypes, which are unexpectedly subtle.

In the case of ordinary specifications where the precondition is a predicate on program states
and the postcondition is a “two-state predicate” on the initial and final program state, the con-
ditions (3) and (5) are close to a complete characterization of refinement. All that is missing
is to conjoin “self is S” to preT

m in (5). The purpose of old expressions is to refer the initial
state. Occasionally this form of specification is inadequate and it is preferable to use specifica-
tion variables scoped over both pre and post condition but not occurring in code. In particular,
Hoare logics and axiomatic semantics are often presented using only one-state predicates. For
specifications using one-state predicates and specification variables, (5) is incomplete; a complete
characterization is given in Sect. 5.4.

Perhaps most surprisingly, if specifications are interpreted in the sense of partial correctness
(i.e., not requiring termination), then (3) is not necessary for refinement. This is explored in
Sect. 10. It is unclear that there is much practical impact.

We emphasize that model fields and other forms of data abstraction are important in practice,
but the ultimate purpose of specifications is to prescribe the program’s observable behavior which
involves concrete state. Supertype abstraction is a means to reason about observable behavior,
so behavioral subtyping is essentially about refinement of behavior in terms of the same data
representation. One cannot override a public method that has an integer parameter by one with
a string parameter, or even one that interprets the integer in pounds instead of kilograms —or
rather, doing so would render supertype abstraction unsound. There is a role for data refinement
and simulations: for encapsulated data structures and module-scoped or private methods. But
the ultimate purpose of data refinement is to establish ordinary refinement of behavior on the
observed data representation, as is emphasized in the literature on data refinement (e.g., Morgan
[1994], de Roever and Engelhardt [1998], Banerjee and Naumann [2005]).

2.3 Invariants and behavioral subtyping
Object invariants are predicates that can be assumed, in pre-states, by the method implementation
and must be established in method post-states —while being hidden in the sense that invariants
are not explicit in the contracts used by callers Hoare [1972]. In Liskov and Wing’s abstract
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interface Tracker {
// same as in Fig. 1
}

interface Track extends Tracker {
public model goal, curr: int;
public invariant 0 < self.goal ∧ self.goal ≤ self.curr;
// ...
meth lose(kg: int)

requires self.goal > self.curr − kg;
ensures exc 6= null;

}

class WeightLoss extends Object implements Track {
// same as in Fig. 1
}

Figure 2: The interfaces Tracker, Track and the concrete class WeightLoss.

model of computation method calls make atomic transitions between states and pointers are not
values. Thus there is no direct way to model sharing or reentrancy. These are two features of
conventional OO languages that render naive reasoning about object invariants unsound Noble
et al. [1998]. Recently, several methodologies have been proposed, and some implemented, for
sound reasoning about invariants (e.g., Müller [2002], Müller et al. [2006], Naumann and Bar-
nett [2006]). From invariant declarations provided by the programmer, they derive an effective
invariant that can soundly be assumed in pre-states of method calls, as the proof obligation on a
method implementation, without being explicitly required for callers.

Given sound invariants, the invariant rule of Liskov and Wing turns out to be sound. To be
precise, let Inv be a map from types to predicates, satisfying the rule of Liskov and Wing, i.e.,
S ≤ T implies Inv(S )(self) ⇒ Inv(T )(self) in accord with (2). Let ST be a specification
table that has behavioral subtyping. Suppose that by some means we ensure that Inv(T )(self)
holds at every method call boundary, where T is the exact type of self. Then ST ′ has behavioral
subtyping, where ST ′ is obtained from ST by conjoining Inv(S ) as pre- and post-condition for
each method specification in each type S .

This result has been proved on the basis of the formalization in this paper. It accounts for
supertype abstraction in conjunction with hidden invariants. The details will be presented in a
separate paper.

2.4 On interface and class types
The Liskov and Wing rule for behavioral subtyping Liskov and Wing [1994] is applied to all
pairs of types and their immediate supertypes. Unlike their work, in this paper we distinguish
between interfaces and classes. For supertype abstraction it turns out to be sound and complete to
require behavioral subtyping only for instantiable class types. To illustrate this, consider Fig. 2.
Suppose Abby develops the interface Tracker first for a trusted client. Later, Ben decides to
include something like Tracker in a library for untrusted clients, and thus develops the interface
Track, which is specified to throw an exception if Track’s precondition for the lose method is
not met. Finally, Carla implements the Track (and thus also the Tracker) interface in the class
WeightLoss. Since Track is a subtype of Tracker, the Liskov and Wing rule would require that
the specification of the lose method of Track satisfy conditions (3) and (4) with respect to the
specification given in Tracker. However, neither of these conditions is satisfied by the specifi-
cation of Track. For the precondition of lose, the specification in Track is opposite to that in
Tracker. Similarly for the postcondition of lose, the specification in Track requires an exception
to be thrown, while that in Tracker ensures the opposite. On the other hand, it is still valid to use
supertype abstraction when reasoning about calls to the lose method on variables whose static
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type is either Track or Tracker, since the lose method in the concrete class WeightLoss refines
both specifications.

Dropping the refinement condition for sub-interfaces is important for the completeness of
behavioral subtyping with respect to supertype abstraction. However, there is a good reason
to require refinement in every instance of subtyping. Consider reasoning about a call t.lose(5)
where t has static type Track. Due to behavioral subtyping, any implementation of lose at a
subtype of Track will satisfy the specification of lose in Tracker. So reasoning about t using
only the specification given in Track is incomplete. Strengthening that specification by inheriting
the one declared in Tracker has no cost, as it imposes no additional constraint on implementations
of lose. (See Prop. 68.)

2.5 Ensuring behavioral subtyping by specification inheritance
As can be seen from our examples, writing the specifications for a behavioral subtype often
involves a certain amount of repetition. For example, the postcondition of the lose method in
class WeightLoss (Fig. 1) has two conjuncts, and the first of these repeats both the precondition
and the postcondition of the overridden method in the supertype Tracker (Fig. 1).

Such repetition can be avoided using specification inheritance Dhara and Leavens [1996],
Leavens [2006], Wills [1992]. In JML, the programmer declares two specifications, one for the
supertype, and one for the subtype. The effective specification for the subtype is derived using
specification inheritance, as described below. For methods, an overriding method declaration
inherits the specifications of each declaration of the method that it overrides. Its effective speci-
fication is the join (least upper bound) of the explicit specification with the specifications of that
method in all supertypes. In JML the join of a method specification with the specifications of
overridden methods is indicated by the keyword also. Using this convention one could rewrite
the specification of the lose method in class WeightLoss as follows, with the initial also re-
minding the reader about the join with the inherited specification:

meth lose(kg: int)
also

requires self.goal > self.curr − kg;
ensures exc 6= null;

In JML, the effective method specification derived from such a specification has as its precon-
dition the disjunction of the explicit precondition and those inherited (which in this example is
true), and as its postcondition a conjunction of implications, which says that if a precondition
was satisfied, then the corresponding postcondition must hold. This corresponds to the semantics
of specification inheritance that we formalize in Sect. 9. And it is exactly what is already explicit
in the specification of lose in Fig. 1.

A number of tools and logics enforce behavioral subtyping through equivalent means, though
this is not always explicit. Theorem 64 says specification inheritance ensures behavioral subtyp-
ing.

3 Related work
Liskov and Wing formulate something like supertype abstraction, their “Subtype Requirement”
(p. 1812), but it is sketched in terms of provability and does not directly address modular reason-
ing about code and method contracts. Their paper is famous because they clearly present the main
ideas of behavioral subtyping and several interesting examples. They present informal arguments
why behavioral subtyping ensures their subtype requirement. The reasoning they permit involves
only invariants and history constraints, because their model of computation allows concurrency.
By contrast, we use a sequential language that allows Hoare-style reasoning using invariants as
well as pre- and postconditions, addressing both partial and total correctness. Furthermore, we
strengthen their soundness claim to an equivalence, and we rigorously prove our soundness and
completeness results.

Leavens and Dhara [2000] survey older work on behavioral subtyping, including the pioneer-
ing work of America 1987, 1991 and Meyer 1985 1997. Much of it is similar to Liskov and
Wing’s and has similar limitations.
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Early versions of this paper Leavens and Naumann [2006b;a] gave our definition of super-
type abstraction as well as the result that supertype abstraction for method call is equivalent to
behavioral subtyping, and a separate result deriving supertype abstraction for commands in gen-
eral. Based on the wording of a number of subsequent citations, it seems that our results were
convincing. Unfortunately, there is a fatal flaw in our proofs of the second result just mentioned.
(It only shows up in the case of sequential composition, which had seemed too obvious to check
in full detail.) In the present paper we use an entirely different proof technique and give detailed
proofs.

Several logics have been given for sequential fragments of Java which incorporate supertype
abstraction Müller [2002], Parkinson [2005], Pierik [2006], Poetzsch-Heffter and Müller [1999].
These logics mostly achieve behavioral subtyping by requiring that each overriding method im-
plementation in a type satisfies the corresponding specification in each of its supertypes. This
has the same effect as our definition of specification inheritance, which explicitly constructs
an “effective specification” for a method equivalent to all the specifications of that method in
each supertype. Some prove soundness and even completeness of a proof system with behav-
ioral subtyping, which justifies supertype abstraction in their setting. Of these, only Müller’s
2002 considers interface types, but misses our insight that interfaces can be exempted from the
requirements of behavioral subtyping that must apply to (non-abstract) classes. Müller concen-
trates on a modular treatment of frame axioms (modifies clauses) and invariants using ownership.
He does not claim or prove completeness, but does prove soundness of his modular techniques
(on the assumption that the underlying logic is sound, a plausible conjecture (p97) based on the
soundness proof of Poetzsch-Heffter and Müller [1999] for a closely related logic).

Apt et al. 2012, 2009 address soundness and completeness of Hoare logics for object-based
programs but do not address inheritance.

KeY Beckert et al. [2007] and Spec# Barnett et al. [2005] are two mature static verifiers that
deal with inheritance and provide at least limited forms of supertype abstraction. Spec# features
a sound modular treatment of invariants. KeY doesn’t enforce a particular invariant methodology
but does facilitate use of ownership- and visibility-based methodologies; its treatment of behav-
ioral subtyping is also flexible. Some of the works cited below include prototype verification
tools but tools are outside the scope of this paper; we focus on reasoning techniques.

Parkinson’s 2005 work is based on separation logic O’Hearn et al. [2009] and focuses on en-
capsulation based on a novel form of opaque predicate Bierman and Parkinson [2005], related to
higher order quantification Biering et al. [2005] and JML’s model fields. The proof rules embody
controlled scope of the definitions of predicates used, by name, in contracts. Parkinson says “be-
havioral subtyping” for the standard implications (3) and (4), and “specification compatibility”
for a proof-theoretic approximation of the intrinsic refinement ordering [Parkinson 2005, Def.
3.5.1] which retains (3) although as we show this is unnecessarily strong because the logic is for
partial correctness.

Parkinson and Bierman [2008] show the benefits, for modular reasoning about all kinds of
inheritance, of such opaque predicates together with separation logic. (Such predicates and sep-
aration logic fit neatly into our formal model of specifications.) They also promote the use of
“static” specifications for methods, which can be used to reason about statically-dispatched su-
per calls and calls to final or private methods. Their treatment does not attempt to disentangle
the foundational issues of modular reasoning from their verification logic. They do connect be-
havioral subtyping with refinement, citing an early version of the present paper. Parkinson and
Bierman [2008] point out that by using exact type tests in preconditions, one can maintain be-
havioral subtyping while allowing arbitrary changes of behavior in subclasses. The point is that
instances of a proper subclass are not constrained by a specification with a precondition that says
self has exactly the superclass type. They give examples to show that this has practical value as
a way to reuse code via ad hoc inheritance. We explore this in detail in Example 43. A variant
on the technique is to use exact type tests in postconditions (e.g., Pierik and de Boer [2005a]).
This technique can be deployed in languages like JML using pure methods that get re-defined at
subtypes; this has the advantage of avoiding the need for exact type tests, which are not a built-in
feature in Java-like languages and which are problematic to encode in open programs.

Chin et al. [2008] give results that are similar to those of Parkinson and Bierman [2008], but
also explicitly considering invariants. They use a notion of “intersection” of specifications to
model specification inheritance, and have a notion of “specification subsumption” corresponding
to our notion of refinement, though specialized for the specific setting of separation logic. Like
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Parkinson and Bierman, they do not seek to analyze behavioral subtyping separately from their
particular logic. While they present several examples demonstrating the power of their specifica-
tion language, they do not address its completeness formally.

Pierik [2006] gives a more conventional proof system, in particular a proof outline logic with
a first-order assertion language. As we do in Sect. 5.4, Pierik explicitly connects specification re-
finement with adaptation rules; and unlike the other partial correctness logics discussed here, his
characterization of refinement does not impose the unnecessary strong condition (3). Supertype
abstraction and behavioral subtyping are present but intertwined with many other details. Pierik
[2006] and Parkinson [2005] both prove soundness of their partial-correctness logics, and Pierik
proves completeness.

Pierik and de Boer [2005a] investigate various notions of completeness of Hoare logics in
the presence of behavioral subtyping. They formalize notions closely related to what we call
modular correctness. Their definitions do not technically apply to our work, since we investigate
semantic notions of reasoning instead of particular Hoare logics.

Dovland et al. [2008] also present a proof system in their paper “Lazy Behavioral Subtyping.”
The main innovation in their proof system is to distinguish between “requirements,” which are
specifications used to verify method calls that call other methods defined in the same class, and
“specifications”. Both requirements and specifications are formalized as pre- and postcondition
pairs. A method’s specification is only used to specify a particular implementation; in particular
the implementation of a method must satisfy its declared specification, and the declared spec-
ification must be sufficient to prove that all requirements placed on that method hold. In lazy
behavioral subtyping, subtypes inherit requirements for methods in the sense that an overriding
method m must satisfy all the requirements placed on m in all ancestor classes. Supertype ab-
straction is still used for reasoning about method calls (when the receiver is not this); however,
such calls are verified not with respect to the declared specification of a method, but with respect
to the set of requirements remembered for the receiver’s static type. So method specifications are
not used directly in verification of client code, and thus the system is unusually flexible. Their
proof system can be modeled in our work by populating the specification table for each method
with the join of the requirements placed on that method’s implementation. While the authors
present soundness results, they do not attempt to prove completeness nor do they separate their
results from their particular proof system.

Findler and Felleisen [2001] is a foundational study of runtime assertion checking for pre/post
specifications without invariants. Findler et al. [2001] directly addresses behavioral subtyping.
These papers are the first to describe how to use runtime assertion checking to properly check
supertype abstraction, since they check method calls using the contracts associated with the static
type of the receiver.

The other issue that is important in these papers by Findler et al. is specification inheritance.
This is an important design decision in an OO specification language. Many of the above cited
works use specification inheritance to force behavioral subtyping. This decision prevents redun-
dancy in specifications and avoids the need for subtypes to see all specifications in supertypes,
some of which may be invisible (such as private invariants). The downside of this decision is
that the join used in specification inheritance can lead to unsatisfiable specifications, which will
manifest themselves during testing as assertion violations. Findler and Felleisen say that such
assertion violations will be confusing to programmers; instead they advocate having tools check
for instances of what they call an “erroneous contract formulation” [Findler et al. 2001, Sec-
tion 3] and signal them unambiguously as “hierarchy violations.” Thus they require specifiers to
write out the entire contract for each method. They point out that specification inheritance can
cause precondition violations to be suppressed (when a precondition in a subtype’s overriding
method is weaker than that of the method it overrides). More importantly, they note a problem
with the way that specification inheritance causes “blame” to be assigned for postcondition vio-
lations. The problem occurs when an overriding method’s specification has a postcondition that
contradicts the postcondition specified for the method it overrides; in this case a test will cause
one postcondition to be violated, and thus blame will be assigned to the implementation of the
method (instead of to the specifier), which Findler and Felleisen believe is confusing. Instead,
they argue that such problems should be pointed out to programmers as “hierarchy violations,”
which their runtime assertion checks can detect. They point out that specification languages that
use specification inheritance cannot detect hierarchy violations. Their contract checker checks
for hierarchy violations using Liskov and Wing’s pre/post rules, (3) and (4). However, conditions
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(3) and (4) are unnecessarily restrictive as we have explained above.
Our formalization of specifications, which keeps a table of specifications for each method in

each type, can model both specification languages that use specification inheritance and those
that do not, like Findler and Felleisen’s. In the former case the specification table stores the
specifications constructed by specification inheritance; in the latter case the specification table
stores the specifications written directly by the specifier.

4 Programming language
Our technical development uses an idealized object-oriented language that models a large frag-
ment of the class-based languages like Java and C#. It includes interfaces, mutually recursive
classes, exceptions as first-class objects, type tests and casts, inheritance and dynamic binding,
and strong binary methods.6 Constructors are omitted but can be treated as a syntactic sugar.
For issues like evaluation order and the semantics of null casts, where reasonable languages may
differ on semantic details, we follow Java.

We chose this language because it closely resembles Java with JML specifications. Both Java
and JML are of interest to a large group of programmers, including those working in C# and
the Spec# system. Modeling exceptions seems necessary to have a realistic treatment of runtime
type casts and of total correctness in a Java-like language, and we are pleased to model them in
full generality, although they are not central to our results. Exceptions slightly complicate the
definitions in this section of the paper, and also the derivations in Sect. 7, but do not otherwise
obtrude. Because standard details about the language are relegated to the appendix, the language
features do not significantly lengthen the paper.

The semantics is adapted from Banerjee and Naumann [2005] which in turn draws on Igarashi
et al. [2001] for formalization of syntax including the class table. A version of the semantics is
formalized in Leavens et al. [2006], building on Naumann [2005]. Because the language is essen-
tially defunctionalized Banerjee et al. [2001], Reynolds [1972], a denotational semantics can be
given using a straightforward hierarchy of inductively defined domains; there are no interesting
domain equations to solve. Denotational semantics is well suited to our purposes, both because
it supports a semantic notion of modular reasoning and because the semantics of commands is
compositional.7

Three features of the semantics streamline the formal development but may be unexpected.
First, although the conventional distinction is made between expressions E and commands C ,
both may have effects —and we consider pre/post specifications for both. Second, the compli-
cation of threading state through the semantics of expressions is mitigated by the uniform use of
a general form of state transformer, with separate variable declarations for the initial and final
state spaces. For a command, the final state space is the initial one extended with a distinguished
variable, exc, for exceptions. For an expression, the initial state space is the one in which the
expression is evaluated and the final state space has just two variables, res for the normal result
and exc for exceptions. For a method, the initial variables are the parameters and the receiver
variable self; the final state has res and exc as in the case of expressions. A state transformer of
a given type is a mapping from initial states to final states or ⊥, the latter modeling divergence.

The third notable feature is an encoding of exceptions that is easy to work with. An expression
may diverge, yield a normal result, or throw an exception. The semantics uses a disjoint sum of
just two kinds of outcome: either⊥ or a state. But final states include the aforementioned variable
exc that, in effect, encodes another disjoint sum: the value of exc is either null, which indicates
normal termination, or a reference to the exception object. Variable exc is not allowed to occur
in the program text but can be used in specifications (exc is used in modeling the signals clause
in JML).8

These features of the semantics streamline not only the semantic definitions but also for-
mulation of the main results of the paper. Nonetheless, an operationally sound semantics for a

6Strong binary methods are those where a method acts directly on the private fields of more than one object, a
commonly-used feature that does not fit with some denotational models.

7The semantics is not compositional at the level of classes. A denotational semantics that is compositional at the level
of classes, such as Reus [2003], is conceptually attractive but mathematically less elementary, and not needed for our
results.

8Some works make elegant use of monads to encode exceptions and monads to encode state, but our exceptions are
first-class in the sense that there may be arbitrary pointers to and from an exception at the time it is thrown. We are not
aware of monadic formalizations in this generality.
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language of this complexity is inevitably complicated. Manipulation of res and exc in the se-
mantics corresponds transparently to operational semantics using a stack of activation frames.
The second and third features lessen the number of domain definitions.

4.1 Notations
We often use partial functions, treated as sets of pairs. Unqualified, the term function means
“total function”; in the semantics we use the distinguished value ⊥ so that state transformers are
functions.

Application is written with juxtaposition and associates to the left as in f a b for a curried f . It
binds more tightly than other operators including comma in pairing. We sometimes parenthesize
arguments when it is not necessary, for visual clarity.

A raised dot separates a variable binding from its scope, as in ∀x : int · a[x ] > 0.
Finite mappings are used for typing contexts and variable stores, written like [x : K , y : int]

or with brackets omitted. The extension of a finite mapping g to also map b to z , where b /∈
dom g , is written [g , b : z ] with colon binding more tightly than the comma (and less tightly
than function application). Note that in square brackets, the comma forms a union of disjoint
functions, whereas in parentheses the ordinary comma means tupling as usual. To override the
mapping for an element c ∈ dom g we write [g | c : z ] for the map that sends c to z and any other
b in dom g to g b. The distinction between override and extension helps clarify some definitions,
and the use of comma fits with conventional notation for typing contexts.

To streamline the definitions, our meta-language includes notation for the “strict let” of the
lift monad: lets x = α in β abbreviates if α = ⊥ then ⊥ else let x = α in β, and let has its
ordinary mathematical meaning.

4.2 Syntax
The grammar is based on some given sets of names, using the following nomenclature:

K ,L ∈ ClassName names of declared classes
I ∈ InterfaceName names of declared interfaces
x , y , z , f variable names (for parameters, locals, and fields)
m method names

Two distinguished variable names may occur in code: self for the receiver object and res. The
final value of res gives the return value of a method, as if every method body has the form
“C ; return res;”. Using res fits with JML and lets us omit return statements.

There is one distinguished interface name, Thr (for “throwable”). There are three distin-
guished class names: Object, NullDeref and ClassCast. The last two implement Thr, the su-
pertype for all exceptions and therefore the type of the special variable exc. Since other classes
can be subtypes of Thr, there can be arbitrary references between exceptions and other objects.

Class and interface declarations have the following forms:

class K extends L implements I { f : T mdec } (6)
interface I extends I { f : T msig } (7)

Here and throughout we use over-lines to indicate sequences, possibly empty. Instance fields are
included in interfaces since they are needed in specifications; in a specification language they
would be marked as “ghost”. Our results apply to programs that are properly annotated for
ghost (specification-only) fields, but the distinction is not needed for our results.

The remaining syntactic categories are defined in Fig. 3. The syntax is in “A-normal form”,
i.e., subexpressions in various constructs are restricted to be variables. To avoid loss of expres-
siveness, let-expressions are included. Desugaring transformations are not difficult to define,
e.g., a general equality test E1 = E2 can be desugared (notation −o) by the rule (E1 = E2)o =
let x be Eo

1 in let y be Eo
2 in x = y which preserves order of evaluation and propagation

of exceptions. For exception handling, we omit try-finally since it can be desugared using try-
catch.9 Try-catch statements with multiple catch clauses can be desugared to nested try-catch

9The type test expression is convenient, although at the level of commands it can also be desugared using cast and
try/catch.
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T ::= K | I | bool | int data type (K ∈ ClassName and I ∈ InterfaceName)
msig ::= m(x : T ) : T method signature
mdec ::= meth msig { C } method declaration
C ::= x := E | x .f := x assign to variable, to field

| var x : T in C local variable block
| C ; C | if x then C else C sequence, conditional
| throw x | try C catch(x : T ) C throw, handle exception

E ::= x | null | true | 0 . . . variable, literals
| x .f | x = y field access, equality test
| x is T | (T ) x | new K () type test, type cast, object construction
| x .m(x ) | let x be E in E method call, sequenced local binding

Figure 3: Grammar. Bold keywords and punctuation marks including “{” and “}” are terminal
symbols.

statements.10

In Java there is a return type, “void”, for methods called only for their effect. Such a method
can be desugared to one that always returns false, and a call desugared using an assignment to a
fresh local variable.

A ref type is any non-primitive data type, i.e., a class or interface name, and we define

RefType = ClassName ∪ InterfaceName

We omit arithmetic and Boolean operators as their treatment is straightforward, essentially like
equality test. Other constants are treated just like true and 0.

A complete program is a class table together with a command. A class table CT is a mapping,
with domain the union of disjoint sets ClassName and InterfaceName, that sends each class name
K or interface name I to its declaration.

4.3 Typing
The typing rules are syntax directed so the semantics can be defined by recursion on typing
derivations. The rules for commands and expressions use judgments in which the variable
context is explicit, giving names and types of local variables and parameters that are in scope
(namely, the method parameters, any locals in scope, and the special variables self and res). Al-
though it is not explicit in the typing judgments, typing depends on the whole class table, owing
to mutually-recursive class declarations. Several functions access parts of the class table. Let
CT (K ) be the class declaration shown in formula (6) above; then we define super K = L and
superinterfaces K = I .

For a method declaration
meth m(x : T ) : T1 { C }

in class K , define its declared method type dmtype(K ,m) = x : T→T1. Similarly, for an
interface I , the notation dmtype(I ,m) stands for the type of the signature of m appearing in I .
Note that method type x : T→T1 is parsed as (x : T )→T1 and it records parameter names as
well as their types, a minor technical convenience that loses no generality. Method declarations
do not list exceptions; any may be thrown (as in C#).

To include inherited methods, function mtype is defined as: mtype(K ,m) = x : T→T1 iff
either dmtype(K ,m) = x : T→T1 or mtype(super K ,m) = x : T→T1 or mtype(I ,m) =
x : T→T1 for some I ∈ superinterfaces K .11 In a well-formed class table (see below), this
will be well-defined. Thus mtype(K ,m) is defined iff m is declared or inherited in K , whereas
dmtype(K ,m) is defined only if m is declared in K .

10Albeit in complicated cases extra Boolean flags are needed to explicitly track control flow, see e.g. Van Roy and
Haridi [2004, Sec. 2.7.2].

11Although not necessary, the reader can also assume that Object, Thr, NullDeref and ClassCast have no defined
methods and no fields.
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Γ ` E :T [Γ , x :T ] ` E1 :U

Γ ` let x be E in E1 :U

Γ ` E :T T ≤ Γ x x 6= self
Γ ` x := E

Γ ` x :T mtype(T ,m) = z :U→U Γ ` y :V V ≤ U

Γ ` x .m(y) :U

Figure 4: Selected typing rules.

Similarly for interfaces: If I extends I , as in (7), then we define superinterfaces I = I and
mtype(I ,m) = x : T→T1 iff either dmtype(I ,m) = x : T→T1 or mtype(I ′,m) = x : T→T1

for some I ′ ∈ I .
We define Meths T = {m | mtype(T ,m) is defined }. Note that mtype(T ,m) is defined

just when T is a ref type that declares or inherits m; this includes the case that T is an interface
with a superinterface that declares m .

We use the auxiliary function formals(T ,m) to pick out the argument names of a method
type; formals(T ,m) is defined as z when mtype(T ,m) = z : T→U .

For fields, if CT (K ) is as in (6), then its list of declared fields is dfields K = f : T and
similarly for dfields I . To include inherited fields, define fields K = fields L ∪ dfields K ∪
(
⋃
{fields I | I ∈ superinterfaces K}). In a well formed class table (see below) each of these

unions will be disjoint. For interfaces we similarly define fields I = dfields I ∪ (
⋃
{fields I ′ |

I ′ ∈ superinterfaces I }).
The subtype relation ≤ on data types is defined inductively by

• K ≤ L if super K = L (note that super Object is undefined),

• T ≤ I if I ∈ superinterfaces T ,

• I ≤ Object for all I , and

• ≤ is reflexive and transitive.

Thus for primitive types (int and bool), T ≤ U holds just if T is U .
A class table CT is well formed provided it satisfies the following.

(W1) The subtype relation, ≤, is antisymmetric.

(W2) Any ref type that appears as a field type, superclass, local variable type, cast type, etc. is
either declared in CT or is Object, Thr, NullDeref, or ClassCast.

(W3) Field names are not shadowed; that is, for each ref type T , if f : U is in dfields T ,
then (a) f is not in dom(fields(super T )), and (b) f is not in dom(fields I ), for all I ∈
superinterfaces T .

(W4) Method types are invariant; i.e., if T ≤ U and both dmtype(T ,m) and dmtype(U ,m) are
defined, then dmtype(T ,m) = dmtype(U ,m).

(W5) For each K ∈ dom(CT ), every method declaration meth m(x : T ) : T {C} in CT (K )
is typable, in the sense that Γ ` C where Γ is the assignment of types to variables
[self : K , res : T , x : T ], and moreover exc does not occur in x . Rules that define the
typing judgment Γ ` C are standard; some appear in Fig. 4 and all can be found in Fig. 10
and Fig. 11 in Sect. A.1. The rules refer to partial function mtype, which is well defined
given the preceding conditions (W1)–(W4).

(W6) For any K , any I ∈ superinterfaces K , and any method signature for a method m name
declared or inherited in I , there is a declared or inherited method in K for m with the same
signature.

The symbol = denotes strong equality, when used in connection with partial functions. For
example the antecedent of the typing rule for method call is that mtype(T ,m) is defined and
moreover it equals z : U→U .
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domain description metavariables
RefCtx typing of allocated refs r
Val(T , r) value of type T (in ref context r ) o, v
Store(Γ, r) stores for Γ s, t

∗ Obrecord(K , r) fields of K -objects
Heap(r) heaps h
State(Γ) states for Γ σ, τ
STrans(Γ1,Γ2) state transformers ϕ,ψ

∗ SemExpr(Γ,T ) semantic expression
∗ SemCommand(Γ) semantic command
∗ SemMeth(K ,m) semantics of method m in K

MethEnv method environment η
XMethEnv extended method environment η̇ (sometimes η)

Figure 5: Guide to domains. Those marked with ∗ are special cases of the others as explained in
the text.

Although we assume that the type of methods is invariant in subtypes (condition (W4)), we
believe that our results would be unchanged if this assumption were relaxed to allow covariance
in method return types (as recently added to Java).

Henceforth we assume CT is a fixed, well formed class table.

4.4 Semantic domains
The domains encode important invariants: well typed values, absence of dangling references, and
non-nullity of self. Fig. 5 is a guide to the domains.

We assume a given set Ref of references —abstract addresses of objects. A ref context is a
finite partial function r that maps references to class names (and not interface names). The idea
is that if o ∈ dom r then o is allocated and moreover o points to an object of type r o. We define
the set of reference contexts:

RefCtx = Ref⇀ ClassName

where ⇀ denotes finite partial functions. For r and r ′ in RefCtx, the set inclusion r ⊆ r ′ serves
to express that the domain of r ′ includes at least the objects in r and, for objects allocated in r ,
the types are the same in r ′.

For data type T its domain of values in a reference context r is defined by cases on T :

Val(int, r) = Z
Val(bool, r) = {true, false}
Val(K , r) = {null} ∪ {o | o ∈ dom r ∧ r o ≤ K}, if K ∈ ClassName
Val(I , r) = {null} ∪ {o | ∃K · K ≤ I ∧ o ∈ Val(K , r), } if I ∈ InterfaceName

A store for a context Γ is a dependent function from variables in scope to type-correct and
allocated values. That is, a store s is an element of the dependent function space (x : dom Γ) →
Val(Γ x , r). What this means is that the domain of s is dom Γ and s x is an element of Val(Γ x , r)
for each x ∈ dom Γ. The domain of stores is also defined to impose an additional invariant of the
semantics, namely that self is never null. Thus we define the set Store(Γ, r) by

s ∈ Store(Γ, r) ⇐⇒ s ∈ ((x : dom Γ)→ Val(Γ x , r)) ∧ (self ∈ dom Γ ⇒ s(self) 6= null)
(8)

A heap h maps each allocated reference o to a store, h o, of the object’s current field values:

Obrecord(K , r) = Store(fields K , r)
Heap(r) = (o : dom r)→ Obrecord(r o, r)

A state is a ref context, r , together with heap and store that are well formed in r :

State(Γ) = (r : RefCtx)× Heap(r)× Store(Γ, r)

This is isomorphic to a semantics where the dynamic type of each object is stored in a distin-
guished, immutable field.

19



The most important domain is state transformers. An element of STrans(Γ,Γ′) is a function
ϕ that maps each state σ in State(Γ) to either ⊥ or a state ϕσ in State(Γ′), with a possibly
extended heap, subject to some additional conditions.

STrans(Γ,Γ′) = (σ : State(Γ))→ {⊥}∪{σ′ | σ′ ∈ State(Γ′)∧extState(σ, σ′)∧imSelf (σ, σ′)}

The conditions help streamline some definitions in Sect. 5. Relation extState is used to say that
the ref context of the initial state is extended by the ref context of the final state:

extState((r , h, s), (r ′, h ′, s ′)) ⇐⇒ r ⊆ r ′.

Relation imSelf says that self, if present, is immutable:

imSelf ((r , h, s), (r ′, h ′, s ′)) ⇐⇒ (self ∈ (dom s ∩ dom s ′) ⇒ s(self) = s ′(self)). (9)

The domain of state transformers subsumes meanings for expressions, commands, and meth-
ods, which are defined as follows:

SemExpr(Γ,T ) = STrans(Γ, [res : T ,exc : Thr])
SemCommand(Γ) = STrans(Γ, [Γ , exc : Thr])
SemMeth(T ,m) = STrans([self : T , z : U ], [res : U ,exc : Thr])

where mtype(T ,m) = z : U→U

We are usually interested in initial state spaces that include self but for expressions and method
meanings self is absent from the final state space.

A normal method environment is a table of meanings for all methods in all classes:

MethEnv = (K : ClassName)× (m : Meths K )→ SemMeth(K ,m).

A normal method environment η is defined on pairs (K ,m) where K is a class with method m;
and η(K ,m) is a state transformer suitable to be the meaning of a method of type mtype(K ,m).
In case m is inherited in K from class L, η(K ,m) will be the restriction of η(L,m) to receiver
objects of type K .

In our formulation of modular reasoning based on static types, we need to associate method
meanings to interfaces as well as to classes, even though the receiver of an invocation is always an
object of some class (cf. the definition of Val(I , r)). The set of extended method environments
is defined by

XMethEnv = (T : RefType)× (m : Meths T )→ SemMeth(T ,m).

The metavariable η ranges over normal method environments and η̇ is used to range over extended
method environments —the dot is mnemonic for i in “interface”. Unqualified, the term “method
environment” means normal unless context indicates otherwise.

A command in context, Γ ` C , denotes a function, defined later, from method environments
to SemCommand(Γ). An expression in context Γ ` E : T denotes a function from method
environments to SemExpr(Γ,T ). A class table denotes a normal method environment obtained
as a least fixed point.

4.5 Semantics of expressions and commands
The semantics of expressions and commands is defined by recursion on typing derivations, which
are unique.12 For any derivable typing Γ ` E : T and any method environment η, the semantics,
[[Γ ` E : T ]](η), is an element of SemExpr(Γ,T ). For any derivable typing Γ ` S the semantics,
[[Γ ` S ]](η), is in SemCommand(Γ).

In case E has subexpressions, the definition uses nomenclature from the corresponding typing
rule. For example, here is the semantics of let-expression, as typed in Fig. 4:

[[Γ ` let x be E in E1 : U ]](η)(r , h, s) =
lets (r0, h0, s0) = [[Γ ` E : T ]](η)(r , h, s) in
if s0 exc 6= null then (r0, h0, [res : default U ,exc : s0 exc])
else let s1 = [s , x : s0 res] in [[Γ, x : T ` E1 : U ]](η)(r0, h0, s1).

(10)

12Unique modulo the minor issue that the expression null can sometimes be given more than one type; the semantics
can be shown to be independent of this small variation in typing derivations.
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An example of the command semantics is the semantics of assignment:

[[Γ ` x := E ]](η)(r , h, s) = lets (r1, h1, s1) = [[Γ ` E : T ]](η)(r , h, s) in
if s1 exc = null then (r1, h1, [[s | x : s1 res] , exc : null ])
else (r1, h1, [s , exc : s1 exc]).

(11)
If E yields⊥ then so does the assignment (owing to lets). If E throws no exception then its value,
s1 res, is assigned to x and the store is also is extended with exc mapped to null. Otherwise, the
final state is extended with exc mapped to the exception, s1 exc.

The preceding definitions use the notation [[−]] for the semantics function. This abbreviates
two definitions, both defined in the same way except in the case of method call. The dynamic
dispatch semantics, for which we decorate the semantics brackets as D[[−]], is the operationally
accurate one. It dispatches to a method meaning based on the dynamic type of the receiver.
Define

D[[Γ ` x .m(y) : U ]](η)(r , h, s) = if s x = null then except(r , h,U ,NullDeref)
else let K = r(s x ) in let z = formals(K ,m) in

let s1 = [self : s x , z : s y ] in η(K ,m)(r , h, s1).
(12)

The exception helper function, except , is discussed later. By well-formedness of the class table,
formals(K ,m) = formals(T ,m) where T is the type of x in Γ in accord with the typing rule.
The receiver object is s x , thus the dynamic type of the object is given by K = r(s x ). To look up
in method environment η the meaning of the dynamically dispatched method we write η(K ,m).
It is applied to state (r , h, s1) containing the arguments. Since the argument expressions y are
variables we can write s y for the sequence of their values.13 Because the dynamic type of the
receiver is a class (specifically, K ), this semantics is based on a normal method environment.

The static dispatch semantics of method call applies a method meaning determined by the
static type T of the receiver. Since interfaces are included among the static types, the static
dispatch semantics is defined in terms of an extended method environment η̇:

S[[Γ ` x .m(y) : U ]](η̇)(r , h, s) = if s x = null then except(r , h,U ,NullDeref)
else let T = Γ x in let z = formals(T ,m) in

let s1 = [self : s x , z : s y ] in η̇(T ,m)(r , h, s1).
(13)

In keeping with our use of nomenclature from the typing rules, there is no need for the explicit
binding T = Γ x here, but we include it for contrast with the dynamic semantics.

Notation in the method call semantics has been chosen to cater for later formulations. An
alternative formulation may be given using dispatch(T ,m, η) defined by

dispatch(T ,m, η)(r , h, s) = η(r(s(self)),m)(r , h, s) for any r , h, s . (14)

Here we assume mtype(T ,m) = z : T→U , and then dispatch(T ,m, η) is a state transformer
of type [self : T , z : T ] → [res : U ,exc : Thr]. In the alternative formulation, the difference be-
tween static and dynamic semantics boils down to η̇(T ,m)(r , h, s1) versus dispatch(T ,m, η)(r , h, s1).

Semantics for the remaining expression and command forms is in Sect. A.1.
It is straightforward but not trivial to prove that the semantic clauses are all well defined and

yield elements of the appropriate semantic domains. In fact this property is a strong form of type
soundness. In the rest of the paper, we often use without mention various consequences of type
soundness. For example, the result value of an expression is in the right domain, which implies
that it is allocated. The invariants about self are occasionally important too.

4.6 Semantics of class tables
A well formed class table CT denotes a method environment, D[[CT ]], defined to be the least
upper bound of an ascending chain of method environments—the approximation chain—each
of which is given using the dynamic dispactch command semantics for method bodies, applied
to the preceding approximation. In operational terms, the i th element in the chain, ηi , gives the
correct semantics for executions with method call stack bounded in length by i . (With η0(K ,m)
being everywhere⊥.) In case class K declares m with body C , the meaning ηi(K ,m) is defined

13The notation z : s y means the sequence z1 : s y1, . . . , zn : s yn , where z and y both have length n .

21



as D[[C ]](ηi−1). In case class K declares m from L, the meaning ηi(K ,m) is defined to be
ηi(L,m), or rather the restriction of ηi(L,m) to states with self of type K . The details are in
Appendix Sect. A.2.

5 Specifications and refinement
This section formalizes method specifications and their satisfaction by state transformers, in the
sense of total correctness (Sect. 5.1). On this basis we define the intrinsic refinement relation
between specifications (Sect. 5.2). For refinement by a specification at a subtype, two different
notions are defined; one is critical for the equivalence between supertype abstraction and behav-
ioral subtyping, the other is needed for specification inheritance. Sect. 5.3 gives some technical
results. Sect. 5.4 characterizes refinement in terms of pre- and postconditions, cf. Eq. (5) in
Sect. 2.

5.1 Specifications and satisfaction
In practice, most method specifications are written using two-state postconditions over program
state, with special syntax like “old(x)” to refer to the initial state, together with a frame condition
(“modifies clause”) that delimits what part of the program state is allowed to be changed. A
specification of this kind can be desugared into one where the pre- and post-conditions are one-
state predicates, using specification variables universally quantified over the Hoare triple Apt
[1981] as is made explicit in JML’s “forall” notation (cf. Example 6 below). In this paper we
consider specifications of arbitrary commands, for which one-state postconditions are convenient,
as in axiomatic semantics and in Hoare logics (including Pierik [2006], Bierman and Parkinson
[2005], Dovland et al. [2008]). For our purposes, it is convenient to distinguish specification
variables from ordinary program variables by considering indexed families of pre/post predicate
pairs. A predicate is just a set of states. We also use the notion of state transformer type, notation
Γ Γ′, for specifications of state transformers in STrans(Γ,Γ′).

Definition 1 (state transformer specification) A simple specification of type Γ Γ′ is a pair
(pre, post) such that pre is a subset of State(Γ) and post is a subset of State(Γ′)

A general specification of type Γ Γ′ is a triple (J , pre, post) consisting of a non-empty set
J and indexed families of predicates: pre ∈ J → ℘(State(Γ)) and post ∈ J → ℘(State(Γ′)).

A method specification of type (T ,m) is a general specification of type [self : T , x : T ] 
[res : U ,exc : Thr] where mtype(T ,m) = x : T→U .

A Γ-specification is a general specification of type Γ [Γ , exc : Thr].

Unqualified, “specification” means general specification unless the context indicates otherwise.
A simple specification (p, q) lifts to a general specification with singleton index set: ({0}, {(0, p)}, {(0, q)}).

Remark 2 The requirement that the index set J is non-empty is a technical convenience that
loses no generality. A specification with empty index set would impose no constraint at all. The
same effect can be achieved using an empty precondition, e.g., take J to be the singleton {0},
pre0 to be the empty set, and post0 arbitrary. This is satisfied by all state transformers, including
the everywhere-divergent λσ · ⊥.

Definition 3 (satisfaction by state transformer, |=) Let (pre, post) be a simple specification
of type Γ Γ′ and ϕ be in STrans(Γ,Γ′). Then ϕ satisfies (pre, post), written ϕ |= (pre, post),
iff

∀σ · σ ∈ pre ⇒ ϕ(σ) ∈ post . (15)

For general specification (J , pre, post), define ϕ |= (J , pre, post) iff ϕ |= (prei , posti) for all
i ∈ J .

Because postconditions are sets of states, and ⊥ is not a state, this notion of satisfaction is total
correctness, i.e., termination is required.14

We introduce some terminology and notation for specifications given in terms of a two-state
postcondition.

14 Our language could be extended to include bounded nondeterministic choice, using state transformers that return
finite sets (the Smyth powerdomain), and then this definition of satisfaction would use ϕ(σ) ⊆ post in place of ϕ(σ) ∈
post . Key results such as the characterization of refinement, Proposition 18, would be unchanged.
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Definition 4 (specification in two-state form, 〈〈−,−〉〉) A specification in two-state form, of
type Γ Γ′, is a pair (P ,R) with precondition P ⊆ State(Γ) and postcondition R ⊆ State(Γ)×
State(Γ′). Given (P ,R) we define the general specification 〈〈P ,R〉〉 to be (J , pre, post) where
J = State(Γ) and preσ = {τ | τ = σ ∧ σ ∈ P} and postσ = {τ | (σ, τ) ∈ R} for all
σ ∈ State(Γ).

For a given σ, preσ is either empty or a singleton. Furthermore, a state transformer satisfies
〈〈P ,R〉〉 just if it satisfies (P ,R) in the usual sense that σ ∈ P ⇒ (σ, ϕ(σ)) ∈ R for all σ. This
encoding is similar to what is done by some verification-condition generators, which interpret
old in terms of an auxiliary variable that “snapshots” the entire program state.

Example 5 Consider a method gain in a type Tracker with signature lbs : int→int. A specifica-
tion for this method in Eiffel or JML that uses old might look like the following:

requires 0 < lbs; ensures self.curr = old(self.curr + lbs) ∧ res = self.curr ∧ exc = null;

In this example, the initial and final state spaces are Γ0 = [self : Tracker, lbs : int] and Γ′0 =
[res : int,exc : Thr]. Mention of self in the postcondition can be interpreted with respect to its
value in the initial state, because self is immutable. This is spelled out in the next Example.

Example 6 In JML, one can write out a specification that is something like our general specifi-
cation by declaring specification variables. Again consider a method gain in a type Tracker with
signature lbs : int→int. A specification with explicit specification variable declarations would
look like the following, where the scope of ocurr and olbs extends over both the pre- and post-
condition:

forall ocurr, olbs: int;
requires 0 < lbs ∧ ocurr = self.curr ∧ olbs = lbs;
ensures self.curr = ocurr + olbs ∧ res = self.curr;

As an alternative to the encoding of Def. 4, one can directly use the product of value domains de-
clared for the specification variables as the index set in the general specification. In this example,
the product space is Z × Z, so the corresponding specification is (Z × Z, pre, post) where for
(oc, ol) in Z × Z we define pre(oc,ol) = {(r , h, s) | 0 < s(lbs) ∧ oc = h(s self)(curr) ∧
ol = s(lbs)} and post(oc,ol) = {(r ′, h ′, s ′) | h ′(s self)(curr) = (oc + ol)) ∧ s ′res =
h ′(s self)(curr) ∧ s ′exc = null}. Note that we use s self, not s ′ self.

Example 7 Specification languages such as JML feature a “modifies clause” that expresses
frame conditions. These can be interpreted as two-state postconditions that say any pre-existing
location not explicitly mentioned in the clause has the same final value as initially. Many tools
desugar the modifies clause by means of a ghost variable of type “heap” or “state” that snap-
shots the initial state as in Def. 4.

Example 8 In separation logic, preconditions and postconditions denote sets of states of the
form (s, h) where s is a store as in our semantics but h is a partial heap, i.e., its objects may
have dangling pointers (and so may s). Let us ignore the store and sketch one encoding of such a
specification in our formalism. Let p and q be sets of partial heaps. To encode the specification
with precondition p and postcondition q , let h#k mean that the domains of h and k are disjoint,
and for such heaps let h∗k be their union. Our specification is (J , pre, post) where J is the set of
all partial heaps. For h ∈ J , define preh = {k ∗h | k ∈ p ∧h#k ∧ closed(k ∗h)} and similarly
posth = {k ∗ h | k ∈ q ∧ h#k ∧ closed(k ∗ h)}. By restricting to closed heaps, i.e., without
dangling pointers, we get well formed states according to our definitions. By fixing h between
pre- and postcondition, we express the implicit frame conditions of the “tight interpretation” of
Hoare triples in separation logic O’Hearn et al. [2001].

Data refinement mechanisms like model fields are ultimately means to define predicates on
concrete state. Such mechanisms involve notations that may desugar differently in different con-
texts (see Example 43). For our purposes we model such specifications in terms of multiple
concrete specifications, in a specification table (see Sect. 6).
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5.2 Refinement of specifications and satisfaction at a subtype
The behavioral subtyping property is expressed in terms of a refinement ordering on specifica-
tions: It says that if S is a subtype of T then, for each method m of T , the specification of m in
S is stronger than that in T . Being “stronger” means that any method satisfying the specification
in S also satisfies the one in T . This intrinsic ordering on specifications, writtenw, is determined
by the nature of command denotations and the definition of satisfaction. Some care needs to be
taken with the details, because if S is a class, a method in class S is defined to act on receiver
objects of type S whereas a specification of type (T ,m) imposes a requirement on state trans-
formers for target type T . Owing to the semantics of dynamic dispatch, it is sound for a method
in class S to assume a strengthened precondition saying that the receiver object has type S . (This
is explicit in the proof obligation for method bodies in some proof systems and tools, e.g., Müller
[2002], Pierik and de Boer [2005b], Beckert et al. [2007], Bierman and Parkinson [2005].)

For a method m of class K with mtype(K ,m) = x : T→V , the relevant state transformers
are in SemMeth(K ,m), i.e., of type [self : K , x : T ] [res : V ,exc : Thr]. For a subclass L,
a method meaning will have type [self : L, x : T ] [res : V ,exc : Thr] —only the type of self
varies.

It turns out that there are important uses for both restriction to an exact type and restriction to
all subtypes. To refer to the exact type of self, in a state with self, we define

selftype(r , h, s) = r(s(self)) (16)

Definition 9 (subtype restriction, �T , �∗T ) Let (pre, post) be a simple specification of type
Γ Γ′, where self ∈ dom Γ, and let T ≤ Γ self. The exact restriction of pre to T , written
pre�T , is defined by

σ ∈ pre�T ⇐⇒ selftype(σ) = T ∧ σ ∈ pre.

Define (pre, post)�T to be the specification (pre�T , post), of type [Γ | self : T ] Γ′. Define
(J , pre, post)�T to be (J , pre ′, post) where pre ′i = prei�T for all i ∈ J .

The downward restriction �∗T uses “≤ T ” in place of “= T ”, i.e.,

σ ∈ pre�∗T ⇐⇒ selftype(σ) ≤ T ∧ σ ∈ pre.

Recall that self is never null, according to the definition of states, cf. Eq. (8). Thus the condition
selftype(σ) = T , expressing that the exact type of self is T , is well defined, as is condition
selftype(σ) ≤ T (which is denoted by the program expression self is T ).

The exact type of an object is always a class, so pre�T is empty in case T is an interface
type. Thus �∗T is interesting for any ref type T but �T is only interesting when T is a class.
Also, in the case that T is Γ(self) we have pre�∗T = pre but in general only pre�T ⊆ pre.

Definition 10 (specification refinement w; at a subtype wT ,w∗T ) Let spec0 and spec1 be spec-
ifications of type Γ Γ′. Then spec1 refines spec0, written spec1 w spec0, if and only if

ϕ |= spec1 ⇒ ϕ |= spec0 for all ϕ ∈ STrans(Γ,Γ′).

Let spec2 be of type [Γ | self : T ] Γ′ where T ≤ Γ self. Refinement at exact subtype T ,
written wT , is defined by

spec2 wT spec0 ⇐⇒ spec2 w spec0�T .

The refinement at a downward subtype, w∗T , is defined by

spec2 w∗T spec0 ⇐⇒ spec2 w spec0�
∗T .

We take care never to omit the superscripts on the refinement symbol, so w by itself always
implies both sides have the same type. In the definitions of wT and w∗T , the specifications on
the right are at type T , so if T < Γ self, we have spec2 wT spec0 iff

ϕ |= spec2 ⇒ ϕ |= spec0�T

for all ϕ of type [Γ | self : T ] Γ′. Mutatis mutandis for w∗T
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If T = Γ self then w∗T is the same as w. That is not the case for wT (because pre�T ⊆ pre
is a proper inclusion in general). We also have

spec0�
∗T w spec0�T (17)

for spec0 and T as in Def. 10, by precondition weakening and the fact that P�∗T ⊇ P�T for any
predicate P . Formally, (17) is a consequence of Proposition 18 below.

Leaving subtyping aside, we note that w is not antisymmetric. We write (J , pre, post) =
(J ′, pre ′, post ′) to mean equality in the metatheory, i.e., J is J ′, pre is pre ′, and post is post ′.
It can happen that two distinct specifications are equivalent in the sense that they are satisfied by
the same state transformers, and are thus mutually refined.

Example 11 As an example of distinct but equivalent specifications, suppose x and y are dis-
tinct variables of type int. Let J = J ′ = N. Let prei be the states where x = i ∧ i ≥ 1 and
posti be the states where y = i . Let pre ′i = prei and post ′i = {σ | σ ∈ posti ∧ i ≥ 1}. So
post 6= post ′ but the specifications are satisfied by the same state transformers.

Another example of equivalent but distinct specifications is given by changing Def. 4 to use
postσ = {τ | σ ∈ P ∧ (σ, τ) ∈ R}.

One could make w antisymmetric by equating spec with spec′ if spec w spec′ and spec′ w
spec. But little would be gained. It is enough thatw is reflexive and transitive, as is easily shown.
We occasionally write ' for the associated equivalence relation.

Transitivity for refinement at a subtype is delicate and is considered in the next subsection.
Reflexivity is not too interesting for refinement at a subtype: spec wT spec and spec w∗T spec
are not defined unless T = Γ self, in which case both are true.

The relation w∗T is stronger than wT in the following sense.

Lemma 12 Suppose spec0 has type Γ Γ′ and spec1 has type [Γ | self : T ] with T ≤ Γ self
Then spec1 w∗T spec0 implies spec1 wT spec0.
Proof Observe that (spec1 w∗T spec0) ⇐⇒ (spec1 w spec0�∗T )⇒ (spec1 w spec0�T ) ⇐⇒
(spec1 wT spec0), where the middle step is by Eq. (17) and transitivity of w. �

For an example that the implication is strict, suppose T is a class and there is at least one
proper subclass K of T . Let the precondition of spec0 be true and the precondition of spec1
say self has exactly type T . Let spec0 and spec1 have the same, nontrivial postcondition. Then
spec1 wT spec0, because this considers only the exact type restriction spec0�T , but spec1 6wK

spec0 and so spec1 6w∗T spec0.

5.3 Some properties of refinement
This and the next subsection contain technical results on refinement. Some readers may prefer to
skip to Sect. 6 and refer back as needed.

Lemma 13 Suppose spec has type Γ Γ′. For any type T and class K , if T ≤ Γ self and
K ≤ T then spec�∗T �K = spec�K . Moreover spec�∗T �∗K = spec�∗K .
Proof By definitions, the equality (spec�∗T )�K = spec�K boils down to the property that
P�∗T �K = P�K for any Γ-predicate P , which is easily proved from the definitions. Similarly
for spec�∗T �∗K = spec�∗K . �

Note that it is not that case that spec�T �K = spec�K . If K is a strict subtype of T then P�T �K
is empty because P�T contains only states where self is exactly T .

Although ordinary refinement (w) is transitive, the situation is more delicate for refinement
at a subtype.

Lemma 14 (quasi-transitivity of wT ) Suppose spec0 and spec1 are specifications of type Γ 
Γ′, and spec2 is of type [Γ | self : U ] Γ′ with U ≤ Γ self. If spec2 wU spec1 and spec1 w spec0
then spec2 wU spec0, provided spec1 is satisfiable.
Proof To show spec2 wU spec0, assume ϕ ∈ STrans([Γ | self : U ],Γ′) and ϕ |= spec2. We
must show that ϕ |= spec0�U . From spec2 wU spec1 we get ϕ |= spec1�U ; but this does not
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yield ϕ |= spec1 which is not well-defined (because ϕ is only defined on states with self : U ).
Define ψ ∈ STrans(Γ,Γ′) by

ψ σ = if selftype(σ) = U then ϕσ else τ,

where τ is an arbitrarily chosen state that satisfies spec1 for initial state σ, and selftype is defined
in Eq. (16). From ϕ |= spec1�U we get ψ |= spec1 (using the definition of |=). Then by
spec1 w spec0 we get that ψ |= spec0. Now ϕ |= spec0�U follows from ψ |= spec0 by
definitions of ψ, |=, and �U . �

Satisfiability ensures that τ exists in the preceding proof. To see that the satisfiability condition
is necessary, let spec1 be the simple specification (pre1, post1) where pre1 = true and post1 says
that self is U . No element of STrans(Γ,Γ′) satisfies spec1, because self is immutable (recall
Eq. (9)). Owing to unsatisfiability we have spec1 w spec0 for any spec0. Define spec2 to have
pre2 = true = post2. Then because wU restricts the initial state we get spec2 wU spec1. But it
is easy to choose spec0 so that spec2 6wU spec0.

Lemma 15 (quasi-transitivity of w∗T ) For spec0 of type Γ Γ′, satisfiable spec1 of type [Γ |
self : T ] Γ′ where T ≤ Γ self, and spec2 of type [Γ | self : U ] Γ′ with U ≤ T , we have

spec2 w∗U spec1 ∧ spec1 w∗T spec0 ⇒ spec2 w∗U spec0.

The proof is very similar to the preceding one, and still requires satisfiability of spec1.
If we replace w∗U and w∗T in the antecedent by wU and wT , we do not get wU as conse-

quent (e.g., consider U 6= T ). Also, if we replacew∗U andw∗T byw∗U andwT , we get neither
w∗U nor wU as consequent.

By definitions, a specification is satisfiable if it is refined by a satisfiable specification. Satis-
fiable specifications can be characterized as follows.

Lemma 16 (satisfiability) A specification (J , pre, post) of type Γ Γ′ is satisfiable iff ∀σ ∈
State(Γ) · (∃j ∈ J · σ ∈ prej ) ⇒ ∃τ ∈ State(Γ′) · (∀j ∈ J · σ ∈ prej ⇒ τ ∈ postj ).
Proof (sketch) By mutual implication. If ϕ satisfies the specification, then ϕ(σ) provides a
witness for τ in the condition. Conversely, if the condition holds then a satisfying state trans-
former ϕ can be defined as follows: For any σ, if σ is in some prej then define ϕ(σ) to be some
chosen τ that satisfies the condition; otherwise, ϕ(σ) can be any state or ⊥. �

Consider a specification given by formulas, as in Example 6, where the index j is a forall
variable and prej , postj are formulas in which j may occur. Assuming all mutable state is
explicitly represented by variables, as in the encoding used by a verification tool (and by contrast
with notations like separation logic or JML), the condition above can be written

∀x · (∃j · prej ) ⇒ ∃x ′ · (∀j · prej ⇒ postj [x ′/x ])

where x spans the free variables other than j . The point is that satisfiability of a specification is
reduced to validity of a closed formula.

Def. 4 gives a representation of two-state specifications in terms of general ones. The next
result goes in the opposite direction. Thus, in terms of semantics, two-state specifications are
equivalent in expressive power to general specifications. In practice, the distinction often makes
a difference because specification languages are based on first order formulas over expressions in
the programming language, sometimes augmented with mathematical data types, but not always
including the ability to refer to semantic entities like complete states (as in Def. 4).

For any (J , r , s) we define a two-state specification (J , r , s)† as follows:

(J , r , s)† = (P ,R) where P = (∪j · rj ) and R = {(σ, τ) | ∀j · σ ∈ rj ⇒ τ ∈ sj} (18)

Now † and 〈〈−〉〉 are exact inverses in one direction, and up to equivalence in the other direction.

Lemma 17 (a) For any specification in two-state form, (Q ,S ), we have 〈〈Q ,S 〉〉† = (Q ,S ).
(b) For any (J , pre, post) we have 〈〈 (J , pre, post)† 〉〉 ' (J , pre, post).
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Proof For (a), straightforward use of the definitions yields the equality.
For (b), we certainly do not have equality. Let (P ,R) be given by (18). Let (J ′, pre ′, post ′)

be 〈〈P ,R〉〉 as given by Def. 4. So J ′ is the set of all states (of appropriate type), quite possibly a
much different set from J which might even be finite. By definitions we have that for any state
ρ,

pre ′ρ = {τ | τ = ρ ∧ ∃j · ρ ∈ prej} and post ′ρ = {τ | ∀j · ρ ∈ prej ⇒ τ ∈ postj}

To show (b), consider any ϕ. We have ϕ |= (J ′, pre ′, post ′) iff ∀ρ, σ · σ ∈ pre ′ρ ⇒ ϕ(σ) ∈
post ′ρ, by definition of |=. This is equivalent to ∀σ · (∃j · σ ∈ prej ) ⇒ (∀j · σ ∈ prej ⇒
ϕ(σ) ∈ postj ). Which is logically equivalent to ∀σ, j · σ ∈ prej ⇒ ϕ(σ) ∈ postj , i.e.,
ϕ |= (J , pre, post). �

5.4 Characterizing refinement
The most common formulation of behavioral subtyping uses the implications (3) and (4) in Sect. 2
that correspond to the rule of consequence in Hoare logic which, in effect, derives a weaker spec-
ification from a stronger one. Even in Hoare logic for simple procedures these implications are
incomplete. Hoare proposed an “adaptation rule” which is not complete and some subsequent
proposals were found to have subtle unsoundness in connection with specification variables (cor-
rected in America and de Boer [1990]). By now, sound and complete rules have been found and
the connection with specification refinement has been made clear if not widely known Olderog
[1983], Kleymann [1999], Chen and Cheng [2000], Naumann [2001], Pierik [2006].

The following result characterizes refinement of general specifications in terms of pre- and
post-conditions. Similar results appear in some of the work cited in preceding paragraphs but
perhaps not easily connected with our formalism, and in some cases additional restrictions are
imposed.

Proposition 18 (characterization of refinement) Suppose that (J , pre ′, post ′) and (I , pre, post)
are specifications of type Γ Γ′. If (J , pre ′, post ′) is satisfiable then the following are equiva-
lent:

(a) (J , pre ′, post ′) w (I , pre, post)

(b) ∀i ∈ I , σ ∈ State(Γ) · σ ∈ prei
⇒ (∃j ∈ J · σ ∈ pre ′j ) ∧ (∀τ ∈ State(Γ′) · (∀j ∈ J · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈
posti)

We refer to (b) as the characteristic formula for the refinement in (a).
The proof is a non-trivial exercise in predicate calculus and is given in Appendix A.3. It uses

only the definitions and Lemma 16. Note that (b) implies (a) regardless of satisfiability, since an
unsatisfiable specification refines any specification.

We get Eq. (17) by instantiating the Proposition with J : = I , pre ′ : = pre�∗T , pre : = pre�T .
Using the definitions of wT and w∗T we immediately get the following, which differs from

Prop. 18 only in restricting prei to states where self has type T .

Corollary 19 (characterization of refinement at a subtype) Suppose T ≤ Γ self and let ΓT =
[Γ | self : T ]. Suppose (I , pre, post) is of type Γ Γ′ and (J , pre ′, post ′) is of type ΓT  Γ′.
If (J , pre ′, post ′) is satisfiable then the following are equivalent:

(a) (J , pre ′, post ′) wT (I , pre, post)

(b) ∀i ∈ I , σ ∈ State(Γ) · σ ∈ prei�T
⇒ (∃j ∈ J · σ ∈ pre ′j ) ∧ (∀τ ∈ State(Γ′) · (∀j ∈ J · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈
posti)

Mutatis mutandis with w∗T and prei�∗.

To handle specifications in two-state form (Def. 4), it is convenient to define a semantic
version of the old operator: for any Γ and Γ′, if P is a subset of State(Γ) then define old(P) ⊆
(Γ)× State(Γ′) by (σ, τ) ∈ old(P) ⇐⇒ σ ∈ P .
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Corollary 20 (characterization of refinement of specifications in two-state form) Consider spec-
ifications (P ,R) and (P ′,R′) in two-state form, of type Γ Γ′. Then 〈〈P ′,R′〉〉 w 〈〈P ,R〉〉 iff

P ⊆ P ′ ∧ old(P) ∩ R′ ⊆ R (19)

provided that 〈〈P ′,R′〉〉 is satisfiable.
Proof Let 〈〈P ,R〉〉 be (J , pre, post) and let 〈〈P ′,R′〉〉 be (J ′, pre ′, post ′). Recall from Def. 4
we have J = J ′ = State(Γ). We calculate

(J ′, pre ′, post ′) w (J , pre, post)
⇐⇒ Proposition 18, with σ, ρ, υ ranging over State(Γ)

∀ρ, σ · σ ∈ preρ
⇒ (∃υ · σ ∈ pre ′υ) ∧ (∀τ ∈ State(Γ′) · (∀υ · σ ∈ pre ′υ ⇒ τ ∈ post ′υ) ⇒ τ ∈ postρ)

⇐⇒ Def. 4 for pre, post and for pre ′, post ′

∀ρ, σ · ρ = σ ∧ σ ∈ P
⇒ (∃υ · υ = σ ∧ σ ∈ P ′) ∧ (∀τ · (∀υ · υ = σ ∧ σ ∈ P ′ ⇒ (υ, τ) ∈ R′) ⇒ (ρ, τ) ∈ R)

⇐⇒ predicate calculus (one-point rule thrice)
∀σ · σ ∈ P ⇒ σ ∈ P ′ ∧ (∀τ · (σ ∈ P ′ ⇒ (σ, τ) ∈ R′) ⇒ (σ, τ) ∈ R)

⇐⇒ predicate calculus
(∀σ · σ ∈ P ⇒ σ ∈ P ′) ∧ (∀σ, τ · σ ∈ P ∧ (σ ∈ P ′ ⇒ (σ, τ) ∈ R′) ⇒ (σ, τ) ∈ R)

⇐⇒ predicate calculus: use σ ∈ P ⇒ σ ∈ P ′), and x ∧ (y ⇒ z ) ≡ x ∧ z when x ⇒ y
(∀σ · σ ∈ P ⇒ σ ∈ P ′) ∧ (∀σ, τ · σ ∈ P ∧ (σ, τ) ∈ R′ ⇒ (σ, τ) ∈ R)

⇐⇒ set theory, definition of old(P)
P ⊆ P ′ ∧ old(P) ∩ R′ ⊆ R

�

Dhara and Leavens [1996] give a condition that is equivalent to (19) and similar to the join of
specifications investigated later (see Lemma 61):

P ⊆ P ′ ∧ (¬old(P ′) ∪ R′) ⊆ (¬old(P) ∪ R)

where we write ¬ for the complement with respect to the set of all states or state pairs of appro-
priate type. Note that ¬old(P) = old(¬P).

Taking the type of self into account we have the following, which refers to the following
predicates:

exactT = {σ | selftype(σ) = T} and isT = {σ | selftype(σ) ≤ T}

Corollary 21 Under the assumptions of Corollary 20 but with the types as in Corollary 19, we
have (J ′, pre ′, post ′) w∗T (J , pre, post) iff

P ∩ isT ⊆ P ′ ∧ old(P ∩ isT ) ∩ R′ ⊆ R

and (J ′, pre ′, post ′) wT (J , pre, post) iff P ∩ exactT ⊆ P ′ ∧ old(P ∩ exactT ) ∩ R′ ⊆ R.

The proofs are straightforward adaptations of the proof of the Corollary 20.
In terms of the Corollary, it is clear that if P implies exactU for U 6= T then the refinement

holds trivially, because then P ∩ exactT = ∅. This is consistent with the observation following
Lemma 12.

6 Modular correctness and modular verification
This section lays the groundwork for supertype abstraction, by formalizing the way modular
verifiers and proof systems focus on one method at a time, relative to assumed specifications for
all others.

We are concerned with a class table CT together with a table of specifications for its meth-
ods. A specification table, ST , is a function such that ST (T ,m) is a method specification of
type mtype(T ,m) for each ref type T and each m ∈ Meths T . Our primary use for speci-
fication tables is to model what might be called the “effective specification” against which an
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implementation at type T would be verified. Such specifications are typically obtained from de-
clared specifications by means of context-dependent interpretation of modifies clauses Leino and
Nelson [2002], Müller [2002], combinations of specification cases Leavens et al. [2006], Wing
[1983], unpacking of abstract predicates Bierman and Parkinson [2005], specification inheritance
(the topic of Sect. 9), invariant disciplines Barnett et al. [2004], Müller et al. [2006], model fields
(see Example 43), etc.

Definition 22 (satisfaction by method environment) Let ST be a specification table. An ex-
tended method environment η̇ satisfies ST , written η̇ |= ST , iff η̇(T ,m) |= ST (T ,m) for all
ref types T and m ∈ Meths T .

A normal method environment η satisfies ST , written η |= ST , iff η(K ,m) |= ST (K ,m)
for all classes K and m ∈ Meths K .

Note that ST (K ,m) is the entire proof obligation imposed on the implementation of m in class
K .

Let us consider satisfaction for the method environment η̂ denoted by a class table. If m
is inherited in K from superclass L, the semantics η̂(K ,m) is defined to be η̂(L,m) (or rather
the restriction thereof to self of type K ). This suggests that the implementation in L must ac-
tually satisfy both ST (K ,m) and ST (L,m). However, if m is inherited in K the programmer
need not explicitly give a specification for m in K . Instead, one can take ST (K ,m) to be
ST (L,m)�K , so the implementation really has a single specification. (Unless there is some I
in superinterfaces K that declares m and is not in superinterfaces L.) This is pursued further in
Sects. 9.2 and 9.3.

Modular verification statically checks that a command, such as a method body, satisfies its
specification using the specifications of called methods. This is modular in that it does not use
the code of called methods to verify calls to these methods. It introduces some inherent incom-
pleteness, in that method specifications may be inadequate (just as declared loop invariants may
be). But there is an important compensating advantage: verification need not be re-done when
the code for called methods changes. Similarly, modular verification uses static type information
to conservatively approximate what methods will be called by dynamic dispatch at runtime. This
again introduces some inherent incompleteness, but again has a compensating advantage in that
the verification need not be repeated when new subtypes are added to the program. Modular ver-
ification is widely used in tools, but only a few theoretical works formalize it semantically Harel
et al. [1977], O’Hearn et al. [2009].

The ultimate goal of verification is to establish correctness of a complete program, which for
main program C and specification spec we write

D[[Γ ` C ]](η̂) |= spec

where η̂ is the semantics of CT (i.e., η̂ = D[[CT ]]). Modular verification establishes the stronger
property that C is correct in any correct environment. This property is formalized as follows.

Definition 23 (modular correctness) For command Γ ` C and Γ-specification spec, we say C
modularly satisfies spec w.r.t. ST , and write

ST , (Γ ` C ) |=D spec

if and only if
∀η ∈ MethEnv · η |= ST ⇒ D[[Γ ` C ]](η) |= spec (20)

We also say C is modularly correct, when ST and spec are understood.
For expression Γ ` E : T and spec of type Γ [res : T ,exc : Thr] we define

ST , (Γ ` E : T ) |=D spec iff ∀η ∈ MethEnv · η |= ST ⇒ D[[Γ ` E : T ]](η) |= spec.

For brevity we shall sometimes let identifier P range over program phrases-in-context, i.e.,
derivable typing judgments for commands and expressions. In that notation, ST ,P |=D spec
means ∀η ∈ MethEnv · η |= ST ⇒ D[[P]](η) |= spec. Despite use of the same font, D and S
name fixed functions whereas P is a metavariable.

Condition (20) directly expresses that C is correct under the hypothesis that its environment
satisfies its specification ST . The straightforward syntactic counterpart would be a judgment
of correctness under hypotheses, as formalized in variants of Hoare logic Harel et al. [1977],
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Reynolds [1982], O’Hearn et al. [2009], Banerjee and Naumann [2013]. Whereas (20) refers to
the actual program semantics, and thus directly expresses a desirable property, our interest is in
reasoning based on static types, which we formalize by replacing D in Def. 23 by S, as follows.

Definition 24 (modular correct under static dispatch) Phrase-in-context P modularly satis-
fies spec w.r.t. ST under static dispatch, written

ST ,P |=S spec

if and only if
∀η ∈ XMethEnv · η |= ST ⇒ S[[P]](η) |= spec

We also say P is modularly correct under static dispatch.

Müller [2002] (p111) uses the term “modular correctness” for a similar notion, but defined in
terms of proofs rather than semantics.15

Let us exercise the definitions by considering modular verification of a complete program. In
some way or other, a logic or verification tool establishes (20) for each method body, i.e., checks
correctness of each method body CK ,m with respect to its specification:

ST , (Γ ` CK ,m) |= ST (K ,m) (21)

where m is a method with implementation CK ,m declared in class K and Γ declares the parame-
ter and res. From this one hopes to obtain that η̂ |= ST (where η̂ = D[[CT ]]); because then from
ST , (Γmain ` Cmain) |= spec it follows immediately that D[[Γmain ` Cmain ]](η̂) |= spec. The
hope is easily realized for partial correctness specifications. Recall the approximation chain η in
Sect. 4.6 from which η̂ is obtained. For partial correctness, η0 satisfies any ST . Using (21), an
easy induction would then yield that ηi satisfies ST , in the sense of partial correctness, for all i .
So we would get that η̂ satisfies ST for partial correctness.

For total correctness, η0 does not satisfy a non-trivial ST and a proof of η̂ |= ST must involve
a well-foundedness argument. Most verification systems for OO programs do partial correctness,
perhaps in part because a general formulation of well foundedness arguments is complicated in
the presence of mutually recursive methods and dynamic dispatch. In the main part of this paper
we deal with total correctness (but see Sect. 10). However, for our purposes there is no need
to formalize how η̂ |= ST is established. Our concern is with modular reasoning to establish
modular correctness, i.e., ST ,P |=D spec for arbitrary P and spec.

One benefit of modular correctness is immediate from Def. 23: a verified command need not
be re-verified when changes are made to the implementations of methods called in C . Another
benefit is to decompose the verification task into potentially more tractable subtasks, but that is
outside the scope of this paper. Modular correctness avoids the need for re-verification when
the class table is extended with new classes and interfaces, provided that specifications of new
methods have behavioral subtyping. We explore this topic further in Sect. 9.3.

With the preceding definitions, we can introduce our first notion of supertype abstraction,
which says that

ST ,P |=S spec implies ST ,P |=D spec (22)

(It will be restated later as Def. 45.) When it holds, this implication lets us prove modular
correctness by hypothetical reasoning using static dispatch semantics.

Reasoning under hypotheses is well suited to interactive proof assistants. For more auto-
matic verification tools (and also in some theoretical works O’Hearn et al. [2009], Banerjee and
Naumann [2013]), it is preferable to avoid the quantification over environments in Definition 24.
Instead, reasoning is done more directly in terms of the specifications in ST , which yields the
consequent in (20) without the need to consider all implementations of ST . In a system based
on verification conditions, those conditions are expressed in terms of axiomatic semantics, ul-
timately resting on predicate transformers. In particular, an invocation of m at static type T
is interpreted using assertions and assumptions, in what amounts to a “specification statement”
where the specification is ST (T ,m). Such statements can be interpreted as weakest precon-
dition predicate transformers Morgan [1994], Back and von Wright [1998]. We shall define a

15The term “modular correctness” seems more memorable than “modular satisfaction”, but the latter is accompanied
by the nice verb “satisfy”.

30



method environment {[ST ]} comprised of such predicate transformers —it can be seen as the
least refined environment that satisfies ST . We also define a static dispatch predicate transformer
semantics S{[−]} so that S{[Γ ` C ]}({[ST ]}) is the predicate transformer denoted by C in the
single environment {[ST ]}. The technical details of predicate transformer semantics are the topic
of Sect. 7. Our semantic formulation of modular verification exploits the fact that satisfaction of
a specification can be encoded by refinement of predicate transformers (see Eq. (27) and Def. 30
in Sect. 7.3).

Definition 25 (modular verification) For command Γ ` C and Γ-specification spec, we say C
is modularly verified for spec w.r.t. ST , if and only if

S{[Γ ` C ]}({[ST ]}) w {[spec]} (23)

That is, spec is satisfied by C under static dispatch and in the least refined environment that
satisfies ST . Modular verification of an expression E is defined similarly.

This brings us to our second notion of supertype abstraction (restated later as Def. 44):

S{[P]}({[ST ]}) w {[spec]} implies ST ,P |=D spec (24)

The main result of the paper says that the following are equivalent:

(a) ST has behavioral subtyping

(b) modular correctness under static dispatch implies modular correctness (cf. Eq. (22))

(c) modular verification implies modular correctness (cf. Eq. (24))

This is Thm. 53 in Sect. 8. In preparation for that, we assemble the ingredients of Def. 25 in
Sect. 7. Here is an informal depiction of some key notions and implications between them that
are formalized in due course.

S{[Γ ` C ]}({[ST ]}) w {[spec]} ===============
Thm. 46(a)

⇒ ST ,P |=S spec

D{[Γ ` C ]}({[ST ]}) w {[spec]}

Thm. 48+�
wwwwwww

==============
Thm. 46(b)

⇒ ST ,P |=D spec

Def . 45+�
wwwwww

===========================

Def . 44+

⇒
(25)

The superscript + indicates implications that depend on behavioral subtyping.

Remark 26 Leino [1995], and Leino and Nelson [2002], explore a notion they call modular
soundness: proofs remain valid when a program is extended with additional components. Their
work explores this in connection with techniques for data abstraction and information hiding.
Müller [2002] (p112) connects modular soundness with behavioral subtyping as well, in the
setting of a proof system. To deal with ‘open programs’ that may be extended, his formalization
of modular soundness is expressed in a sort of Kripke semantics that identifies an open program
with the set of all closed programs that extend it.

We would like to consider a class table CT ′ that extends CT with additional classes and in-
terfaces, together with a corresponding ST ′ that extends ST . The expectation is that ST ,P |=D
spec should imply ST ′,P |=D spec provided that ST ′ has behavioral subtyping. This is not easy
to make precise in our setting, because spec is a semantic object defined in terms of states for
CT , whereas states for CT ′ may contain objects of the added types. The denotation of P may
also differ between CT and CT ′. A Kripke-style formulation is possible but beyond the scope of
this paper. �

The notion of modular correctness is defined in terms of a specific programming language.
We have gone to some lengths to formalize a fairly powerful language. Still, one might wonder
whether the main result holds for trivial reasons that have nothing to do with the language. To
dispel that doubt, this section concludes by describing a language construct for which behavioral
subtyping does not imply supertype abstraction. It breaks supertype abstraction by distinguishing
between the subtype relation on which static reasoning is based and a runtime subtype relation
on which dynamic dispatch is based.
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Example 27 Consider an extension of the programming language, in which the subtype relation
can be extended during computations. The idea is that the subtype relation, ≤, is part of the
program state and can be changed by the primitive command make-subtype K of I which
makes class K a subtype of interface I . Initially, the relation ≤ is the one determined by the
class table. The effect of make-subtype is not only to add the pair (K , I ) to relation ≤ but
also to add the other pairs needed to maintain that ≤ is transitive.

This idea can be carried out in several ways. For our purpose here, the idea is to change little
else about the language and its semantics. For example, typechecking does not track additions to
≤. So the following is well formed, but would not be without the cast:

var x : I in make-subtype K of I ; x : = (I ) new K (); x .m()

The cast succeeds, as its semantics is now based on the current state of≤, as is method dispatch.
Without changing existing typing rules we retain type soundness as embodied in the deno-

tational semantics. In the semantics of Sect. 4, the set of values of a given reference type T
depends on state, because it contains only allocated references. To cater for make-subtype,
the set of values of type T is also dependent on the current subtype relation. Because we are
not considering a construct that undoes subtype relations, the value set for a type T only grows.
For typing of make-subtype K of I , one option is to require that K provides (i.e., declares
or inherits) all methods declared in I —essentially, K satisfies the conditions needed for it to
declare “implements I ”. Another alternative is for make-subtype K of I to be allowed
but throw an exception in case K lacks, or has an incompatible signature for, some method of I .
(The aim is to avoid “method not found”.)

The point of this example is that, after making K a subtype of I , the call x .m() may dispatch
to an implementation of m in K . We consider that behavioral subtyping is defined in terms of
the initial subtype relation determined by the class table. Assuming that initially K � I , the
implementation of m in K need not satisfy the specification of m in I , because ST (K ,m) is not
required to refine ST (I ,m). Thus supertype abstraction is unsound for reasoning about the call
x .m() above.

Indeed, if we considered behavioral subtyping to be a state-dependent notion, then make-subtype K of I
would appear to break behavioral subtyping. But that strays rather far from the topic of moular
reasoning. We interpret the example as a strange language for which behavioral subtyping does
not imply supertype abstraction.

Readers who find this language construct implausible are advised to become familiar with
the JavaScript language, in which inheritance is based on prototype chains –and in which the
prototype relation is mutable.

7 Predicate transformer semantics
This section uses weakest preconditions to derive a predicate transformer semantics {[−]} from
the state transformer semantics [[−]]. Rather, both static- and dynamic-dispatch predicate trans-
former semantics, written S{[−]} and D{[−]}, are derived from the corresponding state trans-
former semantics S[[−]] and D[[−]] (Sect. 7.2). The predicate transformer semantics applies to
method environments containing predicate transformers. Predicate transformer semantics is also
defined for specifications, so that refinement of specifications corresponds to refinement of pred-
icate transformers. The semantics of specifications gives a canonical method environment de-
termined by the specification table, written {[ST ]} (Sect. 7.3). We use S{[−]} and {[ST ]} to
formalize supertype abstraction. We use D{[−]} in proofs. Groundwork is laid in Sect. 7.1.

7.1 Predicate transformers and weakest preconditions
A predicate transformer of type Γ Γ′ is a function from ℘(State(Γ′)) to ℘(State(Γ)) that is
monotonic with respect to set inclusion (⊆). The reversal of direction is because we use predicate
transformers for weakest preconditions.

Suppose ϕ is a state transformer of type Γ  Γ′ and post is a subset of State(Γ′). The
weakest precondition of ϕ with respect to post , written wp(ϕ)(post), is the subset of State(Γ)
defined by

wp(ϕ)(post) = {σ ∈ State(Γ) | ϕ(σ) ∈ post}. (26)
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(r , h, s) ∈ {[Γ ` x : T ]}(θ)(Q) ⇐⇒ (r , h, [res : s x ,exc : null]) ∈ Q
(r , h, s) ∈ S{[Γ ` x .m(y) : U ]}(θ)(Q) ⇐⇒ if s x = null then except(r , h,U ,NullDeref) ∈ Q

else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ θ(T ,m)(Q)

(r , h, s) ∈ D{[Γ ` x .m(y) : U ]}(θ)(Q) ⇐⇒ if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let K = r(s x ) in let z = formals(K ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ θ(K ,m)(Q)

Figure 6: Predicate transformer semantics: selected cases. Here θ ranges over predicate trans-
former method environments, (r , h, s) over states, and Q over sets of states. Read {[−]} in the
first clause as either S{[−]} or D{[−]}. The remaining cases are in Fig. 14 in Appendix Sect. A.6.

Note that wp(ϕ) captures total correctness, because predicates are sets of states and ⊥ is not a
state.

For predicate transformers f , g of the same type, we define f w g —read “f refines g”— by

f w g ⇐⇒ ∀post · f (post) ⊇ g(post). (27)

7.2 Deriving the semantics of commands and expressions
Our first step is to lift method environments from state transformers to predicate transformers.
For any normal or extended method environment (of state transformers) η, we define wp(η) to
be the corresponding method environment given by

wp(η)(T ,m) = wp(η(T ,m)) for allT ,m (28)

Both static and dynamic dispatch predicate transformer semantics are derived directly from
the state transformer semantics, in the course of proving the following Lemma. It says that the
predicate transformer definitions exactly correspond to taking the wp of the state transformer
semantics, when the method environment is obtained using wp. Selected cases in the semantics
are given in Fig. 6 and derived in the proof. Aside from the method call case, we have no need
in this paper to work directly with the predicate transformer semantic definitions, so the rest are
relegated to the Appendix (Fig. 14 in Sect. A.6). Here and in the sequel we let θ range over
method environments that contain predicate transformers.

Lemma 28 (wp-equivalence) Let η be any method environment. For any phrase-in-context P ,
we have

wp(D[[P]](η)) = D{[P]}(wp(η))

and the same for static dispatch semantics: wp(S[[P]](η̇)) = S{[P]}(wp(η̇)) where η̇ ranges over
extended method environments.
Proof By structural induction on expressions and then by structural induction on commands
using the result for expressions. In cases other than method call, the dynamic- and static-dispatch
cases are the same so we prove both at once, omitting D and S from the notation. We reason in
terms of an arbitrary method environment η (normal or extended or both, as appropriate).

The first expression case is x : T . We have for any (r , h, s) of type Γ and any predicate Q of
type [res : T ,exc : Thr]

(r , h, s) ∈ wp([[Γ ` x : T ]](η))(Q)
⇐⇒ definition (26) of wp

[[Γ ` x : T ]](η)(r , h, s) ∈ Q
⇐⇒ definition of [[Γ ` x : T ]]

(r , h, [res : s x ,exc : null]) ∈ Q
⇐⇒ definition of {[Γ ` x : T ]}, see below

(r , h, s) ∈ {[Γ ` x : T ]}(wp(η))(Q)

The last step suggests the semantics, which is given in the first line of Fig. 6 and which applies
to any environment θ.
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For static dispatch semantics of method call we have

(r , h, s) ∈ wp(S[[Γ ` x .m(y) : U ]](η̇))(Q)
⇐⇒ definition (26) of wp

S[[Γ ` x .m(y) : U ]](η̇)(r , h, s) ∈ Q
⇐⇒ definition of S[[−]]

(if s x = null then except(r , h,U ,NullDeref)
else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in η̇(T ,m)(r , h, s1)) ∈ Q

⇐⇒ logic
if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in η̇(T ,m)(r , h, s1) ∈ Q

⇐⇒ definition of wp
if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ wp(η̇(T ,m))(Q)

⇐⇒ definition of wp(η̇)
if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ wp(η̇)(T ,m)(Q)

⇐⇒ definition of S{[−]}
(r , h, s) ∈ S{[Γ ` x .m(y) : U ]}(wp(η̇))(Q)

Again, the definition is chosen to justify the last step (see Fig. 6).
For dynamic dispatch we have a similar calculation.

(r , h, s) ∈ wp(D[[Γ ` x .m(y) : U ]](η))(Q)
⇐⇒ definition (26) of wp

D[[Γ ` x .m(y) : U ]](η)(r , h, s) ∈ Q
⇐⇒ definition of D[[−]]

(if s x = null then except(r , h,U ,NullDeref)
else let K = r(s x ) in let z = formals(K ,m) in
let s1 = [self : s x , z : s y ] in η(K ,m)(r , h, s1)) ∈ Q

⇐⇒ logic
if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let K = r(s x ) in let z = formals(K ,m) in
let s1 = [self : s x , z : s y ] in η(K ,m)(r , h, s1) ∈ Q

⇐⇒ definitions of wp(η(K ,m)) and of wp(η)
if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let K = r(s x ) in let z = formals(K ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ wp(η)(K ,m)(Q)

⇐⇒ definition of D{[−]} (see Fig. 6)
(r , h, s) ∈ D{[Γ ` x .m(y) : U ]}(wp(η))(Q)

Note that this only applies the method environment at class types, not interfaces. �

The cases given above do not illustrate the whole story. The semantics in Sect. 4 is written
in a way intended to convince the reader it is operationally accurate with respect to Java-like
languages, modulo the idealizations: unbounded integers and unbounded heap and stack size. To
facilitate the derivation of predicate transformer semantics for control constructs, var, etc., we
refactor the semantic definition from Sect. 4.5 using a little algebra of state transformers. The
details are in Sect. A.4.

A straightforward part of the proof of Lemma 28 is to show that for any Γ ` C and any θ,
both S{[Γ ` C ]}(θ)(Q) and D{[Γ ` C ]}(θ)(Q) are monotonic in Q , with respect to inclusion of
predicates, and hence are predicate transformers.

We order method environments pointwise: we define θ w θ′ iff θ(T ,m) w θ′(T ,m) for all
T ,m . Here T ranges over classes, or over all types, depending on whether normal or extended
environments are under consideration.

Lemma 29 For any P , both S{[P]}(θ) and D{[P]}(θ) are monotonic in θ.
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The proof is a straightforward but tedious induction on P , checking that the various constructs
are monotonic in their constituent parts and checking that the static and dynamic semantics of
method call are monotonic in the environment.

7.3 Predicate transformer semantics of specifications and refinement
We have no need to embed specifications in programs as “specification statements” as in refine-
ment calculi Back [1988], Morgan [1988; 1994]. However, we do need predicate transformer
semantics of specifications —in fact, a semantics slightly different from what might be expected.
Here there is no need to distinguish between static and dynamic dispatch, nor are there constituent
phrases that depend on a method environment.

Definition 30 Let (J , pre, post) be a specification of type Γ Γ′. We write {[J , pre, post ]} for
the predicate transformer of the same type, defined for any σ and Q by

σ ∈ {[J , pre, post ]}(Q) ⇐⇒ (∃j · σ ∈ prej )∧(∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q)

Here j and i both range over J and τ ranges over Γ′-states.

Remark 31 One might attempt to use a simpler definition, which corresponds to the semantics
of specification statements of Morgan [1988] (where the term “logical constant” is used for what
we formalize as indices in the notion of general specification). It has the following form, where
we use the notation 〈[J , pre, post ]〉 for later reference:

σ ∈ 〈[J , pre, post ]〉(Q) ⇐⇒ ∃j · σ ∈ prej ∧ postj ⊆ Q

This has some but not all of the properties we need, as detailed later in Remark 35. It corresponds
to an incomplete characterization of refinement for specifications.16 In the case of two-state
postconditions, the two kinds of specification statements are equivalent.

Some readers may find an operational reading helpful: Morgan’s specification statement
angelically chooses, for a given initial state σ, some j for which the postcondition can be ensured.
Def. 30 treats the choice of j demonically, cf. Back and von Wright [1998]. �

In the case that (J , pre, post) is unsatisfiable, there is at least one σ in {[J , pre, post ]}(∅), as a
consequence of the definition and Lemma 16. That is, {[J , pre, post ]} is ∅-strict iff (J , pre, post)
is satisfiable. It is also straightforward to show that {[J , pre, post ]} is positively conjunctive
(regardless of satisfiability).

Lemma 32 (refinement and satisfaction) Let ϕ be a state transformer and spec a specification
of the same type as ϕ. Then ϕ |= spec iff wp(ϕ) w {[spec]}.
Proof Consider any ϕ and specification (J , pre, post) of the same type. By (27), the definition
of refinement, wp(ϕ) w {[J , pre, post ]} is equivalent to

∀σ,Q · σ ∈ wp(ϕ)(Q) ⇐ σ ∈ {[J , pre, post ]}(Q)

with Q ranging over state sets. This in turn is equivalent, by definition (26) of wp and Def. 30, to

∀σ,Q · ϕ(σ) ∈ Q ⇐ (∃j · σ ∈ prej )∧ (∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q) (29)

where both i and j range over J and σ, τ range over states of appropriate type. By definition,
ϕ |= (J , pre, post) is equivalent to

∀k , σ · σ ∈ prek ⇒ ϕ(σ) ∈ postk (30)

We complete the proof by mutual implication.
Assume (29). To show (30), observe that for any k in J and any σ in prek we can instantiate

(29) with postk for Q (and σ for σ) to obtain

ϕ(σ) ∈ postk ⇐ (∃j · σ ∈ prej ) ∧ (∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ postk ) (31)

16For Morgan’s refinement calculus this definition is suitable, because specification statements are embedded in pro-
grams. Thus programs can denote arbitrary predicate transformers, whereas our programs denote only those satisfying
the “healthiness conditions” of Dijkstra [1976].
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so to prove ϕ(σ) ∈ postk it is enough to establish the conjuncts of the antecedent. From σ ∈ prek
we get ∃j · σ ∈ prej . For the second conjunct we observe for any τ that

∀i · σ ∈ prei ⇒ τ ∈ posti
⇒ logic (instantiate i : = k )

σ ∈ prek ⇒ τ ∈ postk
⇒ using σ ∈ prek

τ ∈ postk

which concludes the proof of (30).
Now assume (30). To show (29), consider any σ,Q . Assume the antecedent of (29). The

conjunct ∃j · σ ∈ prej lets us choose some j such that σ ∈ prej , and then by (30) we get
ϕ(σ) ∈ postj —which implies that ϕ(σ) is not ⊥. Thus we can instantiate τ in the second
conjunct by the state ϕ(σ), to obtain

(∀i · σ ∈ prei ⇒ ϕ(σ) ∈ posti) ⇒ ϕ(σ) ∈ Q

The antecedent of this formula is a direct consequence of (30) so we obtain the consequent
ϕ(σ) ∈ Q which concludes the proof of (29). �

It is standard that the set of all predicate transformers of a fixed type, say Γ Γ′, is a complete
lattice with meets (resp. joins) given by pointwise intersection (resp. union). In detail, for any set
X of predicate transformers, all of type Γ Γ′, we write (

.
uf | f ∈ X · f ) for the pointwise

meet, i.e., the predicate transformer defined by

(
.
uf | f ∈ X · f )(Q) = (∩f | f ∈ X · f (Q)).

The symbol
.
u is intended as a reminder that this is a defined operation. However, it yields meets

(greatest lower bounds) in the lattice of all predicate transformers. That is, for any predicate
transformer g and set X of predicate transformers,

(∀f · f ∈ X ⇒ f w g) ⇐⇒ (
.
uf | f ∈ X · f ) w g . (32)

The following can be proved directly from the definitions (and is, in Sect. A.7).

Lemma 33 (meet characterization) For any satisfiable specification (J , pre, post) we have

{[J , pre, post ]} = (
.
uϕ | ϕ |= (J , pre, post) · wp(ϕ)) (33)

Satisfiability is necessary for Lemma 33. In the case of an unsatisfiable specification (J , pre, post),
we have that (

.
uϕ | ϕ |= (J , pre, post) · wp(ϕ)) is the function λQ · true sending Q to the

empty intersection, true . But a state σ is in {[J , pre, post ]}(Q) only if either it is an initial
state at which the specification is unsatisfiable (i.e., σ is in some prej but the postcondition is
over-constrained), or the specification allows it but ensures a final state in Q .

The next result justifies the use of symbol w for both specifications and predicate transform-
ers.

Lemma 34 For any spec0 and spec1 of some type Γ  Γ′, with spec1 satisfiable, we have
spec1 w spec0 iff {[spec1]} w {[spec0]}.
Proof spec1 w spec0

⇐⇒ definition of w for specifications
∀ϕ · ϕ |= spec1 ⇒ ϕ |= spec0

⇐⇒ Lemma 32
∀ϕ · ϕ |= spec1 ⇒ wp(ϕ) w {[spec0]}

⇐⇒ meet property
(
.
uϕ | ϕ |= spec1 · wp(ϕ)) w {[spec0]}

⇐⇒ Lemma 33, spec1 satisfiable
{[spec1]} w {[spec0]}

�
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In case spec1 is unsatisfiable, we have spec1 w spec0 for any spec0, but {[spec1]} w {[spec0]}
only if spec0 has no more unsatisfiable initial states than spec1 does.

Remark 35 Lemma 32 holds with Morgan’s semantics 〈[spec]〉 in place of {[spec]} (see Re-
mark 31). But Lemmas 33 and 34 fail for 〈[spec]〉. The refinement 〈[spec]〉 v (

.
uϕ | ϕ |= spec ·

wp(ϕ)) does hold, for the same reasons as in the preceding proof. So we have {[spec]} w 〈[spec]〉
for any satisfiable specification. However, this refinement is an inequality in general. For an ex-
ample, consider the specification (Z, pre, post) of type [r : real] [k : int] where for any integer
i we define

prei = {σ | i ≤ σ(r) ≤ i + 1} and posti = {τ | i = τ(k) ∨ i + 1 = τ(k)}

This has the peculiar feature that for an initial state where r has an integral value, k must take
that value. For example, suppose σ1(r) = 1, then σ1 is in both pre0 and pre1. Any satisfying
state transformer must establish (0 = k ∨ 1 = k) ∧ (1 = k ∨ 2 = k). Taking Q1 to be the states
where k = 1, we have σ1 ∈ {[Z, pre, post ]}(Q1) but σ1 /∈ 〈[Z, pre, post ]〉(Q1).

For another example of this kind, see the discussion of Fig. 8 in Sect. 9.1. �

The following corresponds to wT in Def. 10 of refinement of specifications at a subtype. As
it happens, we do not need the analogous notion for downward subtypes (cf. w∗T in Def. 10).

Definition 36 Let f and g be predicate transformers such that f has type Γ Γ′ and g has type
[Γ | self : T ] Γ′. Suppose T ≤ Γ self. Then g refines f at exact type T , written g wT f ,
if and only if σ ∈ g(Q) ⇐ σ ∈ f (Q) for all Γ-states σ such that selftype(σ) = T , and all
Γ′-predicates Q .

The definition is justified by the following result. The proof expands definitions and uses Lemma 34;
it is in Appendix A.8.

Lemma 37 Suppose spec0 has type Γ Γ′ and spec1 has type [Γ | self : T ] Γ′ and T ≤ Γ self.
If the specifications are satisfiable then spec1 wT spec0 iff {[spec1]} wT {[spec0]}.

The “only if” direction does not require satisfiability, but we need the “if” direction later.

7.4 The canonical method environment
By using the predicate transformer semantics of each specification, we can define a method en-
vironment {[ST ]} pointwise, that is:

{[ST ]}(T ,m) = {[ST (T ,m)]} for all T ,m

We write {[ST ]} for either the extended method environment given for all types T or for the
normal one for just classes. Context should disambiguate, as in the following Lemma where we
compare like kinds of environments.

Lemma 38 For η a normal or extended method environment, η |= ST iff wp(η) w {[ST ]}.
Proof Let T range over classes (for normal environments) or all ref types (for extended ones).
Observe:

wp(η) w {[ST ]}
⇐⇒ definition of w for method environments

∀T ,m · wp(η)(T ,m) w {[ST ]}(T ,m)
⇐⇒ definition of wp for method environments, definition of {[ST ]}

∀T ,m · wp(η(T ,m)) w {[ST (T ,m)]}
⇐⇒ Lemma 32

∀T ,m · η(T ,m) |= ST (T ,m)
⇐⇒ definition of |= for method environments

η |= ST �
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8 Behavioral subtyping and its equivalence to supertype ab-
straction

This section formalizes behavioral subtyping (Sect. 8.1) and supertype abstraction (Sect. 8.2)
Then they are proven to be equivalent (Sect. 8.3). The implication from left to right means that
if the specification table has behavioral subtyping then it is sound to reason about any command
using, for method calls, only the specification of the receiver object’s static type. The converse
means that our notion of behavioral subtyping is complete: it is necessary for modular reasoning.
Along the way we consider interesting variations on each notion.

8.1 Behavioral subtyping
Behavioral subtyping is defined in terms of the intrinsic ordering on specifications.

Definition 39 A specification table ST has behavioral subtyping if and only if for all ref types
U , method names m ∈ Meths U , and classes K , we have

K ≤ U ⇒ ST (K ,m) wK ST (U ,m)

Note that quantification is over classes K that are subtypes of U , ignoring interface subtypes of
U .

The following variation is important in Sect. 9 where we study specification inheritance. The
only difference is w∗K in place of wK .

Definition 40 A specification table ST has robust behavioral subtyping if the following holds
for all U , all m ∈ Meths U , and all K :

K ≤ U ⇒ ST (K ,m) w∗K ST (U ,m)

The reader may check that the example Fig. 1 in Sect. 2.2 has robust behavioral subtyping.
The following is a direct consequence of Lemma 12 in Sect. 5.3.

Lemma 41 Robust behavioral subtyping implies behavioral subtyping.

The implication is strict. As observed following Lemma 12, w∗K is strictly stronger than wK .
Here is a contrived example with behavioral subtyping that is not robust.

Example 42 Consider three types with L < K < T where type T has a Boolean field f and a
method m . Consider the specifications ST (T ,m) = (true, true) and ST (K ,m) = (P , true),
where P is the set denoted by “¬(self is L) ∨ self.f ”. Note that ST (K ,m) is satisfied by
ϕK where ϕK is the semantics of if self is L ∧ ¬self.f then diverge else skip. We have
ST (K ,m) wK ST (T ,m) but not ST (K ,m) w∗K ST (T ,m), for example ϕK does not satisfy
ST (T ,m)�∗K .

Practical examples seem to be robust, even when exact type tests are used as in the following.

The classes Cell and DCell in Fig. 7 are adapted from Parkinson and Bierman [2008]. They
exemplify situations where inheritance is intended as a mechanism for code reuse, with no ex-
pectation that instances of the subtype are substitutable (or useful in contexts expecting the su-
pertype). This is manifest in the specifications, which involve exact type tests like selftype =
Cell.

The example also illustrates how data abstraction fits with our theory. The specifications use
model fields, each defined using JML’s represents syntax. What we intend Fig. 7 to denote is
the specification table STCD where STCD(Cell, set) and STCD(DCell, set) are these simple
specifications

preCS = {(r , h, s) | (selftype(r , h, s) = Cell }
postCS = {(r , h, s) | s exc = null ∧ h(s self)v = s x)}
preDS = {(r , h, s) | true}
postDS = {(r , h, s) | s exc = null ∧ (selftype(r , h, s) = DCell ⇒ h(s self)v = 2 ∗ (s x))

∧ (selftype(r , h, s) = Cell ⇒ h(s self)v = (s x)))}
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Example 43 class Cell extends Object {
public model Val: int;
protected v: int; protected represents Val := v;

meth set(x: int)
requires selftype = Cell;
ensures exc = null ∧ Val = x;

{ v := x; }

meth get(): int
requires selftype = Cell;
ensures exc = null ∧ res = Val;

{ res := v; }
}

class DCell extends Object {
public model DVal: int; protected represents DVal := v;

meth set(x: int)
requires true;
ensures exc = null ∧ (selftype = DCell ⇒ DVal = 2*x) ∧ (selftype = Cell ⇒ Val = x);

{ v := 2*x; }

meth get(): int
requires true;
ensures exc = null ∧ (selftype = DCell ⇒ res = DVal) ∧ (selftype = Cell ⇒ res = Val);

{ res := v; }
}

Figure 7: The classes Cell and DCell, where the notation selftype means the runtime type of
self.

The reader can check (using Corollary 21) that STCD(DCell, set) w∗DCell STCD(Cell, set)
since the precondition from Cell’s method becomes false when the type of self is restricted to
DCell. Similarly for method get. Thus STCD has robust behavioral subtyping. Specifications
that require self to have a class’s exact type, such as the specifications for Cell’s methods in
Fig. 7, do not impose any restrictions on the behavior of overriding subtype methods. Such
specifications are not “subtype-constraining” in a sense similar to that discussed in Section
3.5.3 of Leavens [1990].

The specifications of Parkinson and Bierman [2008] look somewhat different from Fig. 7.
They abstract from the explicit conditions involving specific types, using “abstract predicate fam-
ilies”. The rough idea is to use a named predicate that has different interpretations in different
subclasses.17 A similar effect may be achieved in JML using pure methods, but this is beyond our
scope.

8.2 Supertype abstraction
Recall that modular correctness of a command means it satisfies its specification when interpreted
in any method environment that satisfies the assumed specification table ST (see Def. 23). Mod-
ular verification means the command refines its specification, in predicate transformer semantics.
(See Def. 25.) Supertype abstraction amounts to being able to establish modular correctness, ei-
ther by modular verification (the first definition below) or by proving modular correctness under
static dispatch (the second).

17Their paper also distinguishes between “dynamic specifications”, used to reason about dynamically dispatched calls,
and “static specifications” which are used for statically dispatched calls and to verify the method implementation. That
feature is not used for this example.
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Definition 44 We say ST allows weak supertype abstraction if and only if

S{[P]}({[ST ]}) w {[spec]} implies ST ,P |=D spec (34)

for every program phrase-in-context P and every spec.

Definition 45 We say ST allows strong supertype abstraction if and only if, for all P, spec

ST ,P |=S spec implies ST ,P |=D spec (35)

Some readers might wonder about a variation on this definition in which single quantifi-
cation over method environments is used: ∀η̇ ∈ XMethEnv · η̇ |= ST ⇒ (S[[P]](η̇) |=
spec ⇒ D[[P]](η̇) |= spec). Of course this logically implies strong supertype abstraction. An
example in Sect. A.11 confirms that it is strictly stronger, and does not follow from behavioral
subtyping. There is yet another notion that is interesting, namely that S{[P]}({[ST ]}) w spec im-
pliesD{[P]}({[ST ]}) w spec for all spec —which amounts toD{[P]}({[ST ]}) w S{[P]}({[ST ]}).
This is considered near the end of this subsection.

Part (a) of the following Theorem says that modular verification is a sound way to establish
modular correctness under static dispatch. Part (b) is the corresponding property for dynamic
dispatch. A consequence of part (a) is that strong supertype abstraction implies weak supertype
abstraction. (See the upper triangle in the diagram Eq. (25).)

Theorem 46 For any ST , any phrase-in-context P , and any suitably typed spec,

(a) S{[P]}({[ST ]}) w {[spec]} implies ST ,P |=S spec

(b) D{[P]}({[ST ]}) w {[spec]} implies ST ,P |=D spec

Proof For (a), observe that

ST ,P |=S spec
⇐⇒ Def. 24

∀η · η |= ST ⇒ S[[P]](η) |= spec
⇐⇒ Lemma 32

∀η · η |= ST ⇒ wp(S[[P]](η)) w {[spec]}
⇐⇒ wp-equivalence Lemma 28

∀η · η |= ST ⇒ S{[P]}(wp(η)) w {[spec]}
⇐⇒ Lemma 38

∀η · wp(η) w {[ST ]} ⇒ S{[P]}(wp(η)) w {[spec]}

The last line follows from S{[P]}({[ST ]}) w {[spec]} using transitivity of w. In detail: wp(η) w
{[ST ]} implies S{[P]}(wp(η)) w S{[P]}({[ST ]}) by monotonicity of S{[P]}(−) (Lemma 29).
Then S{[P]}(wp(η)) w S{[P]}({[ST ]}) w {[spec]}.

For (b) the argument is essentially the same except for using Def. 23 in place of Def. 24 in
the first step, and D for S throughout. �

The implications are strict. Indeed, modular verification is not complete with respect to
modular correctness under static dispatch. That is, there are programs with specifications that are
modularly correct under static dispatch but are not modularly verified.

Example 47 Let CT have one user-defined class K , with no fields and one method m that has
no parameters and return type int. Let ST (K ,m) be the simple specification (pre, post), of type
(K ,m), with precondition pre(r , h, s) = (dom(h) = {s(self)}), which means that the heap
has a single object, and postcondition post(r , h, s) = (s(res) = 0 ∨ s(res) = 1), meaning the
method returns either 0 or 1.

Let C be the command x : = self.m(); y : = self.m() in a state space with integer variables
x , y . Let spec have pre true and post x = y . Then ST ,C |=S spec because this notion quantifies
over deterministic state transformers and m has no way to depend on state; so it is a constant
function. However, we do not have S{[C ]}({[ST ]}) w {[spec]}.

The point is that by considering semantic consequences in quantifying over all satisfying
implementations, we may reason about properties like determinacy or computability that may
not be explicitly stated (or even expressible) in a specification. In the case of determinacy, the
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property is faithfully represented by the canonical method environment in predicate transformer
semantics.

In this example, the precondition pre is a bit odd, but our specifications are semantic and
allow us to say such things. Likewise, our method environments include exotic state transformers
that aren’t denoted by programs, e.g., because they depend on unreachable objects or non-visible
fields. �

As an alternative to our definitions of supertype abstraction, some readers may be content with
a formulation based entirely on predicate transformer semantics. The following Theorem says
that this notion of supertype abstraction follows from behavioral subtyping (see lower triangle
in the diagram Eq. (25)). In our view, the use of {[ST ]} ought to be justified in terms of actual
program semantics, which is what is achieved by our main soundness Thm. 53.

Theorem 48 If ST is satisfiable and has behavioral subtyping then for any phrase-in-context P
we have D{[P]}({[ST ]}) w S{[P]}({[ST ]}).
Proof If ST is satisfiable and has behavioral subtyping, then by Lemma 37 we have {[ST ]}(K ,m) wK

{[ST ]}(T ,m) for all T , all m ∈ Meths T , and all K ≤ T . This lets us appeal to the following
Lemma 49, which generalizes the Theorem to any method environment with this semantic form
of behavioral subtyping. �

The refinement in the Theorem is strict in general. Dynamic dispatch with behavioral sub-
typing can impose strictly stronger specifications when the value of self is a subtype of its static
type.

Lemma 49 Let θ be a predicate transformer method environment such that

θ(K ,m) wK θ(T ,m) (36)

for all T ,m,K such that m ∈ Meths T and K ≤ T . Then D{[P]}(θ) w S{[P]}(θ) for any
phrase-in-context P .

The proof is by structural induction on P . The crux of the proof is that θ(K ,m) wK θ(T ,m)
implies the refinement in case P is a call to m . The other cases go through because S{[−]} and
D{[−]} are the same for other constructs, and control structures are monotonic in their constituent
parts, with respect to refinement. The details are in Appendix A.10.

8.3 Equivalence of behavioral subtyping and supertype abstraction
In this section we prove the main result of the paper: that behavioral subtyping is equivalent
to supertype abstraction both strong and weak. We begin with some preliminary results and
definitions.

Among the extended method environments are some which represent dynamic dispatch in
the sense that they make the static dispatch semantics act as if dynamic —provided we have
behavioral subtyping.

Definition 50 (dynamic extension of a normal environment) Let η be a normal method envi-
ronment. The dynamic extension of η is the extended environment η̆ defined by

η̆(T ,m)(σ) = η(selftype(σ),m)(σ) for all T , m , σ.

Note that η̆ is not simply an extension of η to apply to interface types; in general η̆(K ,m) dif-
fers from η(K ,m). The effect is like having a single implementation that conditionally branches
on the dynamic type of self.18 One important property of dynamic extension is that η̆ is correct
if η is. The proof depends on the characterization of refinement, Prop. 18, via Corollary 19.

Lemma 51 (correctness of dynamic extension) Suppose that ST has behavioral subtyping and
η is a normal method environment with η |= ST . Let η̆ be given by Def. 50. Then η̆ |= ST .

18Such an implementation can be written in our programming language, given that the set of classes is fixed. It is used
as a normal form by Borba et al. [2004]. However, our results do not depend on it being expressible as code.
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Proof Consider any T and m . Suppose ST (T ,m) is a specification of type Γ  Γ′. To
show that η̆(T ,m) |= ST (T ,m), recall first that behavioral subtyping says ST (K ,m) wK

ST (T ,m) for all classes K ≤ T . We need to spell this out at the level of states. Consider any
K with K ≤ T . Let (I , pre, post) = ST (T ,m) and (J , pre ′, post ′) = ST (K ,m). Note that
(J , pre ′, post ′) is satisfiable, as η |= ST . So Corollary 19 is applicable: it says the behavioral
subtyping condition ST (K ,m) wK ST (T ,m) is equivalent to
∀i ∈ I , σ ∈ State(Γ) · σ ∈ prei�T
⇒ (∃j ∈ J · σ ∈ pre ′j )∧ (∀τ ∈ State(Γ′) · (∀j ∈ J · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈ posti).
Now we prove η̆(T ,m) |= ST (T ,m). Observe for any i ∈ I and any σ, writing K for
selftype(σ).

σ ∈ prei
⇐⇒ by selftype(σ) = K and definition of �K

σ ∈ prei�K
⇒ by semantics, K ≤ T ; now use behavioral subtyping as spelled out above

(∃j ∈ J · σ ∈ pre ′j ) ∧ (∀τ ∈ State(Γ′) · (∀j ∈ J · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈ posti)
⇒ logic: drop conjunct, instantiate τ as η(K ,m)(σ)

(∀j ∈ J · σ ∈ pre ′j ⇒ η(K ,m)(σ) ∈ post ′j ) ⇒ η(K ,m)(σ) ∈ posti
⇒ antecedent follows from η(K ,m) |= (J , pre ′, post ′), from η |= ST

η(K ,m)(σ) ∈ posti
⇐⇒ definition of η̆(T ,m), selftype(σ) is K

η̆(T ,m)(σ) ∈ posti �

The other important property is that dynamic extension encodes dynamic dispatch.

Lemma 52 (completeness of dynamic extension) Suppose that ST has behavioral subtyping.
Let η be a normal method environment with η |= ST , and let η̆ be given by Def. 50. Then for
any phrase-in-context P we have S[[P]](η̆) = D[[P]](η).
Proof By induction on structure of P . For any primitive expression or command, aside from
method call, the equation holds by the definitions of S[[−]] and D[[−]], which coincide and are
independent from the method environment in these cases.

For a method call, consider a context Γ such that x : T is in Γ and observe that for each state
(r , h, s) ∈ State(Γ):

D[[Γ ` x .m(y) : U ]](η)(r , h, s)
= semantics

if s x = null then except(r , h,U ,NullDeref)
else let K = r(s x ) in let z = formals(K ,m) in

let s1 = [self : s x , z : s y ] in
η(K ,m)(r , h, s1)

= using η(K ,m)(r , h, s1) = η̆(T ,m)(r , h, s1) from definition of η̆, see below
if s x = null then except(r , h,U ,NullDeref)
else let K = r(s x ) in let z = formals(K ,m) in

let s1 = [self : s x , z : s y ] in
η̆(T ,m)(r , h, s1)

= semantics, x has type T , formals(K ,m) = formals(T ,m) as class table well-formed
S[[Γ ` x .m(y) : U ]](η̆)(r , h, s)

In the step that appeals to the definition of η̆, we use that selftype(r , h, s1) = r(s1 self) = r(s x ),
and the local binding K = r(s x ).

For the remaining constructs, the argument is by direct use of the induction hypothesis and
the fact that the static and dynamic dispatch semantics are the same for those constructs. �

The above manipulation of method call semantics would look more pleasant using the alterna-
tive formulation we mentioned in connection with the function dispatch defined by Eq. (14).
The relevant property of η̆ is then η̆(K ,m)(r , h, s1) = dispatch(T ,m, η)(r , h, s1) where K =
selftype(r , h, s1).

A related property of dispatch is used to prove the following Theorem. For all class names
K , and for all spec, T , m , and η:

dispatch(T ,m, η) |= spec ⇐⇒ ∀K · K ≤ T ⇒ η(K ,m) |= spec�K . (37)
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To prove Eq. (37), we consider first the case of a simple specification (pre, post). Observe for
any T , m , and η, where self has static type T

dispatch(T ,m, η) |= (pre, post)
⇐⇒ definitions of |= and dispatch

∀r , h, s · (r , h, s) |= pre ⇒ η(r(s(self)),m)(r , h, s) |= post
⇐⇒ self is non-null, definition of Val(T , r)

∀K · K ≤ T ⇒ ∀r , h, s · (r , h, s) |= pre ∧ r(s(self)) = K ⇒ η(K ,m)(r , h, s) |= post
⇐⇒ definition of �

∀K · K ≤ T ⇒ ∀r , h, s · (r , h, s) |= pre�K ⇒ η(K ,m)(r , h, s) |= post
⇐⇒ definition of |=

∀K · K ≤ T ⇒ η(K ,m) |= (pre, post)�K

For a general specification (J , pre, post), there is merely an extra quantification over elements
of J .

Finally we can prove the main result of the paper.

Theorem 53 For any satisfiable ST the following are equivalent.

(a) ST has behavioral subtyping (Def. 39).

(b) ST allows strong supertype abstraction (Def. 45).

(c) ST allows weak supertype abstraction (Def. 44).
Proof By cyclic implication.

(a) implies (b): Suppose ST has behavioral subtyping. Consider any phrase in context P and
any spec. Suppose ST ,P |=S spec. To show ST ,P |=D spec, consider any (normal) η such that
η |= ST . Let η̆ be given by Def. 50. By Lemma 51 we have η̆ |= ST . So from ST ,P |=S spec
we have S[[P]](η̆) |= spec, hence by Lemma 52 we have D[[P]](η) |= spec.

(b) implies (c): To prove (c) we observe for any P and any spec

S{[P]}({[ST ]}) w {[spec]}
⇒ Thm. 46(a)

ST ,P |=S spec
⇒ assumption (b)

ST ,P |=D spec

(c) implies (a): Assume (c). To prove (a), consider any T and any m in Meths T . We must
show

∀K · K ≤ T ⇒ ST (K ,m) wK ST (T ,m)

Take Γ : = self : T , y : U where mtype(m,T ) = y : U → U . We instantiate (c) with the expres-
sion self.m(y) and specification ST (T ,m). That is, we assume this instance of weak supertype
abstraction:

S{[Γ ` self.m(y) : U ]}({[ST ]}) w {[ST (T ,m)]} (38)
⇒

∀η · η |= ST ⇒ D[[Γ ` self.m(y) : U ]](η) |= ST (T ,m) (39)

Next we show that (38) holds. Instantiating the semantic definition in Fig. 6 we get

(r , h, s) ∈ S{[Γ ` self.m(y) : U ]}({[ST ]})(Q)
⇐⇒ if s(self) = null then except(r , h,U ,NullDeref) ∈ Q

else let T = Γ(self) in let z = formals(T ,m) in
let s1 = [self : s(self), z : s y ] in (r , h, s1) ∈ {[ST ]}(T ,m)(Q)

for all Γ-states (r , h, s) and all predicates Q on [res : U ,exc : Thr]. By definition of states, self
is never null, see Eq. (8), so the conditional can be simplified. Moreover, s1 is just s . So we have

S{[Γ ` self.m(y) : U ]}({[ST ]}) = {[ST ]}(T ,m)
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Similar simplification can be applied to the dynamic state transformer semantics to obtain, for
any η,

D[[Γ ` self.m(y) : U ]](η) = dispatch(T ,m, η) (40)

where dispatch is defined in Eq. (14). Now (38) simplifies to {[ST ]}(T ,m) w {[ST (T ,m)]}
which holds by definition of {[ST ]} and reflexivity of w. So by the assumed implication, we
obtain (39). From this we can derive the required conclusion, i.e., behavioral subtyping at T :

(39)
⇐⇒ equation (40)

∀η · η |= ST ⇒ dispatch(T ,m, η) |= ST (T ,m)
⇐⇒ property (37) of dispatch

∀η · η |= ST ⇒ (∀K · K ≤ T ⇒ η(K ,m) |= ST (T ,m)�K )
⇐⇒ ST satisfiable, predicate calculus (coordinate transformation, see below)

∀K · K ≤ T ⇒ (∀ϕ · ϕ |= ST (K ,m) ⇒ ϕ |= ST (T ,m)�K )
⇐⇒ definition of wK

∀K · K ≤ T ⇒ ST (K ,m) wK ST (T ,m)

For the third step, only the values of η(K ,m) for K ≤ T are relevant, so since ST is satisfiable
and the choice of η is not dependent on K , we can restrict quantification to that part of η. �

The satisfiability hypothesis is necessary: If ST is unsatisfiable then it allows both strong and
weak supertype abstraction, but an unsatisfiable ST need not have behavioral subtyping. Here
is why both forms of supertype abstraction are allowed if ST is unsatisfiable. For any C and
any spec, C modularly satisfies spec w.r.t. an unsatisfiable ST because the antecedent is false in
Def. 23(20). Hence the consequent of (34) in Def. 44, and the consequent of (35) in Def. 45, both
hold.

Remark 54 The implications (a)⇒ (b) and (a)⇒ (c) of Thm 53, i.e., soundness of behavioral
subtyping, justify the diagonal and rightmost vertical in diagram (25) at the end of Sect. 6. The
topmost horizontal depicts why (b)⇒ (c), whence (a)⇒ (c). In light of the diagram, let us point
out an alternate proof of (a)⇒ (c). To show (c) directly, i.e., modular verification implies modu-
lar correctness, let P be a phrase-in-context and spec be of the appropriate type for P . Observe

S{[P]}({[ST ]}) w {[spec]}
⇒ Thm 48, using behavioral subtyping (a) and satisfiability of ST ; w transitive

D{[P]}({[ST ]}) w {[spec]}
⇒ Thm 46(b)

ST ,P |=D spec

We can get (b)⇒ (a) by direct argument similar to our proof of (c)⇒ (a). In place of (38) one
has

∀η · η |= ST ⇒ S[[Γ ` self.m(y) : U ]]η |= ST (T ,m) (41)

which by semantics of self.m(y) simplifies to ∀η · η |= ST ⇒ η(T ,m) |= ST (T ,m). This
yields (39) and the rest is unchanged. It does not appear easy to prove (c)⇒ (b) directly.

9 Ensuring behavioral subtyping by specification inheritance
In the preceding sections, behavioral subtyping is defined in terms of the intrinsic refinement rela-
tion, which is defined by quantifying over all state transformers. For practical purposes, we need
means to check whether specifications have behavioral subtyping as well as means to construct
such specifications. For checking, a characterization of refinement in terms of pre/post conditions
is given in Sect. 5.4 (Corollary 19). The constructive approach takes an arbitrary collection of
specifications and derives specifications that have behavioral subtyping; this technique, which is
the topic of this section, is called specification inheritance. The key property of specification in-
heritance Leavens [2006], Wills [1992] is that it forces behavioral subtyping Dhara and Leavens
[1996], as we show in Sect. 9.2. The technique is based on joins of specifications (Sect. 9.1). The
concluding Sect. 9.3 connects specification inheritance with inheritance of implementations.
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9.1 Joins of specifications
In this subsection we show that joins (i.e., least upper bounds) exist, by explicit constructions
for the general case and for specifications in two-state form. Specification inheritance is defined
in the sequel using joins of specifications of the same type, so we only need joins with respect
to ordinary refinement w, not refinement at a subtype. Moreover, we only need joins of finitely
many specifications. It suffices to show that binary joins exist since these can be used to obtain
finite joins.

We begin with a special case in which there is a simple construction.

Lemma 55 (join of disjoint general specifications) Suppose that (I , pre, post) and (J , pre ′, post ′)
are specifications of type Γ  Γ′, and that I and J are disjoint (i.e., I ∩ J = ∅). Then
(I ∪ J , pre ∪ pre ′, post ∪ post ′) is a least upper bound of (I , pre, post) and (J , pre ′, post ′)
with respect to refinement of specifications of type Γ Γ′.

Here we treat functions pre, post , etc., as sets of ordered pairs. So, by disjointness of I and
J , the unions pre ∪ pre ′ and post ∪ post ′ are functions with domain I ∪ J . For example,
(pre ∪ pre ′)i = prei for i ∈ I . Thus (I ∪ J , pre ∪ pre ′, post ∪ post ′) is indeed a specification.
Proof Recall that the least upper bound property of a specification spec0 is

∀spec · spec w spec0 ⇐⇒ spec w (I , pre, post) ∧ spec w (J , pre ′, post ′).

The least upper bound property holds because for any spec of type Γ Γ′ we have:

spec w (I ∪ J , pre ∪ pre ′, post ∪ post ′)
⇐⇒ definition of w, omit range ϕ ∈ STrans(Γ,Γ′)

∀ϕ · ϕ |= spec ⇒ ϕ |= (I ∪ J , pre ∪ pre ′, post ∪ post ′)
⇐⇒ definition of |=

∀ϕ · ϕ |= spec ⇒ ∀j ∈ I ∪ J · ϕ |= ((pre ∪ pre ′)j , (post ∪ post ′)j )
⇐⇒ disjointness of I and J , union of disjoint functions

∀ϕ · ϕ |= spec ⇒ (∀i ∈ I · ϕ |= (prei , posti)) ∧ (∀j ∈ J · ϕ |= (pre ′j , post ′j ))
⇐⇒ predicate calculus, definition of |=

(∀ϕ · ϕ |= spec ⇒ ϕ |= (I , pre, post)) ∧ (∀ϕ · ϕ |= spec ⇒ ϕ |= (J , pre ′, post ′))
⇐⇒ definition of |=, definition of w

spec w (I , pre, post) ∧ spec w (J , pre ′, post ′) �

Lemma 56 (join of specifications) Suppose that (I , pre, post) and (J , pre ′, post ′) are specifi-
cations of type Γ Γ′. Then there exists a specification spec0 that is a least upper bound of
(I , pre, post) and (J , pre ′, post ′) with respect to refinement of specifications of type Γ Γ′.
Proof Define I + J to be the disjoint union {(i , 0) | i ∈ I } ∪ {(j , 1) | j ∈ J} with injection
functions inl : I → I + J and inr : J → I + J . Write inl(I ) for the image {(i , 0) | i ∈ I }
and observe that (inl(I ), pre ◦ inl−1, post ◦ inl−1) is a specification. It is straightforward to
show that (inl(I ), pre ◦ inl−1, post ◦ inl−1) refines and is refined by (I , pre, post). Mutatis
mutandis for (inr(J ), pre ′ ◦ inr−1, post ′ ◦ inr−1) and (J , pre ′, post ′). Now the result follows
from Lemma 55. �

The join given by this proof is (I + J , p, q) where p and q satisfy p(i,0) = prei , p(j ,1) = pre ′j ,
q(i,0) = posti , and q(j ,1) = post ′j for all i ∈ I and j ∈ J .

We sometimes use the symbol t as a function which yields some chosen join, say, the one
in the Lemma. But joins are only unique up to the equivalence ' associated with the preorder
relation w.

The join of specifications is expressed directly by the also syntax in JML. For specifications
in two-state form, desugaring to a single specification is straightforward as shown by Lemma 61
in the sequel. For general specifications, using forall in JML, application of Lemma 56 is less
straightforward.

Example 57 Consider the method specifications in Fig. 8, which are part of a class BScale
with fields x and b. Recall the interpretation of forall in Example 6.

If the language had disjoint sum types, the construction in Lemma 56 would correspond to
a single specification as suggested in the top part of Fig. 9. Consider what it means for an
implementation to satisfy this specification. For a given initial state there are only two values of
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class BScale extends Object {
public x: int;
public b: bool;

meth change(d: int)
forall ox: int;
requires ox = x ∧ 0 < d ∧ d < 300;
ensures exc = null ∧ x = ox + d;

also
forall ob: bool;
requires ob = b;
ensures exc = null ∧ b = ¬ ob;

Figure 8: Two specifications (separated by also) of a change method for class BScale.

forall oxb: int+bool;
requires cases oxb of

| inl(ox): ox = x ∧ 0 < d ∧ d < 300;
| inr(ob): ob = b;

ensures cases oxb of
| inl(ox): exc = null ∧ x = ox + d;
| inr(ob): exc = null ∧ b = ¬ ob;

——————–

forall ox: int, ob: bool, tag: bool;
requires (tag ∧ ox = x ∧ 0 < d ∧ d < 300) ∨ (not tag ∧ ob = b);
ensures (tag ∧ exc = null ∧ x = ox + d) ∨ (not tag ∧ exc =
null ∧ b = ¬ ob);

Figure 9: Two ways of expressing the join of the specifications of method change in Fig. 8.

oxb for which the precondition is satisfied: inl(x) and inr(b). The value inl(x) forces a correct
implementation to increase x by d and the value inr(b) forces a correct implementation to invert
b. That is, a correct implementation must satisfy both postconditions.

For a language like Java without disjoint sums, another formulation is needed. One is sug-
gested in the bottom part of Fig. 9. It uses a boolean tag to encode the sum in some sense. To
confirm that this is an equivalent specification, note that it is modeled by the following alterna-
tive construction to Lemma 56. Given specifications (I , pre, post) and (J , pre ′, post ′) of type
Γ Γ′, we use index set {0, 1} × I × J in and p and q defined by

p(0,i,j ) = prei q(0,i,j ) = posti p(1,i,j ) = pre ′i q(1,i,j ) = post ′j

The specification ({0, 1} × I × J , p, q) essentially joins J -many copies of (I , pre, post) and
I -many copies of (J , pre ′, post ′). It can be shown to be equivalent to the specification in Lemma
56 by expanding the definition of satisfaction. �

In case of joining specifications obtained from several interface/class declarations, the example
generalizes nicely by using a tag that ranges over type names.

The join of satisfiable specifications need not be satisfiable.

Example 58 The simple specifications (true, res = 0) and (true, res = 1) join to (true, false).
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As noted following Lemma 16, satisfiability of a specification given by formulas is equivalent to
validity of a closed formula derived from the specification.

A straightforward use of Lemma 56 and definitions yields the following.

Corollary 59 (joins and subtypes) If spec and spec′ have type Γ Γ′, and T ≤ Γ self, then
(spec t spec′)�∗T ' (spec�∗T ) t (spec′�∗T ) and (spec t spec′)�T ' (spec�T ) t (spec′�T ).

Using the specific construction in the Lemma, we actually get equality of specifications here. But
for our purposes equivalence is enough. A further corollary is that both �∗T and �T distribute
over the join of any finite set of specifications.

We conclude this subsection by considering the joins of specifications that are in two-state
form (Def. 4). Line (∗) in the following proof shows how the definition arises as an extremal
solution when considering only two-state specifications. The result has a simple reading in terms
of specifications given by formulas: the join is expressed by propositional combinations of the
given specifications.

Lemma 60 (join among specifications with two-state postconditions) Let (pre, post) and (pre ′, post ′)
be specifications of type Γ Γ′ in two-state form. Define P ,R by

P = pre ∪ pre ′ and R = (¬old(pre) ∪ post) ∩ (¬old(pre ′) ∪ post ′) (42)

Then for any Q ,S we have 〈〈Q ,S 〉〉 w 〈〈P ,R〉〉 iff 〈〈Q ,S 〉〉 w 〈〈pre, post〉〉 and 〈〈Q ,S 〉〉 w
〈〈pre ′, post ′〉〉.
Proof Consider any Q ,S . If 〈〈Q ,S 〉〉 is unsatisfiable the refinements all hold trivially. Other-
wise

〈〈Q ,S 〉〉 w 〈〈P ,R〉〉
⇐⇒ Cor. 20, definition of R, satisfiability of 〈〈Q ,S 〉〉

P ⊆ Q ∧ old(P) ∩ S ⊆ (¬old(pre) ∪ post) ∩ (¬old(pre ′) ∪ post ′)
⇐⇒ set theory

P ⊆ Q ∧ S ⊆ ¬old(P) ∪ ((¬old(pre) ∪ post) ∩ (¬old(pre ′) ∪ post ′))
⇐⇒ definition of P ; distribute ∪ over ∩

P ⊆ Q ∧ S ⊆ (¬old(pre ∪ pre ′) ∪ ¬old(pre) ∪ post) ∩ (¬old(pre ∪ pre ′) ∪ ¬old(pre ′) ∪ post ′))
⇐⇒ def P ; sets, using ¬old(pre ∪ pre ′) ⊆ ¬old(pre) from old(pre) ⊆ old(pre ∪ pre ′) and sym.

pre ∪ pre ′ ⊆ Q ∧ S ⊆ (¬old(pre) ∪ post) ∩ (¬old(pre ′) ∪ post ′) (∗)
⇐⇒ set theory

pre ⊆ Q ∧ pre ′ ⊆ Q ∧ old(pre) ∩ S ⊆ post ∧ old(pre ′) ∩ S ⊆ post ′

⇐⇒ Cor. 20 twice, satisfiability of 〈〈Q ,S 〉〉
〈〈Q ,S 〉〉 w 〈〈pre, post〉〉 ∧ 〈〈Q ,S 〉〉 w 〈〈pre ′, post ′〉〉

�

For the join among general specifications, our focus in the sequel, Eq. (42) serves as well.

Lemma 61 (join of two-state specifications) Let (pre, post) and (pre ′, post ′) be specifications
of type Γ Γ′ in two-state form. Then 〈〈P ,R〉〉 from (42) is a join of 〈〈pre, post〉〉 and 〈〈pre ′, post ′〉〉.
Proof First we note the following direct consequence of Lemma 17(b). Consider any specifi-
cation (J , r , s) and any specification (Q ,S ) in two-state form. Then

(J , r , s) w 〈〈Q ,S 〉〉 iff 〈〈(J , r , s)†〉〉 w 〈〈Q ,S 〉〉 (43)

Now we prove that 〈〈P ,R〉〉 ' 〈〈pre, post〉〉 t 〈〈pre ′, post ′〉〉 by observing for any (J , r , s)

(J , r , s) w 〈〈pre, post〉〉 ∧ (J , r , s) w 〈〈pre ′, post ′〉〉
⇐⇒ use (43) twice

〈〈(J , r , s)†〉〉 w 〈〈pre, post〉〉 ∧ 〈〈(J , r , s)†〉〉 w 〈〈pre ′, post ′〉〉
⇐⇒ Lemma 60

〈〈(J , r , s)†〉〉 w 〈〈P ,R〉〉
⇐⇒ by (43)

(J , r , s) w 〈〈P ,R〉〉

�
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9.2 Specification inheritance
Earlier sections of this paper use a specification table to model the “effective specifications”
used in reasoning about method invocations and method implementations. Here, we consider the
problem of taking some specifications that have been declared by the programmer and obtaining
suitable ones for reasoning. More specifically, we consider a technique to impose behavioral
subtyping by fiat. We also consider techniques for completing a partial specification table. The
techniques are all forms of specification inheritance.

There are other issues in going from declared specifications to effective ones, e.g., desugaring
of modifies clause or other specification features that may have class-specific semantics. Here we
continue to treat specifications semantically, in order to focus on the single issue of behavioral
subtyping.

A related consideration is that in practice, method specifications are usually only declared
together with method implementations and in interfaces, but not in subclasses where a method is
inherited. That provides a partial specification table ST , where ST (K ,m) is only defined for K
that declares an implementation of m . We may as well treat it as a specification table where, if m
is inherited in K from L, ST (K ,m) is the bottom specification that imposes no constraint at all
(see Remark 2). A natural alternative is to ‘inherit’ the specification by defining ST (K ,m) to be
ST (L,m), as discussed in Sect. 9.3. It turns out that using the bottom specification achieves the
same effect, once one imposes behavioral subtyping by specification inheritance, because bottom
is the identity of join.

Specification inheritance There is a more complicated problem than filling in specifications
where methods are inherited, namely, the problem that explicitly declared specifications may not
have behavioral subtyping. The specifier may be focusing on the special features of the subclass
and perhaps imagining that the implementation will be required to satisfy all supertype specifi-
cations. The problem is how to impose that requirement in a minimal way. In our formulation,
it is the problem of deriving a specification table that has behavioral subtyping from one that
might not. We proceed by defining three variations on specification inheritance, guided by three
desiderata for the derived specification table:

(D1) It should refine the given one, to preserve the intent of the original specifications.

(D2) It should have behavioral subtyping.

(D3) It should be the least refined one with these properties, to avoid imposing unnecessary
constraints on implementations.

Refinement of class tables is defined pointwise: ST ′ w ST iff ST ′(T ,m) w ST (T ,m) for all
T ,m . The significance is that ST ′ w ST implies that ST ′ proves more (client) programs correct,
i.e., ST ′,P |=S spec implies ST ,P |=S spec for all P, spec (as follows from the definition
of |=S ) and similarly for |=D and for modular verification (as follows from monotonicity of
predicate transformer semantics).

Definition 62 (inheriting specifications, ŜT , S̃T , S̆T ) Let ST be a specification table. Define
the specification table ŜT as follows. For each class K or interface I , with method m , we define
ŜT as follows:

ŜT (K ,m) = t{ST (T ,m)�∗K | m ∈ Meths T ∧K ≤ T}, if K ∈ ClassName
ŜT (I ,m) = ST (I ,m), if I ∈ InterfaceName

Similarly, define S̃T by taking joins at all ref types U , not just classes:

S̃T (U ,m) = t{ST (T ,m)�∗U | m ∈ Meths T ∧U ≤ T} (44)

Finally, define S̆T like S̃T but with �U for �∗U :

S̆T (U ,m) = t{ST (T ,m)�U | m ∈ Meths T ∧U ≤ T}

We proceed to show that ŜT is the one that satisfies the three desiderata. A fourth desideratum
introduced later favors S̃T .
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Theorem 63 For any ST we have ŜT w ST and S̃T w ST .

Proof We need ŜT (T ,m) w ST (T ,m) for all T and m . This is immediate from the def-
inition, in case T is an interface (using reflexivity of w). In the case that T is a class, say
K , we have ST (K ,m)�∗K = ST (K ,m) by a remark following Def. 9. Thus ST (K ,m) is
in {ST (T ,m)�∗K | m ∈ MethsT ∧ K ≤ T}, hence we have t{ST (T ,m)�∗K | m ∈
MethsT ∧K ≤ T} w ST (K ,m).

The proof of S̃T w ST is very similar. �

By contrast, S̆T does not refine ST , because in general spec�K is not a refinement of spec (as
the precondition is strengthened to states where self has exact type K ).

Recall that robust behavioral subtyping (Def. 40) strengthens behavioral subtyping by using
w∗K (based on �∗K ) in place of wK (based on �K ).

Theorem 64 (specification inheritance and behavioral subtyping) Both ŜT and S̃T have ro-
bust behavioral subtyping.

Proof For ŜT to have robust behavioral subtyping means that

∀U ,K ,m · K ≤ U ∧m ∈ Meths U ⇒ ŜT (K ,m) w∗K ŜT (U ,m)

To prove it, we make a case distinction on whether U is a class or interface, in accord with the
definition of ŜT . (Recall that K ranges over classes only.)

For any U ,K ,m such that U is a class, K ≤ U , and m ∈ Meths U , observe that

ŜT (K ,m) w∗K ŜT (U ,m))

⇐⇒ def. ŜT , U is class, omit range T ,V with m ∈ Meths T , m ∈ Meths V
t{ST (T ,m)�∗K | K ≤ T} w∗K t{ST (V ,m)�∗U | U ≤ V }

⇐⇒ definition of w∗K
t{ST (T ,m)�∗K | K ≤ T} w (t{ST (V ,m)�∗U | U ≤ V })�∗K

⇐⇒ Corollary 59 �∗K distributes t, Lemma 13 with K ≤ U
t{ST (T ,m)�∗K | K ≤ T} w t{ST (V ,m)�∗K | U ≤ V }

⇐⇒ the join property
∀V · U ≤ V ⇒ t{ST (T ,m)�∗K | K ≤ T} w ST (V ,m)�∗K

The last line is true, because for any V such that U ≤ V , we have K ≤ V because K ≤ U . So
ST (K ,m)�∗K is in {ST (K ,m)�∗K | K ≤ T}.

The other case is that U is an interface. Assuming K ≤ U , and m ∈ Meths U we observe
that

ŜT (K ,m) w∗K ŜT (U ,m))

⇐⇒ definition of ŜT , U is interface, omit that T ranges over reftypes
t{ST (T ,m)�∗K | K ≤ T} w∗K ST (U ,m)

⇐⇒ definition of w∗K
t{ST (T ,m)�∗K | K ≤ T} w ST (U ,m)�∗K

The last line is true because ST (U ,m)�∗K is in {ST (T ,m)�∗K | K ≤ T}.
For S̃T the proof is similar, but there is not a separate case for interface types. �

Although S̆T does not refine ST (our desideratum (D1)), it does have behavioral subtyping.
The proof proceeds similarly to the one above; but for the fourth line, after Corollary 59 was
used, we get

t{ST (T ,m)�K | K ≤ T} w t{ST (V ,m)�U �K | U ≤ V }

In case U is not K , ST (V ,m)�U �K is equivalent to the bottom specification (identity of join)
because the preconditions become empty. So the right side simplifies to the same as the left side.

As join does not preserve satisfiability (cf. Example 58), ŜT (and S̃T , S̆T ) need not be
satisfiable even if ST is. To address desideratum (D3) that the derived specification table be
minimal, we state a result that applies when all specifications are satisfiable. The proof shows
something slightly stronger, on a per-class basis, which we refrain from stating formally.
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Theorem 65 If ŜT is satisfiable then it is the least refinement of ST that is satisfiable and has
robust behavioral subtyping.

Proof Suppose ŜT is satisfiable. By Thm. 63 and Thm. 64, ŜT refines ST and has robust
behavioral subtyping. Consider any satisfiable ST ′ such that ST ′ w ST and ST ′ has robust
behavioral subtyping. To show ST ′ w ŜT , observe for any K ,m

ST ′(K ,m) w ŜT (K ,m)

⇐⇒ definition of ŜT
ST ′(K ,m) w t{ST (U ,m)�∗K | K ≤ U }

⇐⇒ the join property
∀U · K ≤ U ⇒ ST ′(K ,m) w ST (U ,m)�∗K

⇐⇒ definition
∀U · K ≤ U ⇒ ST ′(K ,m) w∗K ST (U ,m)

⇐ transitivity Lemma 15 (and w∗U is w), satisfiability of ST ′(U ,m)
∀U · K ≤ U ⇒ ST ′(K ,m) w∗K ST ′(U ,m) ∧ ST ′(U ,m) w ST (U ,m)

We have ST ′(K ,m) w∗K ST ′(U ,m) because ST ′ has robust behavioral subtyping and ST ′(U ,m) w
ST (U ,m) by ST ′ w ST . �

Remark 66 If we assume only that ST ′ has behavioral subtyping and is satisfiable, we can’t
show ST ′ w ŜT . By behavioral subtyping, we have for any reftype U , any K ≤ U , and any m ,
that ST ′(K ,m) wK ST ′(U ,m). By ST ′ w ST we have ST ′(U ,m) w ST (U ,m). Thus by
quasi-transitivity (Lemma 14) we get ST ′(K ,m) wK ST (U ,m). Hence by the join property we
get ST ′(K ,m) w t{ST (U ,m)�K | K ≤ U }. Here’s the rub: ŜT is the join of ST (U ,m)�∗K
and in general the refinement ST (U ,m)�∗K w ST (U ,m)�K is a proper refinement. �

By definition we have S̃T w ŜT and in general the refinement is strict. In light of Thm. 65,
S̃T is not the least refinement of ST that has behavioral subtyping. So it is only ŜT that fulfills
the three desiderata. However, there is a fourth desideratum that favors S̃T , as we now explain
at some length.

Lemma 67 (interface irrelevance) Let ST and ST ′ be such that ST (K ,m) = ST ′(K ,m) for
all K . Then ST ,P |=D spec iff ST ′,P |=D spec, for any spec and phrase in context P .
Proof By definition, η |= ST iff η |= ST ′ for any normal method environment η, as interface
types are irrelevant. And D[[P]] is only applied to normal method environments, by definition of
|=D. �

Refining a specification table proves more client programs, in the sense of modular verifica-
tion. That is, suppose ST ′ w ST . Using Lemma 34 we have ST ′ w ST iff {[ST ′]} w {[ST ]}.
Then by monotonicity in the method environment, Lemma 29, we have S{[Γ ` C ]}({[ST ]}) w
{[spec]} ⇒ S{[Γ ` C ]}({[ST ′]}) w {[spec]}. In short: if ST ′ w ST then modular correctness
of C under ST implies its modular correctness under ST ′. Refining a specification table also
proves more client programs in the sense of modular correctness, simply because there are fewer
satisfying method environments over which to quantify in Def. 23(20).

Of course we do not want to refine a given ST arbitrarily: that makes it harder —even
impossible— for the method environment to satisfy ST . Rather, we suggest a fourth desideratum
for specification inheritance:

(D4) While imposing the least constraint on the class table —desideratum (D3)— the inherited
specifications should provide the most complete modular verification.

In light of Lemma 67, let us consider refining ST by changing only its interface specifi-
cations, while maintaining behavioral subtyping. For any ST , define Complete(ST ) by tak-
ing joins at interface types only. So ST and Complete(ST ) are the same at any class type,
and thus are satisfied by the same method environments. But for interface type U we define
Complete(ST )(U ,m) the same way as S̃T (U ,m), i.e., Eq. (44) (for any m ∈ Meths U ). This
can be seen as a kind of completion with respect to modular verification, because Complete(ST ) w
ST which means Complete(ST ) verifies more programs.
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Lemma 68 For any ST , if ST has behavioral subtyping, or robust behavioral subtyping, then
so does Complete(ST ).
Proof Suppose ST has behavioral subtyping. For any K ,m,U with K ≤ U we need
Complete(ST )(K ,m) wK Complete(ST )(U ,m) which is equivalent to ST (K ,m) wK Complete(ST )(U ,m).
In case U is a class type, this is immediate by definition of Complete.

In case U is an interface, behavioral subtyping is the first line of

ST (K ,m) wK Complete(ST )(U ,m)
⇐⇒ def Complete

ST (K ,m) wK t{ST (T ,m)�∗U | m ∈ Meths U ∧U ≤ T}
⇐⇒ def wK and �K distributes over t

ST (K ,m) w t{ST (T ,m)�∗U �K | m ∈ Meths U ∧U ≤ T}

Consider the last line: For any T such that K ≤ U ≤ T , by behavioral subtyping we have
ST (K ,m) wK ST (T ,m) that is, ST (K ,m) w ST (T ,m)�K . But this is equivalent to
ST (K ,m) w ST (T ,m)�∗U �K by Lemma 13. Hence, as ST (K ,m) is above every element of
the join, it is above the join.

This also works for robust behavioral subtyping, i.e., we get Complete(ST )(K ,m) w∗K
Complete(ST )(U ,m) using that ST (T ,m)�∗U �∗K = ST (T ,m)�∗K �

The following property of the Complete operator shows that in fact S̃T is the most satisfactory
notion of specification inheritance. The property refers to the equivalence ' associated with the
preorder w. We do not have literal equality, because joins are only defined up to equivalence.

Proposition 69 For any ST , Complete(ŜT ) ' S̃T .

Proof For class types, all three of Complete(ŜT ), S̃T , and ŜT are the same. So we consider
any interface type U and any m ∈ Meths U . By definition of Complete we have

Complete(ŜT )(U ,m) = t{ŜT (T ,m)�∗U | m ∈ Meths T ∧U ≤ T} (45)

Aiming for the defining condition of S̃T (U ,m), Eq. (44), let us expand a typical term in the set
displayed above. For any T with m ∈ Meths T and U ≤ T we have

ŜT (T ,m)�∗U
= definition of ŜT

(t{ST (V ,m)�∗T | m ∈ Meths V ∧ T ≤ V })�∗U
' �∗U distributes over joins
t{ST (V ,m)�∗T �∗U | m ∈ Meths V ∧ T ≤ V }

= Lemma 13
t{ST (V ,m)�∗U | m ∈ Meths V ∧ T ≤ V }

Now (45) joins these terms over all T with U ≤ T , and just above we expanded a term to a join
over all V with T ≤ V . So the nested join amounts to a single join over all V with U ≤ V
—essentially Eq. (44). �

In summary, it is S̃T , defined in Eq. (44), that satisfies desiderata (D1–D4), and it has robust
behavioral subtyping.

9.3 Remarks on inheriting specifications
Let us consider a slightly different perspective, to clarify the significance of robust behavioral
subtyping. Suppose we want to add a class K to a classtable, with superclass L, and consider a
method m that is inherited from L. In this situation, the semantics manifests inheritance in the
definition of the method environment:

η(K ,m) = restrict(K , η(L,m))

where restrict(K ,−) restricts the domain of the state transformer η(L,m) to states where self’s
type is≤ K (see Sects. 4.6 and A.2). If for the moment we suppose that ST (L,m) is the effective
specification of m in L, an obvious choice is to define ST (K ,m) by

ST (K ,m) = ST (L,m)�∗K (46)
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This has the virtue that

η(L,m) |= ST (L,m) implies restrict(K , η(L,m)) |= ST (L,m)�∗K

(The restriction �∗K is necessary; an implementation at subclass K won’t be able to cope with
pre-states where self has type L but not K .) That is, the inherited implementation automatically
satisfies ST (L,m)�∗K so we obtain a suitable specification for use by callers while not imposing
any additional proof obligation.

Note that restrict(K , η(L,m)) will also satisfy ST (L,m)�K , simply because ST (L,m)�∗K w
ST (L,m)�K (see Eq. (17) in Sect. 5.2). But we may as well choose the stronger, more informa-
tive ST (L,m)�∗K .

There is a second justification for (46). Consider any T with K < L < T , and suppose
behavioral subtyping holds at L for T , i.e., ST (L,m) wL ST (T ,m) and that ST (L,m) is sat-
isfiable. We would like behavioral subtyping to hold at K for T . With the preferred definition
(46), we get ST (K ,m) w∗K ST (L,m) as mentioned earlier, and thus from ST (L,m) w∗L
ST (T ,m) we get ST (K ,m) w∗K ST (T ,m) by quasi-transitivity (Lemma 15) and thus be-
havioral subtyping at K for T : ST (K ,m) wK ST (T ,m) (by Lemma 12). So if K inherits the
implementation of m and its specification from L and robust behavioral subtyping holds for m
in L then it holds for m in K —provided that K does not implement additional interfaces. The
proviso ensures that supertypes of K are supertypes of L. However, behavioral subtyping at K
for T , i.e., ST (K ,m) wK ST (T ,m), does not follow from ST (K ,m) w∗K ST (L,m) and
ST (L,m) wL ST (T ,m) (cf. discussion following Lemma 15).

Technically, this discussion adds nothing to the previous subsection. If ST is the original
specification table before specification inheritance, we can define ST (K ,m) as the bottom spec-
ification. Then S̃T (K ,m) will be the same as S̃T (L,m)�∗K under the proviso that K does not
implement additional interfaces.

Example 70 As an example of the proviso, consider the class table for Fig. 2, and suppose we
add a class K that extends WeightLoss and inherits method lose. If we ‘inherit’ the specifica-
tion too, in the sense of defining ST (K , lose) = ST (WeightLoss, lose), we automatically get
behavioral subtyping for ST (K , lose). However, suppose we change Fig. 2 so that WeightLoss
only implements Tracker. Let K inherit lose from WeightLoss and declare that K implements
Track, which does not satisfy the proviso above. Then we do not get behavioral subtyping at K
if we define ST (K , lose) = ST (WeightLoss, lose); for behavioral subtyping we need to join
the specification from Track.

10 Adapting the results to partial correctness
We have chosen to develop the theory for total correctness specifications, which brings to light the
satisfiability requirements in the main results. All partial correctness specifications are satisfied
by an always divergent program. Essentially the same results hold for partial correctness. We
eschew the extra formalism that would be needed to generalize the results to encompass both
total and partial correctness. Instead, in this section we adapt the theory to partial correctness,
retaining the same program semantics as in Sect. 4 and Sect. 7. We retain the same form for
specifications.

The interpretation of specifications, i.e., the definition of satisfaction (Def. 3), changes in
the obvious way. In place of (15) we define the “liberal” satisfaction relation, |=l , on simple
specifications:

ϕ |=l (pre, post) iff ∀σ · σ ∈ pre ⇒ ϕ(σ) ∈ post ∪ {⊥}.

This is lifted to general specifications by universal quantification over indices just as in Def. 3..
In place of the semantic wp function, Eq. (26), the weakest liberal precondition function wlp is
used:

wlp(ϕ)(post) = {σ | ϕ(σ) ∈ post ∪ {⊥}}. (47)

Here post ranges over predicates, which as before do not contain ⊥.
Because the form of specifications is not changed, several definitions in Sect. 5 are still

applicable, e.g., Def. 4 for specifications in two-state form and Def. 9 of subtype restriction.
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For partial correctness specifications with two-state postconditions, several variations can be
found in the literature, including the use of a single relation. We shall interpret a specifica-
tion (P ,R) via 〈〈P ,R〉〉 (see Def. 4). Expanding definitions we have that ϕ |=l 〈〈P ,R〉〉 iff
σ ∈ P ⇒ ϕ(σ) = ⊥ ∨ (σ, ϕ(σ)) ∈ R for all σ. Thus ϕ satisfies 〈〈P ,R〉〉 iff it satisfies
〈〈P , old(P) ∩ R〉〉. Such considerations suggest restricting specifications to one or another “nor-
mal form”, as is done in various systems. We define one for later use.

A specification (I , pre, post) is broad iff for all σ there is some i with σ ∈ prei , i.e., the
preconditions cover the state space. Define broaden(I , pre, post) by choosing some value • /∈ I
and defining broaden(I , pre, post) = (I ∪ {•}, pre ′, post ′) where pre ′• = {σ | ¬(∃i · σ ∈
prei)}, post ′• = True , and for i ∈ I , pre ′i = prei and post ′i = posti . Note that the simple
specification ({σ | ¬(∃i · σ ∈ prei)},True) is satisfied, in the sense of partial correctness, by
all state transformers. Thus ϕ |=l spec iff ϕ |=l broaden(spec) for each ϕ and spec.

Refinement of predicate transformers is unchanged from Eq. (27). The intrinsic refinement
order on specifications, wl , is defined just as in Def. 10 except using |=l in place of |=. Writing
'l for the equivalence associated with the preorder wl , we have

broaden(spec) 'l spec for any spec (48)

owing to the observation above about broaden and |=l . By contrast, for total correctness there is
strict refinement broaden(spec) w spec in general, because broaden(spec) requires termination
from every initial state.

Most results and definitions carry over straightforwardly, with |=l andwl in place of |= andw.
Of course the characterization of satisfiable specifications, Lemma 16, is no longer meaningful.
Results in Sect. 5 that hold for satisfiable specifications now hold for all specifications; an exam-
ple is the quasi-transitivity Lemma 14. To adapt the characterization of refinement, Prop. 18, we
need a slightly different characteristic formula which does not seem widely known but appears
in Pierik [2006].

Proposition 71 (characterization of refinement for partial correctness) Suppose that (J , pre ′, post ′)
and (I , pre, post) are specifications of type Γ Γ′. The following are equivalent:

(a) (J , pre ′, post ′) wl (I , pre, post)

(b) ∀i ∈ I , σ ∈ State(Γ) · σ ∈ prei
⇒ (∀τ ∈ State(Γ′) · (∀j ∈ J · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈ posti)

The proof is in Appendix A.12. Note that (b) differs from Prop. 18(b) by omitting conjunct
∃j ∈ J · σ ∈ pre ′j , in such a way that (b) here follows from the other. A broad specification is
exactly one that satisfies ∃j ∈ J · σ ∈ pre ′j , so for such specifications the characteristic formulas
are equivalent.

A pleasing consequence is that, for specifications that are satisfiable in the sense of total
correctness, spec′ wl spec follows from spec′ w spec. Because: If spec′ is satisfiable (for
total corr.), spec′ w spec iff the characteristic formula, Prop. 18(b), holds; that in turn implies
Prop. 71(b) which is equivalent to spec′ wl spec. This means that a single specification table
can be used for both total and partial correctness, and it has behavioral subtyping for partial
correctness if it has it for total. Even if the relations wl and w coincided, however, we would not
immediately get the partial-correctness versions of the main theorems for free: We want those
results for all specifications, not just those satisfiable in the sense of total correctness; also, the
meaning of supertype abstraction is different for |=l .

Adapting the proof of Corollary 20 leads us to find that

〈〈P ′,R′〉〉 wl 〈〈P ,R〉〉 iff old(P) ∩ R′ ⊆ R ∧ old(P) ∩ old(¬P ′) ⊆ R (49)

which drops P ⊆ P ′ from Eq. (19) and adds a condition involving the complement, ¬P ′, of P ′.
In case P ⊆ P ′ holds, old(P)∩old(¬P ′) is empty and the condition holds, so (19) is a sufficient
but not necessary condition for the refinement.

Moving on to Sect. 6, the definitions of supertype abstraction and behavioral subtyping are
unchanged except for using |=l andwl . Moving on to Sect. 7, Lemma 28 holds using wlp in place
of wp —and, as noted earlier, without changing the semantics S{[−]} or D{[−]} of commands
and expressions. Most of the proof goes through essentially unchanged. It is only the method

53



call cases that involve the environment, and thus wlp. We consider method call in static dispatch
semantics:

(r , h, s) ∈ wlp(S[[Γ ` x .m(y) : U ]](η̇))(Q)
⇐⇒ definition (47) of wlp

S[[Γ ` x .m(y) : U ]](η̇)(r , h, s) ∈ Q ∪ {⊥}
⇐⇒ definition of S[[−]]; simplify using except(r , h,U ,NullDeref) 6= ⊥ by def. of except

if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in η̇(T ,m)(r , h, s1) ∈ Q ∪ {⊥}

⇐⇒ definition of wlp
if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ wlp(η̇(T ,m))(Q)

⇐⇒ definition of wlp(η̇)
if s x = null then except(r , h,U ,NullDeref) ∈ Q
else let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ wlp(η̇)(T ,m)(Q)

⇐⇒ definition of S{[−]}
(r , h, s) ∈ S{[Γ ` x .m(y) : U ]}(wlp(η̇))(Q)

The predicate transformer semantics of specifications, Def. 30, does need to be changed, so
that initial states that falsify the precondition are miraculous rather than abortive. We define
{[J , pre, post ]}l , for any σ and Q , by

σ ∈ {[J , pre, post ]}l(Q) ⇐⇒ (∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q) (50)

This differs from Def. 30 only by dropping the conjunct ∃j · σ ∈ prej . The key Lemma 32
works for partial correctness, i.e., we have ϕ |=l spec iff wlp(ϕ) w {[spec]}l . Its proof, in
Appendix A.13, uses (48).

As mentioned earlier, Def. 36 of refinement for predicate transformers is unchanged, as is
Eq. (32) that defines pointwise meet. A new proof is needed for the adaptation of Lemma 33,
which becomes {[J , pre, post ]}l = (

.
uϕ | ϕ |= (J , pre, post) · wlp(ϕ)). This is in Ap-

pendix A.14. For the remaining results in Sect. 7, the proofs adapt straightforwardly.
Moving on to Sect. 8, we already noted that the definitions are adapted by using |=l and

wl in place of their counterparts, retaining w for predicate transformers. In particular, weak
supertype abstraction means S{[P]}({[ST ]}l) w {[spec]}l implies ST ,P |=Dl spec and strong
supertype abstraction means ST ,P |=Sl spec implies ST ,P |=Dl spec. Thm. 46 now says that
S{[P]}({[ST ]}l) w {[spec]}l implies ST ,P |=Sl spec (and the same for D). Thm. 48 now uses
{[ST ]}l in place of {[ST ]}; its proof appeals to Lemma 37 which needs no change because it
refers to refinement of predicate transformers. The remaining results in Sect. 8 require little or
no change. For example, for the key property Eq. (37) of dynamic dispatch the proof unfolds
definitions to the point of applying |=l but not expanding its definition, so the argument goes
through unchanged. The key Lemma 51 holds for partial correctness. (The proof relies on
characteristic formula given in Corollary 19, but it does not use the conjunct that is dropped in
the adaptation to partial correctness.) In summary, in the setting of partial correctness, behavioral
subtyping is equivalent to supertype abstraction.

Finally we consider specification inheritance. The constructions for joins for specifications,
in Lemmas 55, 56, and Corollary 59 are unchanged except for using wl and 'l . To show that
they are in fact joins, the proofs need to be revised to use wl and |=l , but there are no surprises.
For join of specifications in two-state form, the definition Eq. (42) still works, although the proof
of the join property is different in detail from the proof of Lemma 60. Adaptation of Lemma 61
is then straightforward. For the analysis of specification inheritance in Sect. 9.2, the proofs need
essentially no change, as they rely on join properties.

In summary, the construction of joins, both for general and two-state specifications, is the
same for both total and partial correctness. Programmer provided specifications that are suitable
for both total and partial correctness may thus be inherited and ensure behavioral subtyping for
both forms of correctness.

54



11 Conclusions
In summary, we have identified a notion of behavioral subtyping that is equivalent to supertype
abstraction —which tells us what specifications are good for reasoning about pre-post properties
of method calls. Separately, we identified a slightly stronger notion of behavioral subtyping,
dubbed ‘robust’, that is better suited to inheritance of implementations, and which can be obtained
from arbitrary declared specifications by specification inheritance. Both notions of behavioral
subtyping are based on the intrinsic refinement order on specifications. For S declared to be
a subtype of T , and m a method of T , behavioral subtyping requires the specification of S ’s
implementation of m to refine that of T ’s, for objects of exactly type S . By contrast, robust
behavioral subtyping requires refinement for objects “of type S” in the usual sense of having
dynamic type S or a subtype. The robust form leads to more informative specifications, though
it is slightly stronger than what is necessary for supertype abstraction. We also uncovered that,
if S is not an instantiable class then for soundness of supertype abstraction its specification of m
need not refine that of m in T . Like robust subtyping, however, the refinement does provide the
most complete information for reasoning about calls of m at static type S , and it can be achieved
by fiat using specification inheritance.

The idea of specification inheritance has been criticized by Findler and Felleisen as covering
up design errors Findler and Felleisen [2001], Findler et al. [2001]. The argument is that refine-
ment of supertype specifications is the responsibility of the subtype’s designer, and that the use
of specification inheritance can turn design errors into assertion violations (especially when post-
conditions conflict), leading to confusing error messages. So in their methodology, specifications
for methods must be written explicitly and not synthesized by specification inheritance. Writing
complete specifications for each method makes it possible to detect non-refinement as a design
error, instead of turning such problems into unsatisfiable specifications as with specification in-
heritance. Part of this argument is the result of a technical difference in definitions of behavioral
subtyping, which our work should clarify; Findler and Felleisen use the definition of Liskov and
Wing, which is unnecessarily strong. But the other part of this argument is a methodological
difference. Findler and Felleisen want to have complete specifications written explicitly by a per-
son for each method, instead of having the specifier work (indirectly) on method specifications
by writing deltas to inherited specifications. Further investigation would be worthwhile to better
understand the software engineering issues pertaining to information hiding and reuse with the
need to detect design flaws, which might lead to better tools and specification notations.

We have explored two notions of supertype abstraction, the strong form expressed in terms
of correctness under hypotheses, and the weak form expressed in terms of axiomatic seman-
tics. When quantified over all programs and specifications the two forms are equivalent. How-
ever, for a fixed program and specification, the ‘strong’ form is a strictly stronger property.
This suggests the problem of giving a direct proof that (weak supertype abstr.)⇒ (strong su-
pertype abstr.) without recourse to behavioral subtyping. Our proof of Thm. 53 uses an equiv-
alence with behavioral subtyping, i.e., the implications (behavioral subtyping)⇒ (strong super-
type abstr.)⇒ (weak supertype abstr.)⇒ (behavioral subtyping). We also give direct proofs of
(strong supertype abstr.)⇒ (behavioral subtyping) and (behavioral subtyping)⇒ (weak super-
type abstr.).

The characterization of refinement in terms of pre- and post-conditions depends on the form
of specification, i.e., whether two-state postconditions are used or auxiliary variables. It also
depends on whether partial or total correctness is considered. Our characterization for partial
correctness seems to be novel. In the introduction we point out that the Liskov-Wing postcondi-
tion rule is stronger than necessary, and note that some but not all recent work adopts the better
version. For partial correctness, the Liskov-Wing precondition rule is also unnecessarily strong.
However, this may have little practical significance, and their precondition rule is used in most
of the literature and in implemented systems.

We chose to develop the theory using a fairly elaborate programming language, in part to
show that features like type cast and exceptions do not subvert the account of behavioral subtyp-
ing and supertype abstraction based on refinement. We leave it as an open problem to formulate
an account that abstracts from the particulars of the programming language and also yields our re-
sults when instantiated for our language. Such an account might also encompass constructs from
refinement calculus (e.g., unbounded nondeterminacy, angelic nondeterminacy, and specification
statements).
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It is common wisdom that subclasses should be behavioral subtypes, and also that behavioral
subtyping sometimes needs to be violated in order to use inheritance merely as a way to reuse
code. Parkinson and Bierman [2008] give such an example (adapted as our Example 43), which
they describe as being at odds with behavioral subtyping. We have shown that by using a precon-
dition with an exact test on the type of self, as in their specification, one in fact retains behavioral
subtyping while not imposing undesired restrictions on subtypes. Carrying this to the extreme,
for a closed collection of classes one may give specifications that have behavioral subtyping but
impose quite arbitrary requirements on a method’s implementation in different classes. (This
phenomenon is related to our critical Lemma 51 on encoding dynamic dispatch using static dis-
patch.) This effectively results in reasoning by cases on possible dynamic types, the opposite of
what behavioral subtyping and supertype abstraction are meant to provide.

Another direction for future work is to extend the treatment of behavioral subtyping to pro-
gramming languages involving observations beyond simply initial and final states —most obvi-
ously, concurrent programs and trace properties. A good starting point may be the work of Alagic
and Kouznetsova [2002].

A Appendix
This appendix presents various proofs and ancillary definitions that were postponed from the
main text.

The typing rules for expressions and commands are in Fig. 10 and Fig. 11. The rules for type
cast and test are slightly simpler and more general than Java, allowing casts that always fail and
tests that are always false.

A.1 Typing rules, and semantics of expressions and commands not given
in Sect. 4.5

Γ ` 0 : int Γ ` true : bool
T ∈ RefType

Γ ` null :T
Γ ` x : Γx

Γ ` E :T [Γ , x :T ] ` E1 :U

Γ ` let x be E in E1 :U

Γ ` x :T1 Γ ` y :T2

Γ ` x = y : bool

Γ ` x :U (f :T ) ∈ fieldsV U ≤ V

Γ ` x .f :T
Γ ` new K () :K

Γ ` x :T T ∈ RefType

Γ ` (U ) x :U

Γ ` x :T T ∈ RefType

Γ ` x is U : bool

Γ ` x :T mtype(T ,m) = z :U→U Γ ` y :V V ≤ U

Γ ` x .m(y) :U

Figure 10: Typing rules for expressions. (For (U ) x and x is U one might prefer to add U ≤ T ,
or the weaker condition that U is a ref type, but there is no need.)

The semantic clauses in Figures 12 and 13 use a few auxiliary definitions to follow.
The semantics is defined with respect to an arbitrary allocator. An allocator is a choice

function for unused references, i.e., a function fresh that maps a pair (r , h), with h ∈ Heap(r),
to a reference such that fresh(r , h) 6∈ dom r .19

If s is a store then s−exc is the same store but with exc removed from its domain; similarly,
s − x removes every x in x . We write σ − x to abbreviate the state σ but with x removed from
its store.

19As a simple example, Ref can be taken to be the naturals and fresh(r , h) can be the least n not in dom r . A realistic
allocator depends on program state which is why we include h here.
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Γ ` E :T T ≤ Γ x x 6= self
Γ ` x := E

Γ ` x :U (f :T ) ∈ fieldsV U ≤ V Γ ` y :T1 T1 ≤ T

Γ ` x .f := y

Γ ` x : bool Γ ` C1 Γ ` C2

Γ ` if x then C1 else C2

[Γ , x :T ] ` C

Γ ` var x :T in C

Γ ` C1 Γ ` C2

Γ ` C1; C2

Γ ` x :T T ≤ Thr
Γ ` throw x

Γ ` C1 [Γ , x :T ] ` C2 T ≤ Thr
Γ ` try C1 catch(x :T ) C2

Figure 11: Typing rules for commands.

[[Γ ` x : T ]](η)(r , h, s) = (r , h, [res : s x ,exc : null ])
[[Γ ` true : bool]](η)(r , h, s) = (r , h, [res : true,exc : null ])
[[Γ ` 0 : int]](η)(r , h, s) = (r , h, [res : 0,exc : null ])
[[Γ ` null : T ]](η)(r , h, s) = (r , h, [res : null,exc : null ])
[[Γ ` x = y : bool]](η)(r , h, s) =

let v = (if s x = s y then true else false) in (r , h, [res : v ,exc : null ])
[[Γ ` new K () : K ]](η)(r , h, s) =

let o = fresh(r , h) in let r0 = [r , o : K ] in let h0 = [h , o : defaultObrecord K ] in
(r0, h0, [res : o,exc : null ])

[[Γ ` x .f : T ]](η)(r , h, s) =
if s x 6= null then (r , h, [res : h(s x ) f ,exc : null ]) else except(r , h,T ,NullDeref)

[[Γ ` (U ) x : U ]](η)(r , h, s) =
if s x = null ∨ r(s x ) ≤ U then (r , h, [res : s x ,exc : null ]) else except(r , h,U ,ClassCast)

[[Γ ` x is U : bool]](η)(r , h, s) =
let v = (if s x 6= null ∧ ρ(s x ) ≤ U then true else false) in (r , h, [res : v ,exc : null ])

Figure 12: Semantics of expressions other than let and method call, for which see equations (10),
(12) and (13). Read [[−]] as either D[[−]] or S[[−]] throughout, and η is either normal or extended
method environment accordingly.

We write default T for the default value for type T . We arbitrarily choose default bool to
be false and default int to be 0. We need to define default T = null if T is a ref type, so that
it is an element of Val(T , r) for all r . Also, defaultObrecord K is defined as the element of
Obrecord(K , r) that gives default values to all fields.

We use a helping function to create exceptional result states. Given a ref context r , heap
h ∈ Heap(r), classname K ≤ Thr, and any type T we define except(r , h,T ,K ) to be an
element of State([res : T ,exc : Thr]) as follows:

except(r , h,T ,K ) = let o = fresh(r , h) in
let r0 = [r , o : K ] in
let h0 = [h , o : defaultObrecord K ] in (r0, h0, [res : default T ,exc : o])

This is similar to the semantics of new K (), but the new object is assigned to exc rather
than to res. The following similar function is used in the semantics of commands. Given
(r , h, s) in State(Γ) and classname K ≤ Thr we define except(r , h, s,K ) to be an element
of State([Γ , exc : Thr]) as follows:

except(r , h, s,K ) = let o = fresh(r , h) in
let r0 = [r , o : K ] in
let h0 = [h , o : defaultObrecord K ] in (r0, h0, [s , exc : o])
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[[Γ ` x .f := y ]](η)(r , h, s) =
if s x 6= null then (r , [h | s x .f : s y ], s) else except(r , h, s,NullDeref)

[[Γ ` if x then C1 else C2]](η)(r , h, s) =
if s x = true then [[Γ ` C1]](η)(r , h, s) else [[Γ ` C2]](η)(r , h, s)

[[Γ ` var x : T in C ]](η)(r , h, s) =
lets (r1, h1, s1) = [[Γ, x : T ` C ]](η)(r , h, [s , x : default T ]) in (r1, h1, s1 − x )

[[Γ ` C1; C2]](η)(r , h, s) =
lets (r1, h1, s1) = [[Γ ` C1]](η)(r , h, s) in
if s1 exc = null then [[Γ ` C2]](η)(r1, h1, s1 − exc) else (r1, h1, s1)

[[Γ ` throw x ]](η)(r , h, s) =
if s x 6= null then (r , h, [s , exc : s x ]) else except(r , h, s,NullDeref)

[[Γ ` try C1 catch(x : T ) C2]](η)(r , h, s) =
lets (r1, h1, s1) = [[Γ ` C1]](η)(r , h, s) in
if s1 exc = null ∨ r(s1 exc) � T then (r1, h1, s1)
else let s3 = [s1 | x : s1 res]− exc in

lets (r2, h2, s2) = [[Γ, x : T ` C2]](η)(r1, h1, s3) in (r2, h2, s2 − x )

Figure 13: Semantics of commands except for assignment, for which see equation (11). Read
[[−]] as either D[[−]] or S[[−]] throughout, and η is either normal or extended method environment
accordingly.

A.2 Semantics of class table
Method environments are ordered by η ≤ η′ iff η(K ,m) ≤ η′(K ,m) for all K ,m . This second
≤ refers to the usual ordering on state transformers: that is, for ϕ and ψ in STrans(Γ,Γ′), define
ϕ ≤ ψ iff for all σ in State(Γ) we have either ϕσ = ψ σ or ϕσ = ⊥.

The first step in defining the semantics of the class table is to define the semantics of the dec-
laration of a method m in some class K , writtenD[[K ; meth m(x : T ) : T { C }]], as a function
from method environments to SemMeth(K ,m). That is, the declaration denotes an element of

MethEnv→ STrans([self : K , x : T ], [res : T ,exc : Thr]).

Let Γ = [self : K , res : T , x : T ] so that Γ ` C due to condition (W5) in the definition of a well-
formed class table. For each method environment η and for each state (r , h, s) in State([self : K , x : T ]),
define

D[[K ; meth m(x : T ) : T { C }]](η)(r , h, s) =
let s0 = [s , res : default T ] in
lets (r1, h1, s1) = D[[Γ ` C ]](η)(r , h, s0) in (r1, h1, s1 − (self, x )).

The next step is to define a chain η ∈ N→ MethEnv of method environments as follows.

η0(K ,m) = λσ · ⊥, for any m declared or inherited in K .

ηj+1(K ,m) = D[[K ; mdec]](ηj ), if m is declared as mdec in K .
ηj+1(K ,m) = restr(ηj+1(L,m), K ), if m is inherited in K from L.

Here restr restricts the function ηj+1(L,m), which is defined on states with self : L, to states with
self : K . This works because K ≤ L implies that for all r ∈ RefCtx, Val(K , r) ⊆ Val(L, r)
which in turn induces an inclusion State([self : K , x : T ]) ⊆ State([self : L, x : T ]) on states.

We make such conversions explicit throughout the paper, since behavioral subtyping is all
about refinement or satisfaction relations between programs and specifications at different types.

The everywhere-⊥ function is the least element in the set of state transformers of a given type,
and this induces the least method environment, η0. For any Γ ` C , the semantics D[[Γ ` C ]] is a
continuous function from method environments to state transformers. Similarly, the semantics of
a method declaration is continuous in the method environment. It follows that i ≤ j ⇒ ηi ≤ ηj ,
that is, the approximation chain is ascending.

The third and last step is to define the semantics, η̂, of the class table, also written D[[CT ]].
It is defined to be the least upper bound of the approximation chain. Characterization of the least
upper bound is straightforward. Machine-checked proofs of the continuity properties, as well as
type soundness etc., appear in Leavens et al. [2006], building on Naumann [2005].

58



A.3 Proof of Proposition 18 in Sect. 5.4
First we rewrite item (a) as follows:

(J , pre ′, post ′) w (I , pre, post)
⇐⇒ definition of w, omit range ϕ ∈ STrans(Γ,Γ′)

∀ϕ · ϕ |= (J , pre ′, post ′) ⇒ ϕ |= (I , pre, post)
⇐⇒ definition of |= for general specs, omit ranges i ∈ I , j ∈ J

∀ϕ · (∀j · ϕ |= (pre ′j , post ′j )) ⇒ (∀i · ϕ |= (prei , posti))
⇐⇒ definition of |= for simple specs

∀ϕ · (∀j , τ · τ ∈ pre ′j ⇒ ϕ(τ) ∈ post ′j ) ⇒ (∀i , σ · σ ∈ prei ⇒ ϕ(σ) ∈ posti)
⇐⇒ predicate calculus

∀ϕ, i , σ · σ ∈ prei ⇒ ((∀j , τ · τ ∈ pre ′j ⇒ ϕ(τ) ∈ post ′j ) ⇒ ϕ(σ) ∈ posti)
⇐⇒ predicate calculus

∀i , σ · σ ∈ prei ⇒ (∀ϕ · (∀j , τ · τ ∈ pre ′j ⇒ ϕ(τ) ∈ post ′j ) ⇒ ϕ(σ) ∈ posti)

Recall that item (b) is

(b) ∀i ∈ I , σ ∈ State(Γ) · σ ∈ prei
⇒ (∃j ∈ J · σ ∈ pre ′j ) ∧ (∀τ ∈ State(Γ′) · (∀j ∈ J · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈
posti)

In accord with the rewritten (a), items (a) and (b) are equivalent if the following are equivalent
for all i ∈ I and all σ ∈ prei :

(a’) ∀ϕ · (∀j , τ · τ ∈ pre ′j ⇒ ϕ(τ) ∈ post ′j ) ⇒ ϕ(σ) ∈ posti

(b’) (∃j · σ ∈ pre ′j ) ∧ (∀τ · (∀j · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈ postix )

For arbitrary i and σ with σ ∈ prei we argue by mutual implication.
To show (a’) follows from (b’), consider any ϕ. Assume the antecedent ∀j , τ · τ ∈ pre ′j ⇒

ϕ(τ) ∈ post ′j in (a’), to show ϕ(σ) ∈ posti . Instantiate τ : = σ to get ∀j · σ ∈ pre ′j ⇒ ϕ(σ) ∈
post ′j . By the first conjunct in (b’) there is some j with σ ∈ pre ′j and so ϕ(σ) ∈ post ′j , whence
ϕ(σ) 6= ⊥. Because ϕ(σ) is a state, we can instantiate the second conjunct in (b’) by τ : = ϕ(σ)
which yields (∀j · σ ∈ pre ′j ⇒ ϕ(σ) ∈ post ′j ) ⇒ ϕ(σ) ∈ posti and thus ϕ(σ) ∈ posti .

To show that (b’) follows from (a’), we need that (J , pre ′, post ′) is satisfiable. Choose some
state transformer ψ that satisfies (J , pre ′, post ′) and yields ⊥ on any initial state where that is
allowed. That is, for any state ρ,

ψ(ρ) = ⊥ if ¬(∃j · ρ ∈ pre ′j ), and otherwise:

ψ(ρ) = τ where τ is chosen to be any state such that ∀j · ρ ∈ pre ′j ⇒ τ ∈ post ′j .

There must be some such τ in the second case, by Lemma 16. By construction we have

∀j , ρ · ρ ∈ pre ′j ⇒ ψ(ρ) ∈ post ′j (51)

We prove the first conjunct of (b’) by contradiction. Suppose to the contrary that ∀j · σ /∈ pre ′j .
Instantiate (a’) with ϕ : = ψ and use (51) which yields ψ(σ) ∈ posti —but this contradicts
ψ(σ) = ⊥ from the definition of ψ, because predicates do not contain ⊥.

Now we show the second conjunct in (b’). Consider any τ and assume the antecedent (∀j ·
σ ∈ pre ′j ⇒ τ ∈ post ′j ), to prove τ ∈ posti . Let ψ be defined as above; the assumption lets us
make the specific choice ψ(σ) = τ . Taking ϕ : = ψ in (a’) we get ψ(σ) ∈ posti , thus τ ∈ posti .

A.4 Refactoring the denotational semantics using an algebra state trans-
formers.

For each expression and command form, we reformulate the semantic definition in Sect. 4.5
using some primitive state transformers together with three operations on state transformers —
sequence, alternatives, and a form of pairing. The three operations on state transformers are as
follows:
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Kleisli composition Given ϕ0 of type Γ0 Γ1 and ϕ1 of type Γ1 Γ2, define ϕ0;ϕ1 of type
Γ0 Γ2 by

(ϕ0;ϕ1)σ = (if ϕ0 σ = ⊥ then ⊥ else ϕ1(ϕ0 σ)).

Alternatives For ϕ and ψ of type Γ Γ′ and P ⊆ State(Γ), define IF P THEN ϕ ELSE ψ of
type Γ Γ′ by

(IF P THEN ϕ ELSE ψ)σ = if σ ∈ P then ϕσ else ψ σ.

Store pairing For Γ and Γ′ with disjoint domains and ϕ of type Γ Γ′, define 〈ϕ , id 〉 of type
Γ [Γ′,Γ] by

〈ϕ , id 〉(r , h, s) = if ϕ(r , h, s) = ⊥ then ⊥ else ϕ(r , h, s)+s,

where we write +s to add store s to the state ϕ(r , h, s). That is, for any (t , k , s ′) ∈
State(Γ′) and s ∈ Store(Γ) with Γ disjoint from Γ′ we define

(t , k , s ′)+s = (t , k , [s ′, s]), (52)

where the state (t , k , [s ′, s]) is in State([Γ′,Γ]).

Note that Kleisli composition takes divergence into account but does nothing special with the
exc variable.20

Refactoring the semantics of conditionals is straightforward:

[[Γ ` if x then C1 else C2]](η) = IF true(x ) THEN [[Γ ` C1]](η) ELSE [[Γ ` C2]](η),

where true(x ) is the set of Γ-states where x is true.
The semantics of sequential composition refactors as follows:

[[Γ ` C1; C2]](η) = [[Γ ` C1]](η); IF null(exc) THEN dropExc; [[Γ ` C2]](η) ELSE ident ,

where

• null(exc) is the set of [Γ , exc : Thr]-states in which exc is null

• dropExc drops exc from the state space (it can be written λσ · σ − exc),

• ident is the identity state transformer (here used to retain the exception from C1).

To see the need for store pairing, consider the semantics of assignment, Eq. (11). Using [[−]]
for either S[[−]] orD[[−]], we can write [[Γ ` x := E ]](η) in the following way, using store pairing
and sequence:

[[Γ ` x := E ]](η) = 〈([[Γ ` E : T ]](η) ; rename) , id 〉; assg , (53)

where

• rename : [res : T ,exc : Thr]  [res′ : T ,exc : Thr] is the state transformer that just re-
names res to give a context21 disjoint from Γ: rename(r , h, s) = (r , h, [s | res′ : s res]−
res).

• assg : [Γ, res′ : T ,exc : Thr] [Γ,exc : Thr] is the state transformer that updates x with
the value of res′ if exc is null and in either case drops res′ from the store: assg(r , h, s) =
(r , h, s ′) where s ′ is if exc = null then [s | x : s res′]− res′ else s − res′.

The proof of Eq. (53) is straightforward using the definitions.
The var construct refactors as

[[Γ ` var x : T in C ]](η) = extndef ; [[Γ, x : T ` C ]](η); dropx

where
20Store pairing seems ad hoc. A proper “algebra” of state transformers might include products in a general form, with

pairing Γ Γ′ × Γ′′ etc. But that would require us to introduce specifications of type Γ Γ′ × Γ′′.
21 We are only interested in Γ that has res in its domain since it is present for any expression and command in a method

body; cf. the typing rule for method body.
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• the primitive extndef : Γ [Γ , x : T ] adds variable x with default value

• dropx : [Γ, x : T ,exc : Thr] [Γ , exc : Thr] discards x .

To refactor the semantics of let expressions, recall the semantics in Eq. (10), written here
using [[−]] and η to stand for either D[[−]] and a normal method environment or S[[−]] and an
extended method environment:

[[Γ ` let x be E in E1 : U ]](η)(r , h, s) =
lets (r0, h0, s0) = [[Γ ` E : T ]](η)(r , h, s) in
if s0 exc 6= null then (r0, h0, [res : default U ,exc : s0 exc])
else let s1 = [s , x : s0 res] in [[Γ, x : T ` E1 : U ]](η)(r0, h0, s1)

It is straightforward to show that for either the static or dynamic semantics we have the refactoring

[[Γ ` let x be E in E1 : U ]](η) = 〈([[Γ ` E : T ]](η) ; rename) , id 〉; doE1(η) (54)

for any η, where

• rename : [res : T ,exc : Thr] [res′ : T ,exc : Thr] just renames res to res′, the same as
in (53) of Sect. A.4

• doE1(η) : [Γ, res′ : T ,exc : Thr] [res : U ,exc : Thr] is the state transformer

IF null(exc) THEN init ; [[Γ, x : T ` E1 : U ]](η) ELSE propag

• null(exc) is the set of [Γ, res′ : T ,exc : Thr]-states where exc is null

• init : [Γ, res′ : T ,exc : Thr] [Γ, x : T ] sets x to the value of res′ and discards exc

• propag : [Γ, res′ : T ,exc : Thr]  [res : U ,exc : Thr] is the (primitive) transformer that
progopates the exception, i.e., it sets res to default U and copies exc (the possible ex-
ception from E ).

We omit the refactoring of [[Γ ` try C1 catch(x : T ) C2]]. It is similar to the refactoring of
sequential composition, together with var, using a primitive state transformer to rename variable
exc to x under the condition that exc is not null.

We did not need to refactor the semantics of method call; we directly derive its predicate
transformer semantics in the proof of Lemma 28 in Sect. 7.2. For the sake of elegance, we refactor
the semantics of method call Γ ` x .m(y) : U , with Γ x = T and mtype(T ,m) = z : U→U as
in the typing rule for method call. We have

S[[Γ ` x .m(y) : U ]](η̇) = IF null(x ) THEN excpt ELSE args; η̇(T ,m) (55)
D[[Γ ` x .m(y) : U ]](η) = IF null(x ) THEN excpt ELSE args; dispatch(T ,m, η) (56)

where

• null(x ) is the set of Γ-states in which x is null

• args : Γ [self : T , z : T ] is the semantics of the assignment “self, z : = x , y”

• excpt is λ(r , h, s) · except(r , h,U ,NullDeref), using except from Sect. 4.5.

• dispatch(T ,m, η) is the state transformer of type [self : T , z : T ] → [res : U ,exc : Thr],
defined by Eq. (14) in Sect. 4.

A.5 Weakest preconditions for state transformer algebra
The following Lemma shows how wp itself distributes over constructs of the algebra of state
transformers. For sequence and alternatives the result is standard. For store pairing, the result
is expressed using a kind of partial application for predicates, in terms of the variables in the
store. It is an asymmetric operator notated 	 and defined as follows. For Γ and Γ′ with disjoint
domains, any predicate Q on [Γ′,Γ], and Γ-store s , let Q 	 s be the Γ′-predicate defined by

τ ∈ Q 	 s ⇐⇒ τ + s ∈ Q .
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using + defined in Eq. (52). This lifts to an operation on predicate transformers: If f models a
program from Γ-states to Γ′-states, with the variables of Γ′ distinct from those of Γ, then f ⊕ id
models the program that acts the same but also saves a copy of the initial store for Γ, yielding a
state for [Γ′,Γ]. For predicate transformer f of type Γ Γ′, define f ⊕ id of type Γ [Γ′,Γ] by

(r , h, s) ∈ (f ⊕ id)(Q) ⇐⇒ (r , h, s) ∈ f (Q 	 s).

Lemma 72 (wp distribution) For any state transformers ϕ0 and ϕ1 of suitable types, we have
for any state σ and predicate Q ,

σ ∈ wp(ϕ0;ϕ1)(Q) ⇐⇒ σ ∈ wp(ϕ0)(wp(ϕ1)(Q)).

For any state transformers ϕ0 and ϕ1 of suitable type, we have

σ ∈ wp(IF P THEN ϕ ELSE ψ)(Q) ⇐⇒ if σ ∈ P then σ ∈ wp(ϕ)(Q) else σ ∈ wp(ψ)(Q),

or equivalently

wp(IF P THEN ϕ ELSE ψ)(Q) = (P ∩ wp(ϕ)(Q)) ∪ (¬P ∩ wp(ψ)(Q)), (57)

where we write ¬P for the set of states not in P .
For the case of store pairing we spell out the types. Let Γ and Γ′ have disjoint domains and

let ϕ be of type Γ Γ′. For any Γ-state (r , h, s) and any predicate Q on [Γ′,Γ], we have

(r , h, s) ∈ wp(〈ϕ , id 〉)(Q) ⇐⇒ (r , h, s) ∈ wp(ϕ)(Q 	 s) (58)

or equivalently wp(〈ϕ , id 〉) = wp(ϕ)⊕ id .
Proof For sequence, observe for any state σ

σ ∈ wp(ϕ0;ϕ1)(Q)
⇐⇒ definitions of wp and of ;

ϕ0(σ) 6= ⊥ ∧ ϕ1(ϕ0(σ)) ∈ Q ,
⇐⇒ definition of wp thrice

σ ∈ wp(ϕ0)(true) ∧ σ ∈ wp(ϕ0)(wp(ϕ1)(Q))
⇐⇒ wp(ϕ) is monotonic and wp(ϕ1)(Q) is a subset of “true”

σ ∈ wp(ϕ0)(wp(ϕ1)(Q))

The case for alternatives is even simpler and is left to the reader. For store pairing, observe for
any state (r , h, s)

(r , h, s) ∈ wp(〈ϕ , id 〉)(Q)
⇐⇒ definitions

ϕ(r , h, s) 6= ⊥ ∧ (ϕ(r , h, s) + s) ∈ Q
⇐⇒ definitions

(r , h, s) ∈ wp(ϕ)(true) ∧ ϕ(r , h, s) ∈ (Q 	 s)
⇐⇒ definition of wp

(r , h, s) ∈ wp(ϕ)(true) ∧ (r , h, s) ∈ wp(ϕ)(Q 	 s)
⇐⇒ wp(ϕ) monotonic and Q 	 s is a subset of “true”

(r , h, s) ∈ wp(ϕ)(Q 	 s)

�

A.6 Predicate transformer semantics derived for Lemma 28
Fig. 14 gives the clauses of predicate transformer semantics omitted from Fig. 6. This subsection
derives the definitions, completing the proof of Lemma 28. Omitted from the figure and proof is
the case of try/catch, because we omitted that from the refactorings in Sect. A.4; it is essentially
a combination of sequence and var.
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(r , h, s) ∈ {[Γ ` x := E ]}(θ)(Q) ⇐⇒ (r , h, s) ∈ {[Γ ` E : T ]}(θ)(wp(rename)(wp(assg)(Q)⊕ s))
(r , h, s) ∈ {[Γ ` C1; C2]}(θ)(Q) ⇐⇒

(r , h, s) ∈ {[Γ ` C1]}(θ)((null(exc) ∩ wp(dropExc)({[Γ ` C2]}(θ)(Q))) ∪ (¬null(exc) ∩Q))
(r , h, s) ∈ {[Γ ` true : bool]}(θ))(Q) ⇐⇒ (r , h, [res : true,exc : null]) ∈ Q
(r , h, s) ∈ {[Γ ` null : T ]}(θ)(Q) ⇐⇒ (r , h, [res : null,exc : null]) ∈ Q
(r , h, s) ∈ {[Γ ` x = y : bool]}(θ))(Q) ⇐⇒

let v = (if s x = s y then true else false) in (r , h, [res : v ,exc : null]) ∈ Q
(r , h, s) ∈ {[Γ ` new K () : K ]}(θ)(Q) ⇐⇒

let o = fresh(r , h) in let r0 = [r , o : K ] in let h0 = [h , o : defaultObrecord K ] in
(r0, h0, [res : o,exc : null]) ∈ Q

(r , h, s) ∈ {[Γ ` x .f : T ]}(θ)(Q) ⇐⇒
if s x 6= null then (r , h, [res : h(s x ) f ,exc : null]) ∈ Q else except(r , h,T ,NullDeref) ∈ Q

(r , h, s) ∈ {[Γ ` (U ) x : U ]}(θ)(Q) ⇐⇒
if s x = null ∨ r(s x ) ≤ U then (r , h, [res : s x ,exc : null]) ∈ Q else except(r , h,U ,ClassCast) ∈ Q

(r , h, s) ∈ {[Γ ` x is U : bool]}(wp(η))(Q) ⇐⇒
let v = (if s x 6= null ∧ ρ(s x ) ≤ U then true else false) in (r , h, [res : v ,exc : null]) ∈ Q

(r , h, s) ∈ {[Γ ` let x be E in E1 : U ]}(θ)(Q) ⇐⇒
(r , h, s) ∈ {[Γ ` E : T ]}(θ))(wp(rename)(ptDoE1(Q)⊕ s)) where ptDoE1 is from (59).

(r , h, s) ∈ {[Γ ` throw x ]}(θ)(Q) ⇐⇒
if s x 6= null then (r , h, [s , exc : s x ]) ∈ Q else except(r , h, s,NullDeref) ∈ Q

(r , h, s) ∈ {[Γ ` x .f := y ]}(θ)(Q) ⇐⇒
if s x 6= null then (r , [h | s x .f : s y ], s) ∈ Q else except(r , h, s,NullDeref) ∈ Q

(r , h, s) ∈ {[Γ ` var x : T in C ]}(θ)(Q) ⇐⇒
(r , h, s) ∈ wp(extndef )({[Γ, x : T ` C ]}(θ)(wp(dropx )(Q)))

Figure 14: Predicate transformer semantics, cf. Fig. 6. See the text for abbreviations like
ptRename and ptDoE1.

We begin with assignment. For brevity we omit the context Γ.

(r , h, s) ∈ wp([[x := E ]](η))(Q)
⇐⇒ refactoring Eq. (53) in Sect. A.4

(r , h, s) ∈ wp(〈([[E : T ]](η); rename) , id 〉; assg)(Q)
⇐⇒ Lemma 72 for sequence

(r , h, s) ∈ wp(〈([[E : T ]](η); rename) , id 〉)(wp(assg)(Q))
⇐⇒ Lemma 72 for store pairing

(r , h, s) ∈ wp(([[E : T ]](η); rename))(wp(assg)(Q)⊕ s)
⇐⇒ Lemma 72 for sequence

(r , h, s) ∈ wp([[E : T ]](η))(wp(rename)(wp(assg)(Q)⊕ s))
⇐⇒ induction hypothesis for E

(r , h, s) ∈ {[E : T ]}(wp(η))(wp(rename)(wp(assg)(Q)⊕ s))
⇐⇒ definition of {[x := E ]} (see Fig. 6)

(r , h, s) ∈ {[x := E ]}(wp(η))(Q)

Since assg and rename are fixed state transformers, the penultimate formula can serve as the
definition. In this calculation and in the ones to follow, the last step tells us the general definition
for arbitrary predicate transformer environment θ (as it is given in Fig. 14).

For sequence, we derive an appropriate predicate transformer semantics as follows, where we
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write ¬null(exc) for the complement of the set of states null(exc).

wp([[C1; C2]](η))(Q)
= refactoring of sequence

wp([[C1]](η); IF null(exc) THEN dropExc; [[C2]](η) ELSE ident)(Q)
= wp distribute sequence, Lemma 72

wp([[C1]](η))(wp(IF null(exc) THEN dropExc; [[C2]](η) ELSE ident)(Q))
= wp distribute alternative Eq. (57)

wp([[C1]](η))(null(exc) ∩ wp(dropExc; [[C2]](η))(Q)) ∪ (¬null(exc) ∩ wp(ident)(Q))
= wp distribute sequence, Lemma 72, wp(ident)

wp([[C1]](η))((null(exc) ∩ wp(dropExc)(wp([[C2]](η))(Q))) ∪ (¬null(exc) ∩Q))
= induction
{[C1]}(wp(η)))((null(exc) ∩ wp(dropExc)({[C2]}(wp(η))(Q))) ∪ (¬null(exc) ∩Q))

= definition of {[C1; C2]}
{[C1; C2]}(wp(η))(Q)

The cases for let expressions, and all the remaining command forms, are similar to the pre-
ceding cases. Before embarking on those derivations, we mention how one could go astray in
defining the semantics of constructs that involve sequence.

Remark 73 The semantics for sequence is derived in Sect. 7.2, in a way that avoids an interest-
ing misstep. To see what could go awry, consider the following calculation.

σ ∈ wp([[C1; C2]](η))(Q)
⇐⇒ refactoring of sequence

σ ∈ wp([[C1]](η); IF null(exc) THEN dropExc; [[C2]](η) ELSE ident)(Q)
⇐⇒ wp distribute sequence, Lemma 72

σ ∈ wp([[C1]](η))(wp(IF null(exc) THEN dropExc; [[C2]](η) ELSE ident)(Q))

If after the last step above we used the definition of wp (26), we could show that the last formula
above was true just when

[[C1]](η)(σ) ∈ wp(IF null(exc) THEN dropExc; [[C2]](η) ELSE ident)(Q)

While this is valid, it is a misstep, because it leads to a flawed definition. To see this, consider that
from this last formula, one would proceed via distribution of wp over sequence and alternatives,
and induction, to the following putative definition:

σ ∈ {[C1; C2]}(θ)(Q) ⇐⇒ ? if σ ∈ {[C1]}(θ)(null(exc))
then σ ∈ {[C1]}(θ)(wp(dropExc)({[C2]}(θ)(Q)))
else σ ∈ {[C1]}(θ)(Q)

Although it validates Lemma 28, the misstep is dubious because it exploits determinacy of the
state transformer semantics for C1, whereas {[C1]}(θ) may well inherit nondeterminacy from
meanings in θ. We need nondeterminacy in method environments for the main results where θ
gets instantiated by {[ST ]}. Informally, the putative definition can be read as follows: if C1

ensures the absence of exceptions, the C2 must establish Q; otherwise C1 must establish Q . But
in the case that C1 nondeterministically allows the possibility of exception or not, this is not
an accurate semantics. In particular, it would falsify the critical Theorem 48, which relates the
dynamic to the static semantics. �

For true we have

(r , h, s) ∈ wp([[Γ ` true : bool]](η))(Q)
⇐⇒ definition of wp

[[Γ ` true : bool]](η)(r , h, s) ∈ Q
⇐⇒ definition of [[Γ ` true : bool]]

(r , h, [res : true,exc : null]) ∈ Q
⇐⇒ definition of {[Γ ` true : bool]}

(r , h, s) ∈ {[Γ ` true : bool]}(wp(η))(Q)
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For Γ ` x = y : bool we have

(r , h, s) ∈ wp([[Γ ` x = y : bool]](η))(Q)
⇐⇒ definition of wp

[[Γ ` x = y : bool]](η)(r , h, s) ∈ Q
⇐⇒ definition of [[−]]

(let v = (if s x = s y then true else false) in (r , h, [res : v ,exc : null])) ∈ Q
⇐⇒ definition of {[x = y ]}

(r , h, s) ∈ {[Γ ` x = y : bool]}(wp(η)))(Q)

Simplifications come to mind, but for our purposes we may as well read the definition directly
off this proof. The subsequent calculations are similar so we omit hints.

For new K () we have

(r , h, s) ∈ wp([[Γ ` new K () : K ]](η))(Q)
⇐⇒ [[Γ ` new K () : K ]](η)(r , h, s) ∈ Q
⇐⇒ (let o = fresh(r , h) in let r0 = [r , o : K ] in

let h0 = [h , o : defaultObrecord K ] in (r0, h0, [res : o,exc : null])) ∈ Q
⇐⇒ (r , h, s) ∈ {[Γ ` new K () : K ]}(wp(η))(Q)

For Γ ` x .f : T we have

(r , h, s) ∈ wp([[Γ ` x .f : T ]](η))(Q)
⇐⇒ [[Γ ` x .f : T ]](η)(r , h, s) ∈ Q
⇐⇒ (if s x 6= null then (r , h, [res : h(s x ) f ,exc : null]) else except(r , h,T ,NullDeref)) ∈ Q
⇐⇒ (r , h, s) ∈ {[Γ ` x .f : T ]}(wp(η))(Q)

For cast we have

(r , h, s) ∈ wp([[Γ ` (U ) x : U ]](η))(Q)
⇐⇒ [[Γ ` (U ) x : U ]](η)(r , h, s) ∈ Q
⇐⇒ (if s x = null ∨ r(s x ) ≤ U then (r , h, [res : s x ,exc : null]) else except(r , h,U ,ClassCast)) ∈ Q
⇐⇒ (r , h, s) ∈ {[Γ ` (U ) x : U ]}(wp(η))(Q)

The case of type test is similar to cast.
Here is the case for let.

(r , h, s) ∈ wp([[Γ ` let x be E in E1 : U ]](η))(Q)
⇐⇒ refactoring (54)

(r , h, s) ∈ wp(〈([[Γ ` E : T ]](η) ; rename) , id 〉; doE1)(Q)
⇐⇒ wp distribution Lemma 72

(r , h, s) ∈ wp(〈([[Γ ` E : T ]](η) ; rename) , id 〉)(wp(doE1)(Q))

To proceed further, first observe the following.

wp(doE1)(Q)
= definition of doE1

wp(IF null(exc) THEN init ; [[Γ, x : T ` E1 : U ]](η) ELSE propag)(Q)
= distribution Lemma 72 for if and seq

(null(exc) ∩ wp(init)(wp([[Γ, x : T ` E1 : U ]](η))(Q))) ∪ (¬null(exc) ∩ wp(propag)(Q))

Let us abbreviate the last line as wpDoE1(Q) and write ptDoE1(Q) for the following:

(null(exc) ∩ wp(init)({[Γ, x : T ` E1 : U ]}(wp(η)))(Q))) ∪ (¬null(exc) ∩ wp(propag)(Q))
(59)

So the main calculation for let continues

(r , h, s) ∈ wp(〈([[Γ ` E : T ]](η) ; rename) , id 〉)(wp(doE1)(Q))
⇐⇒ above

(r , h, s) ∈ wp(〈([[Γ ` E : T ]](η) ; rename) , id 〉)(wpDoE1(Q))
⇐⇒ induction for E1

(r , h, s) ∈ wp(〈([[Γ ` E : T ]](η) ; rename) , id 〉)(ptDoE1(Q))
⇐⇒ wp distribution Lemma 72(58)

(r , h, s) ∈ (wp([[Γ ` E : T ]](η) ; rename)⊕ id)(ptDoE1(Q))
⇐⇒ wp distribution, writing ; for sequence of predicate transformers

(r , h, s) ∈ (wp([[Γ ` E : T ]](η)) ; wp(rename))⊕ id)(ptDoE1(Q))
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We refrain from developing general algebraic properties of ⊕id . We just observe that for any f
and P we have

(r , h, s) ∈ ((f ; wp(rename))⊕ id)(P)
⇐⇒ definition of ⊕ and ;

(r , h, s) ∈ f (wp(rename)(P ⊕ s))
⇐⇒ definition below

(r , h, s) ∈ f (ptRename(s)(P))

where we define ptRename(s)(P) = wp(rename)(P ⊕ s). Taking f : = wp([[Γ ` E : T ]](η))
and P : = ptDoE1(Q), the main calculation can conclude

(r , h, s) ∈ (wp([[Γ ` E : T ]](η)) ; wp(rename))⊕ id)(ptDoE1(Q))
⇐⇒ above

(r , h, s) ∈ wp([[Γ ` E : T ]](η))(ptRename(s)(ptDoE1(Q)))
⇐⇒ induction for E

(r , h, s) ∈ {[Γ ` E : T ]}(wp(η))(ptRename(s)(ptDoE1(Q)))
⇐⇒ definition below

(r , h, s) ∈ {[Γ ` let x be E in E1 : U ]}(wp(η))(Q)

For if x then C1 else C2 the derivation is

σ ∈ wp([[if x then C1 else C2]](η))(Q)
⇐⇒ definition of wp

[[if x then C1 else C2]](η)(σ) ∈ Q
⇐⇒ semantics

if σ(x ) = true then [[C1]](η)(σ) ∈ Q else [[C2]](η)(σ) ∈ Q
⇐⇒ definition of wp, twice

if σ(x ) = true then σ ∈ wp([[C1]](η))(Q) else σ ∈ wp([[C2]](η))(Q)
⇐⇒ induction, twice

if σ(x ) = true then σ ∈ {[C1]}(wp(η))(Q) else σ ∈ {[C2]}(wp(η))(Q)
⇐⇒ definition of {[if x then C1 else C2]}

σ ∈ {[if x then C1 else C2]}(wp(η))(Q)

For throw x and x .f := x the derivations are similar to those for other primitives. For
var x : T in C the derivation is similar to that for assignment, but simpler as the refactoring
involves only sequencing, not store pairing. For try C catch(x : T ) C the refactoring is similar
to that for sequence together with var; we omit it along with derivation of predicate transformer
semantics.

A.7 Proof of Lemma 33 in Sect. 7.3
The left side of (33) is refined by the right side due to Lemma 32 and the meet property Eq. (32)).
For predicate transformers, refinement is antisymmetric, hence it remains to prove the reverse:
{[J , pre, post ]} w (

.
uϕ | ϕ |= (J , pre, post) · wp(ϕ)).

By definition (27) of w we must show for all σ,Q that

σ ∈ (
.
uϕ | ϕ |= (J , pre, post) · wp(ϕ))(Q) ⇒ σ ∈ {[(J , pre, post)]}(Q)

By definition of
.
u, this is the same as

(∀ϕ · ϕ |= (J , pre, post) ⇒ σ ∈ wp(ϕ)(Q)) ⇒ σ ∈ {[(J , pre, post)]}(Q) (60)

To show (60), assume the antecedent. According to Def. 30, the consequent is equivalent to

(∃j · σ ∈ prej ) ∧ (∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q) (61)

We prove the first conjunct by contradiction. Choose any state transformer ϕ that satisfies
(J , pre, post). Suppose there is no j with σ ∈ prej . Then [ϕ | σ :⊥] also satisfies (J , pre, post).
Now σ is not in wp([ϕ | σ :⊥])(Q) which contradicts our assumed antecedent of (60).

To prove the second conjunct of (61), consider any state τ . We must show

(∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q
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Choose any ϕ that satisfies the specification (J , pre, post). If (∀i · σ ∈ prei ⇒ τ ∈ posti)
then [ϕ | σ : τ ] also satisfies the specification. By the antecedent of (60) we get σ ∈ wp([ϕ |
σ : τ ])(Q), which by definition of wp is [ϕ | σ : τ ](σ) ∈ Q . This simplifies to τ ∈ Q , which
concludes the proof.

A.8 Proof of Lemma 37 in Sect. 7.3
Observe first that for any (J , pre, post) and σ in State([Γ | self : T ]) and Q we have

σ ∈ {[(J , pre, post)�T ]}(Q)
⇐⇒ definition of �T , let pre ′j = prej �T

σ ∈ {[(J , pre ′, post)]}(Q)
⇐⇒ definition 30

(∃j · σ ∈ pre ′j ) ∧ (∀τ · (∀i · σ ∈ pre ′i ⇒ τ ∈ posti) ⇒ τ ∈ Q)
⇐⇒ by σ ∈ pre ′j iff selftype(σ) = T (from def of pre ′ in first step) and σ ∈ prej

(∃j · σ ∈ prej ∧ selftype(σ) = T )
∧ (∀τ · (∀i · σ ∈ prei ∧ selftype(σ) = T ⇒ τ ∈ posti) ⇒ τ ∈ Q)

⇐⇒ predicate calculus, range of j ∈ J nonempty (by Def. 1 of specifications)
selftype(σ) = T ∧ (∃j · σ ∈ prej )
∧ (∀τ · (∀i · σ ∈ prei ∧ selftype(σ) = T ⇒ τ ∈ posti) ⇒ τ ∈ Q)

⇐⇒ predicate calculus (range diffusion)
selftype(σ) = T ∧ (∃j · σ ∈ prej ) ∧ (∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q)

⇐⇒ semantics
selftype(σ) = T ∧ σ ∈ {[(J , pre, post)]}(Q)

Now to prove the Lemma we calculate

spec1 wT spec0
⇐⇒ definition of wT

spec1 w spec0�T
⇐⇒ Lemma 34, spec1 is satisfiable

{[spec1]} w {[spec0�T ]}
⇐⇒ definition w

∀σ,Q · σ ∈ {[spec1]}(Q) ⇐ σ ∈ {[spec0�T ]}(Q)
⇐⇒ observation above

∀σ,Q · σ ∈ {[spec1]}(Q) ⇐ (selftype(σ) = T ∧ σ ∈ {[spec0]}(Q))
⇐⇒ predicate calculus

∀σ,Q · selftype(σ) = T ⇒ (σ ∈ {[spec1]}(Q) ⇐ σ ∈ {[spec0]}(Q))
⇐⇒ Definition 36

{[spec1]} wT {[spec0]}

A.9 Remarks on conjunctivity
The proof of Lemma 34 uses the meet operator, in a way that might seem relevant to proving
other results. This subsection makes some observations about what can and cannot be done using
meets.

It is straightforward to show for any state transformer ϕ that wp(ϕ) is universally disjunctive,
i.e., it distributes over arbitrary unions of predicates. This is characteristic of predicate transform-
ers that model deterministic programs, and is not crucial for our results. Also, wp(ϕ) is positively
conjunctive, i.e., distributes over the intersection of any non-empty set of predicates: That is, for
non-empty J we have

wp(ϕ)(∩i | i ∈ J · Qi) = (∩i | i ∈ J · wp(ϕ)(Qi)).

Fact 74 Let P be a phrase-in-context. If θ(T ,m) is positively conjunctive for every pair T ,m
then so are S{[P]}(θ) and D{[P]}(θ).
Proof Straightforward induction on P . We consider just the case of method call in the static
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dispatch semantics. For any state (r , h, s), non-empty I , and I -indexed family Q ,

(r , h, s) ∈ S{[Γ ` x .m(y) : U ]}(θ)(∩i | i ∈ I · Qi)
⇐⇒ semantics (Fig. 6)

if s x = null then except(r , h,U ,NullDeref) ∈ (∩i | i ∈ I · Qi)
else let T = Γ x in let z = formals(T ,m) in let s1 = [self : s x , z : s y ] in

(r , h, s1) ∈ θ(T ,m)(∩i | i ∈ I · Qi)
⇐⇒ conjunctivity of θ(T ,m), I nonempty

if s x = null then (∀i · i ∈ I ⇒ except(r , h,U ,NullDeref) ∈ Q)
else let T = Γ x in let z = formals(T ,m) in let s1 = [self : s x , z : s y ] in

(∀i · i ∈ I ⇒ (r , h, s1) ∈ θ(T ,m)(Qi))
⇐⇒ logic, semantics

(∀i · i ∈ I ⇒ (r , h, s) ∈ S{[Γ ` x .m(y) : U ]}(θ)(Qi))

For the other primitive commands, with semantics independent from the method environment,
the result essentially follows from Lemma 28 and the fact that wp(ϕ) is positively conjunctive
for any state transformer ϕ. �

By similar reasoning one can check that {[Γ ` C ]}(θ) is ∅-strict, or that it distributes over arbitrary
unions, provided every θ(T ,m) has the same property. This is because junctivity is preserved
by control structures and the language’s primitives are deterministic —with the exception of
method call when the environment contains nondeterministic methods, as may happen when the
environment is derived from specifications.

In light of Fact 74 and our earlier observation that {[spec]} is positively conjunctive for any
spec, we have that {[Γ ` C ]}({[ST ]}) is positively conjunctive for any Γ ` C , and also ∅-strict
provided that ST is satisfiable.

Meets lift pointwise, i.e., for any set X of method environments we define

(
.
uθ | θ ∈ X · θ)(T ,m) = (

.
uθ | θ ∈ X · θ(T ,m))

This inherits the meet property, i.e., (
.
uθ | θ ∈ X · θ) w θ′ ⇐⇒ ∀θ · θ ∈ X ⇒ θ w θ′ for all

X and all θ′, because refinement of method environments is pointwise.

Lemma 75 If ST is satisfiable then {[ST ]} = (
.
uη | η |= ST · wp(η)).

Proof Note that ST is satisfiable just if each ST (T ,m) is. Because refinement and meet of
method environments are defined pointwise, the result is a direct consequence of Lemma 33. �

A non-empty meet of positively conjunctive predicate transformers is positively conjunctive.
For any phrase-in-contextP and any set X of environments, monotonicity of {[P]}(−) (Lemma 29)

yields the refinement

(
.
uθ | θ ∈ X · {[P]}(θ)) w {[P]}(

.
uθ | θ ∈ X · θ) (62)

which holds for both static dispatch S{[−]} and dynamic D{[−]}.
In light of Lemma 75 it would be nice if the refinement strengthened to an equality. But it is

not the case that {[C ]}(−) distributes over the meet of method environments, even in case X is
non-empty and for every θ ∈ X , every θ(T ,m) is positively conjunctive.

Example 76 Consider the command x : int, y : int ` C , with C ≡ x : = self.m(); y : = self.m(),
in a class table with a single class K and method m . Let θ0 (resp. θ1) be the method environment
wp(η0) where η0(K ,m) (resp. η1(K ,m)) always returns 0 (resp. 1). Let Q be the set of states
where x = y . Now (θ0

.
u θ1) makes m nondeterministically choose between 0 and 1, so the com-

mand does not establish x = y . That is, {[C ]}(θ0
.
u θ1)(Q) is the empty set. On the other hand,

for i = 0 and i = 1, {[C ]}(θi)(Q) is the set of all states, hence so is ({[C ]}(θ0)
.
u{[C ]}(θ0))(Q).

So {[C ]}(θ0)
.
u {[C ]}(θ0) strictly refines {[C ]}(θ0

.
u θ1).

A.10 Proof of Lemma 49 in Sect. 8.2
By induction on derivation of typing Γ ` E and then by induction on Γ ` C using the result for
expressions. In each command case we must show for arbitrary predicate Q that

D{[Γ ` C ]}(θ)(Q) ⊇ S{[Γ ` C ]}(θ)(Q)
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Some cases in the proof expand this set inclusion to the level of states:

∀σ · σ ∈ D{[Γ ` C ]}(θ)(Q) ⇐ σ ∈ S{[Γ ` C ]}(θ)(Q)

Starting with expressions, the case x : T need not even be expanded to the level of predicates:
we have D{[Γ ` x : T ]}(θ) = S{[Γ ` x : T ]}(θ) directly from the semantics, which are the same
(see Fig. 6).

The argument is the same for every primitive expression or command other than method call
(that is: literals, cast, type test, equality test, field access and update, new, throw).

For an assignment command Γ ` x := E we argue at the level of states as needed to use the
semantic definition:

(r , h, s) ∈ D{[Γ ` x := E ]}(θ)(Q)
⇐⇒ semantic definition (Fig. 6)

(r , h, s) ∈ D{[Γ ` E : T ]}(θ)(wp(rename)(wp(assg)(Q)⊕ s))
⇐ the result for expressions

(r , h, s) ∈ S{[Γ ` E : T ]}(θ)(wp(rename)(wp(assg)(Q)⊕ s))
⇐⇒ semantic definition

(r , h, s) ∈ S{[Γ ` x := E ]}(θ)(Q)

For a method call, Γ ` x .m(y) : U , we distinguish two sub-cases, according to the condition
in the semantics. In case s x = null we have

(r , h, s) ∈ D{[x .m(y)]}(θ)(Q)
⇐⇒ using s x = null, semantic definition for D

except(r , h,U ,NullDeref) ∈ Q
⇐⇒ using s x = null, semantic definition for S

(r , h, s) ∈ S{[x .m(y)]}(θ)(Q)

In case s x 6= null we have the following, where the static type Γ(x ) is T .

(r , h, s) ∈ D{[x .m(y)]}(θ)(Q)
⇐⇒ using s x 6= null, semantic definition for D

let K = r(s x ) in let z = formals(K ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ θ(K ,m)(Q)

⇐ assumption Eq. (36), i.e. θ(K ,m) wK θ(T ,m)
let K = r(s x ) in let z = formals(K ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ θ(T ,m)(Q)

⇐⇒ logic, invariance of formal names (item (W4) in def. of w.f. class table in Sect. 4.2)
let T = Γ x in let z = formals(T ,m) in
let s1 = [self : s x , z : s y ] in (r , h, s1) ∈ θ(T ,m)(Q)

⇐⇒ s x 6= null, semantic definition for S
(r , h, s) ∈ S{[x .m(y)]}(θ)(Q)

The case of if x then C1 else C2 is straightforward owing to the desugared syntax in which
the guard condition is a boolean variable. We argue by sub-cases on whether x is true or false,
the only possible values. In case x is true we have

(r , h, s) ∈ D{[if x then C1 else C2]}(θ)(Q)
⇐⇒ semantics, s x = true

(r , h, s) ∈ D{[C1]}(θ)(Q)
⇐ induction for C1

(r , h, s) ∈ S{[C1]}(θ)(Q)
⇐⇒ semantics, s x = true

(r , h, s) ∈ S{[if x then C1 else C2]}(θ)(Q)

The other subcase is symmetric.
The case of var x : T in C is also a straightforward use of induction and is left to the reader.
The remaining cases are C1; C2, let x be E in E1, and try C1 catch(x : T ) C2. These are

all forms of sequencing that branch on whether the first phrase throws an exception. They differ
in that let x be E in E1 binds a variable to a non-exception value and try C1 catch(x : T ) C2
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binds a variable to an exception value. Moreover the second constituent in C1; C2 and let x be E in E1
is executed only in absence of an exception, whereas in try C1 catch(x : T ) C2 it is executed
only in the presence of an exception. The implicit branching complicates the semantics. It is
most transparent in the case of C1; C2 which does not involve variable binding. For this case,
observe

D{[C1; C2]}(θ)(Q)
= semantics
D{[C1]}(θ)((noX ∩ wp(dropExc)(D{[C2]}(θ)(Q))) ∪ (¬noX ∩Q))

⊇ induction for C2, monotonicity of wp(dropExc), ∩, ∪, and D{[C1]}({[CT ]})
D{[C1]}(θ)((noX ∩ wp(dropExc)(S{[C2]}(θ)(Q))) ∪ (¬noX ∩Q))

⊇ induction for C1

S{[C1]}(θ)((noX ∩ wp(dropExc)(S{[C2]}(θ)(Q))) ∪ (¬noX ∩Q))

The proof for let x be E in E1 is similar: the predicate transformer semantics takes more ink,
but what matters is that the constituents {[E ]} and {[E1]} are in monotonic positions as can be
seen by inspection of Fig. 14. Similarly for try/catch.

A.11 Inadequacy of an alternative definition of supertype abstraction
Here is a variation on the notion of supertype abstraction:

∀η̇ ∈ XMethEnv · η̇ |= ST ⇒ (S[[P]](η̇) |= spec ⇒ D[[P]](η̇) |= spec) (63)

This is like the form of supertype abstraction in Eq. (35), but differs in that the same method en-
vironment is used in both the antecedent and consequent. (To be pedantic, we should applyD[[−]]
to the normal method environment obtained from η̇ by projecting onto class names, discarding
the interface types.)

By predicate calculus, (63) implies condition (35). The implication is strict, as shown by the
following, which also shows that —unlike (35)— condition (63) does not follow from behavioral
subtyping.

Example 77 Consider a class table with just two classes, K ,L with L < K . Suppose K de-
clares only a single method

meth m() : int { res : = 0 }

L declares only the override meth m() : int { res : = 1 }. Let ST (K ,m) = (true, true) =
ST (L,m), and note that ST has robust behavioral subtyping. It is straightforward to check that
η̂ |= ST where η̂ is denoted by the class table.

Let spec be (true, res = 0), suitable for specifying the method call self : K ` self.m().
We have S[[self : K ` self.m()]](η̇) |= (true, res = 0), because regardless of whether the ini-
tial state has self of type K or L, the static dispatch goes to the implementation in K . How-
ever, D[[self : K ` self.m()]](η̇) does not satisfy (true, res = 0). This contradicts (63). It
does not contradict Eq. (35). Rather, the antecedent in (35) is falsified for the specification
(true, res = 0) because there are other method environments η such that η |= ST but not
S[[self : K ` self.m()]](η) |= (true, res = 0).

A.12 Proof of Proposition 71 in Sect. 10
Similar to the proof of Prop. 18(b) in Sect. A.3, we unfold definitions to rewrite item (a) of
Prop. 71 to

∀i , σ · σ ∈ prei ⇒ (∀ϕ · (∀j , τ · τ ∈ pre ′j ⇒ ϕ(τ) ∈ post ′j ∪ {⊥}) ⇒ ϕ(σ) ∈ posti ∪ {⊥})

Thus items (a) and (b) are equivalent if the following are equivalent for all i ∈ I and all σ ∈ prei :

(a’) ∀ϕ · (∀j , τ · τ ∈ pre ′j ⇒ ϕ(τ) ∈ post ′j ∪ {⊥}) ⇒ ϕ(σ) ∈ posti ∪ {⊥}

(b’) ∀τ · (∀j · σ ∈ pre ′j ⇒ τ ∈ post ′j ) ⇒ τ ∈ posti
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For arbitrary i and σ with σ ∈ prei we argue by mutual implication.
To show (a’) follows from (b’), consider any ϕ. Assume the antecedent in (a’), i.e.,

∀j , τ · τ ∈ pre ′j ⇒ ϕ(τ) ∈ post ′j ∪ {⊥}

to show ϕ(σ) ∈ posti ∪ {⊥}. Instantiate τ : = σ to get ∀j · σ ∈ pre ′j ⇒ ϕ(σ) ∈ post ′j ∪ {⊥}.
If ϕ(σ) = ⊥ we are done proving ϕ(σ) ∈ posti ∪ {⊥}. So suppose ϕ(σ) is a proper state, in
which case we have ∀j · σ ∈ pre ′j ⇒ ϕ(σ) ∈ post ′j . Now instantiate (b’) by τ : = ϕ(σ), and
since we established its antecedent we get the consequent, ϕ(σ) ∈ posti .

Now we show that (b’) follows from (a’). We can define a state transformer ψ, that satisfies
(J , pre ′, post ′), as follows: For any state τ

ψ(τ) = ⊥ if there is no ρ with ∀j · τ ∈ pre ′j ⇒ ρ ∈ post ′j

ψ(τ) = ρ if ρ is chosen such that ∀j · τ ∈ pre ′j ⇒ ρ ∈ post ′j

Instantiating (a’) with ϕ : = ψ we get

(∀j , τ · τ ∈ pre ′j ⇒ ψ(τ) ∈ post ′j ∪ {⊥}) ⇒ ψ(σ) ∈ posti ∪ {⊥}

The antecedent holds, by definition of ψ; so we have ψ(σ) ∈ posti ∪{⊥}. To show (b’), consider
any τ and assume the antecedent of (b’), i.e., (∀j · σ ∈ pre ′j ⇒ τ ∈ post ′j ). Let ψ be defined
as above, choosing, in light of the assumption, ψ(σ) : = τ . As τ is a state, ψ(σ) ∈ posti ∪ {⊥}
implies τ ∈ posti .

A.13 Proof of Lemma 32 adapted to partial correctness
Consider any ϕ and (J , pre, post) of the same type. We show that wlp(ϕ) w {[J , pre, post ]}l iff
ϕ |=l spec. Without loss of generality, we assume that (J , pre, post) is broad. We can do this
because ϕ |=l spec iff ϕ |=l broaden(spec), in accord with Eq. (48).

By (27), the definition of refinement, wlp(ϕ) w {[J , pre, post ]}l is equivalent to

∀σ,Q · σ ∈ wlp(ϕ)(Q) ⇐ σ ∈ {[J , pre, post ]}l(Q)

with Q ranging over state sets. This in turn is equivalent, by definition (47) of wlp and definition
(50), to

∀σ,Q · ϕ(σ) ∈ Q ∪ {⊥} ⇐ (∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q) (64)

By definition, ϕ |=l (J , pre, post) is equivalent to

∀k , σ · σ ∈ prek ⇒ ϕ(σ) ∈ postk ∪ {⊥} (65)

It remains to prove that (65) is equivalent to (64), which we do by mutual implication.
Assume (64). To show (65), observe that for any k in J and any σ in prek we can instantiate

(64) with postk for Q to obtain

ϕ(σ) ∈ postk ∪ {⊥} ⇐ (∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ postk ) (66)

To prove ϕ(σ) ∈ postk ∪ {⊥} it is enough to establish the antecedent, and we observe for any τ
that

∀i · σ ∈ prei ⇒ τ ∈ posti
⇒ logic (instantiate i : = k )

σ ∈ prek ⇒ τ ∈ postk
⇒ using σ ∈ prek

τ ∈ postk

which concludes the proof of (65).
Now assume (65). To show (64), consider any σ,Q . If ϕ(σ) = ⊥ then we are done proving

(64). We proceed with the case ϕ(σ) 6= ⊥. Assume the antecedent of (64), i.e., ∀τ · (∀i · σ ∈
prei ⇒ τ ∈ posti) ⇒ τ ∈ Q . By broadness of (J , pre, post) we may choose some j such that
σ ∈ prej . Then by (65) we get ϕ(σ) ∈ postj ∪{⊥}, whence ϕ(σ) ∈ postj as we are considering
the case that ϕ(σ) 6= ⊥. Thus we can instantiate τ by the state ϕ(σ), to obtain

(∀i · σ ∈ prei ⇒ ϕ(σ) ∈ posti) ⇒ ϕ(σ) ∈ Q

The antecedent of this formula is a direct consequence of (65) and ϕ(σ) 6= ⊥, so we obtain the
consequent ϕ(σ) ∈ Q which concludes the proof of (64).
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A.14 Proof of Lemma 33 adapted to partial correctness
To show {[J , pre, post ]}l = (

.
uϕ | ϕ |=l (J , pre, post) · wlp(ϕ)) note that the left side is refined

by the right side due to (the adapted version of) Lemma 32 and the meet property Eq. (32)).
For predicate transformers, refinement is antisymmetric, hence it remains to prove the reverse:
{[J , pre, post ]}l w (

.
uϕ | ϕ |=l (J , pre, post) · wlp(ϕ)).

By definition (27) of w we must show for all σ,Q that

σ ∈ (
.
uϕ | ϕ |=l (J , pre, post) · wlp(ϕ))(Q) ⇒ σ ∈ {[(J , pre, post)]}l(Q)

By definition of
.
u, this is the same as

(∀ϕ · ϕ |=l (J , pre, post) ⇒ σ ∈ wlp(ϕ)(Q)) ⇒ σ ∈ {[(J , pre, post)]}l(Q) (67)

To show (67), assume the antecedent. By definition (50), the consequent is equivalent to

∀τ · (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q (68)

To prove (68), consider any state τ . We must show (∀i · σ ∈ prei ⇒ τ ∈ posti) ⇒ τ ∈ Q .
Choose any ϕ that satisfies the specification (J , pre, post) in the sense of partial correctness.
From (∀i · σ ∈ prei ⇒ τ ∈ posti) it follows that [ϕ | σ : τ ] also satisfies the specification.
By the antecedent of (67) we get σ ∈ wlp([ϕ | σ : τ ])(Q), which by definition of wlp is [ϕ |
σ : τ ](σ) ∈ Q ∪ {⊥}. This simplifies to τ ∈ Q ∪ {⊥}, and since τ is a state we have τ ∈ Q .
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