
JSCTracker: A Tool and Algorithm for
Semantic Method Clone Detection

Using Method IOE-Behavior

Rochelle Elva and Gary T. Leavens

CS-TR-12-07
October 15, 2012

Keywords: Automated semantic clone detection tools, semantic method
clones, method IOE-behavior, clone detection, JSCTracker.

2012 CR Categories: D.2.0 [Software Engineering ] General — languages,
tools, JSCTracker.

Copyright c© 2012, Rochelle Elva and Gary T. Leavens

Computer Science, University of Central Florida
4000 Central Florida Blvd.

Orlando, Florida 32816, USA



JSCTracker: A Tool and Algorithm for
Semantic Method Clone Detection

Using Method IOE-Behavior

Rochelle Elva and Gary T. Leavens

University of Central Florida,
Orlando, Florida, USA

Abstract. This paper presents a tool and algorithm for the automated
detection of functionally identical Java methods, which we call seman-
tic clones. The detection algorithm offers improvements in asymptotic
computational complexity over existing algorithms. This is achieved by
combining the benefits of static and dynamic analysis. Our static anal-
ysis of a method’s type (return type and parameter list) and effects
(persistent changes to the heap) provides a double pre-filter, to reduce
the size of the candidate clone set to be evaluated by expensive dynamic
tests. Together, these two types of analyses provide the information on
a method’s input, output and effects, collectively referred to as its IOE-
behavior, which we use to identify semantic equivalence. The tool was
tested on 6 open source Java projects ranging in size from about 17
kLOC to 78 kLOC. Our filters reduced the number of required dynamic
tests by an average of 91%.

Keywords: Automated semantic clone detection tools, semantic method
clones, method IOE-behavior, clone detection, JSCTracker

1 Introduction

Code duplication in software projects exists in one of two formats: representa-
tional or functional. These give rise to syntactic and semantic clones respectively.
There is extensive work done on syntactic clones (see Bellon et al.’s survey in
[1]), but comparatively less on semantic clones, although their existence in real
world software is evident in the clone literature. For example, Kawrykow and
Robillard [2] find as many as 405 valid semantic clones in 589 kLOC of commer-
cial software written in C. In our work we identify 502 semantic method clones
in the 1677 methods of the Java open-source project doctorj. In addition, most
of the tools designed for clone detection are aimed at recognizing only struc-
tural similarity. This is demonstrated in an experiment using 4 state of the art
tools where only 1% of 109 samples of functionally equivalent code are flagged
as clones[3].

A possible explanation for the little work done on semantic clones might be
that the exact detection of semantic equality is an undecidable problem. It is



JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection 3

arguable though, that the fundamental motivation for the detection and removal
of syntactic clones is because of their potential for maintenance problems due to
their semantic equivalence; not just their structure. Thus, semantic clones pose
some of the same threats such as duplication of errors and update inconsistency.
This, coupled with work demonstrating that semantic clones do exist in real
world code, provides the motivation for our research.

In the existing work on semantic clone detection, we are aware of only two
tools in the literature [4, 5] for automated detection, another paper that uses
manual identification [3], and a tool that applies the concept of functional sim-
ilarity to identify missed API re-use opportunities [2]. All of these used input-
output as the technique for identifying semantic clones. However, this technique
is incomplete since the behavior of a method also includes its effects: changes to
the heap including mutation of static and instance fields. The omission of effects
allows simpler computations, however, it can imply lower precision and higher
incidence of false positives.

1.1 Our Contribution

We present a tool for the automated detection of functionally identical Java
methods: semantic method clones. It can identify methods such as those in Figure
1 which have identical behavior but not the same syntactic form.

Fig. 1. Two semantic clones modified from Hacker’s Delight [6]

Our approach combines the benefits of static and dynamic analysis. Our static
analysis of a method’s type (return type and parameter list) and effect(persistent
changes to the heap), provide a double pre-filter, to reduce the size of the can-
didate clone set to be evaluated by expensive dynamic tests. Together, these
two types of analyses provide the information on a method’s input, output and
effects behavior, collectively referred to as IOE-behavior [7], which we use to
detect semantic equivalence. We show that this reduces the dynamic test set by



4 JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection

about 91% on average, thus improving the overall efficiency of the algorithm. For
example given a program with 50 candidate method-clones, our filtering method
would reduce the number of required tests by on average 91%: less than 5 tests,
while other algorithms need 50 tests (see Section 5.1).

The rest of this paper describes our algorithm in detail. It also describes a
case study which demonstrates the computational efficiency of combining static
and dynamic analyses of method IOE-behavior in clone detection, versus using
dynamic analysis only. We also investigate the relative merit of using two types
of static filters to incorporate method behavior and effects into the detection
process.1

2 The Approach

Fig. 2. JSCTracker architecture

Our approach analyzes Java code at the method level to detect functional
equality. Our measure of functional equality is the input and total output be-
havior of a method; which is defined as the triad of its input, output and effects
which we refer to as the method’s IOE-behavior [7]. There are two contributors
to input, namely: the set of parameters passed to the method; and the heap
state when the method is invoked. Output is also determined by two factors: the
return value of the method (none for void methods), and its possible effects on
the heap.2 The latter refers to any mutations of instance or static fields which
persist beyond the method call.

1 A less detailed version of this algorithm with no experimental results is found in [7].
2 Our effect analysis is a ‘may’ analysis referring to the possible effects of the method.



JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection 5

2.1 Overview of Algorithm

The semantic clone detection algorithm implemented by our tool can be sum-
marized as follows:

Filtering using methodtype Group methods that have the same return type
and the same corresponding type of parameters. Discard all groups contain-
ing only one method

Filtering using Effects Split groups into subgroups with the same effects -
that is, they may write to the same fields. Discard all groups that have only
one method

Testing For each group remaining after filtering using effects, for each method
m in the group:

a if m is an instance method, randomly generate a receiver object of m’s
receiver type. If m is static, skip this step.

b If the methodtype of m has an empty parameter list, skip this step; oth-
erwise generate a random instance of each parameter in the parameter
list.

c For instance methods, call m (using the receiver object from (a) and the
parameters created in (b)). For static methods, call m using the parame-
ters created in (b). Record the value returned; record the value and state
of effects components listed in in the filtering with effects phase. Store
result in the results array.3

Testing loop Repeat the testing phase a pre-determined numTests times
Collection Add m to a hashMap of results, hashed on the key of the results

array. This automatically groups methods that have the same results for all
of the test cases.4

Outputing report Discard hashMap rows for keys with only one associated
method value. Output the rows of the hashMap that have a value field con-
taining more than one method. These are the equivalence classes of semantic
clones

The actual semantic clone detection occurs in 4 phases: abstraction, filtering,
testing and collection, as shown in Figure 2 and discussed in the sections that
follow.

2.2 Abstraction

The first phase, abstraction, depicted in steps 1 - 2 in Figure 2, uses a static
analysis tool (built using the JastAdd compiler generator [8]), to produce a dec-
orated abstract syntax tree. The abstraction encodes two types of information.

3 All effects values and returned values (including exceptions) are converted to Strings
to facilitate ease of comparisons.

4 The use of the hashMap improves the efficiency of our algorithm, since the hash
automatically groups methods with the same output values thus eliminating the
need for additional comparisons.



6 JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection

The first is a methodtype. Methodtypes store a method’s signature: parameter
types, plus the type of the returned value. The second type of information is the
method’s effects: the set of fields that the method can write. This is represented
as pairs of class and field names (both static and instance fields). To increase
precision only write accesses are recorded in the effects. Table 1 demonstrates
our properties of methodtype and effects for 3 methods of an account (Acct)
class.

Table 1. MethodType and Effect Analysis for 3 Methods

Code MethodType MethodEffect

double checkBal(){
return balance;

} double() {}
void DoubleBal(){

balance = balance * 2;
} void() { Acct.balance}
String copyBal(Acct a){

a.balance = balance;
return “success”;

} String(Acct) {Acct.balance}

2.3 Filtering

The filtering phase identifies preliminary sets of potential method clones, called
the candidate clone sets, by applying two filters to the methods found. Both
filters use static analysis of the source code.

The first filter: methodtype filter,uses the methodtype to group methods into
equivalence classes. Only equivalence classes containing more than one method
are considered for further analysis as clones. For example, given the six meth-
ods in Table 2, applying the first filter would result in 2 candidate clone sets:
{checkBal, calcInt} and {withdraw, deposit}. The fifth method, getType,
would be filtered out from the first set, since, although it has the same param-
eter list as checkBal and calcInt, its return type is different, thus indicating
deviating output behavior. The last two methods getType and printState do
not form a candidate set either, because, although their return types are the
same, their parameter lists are unequal, indicating a variant in input behavior.

The second filter: methodtype + effects filter, uses static effects analysis on
the output of the methodtype filter. This involves identifying possible writes
on object parameters, static fields and instance fields of receiver objects (for
instance methods) and writes to return values. Our analysis of the writes is an
over approximation, since we also include possible writes such as those inside
conditional statements, which may not occur at runtime. The methodtype +
effects filter may split equivalence classes already created, or remove methods



JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection 7

Table 2. Sample Methods for Methodtype Analysis

Methods

double checkBal(){...}
double calcInt(){...}
void withdraw(double amt){...}
void deposit(double amt){...}
String getType(){...}
String printState(date d){...}

that share a type, but do not have the same effect. From the information shown
in Table 3 for example, the second filter would result in only one candidate clone
set: {withdraw, deposit}. The first candidate set will not be considered since
checkBal and calcInt do not have the same effects.

Table 3. Candidate method-clones and their effects

Method Effect

double checkBal() {}
double calcInt() {Acct.balance}
void withdraw(double amt) {Acct.balance}
void deposit(double amt) {Acct.balance}

The benefit of the two pre-test filters is to reduce the number of methods
that require dynamic testing. This is an important contribution in terms of the
complexity of the general algorithm, since dynamic testing may be arbitrarily
costly.

2.4 Testing

The candidate clones are submitted as equivalence classes to the testing phase
(step 3 in Figure 2). This phase acts as a dynamic filter comparing the actual
behavior of methods when called in the same context. The context is built as
heap states (parameter values) and object states (the value of receiver object
fields and the value of static class fields — where relevant). The testing phase
has two parts: generating a test file; and running it.

2.4.1 Generating the Test File. The generation of the test file is an auto-
mated process. It involves the creation of receivers and argument values for the
methods to be tested. This process is discussed in detail below. Fundamentally,
the generated test file consists of a series of method call statements where each
method is called with different receiver objects and argument tuples.



8 JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection

2.4.1.1 Random Object Generation. Objects are generated using a call to a
random constructor of the class, and passing randomly-generated parameter
values where applicable. When the parameter is an object, a recursive process
is used to generate the argument object.

For example, given the two candidate clone methods withdraw(double) and
deposit(double) with a receiver object of type Acct , a uniform state is created
for the two method calls by using the same randomly-generated double as the
parameter and creating an object of the type Acct with randomly-generated
values for each of the four fields. Some more interesting complications arise with
abstract classes, and handling circular objects.

Abstract classes pose a peculiar problem since they cannot be instantiated.
Our approach is to use instrumentation in Java to identify an instantiable sub-
class and generate an object of this class instead. This was made possible by
using the Instrumentation API in Java 1.5. However, this process is costly so
JSCTracker maintains a cached list of all already identified class substitutions
to reduce the cost of subsequent searches. In cases where no class substitution
could be found, the affected methods are not tested but the other members of
the equivalence class may still be tested.

For circular objects we use a graph-coloring depth-first search algorithm to
ensure that the creation of the object does not produce an infinite loop.

Another challenge was invoking private, candidate clone methods outside of
their defining classes. To do this, we use privileged aspects in AspectJ. AspectJ
was selected over editing the class code since it already offers the required func-
tionality.

2.4.1.2 Automatically Generating the Test File. Once code for generating the
required objects and states is created, a test file is automatically constructed
containing the relevant method calls for each equivalence class. A matching priv-
ileged aspect is also generated to access private methods and fields.

It is our hypothesis that we can approach a good approximation to method
semantic equivalence if we run the methods on a sufficiently large sample of their
input domain—including both state and argument values.5 Since only a sample
of the heap state and object space can be tested in general, our algorithm runs
multiple tests on objects in the same state and also runs each set of input param-
eter values with objects in multiple states. We call this our test-set. For example
suppose the user-defined test-set size is 5. Then to test a method A.b(c, d , e)
we create 5 samples of objects of type A in different states. We also generate 5
different tuples of the parameters c, d, and e. Note that this is only 5 tuples, not
all combinations of 5 values for each parameter. Thus the total number of tests
for method b is 5 × 5 or 25. Generally, we use a test-set size of 5 per method,
since results did not vary between sizes 5–10.

2.4.2 Running the Test Files. The generated test file evaluates the dynamic
behavior of the clone candidates, by using method calls to run each member of

5 Our algorithm uses a timeout for method executions.



JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection 9

an equivalence class on the same input and then comparing the corresponding
outputs. To ensure that each method is run on the same input we create a test-
set for each type of receiver object. As the tests are run, each method is called
with each pre-created receiver object and arguments in turn, and the output is
recorded.

2.4.2.1 Determining Equivalence. A fundamental part of the dynamic testing
for semantic clones, is determining equivalence. We define semantically equiv-
alent methods as having identical IOE-behavior. Thus, our testing compares
methods in a candidate set for equality using return value and effects. The
comparison is trivial for primitive types. However, for values that are objects,
we check that their final states are equivalent. The built-in Java method Ob-
ject.equals(Object) does not always suffice; In some cases it returns a comparison
of object addresses. For semantic clone detection though, we are interested in the
equality of corresponding object fields. To guarantee this is the type of compar-
ison done, we wrote a method which compares objects by recursively comparing
the corresponding fields.6

2.5 Collection

This phase involves running the Test Driver as illustrated in (step 5b in Figure
2). As each test file is executed by the Driver, a subset of the methods tested
is returned as an equivalence class of semantic clones—that is, each element of
the class, produced identical results for every test case. A method’s results in
this context is defined as the return values and the final states of all fields in
method’s effects.

3 Case Study

Our case study validates our tool using 6 relatively large samples of Java open-
source software of different genres, shown in Figure3.

In this study we seek to answer three questions:

1. Can JSCTracker scale to automate the detection of semantic method clones
in real-world Java code?

2. How does semantic clone detection using method type information compare
to that of combining method type and effect information?

3. Do pre-testing filters using method IOE-behavior improve the efficiency of
the clone detection process?

To answer these questions we analyze each of the above named samples of
software using JSCTracker. For each sample the results are recorded for the
time taken to complete test, the number of clones detected and reduction in the
number of required tests brought about by the use of the two filters methodtype
and effect.
6 See section 4.2 for a discussion of how this may not always be right for all types of

data



10 JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection

Fig. 3. Source code used in case study

4 Results

Fig. 4. An overview of the results of the case study

Figure 4 is an overview of the results of our case study. On average we find
76 clones\kLOC. The median values are more representational of our findings
though: 35 clones\kLOC. These method- clones belong to an average of 17, (or
a median of 12) clone classes; indicating that all of these clones really represent
17(or 12) types of functional duplication in the code.

Figure 5 shows the number of semantic method clones identified in Deis-
senboeck et al. [5] and by JSCTracker using the methodtype filter and the
methodtype + effects filter for each of the 6 software samples. It also gives
the execution time for JSCtracker. In all cases except for JabRef and Apache,
JSCTracker detects considerably more clones than Deissenboeck et al. (This is
also evident from Figure 6.) It should be noted that doctorj is not tested in the
work of Deissenboeck et al. [5].



JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection 11

A very large number of clones are detected using the methodtype filter only.
This is explained by that filter’s treatment of void methods. It uses an over-
approximation for void methods. Since they do not have a return-type that
can be compared, all void methods with the same parameter list are considered
clones and are not tested dynamically; since there is no output value by which to
measure equivalence. In the case of the methodtype + effects filter, the number of
clones found is considerably smaller. With this combined filter, the void method-
clone candidates are verified dynamically, since their output in terms of effects
can be compared. However, even with this methodtype + effects filter, we detect
a large number of clones for doctorj: 502, compared to less than 100 clones for
all of the other software except for freemind, for which we detect 205.

Fig. 5. Clones detected

Fig. 6. Comparing the number of clones detected by the methodtype and methodtype
+ effects filters, with the work of Deissenboeck et al.

From Figure 5 it is evident that the methodtype filter is about 10 times
faster than the methodtype + effects filter. However the later produces less false



12 JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection

positives since it can evaluate the equivalence of void methods. An interesting
result is obtained for Apache, where their timing is only 0.04 seconds different
and the methodtype + effects filter returns 4 more clones than the methodtype
filter.

Figures 7 and 8 show the performance of the two filters in the reduction
in the number of required tests. The best performance values are obtained for
doctorj, while the lowest values are reported for Apache. Figure 8 shows that the
filters succeed at improving the efficiency of the detection process, by reducing
the number of required tests by as much as 84%-96%. These values confirm our
hypothesis that the use of the filters would improve the overall efficiency of the
algorithm.

Fig. 7. Equivalence classes after pre-filters

Fig. 8. Percentage reduction in the number of required testes using pre-filters



JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection 13

The methodtype filter is faster and in all but one case, identified more clones.
A possible explanation for this is that the methodType filter accepts all void
method clone candidates as clones without further testing. Another explanation
is that the effects analysis filtered out some methods which should have been in
the same equivalence class. Therefore our effects analysis rules might need to be
refined as discussed in section 4.2.

4.1 Discussion

The number of clones JSCTracker detects is significantly greater than reported
by Deissenboeck et al. [5] for the same software. There are many possible reasons
for this. One reason could be the algorithmic differences and treatment of the
code prior to testing. Deissenboeck et al. report that some files are eliminated
during the detection process for technical reasons. Also, their study excludes
constant methods and syntactic clones while we do not.

The large number of clones detected for doctorj was surprising. A Manual
check of the detected clones however, revealed that they are quite semantically
similar, but not equivalent. Interestingly, they are flagged as clones because it
would require a large number of tests to simulate differences in their behavior.
Many of these methods are ‘switches’ which access the same object fields and
static variables; and more often than not, exhibit identical behavior. Thus, while
5–10 tests are enough to produce a fixed point in the set of clones for the other
software samples, a much larger number of tests are required do the same for
the doctorj code. The list does not converge even after a test size of 20: (which
really means 20×20 tests, see Section 2.4.1.2). This also identifies a scaling issue
with our tool. We are only able to run a test-size of up to 15 for doctorj, using
the whole project as a unit.7 We will address these issues in future work and
investigate the benefits of using parallel programming.

4.2 Limitations

One of the primary limitations is the use of only an approximation of the input
space of the tested methods. Since the input space is possibly infinite in size,
we can use only a small fraction of it. To make this sample representative of the
whole, samples are generated at random using an unbiased process to ensure that
all cases are equally likely. However, because we could not test all cases our results
can not be 100% accurate. In some cases, the randomly-generated objects are not
appropriate, particularly when specially formatted data is required. For example
with methods that require a file name or XML formatted string, our algorithm
can generate a string, but the formatting test will fail and such methods will be
bypassed for further testing. This issue can be addressed in future work by using
preconditions in the random generation of objects.

7 Tests are currently being run from within Eclipse. This itself causes problems with
heap sizes for Eclipse.



14 JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection

In this first case study, we focus on improving the efficiency of the algorithm.
However, recall and precision are also important in the evaluation of the effec-
tiveness of clone detection tools. We will therefore address these in our further
work.

The use of filters is intended to improve efficiency. However, they may present
some possible threats to recall. First, when using methodtypes, differences be-
tween types, such as Double and double, which might not make any functional
difference in some abstract sense, prevent the algorithm from grouping these
methods together. There is a similar issue with sub-typing. For example, con-
sidering two methods foo1 and foo2 with an object parameter. If foo1 takes a
parameter of object type A and foo2 takes an object of type B (where A is the
super class of B), our first filter will separate foo1 and foo2 . However, if the
methods do not change any fields of the parameter,(or only change super class
fields), they can possibly have the same observable behavior. On the other hand,
such methods are not substitutible for each other in Java’s type system. Second,
since or effects analysis is conservative, there is the possibility that methods are
split into different groups that might not really differ in their write effects.

5 Related Work

5.1 Research on Semantic Clones

Recently there has been some interest in the detection of semantic clones al-
though called by different names: “wide-miss clones,” “high-level concept clones”
[9], “functionally equivalent code” [5, 4], “behavioral clones” [10], “representa-
tionally similar code fragments” and “simions” [3]. These works seek to address
the need to identify clones created by activities beyond mere copy and paste.

Juergens and Gode [3] investigate commercially used Java code JabRef. Man-
ually inspecting 2,700 lines of code, they find that 32 out of 86 Utility methods
are partially semantic clones—a little over 37%. In their manual approach, they
do not consider entire methods but focused on functionally identical code frag-
ments within different methods. Their comparison is not restricted to methods
within the JabRef code. They also include similarity to Apache Commons meth-
ods. Our approach to semantic clone detection is different from theirs. Firstly, we
present completely automated semantic clone detection, which makes the process
objective. Secondly, our analysis is focused on the behavior of entire methods
within the same body of code. We select this level of granularity because of the
natural progression that it offers for code refactoring.

Jiang and Su [4] investigate functional similarity in code fragments within
methods in the Linux system. The identified clone candidates are placed in
equivalence classes and a representative member is selected. All other members
of this class are then compared to the representative using dynamic testing.
They found that about 42% of the semantic clones were also syntactic clones,
thus the other 58% would be missed by syntactic clone detectors. They record
low overall precision values due to the high number of false positives produced.



JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection 15

A possible drawback of this algorithm is that the quality of the outcome is
greatly determined by the element of the cluster that is first selected to represent
the group. Also, code effects are not included in the analysis of input-output
behavior. We cannot compare their results to our work, since the two studies are
so different. We study Java code, while they focus on the Linux system written in
C. Our level of granularity was the method while theirs was a method fragment.
Also, since our focus is on methods, which are naturally occurring executable
syntactic units, our computations are simple and provide a less invasive and
possibly less disruptive starting point for code maintenance through refactoring.

Another application of semantic clone detection is demonstrated by Kawrykow
and Robillard [2]. They use functional similarity to identify instances of less than
optimal usage of APIs, where developers re-implement library functions instead
of making calls to an available API function. Using their detection tool, iMaus,
they study 10 widely-used Java projects from the SourceForge repository. The
projects ranged in size from 20 to 539 kLOC, finding 4 to 341 method imitations.
This project is not defined as a clone detection project, however, conceptually it
is an application of semantic clone detection between a project and some selected
APIs.

Dissenboeck et al. [5] present an algorithm for the dynamic detection of
functionally similar code fragments. Their work focuses on different levels of
granularity of code - fragments of methods and whole methods. They also sub-
scribe to the use of input-output behavior through dynamic testing to categorize
functionally similar code as described in [11]. Our approach to semantic clone de-
tection is different from theirs because we consider only semantic method clones
and include method effects in the detection process. We chose to restrict the
detection process to semantic method clones for multiple reasons. Firstly, meth-
ods are semantic units of Java code and are thus a natural unit for reuse. Thus,
they have greater practical application for code maintenance through refactoring
with the minimal disruption of the code. Chunks or method fragments are a less
intuitive choice for refactoring, also the computation of their input and output
values is complex. In addition, because these exist as sub-components of a big-
ger unit, extracting them and attempting to mimic the behavior is potentially
faulty, since the behavior may be determined by the context. Our algorithms
also differ in our input value generation. While Deissenboeck et al. [5] use all
of the constructors for the methods found, to generate the test cases, we use a
user defined number of randomly selected constructors with the same number
of randomly-generated actual input values. Consequently, we produce a smaller
yet still diverse subset of the entire test set. Our algorithm also combines static
analysis to pre-filter the candidate set before dynamic testing thus reducing the
actual number of methods to be tested.

6 Conclusion

The motivation for the research in this paper was to detect semantic clones in
real-world software and to evaluate the impact of using pre-testing filters on the



16 JSCTracker: A Tool and Algorithm for Semantic Method Clone Detection

efficiency of the clone detection process. We met both of these goals. JSCtracker
detected as many as 502 clones in real-world software. From our results, it is
also evident that pre-filters can contribute greatly to the improvement of the
efficiency of the detection algorithm by reducing the required test size by about
91% on average.

In the future we will investigate the precision and recall of our methods and
the possibility of developing a benchmark for semantic clones.

References

1. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and
evaluation of clone detection tools. IEEE Transactions on Software Engineering
33(9) (September 2007) 577–591

2. Kawrykow, D., Robillard, M.P.: Improving API usage through automatic detection
of redundant code. In: Proceedings of the 2009 IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE ’09, Washington, DC, USA, IEEE
Computer Society (2009) 111–122

3. Juergens, E., Deissenboeck, F., Hummel, B.: Code similarities beyond copy &
paste. In: Proceedings of the 2010 14th European Conference on Software Main-
tenance and Reengineering. CSMR ’10, Washington, DC, USA, IEEE Computer
Society (2010) 78–87

4. Jiang, L., Su, Z.: Automatic mining of functionally equivalent code fragments
via random testing. In: Proceedings of the eighteenth international symposium on
Software testing and analysis. ISSTA ’09, New York, NY, USA, ACM (2009) 81–92

5. Deissenboeck, F., Heinemann, L., Hummel, B., Wagner, S.: Challenges of the
dynamic detection of functionally similar code fragments. Software Maintenance
and Reengineering, European Conference on 0 (2012) 299–308

6. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2002)

7. Elva, R., Leavens, G.: Semantic clone detection using method IOE-behavior. In:
Software Clones (IWSC), 2012 6th International Workshop on. (june 2012) 80 –81

8. Hedin, G., Magnusson, E.: JastAdd: an aspect-oriented compiler construction
system. Sci. Comput. Program. 47(1) (April 2003) 37–58

9. Marcus, A., Maletic, J.I.: Identification of high-level concept clones in source code.
In: Proceedings of the 16th IEEE international conference on Automated software
engineering. ASE ’01, Washington, DC, USA, IEEE Computer Society (2001) 107–

10. Juergens, E., Deissenboeck, F., Hummel, B.: Clone detection beyond copy & paste.
In: Proc. of the 3rd International Workshop on Software Clones. (2009)

11. Gabel, M., Jiang, L., Su, Z.: Scalable detection of semantic clones. In: ICSE ’08:
Proceedings of the 30th international conference on Software engineering, New
York, NY, USA, ACM (2008) 321–330


