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Abstract—This paper presents a tool and algorithm for
the detection of semantic clones in Java methods. For our
purpose, semantic clones are defined as functionally identical
code fragments. Thus, our detection process operates on the
premise that if two code fragments are semantic clones, then
their input-output behavior would be identical. We adopt a
wholistic approach to the definition of input-output behavior
by including not only the return values of methods; but also
their effects as reflected in the pre- and post-states of the heap.
We refer to this as a method’sIOE(input, output and effects)-
behavior. Our tool and algorithm are tested in a small case
study using the open source database management software
DSpace and the reference management softwareJabRef.

Keywords-Software Clone Detection, Semantic Clones, Se-
mantic Clone Detection Tool, Method IOE-behavior, Program
Understanding

I. I NTRODUCTION

Duplication in code exists in one of two forms: repre-
sentational or functional. The former case yields syntactic
clones, while the latter is responsible for the formation of
semantic clones. Although current literature indicates that
as many as 405 valid semantic clones can be found in as
few as 1589 kLOC of commercial software written in C
[1], the majority of clone detection algorithms and tools are
limited to the detection of syntactic clones. For example,
when tested on 109 variations in implementations of the
same functionality, 4 state of the art tools were only able
to identify 1% of the semantic clones [2]. The reason for
this might be that the detection of semantic similarity is
an undecidable problem. However, since the presence of
semantic clones can cause some of the same maintenance
issues as their syntactic counterparts [3] they should not be
ignored; thus even a good approximation of their detection
is valuable.

Another deficiency in existing clone detection strategies
is that they fail to guarantee an adequate level of precision
and thus are not accepted or implemented by industry [4].
According to the literature, such tools report as much as
27% - 65% [5] of false positives1. Some claim that the
primary reason for this low precision is the lack of clear and

1False positives are code fragments output as clones when actually they
are not

standardized criteria for distinguishing between clones and
non-clones. Even when benchmarks are used, the criteria are
so subjective that the results are unreliable and inconsistent.
In one study for instance, when asked to examine 317
candidate clones, only 5 were categorized in the same way
by three judges [4].

In the limited work that has been done on semantic clone
detection, we could only find one tool in the literature
[6] for automated detection, and another paper which used
manual identification [2]. Both of these used input-output
as the technique for identifying semantic clones. However,
this technique is incomplete. The behavior of a method also
includes its effects, which have been ignored in both of these
papers. While this omission lends to simpler computations,
it contributes to the problems of lower precision and higher
incidence of false positives.

In this paper we address these problems by outlining the
following research goals:

1) To define semantic method clones in objective, concise
and comprehensive terms

2) To automate the detection of semantic method clones
using a combination of theirIOE-behavior

3) To develop a semantic method clone detection al-
gorithm and tool, with precision values that are an
improvement over the 27%-65% reported for existing
tools and methods.

II. T HE APPROACH

Our approach works at the method level in Java code. We
define functional similarity in terms of input and total output
behavior. Input, is determined by two factors, namely: the
value of parameters passed to the method, and state of the
heap when the method is invoked. Output on the other hand,
is defined in terms of both the method’s return values and
its effects. The former is the value returned by the method
as represented by the return type in the method’s signature.
This value is ignored forvoid methods. The latter represents
the possible, persistent changes to the heap as a result of the
execution of the method.2 These changes include mutations

2Throughout this paper when we speak of a method’s effects, this will
refer to the set of possible effects (which is a ”may” analysis in the jargon
of static analysis).



Table I
SAMPLE METHODS FORMETHODTYPE AND EFFECTANALYSIS

Method Code MethodType MethodEffect

Balance
double
checkBal(){return
balance;}

double,void {acct.balance}

calcInt
double
calcInt(){return
balance * rate;}

double, void {acct.balance, acct.rate}

PrintState

String
PrintState(date
d){return "The
balance to date
is: " + balance;}

String, date {acct.balance}

of static fields of classes and data members of objects. All
of this behavior we refer to collectively as a method’sIOE-
behavior. (input, output and effects behavior).

The actual semantic clone detection involves 4 sub-
processes: abstraction, filtering, testing and collection, as
shown in Figure 1 and discussed in the sections that follow.

A. Abstraction

The first phase, abstraction, depicted in steps 1 - 2 in
Figure 1, uses a static analysis tool along with the JastAdd
compiler generator, to produce a decorated abstract syntax
tree (AST). This is achieved by defining parsing rules and
using a combination of aspect-oriented programming and
attribute grammar concepts to define program properties.
These properties are later used to create an abstract repre-
sentation of the methods of the code parsed. The abstraction
encodes two types of information. The first is amethodtype.
Methodtypes are represented as Java objects with data mem-
bers used to store a method’s signature and parameter types,
plus the type of the returned value. The second are itseffects
represented as pairs of class and field names (both static
and instance fields). This produces an over-approximation
of the method effects, since any access of the variable types
just described is treated as a possible mutation. Table I
demonstrates our properties ofmethodtype and effects for
3 methods of an account (acct) class.

B. Filtering

As shown in step 2 of Figure 1, the filtering phase uses
the code abstractions to identify preliminary sets of potential
method clones, called thecandidate clone sets. Two filters
are applied to the identified methods.

The first filter uses syntactic information encoded in the
methodtype. After this filter has been applied, only methods
with correspondingly equivalent return types and parameter
types will be consideredcandidate clones. For example,
given the six methods in Table II, applying the first filter
would result in 2 candidate clone sets -{checkBal,
calcInt} and {withdraw, deposit}. The fifth
method -getType would be filtered out from the first set,
since although it has the same parameter list ascheckBal

Table II
SAMPLE METHODS FORMETHODTYPE ANALYSIS

Methods
double checkBal(){...;}
double calcInt(){...;}
void withdraw(double amt){...;}
void deposit(double amt){...;}
String getType(){...;}
String printState(date d){...;}

Table III
CANDIDATE METHOD CLONES AND THEIR EFFECTS

Method Effect
double checkBal(){...;} {acct.balance}
double calcInt(){...;} {acct.balance, acct.rate}
withdraw(double amt){...;} {acct.balance}
deposit(double amt){...;} {acct.balance}

andcalcInt, its return type is different; indicating devi-
ating output behavior. The last two methodsgetType and
printState) do not form a candidate set either, because
although their return types are the same, their parameter lists
are unequal, indicating a variant in input behavior;

The second filter uses semantic information in the form of
method effects. Using theeffects properties of the decorated
AST nodes, the candidate method clones returned by the
first filter are further reduced by comparing theireffects.
From the information shown in Table III for example, the
second filter would result in only one candidate clone set -
{withdraw, deposit}. The first candidate set will no
longer be considered sincecheckBal and calcInt do
not have the sameeffects.

The net result of the two filters, is that the only methods
left in any equivalence class, would have the samemethod-
type and effects. The reduction in the number and sizes of
equivalence classes is important, as it decreases the number
of computations at the next level of the detection process,
which is computationally the most costly.

C. Testing

The problem of determining if two methods are semanti-
cally equivalent is undecidable. However, it is our hypothesis
that we can approach a good approximation if we run the
methods on a sufficiently large sample of their input domain
- (this includes state and values).3

The candidate clones are submitted as equivalence classes
to the testing phase (step 3 in Figure 1). A test file is
automatically generated for each set (step 5a in Figure 1).
This file facilitates the evaluation of the actual dynamic
behavior of the clone candidates, by using method calls to
run each member of an equivalence class on the same input
and then comparing the corresponding outputs. To ensure
that each method is run on the same input we create a test-
set of each type of receiver object. As the tests are run,

3Our algorithm uses a timeout for method executions
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Figure 1. JSCTracker Architecture

each method is called with each pre-created receiver object
in turn, and the output is recorded. Since there is potentially
an infinite number of possible combinations of legitimate
object states and parameter values, and only a finite set
of those can practically be evaluated, randomly generated
values are used for each of the datamembers of the object,
to explore the space of the inputs. The reliability of the
results is enhanced by creating a user-defined number of
test cases. Generally we used five, since our empirical tests
showed that the results did not vary when 5–10 tests were
selected. Thus, in the interest of time efficiency, we selected
the lower bound.

D. Collection

The testing phase also automatically generates aTest
Driver file to run all of the test files (step 5b in Figure
1). As each test file is executed by theDriver, a subset
of the methods tested is returned as an equivalence class
of semantic clones - that is, each element of the class,
produced identical results for every test case. A method’s
results in this context, is defined as the return values and
the final states of all components of the method’seffects.
In addition, the members of any equivalence class output,
would be of the samemethodtype and thus they would have
the same observableIOE-behavior. The driver also outputs a
statistical summary of the clone data including: the number,
location and size of clones and clone classes. Minimum,
maximum, and average values are also provided. All output

data is collected and stored in the clone collector (as shown
in step 7 in Figure 1).

E. Semantic Clone Detection Algorithm

The semantic clone detection algorithm implemented by
our tool can be summarized as follows:

1. Group methods that have the same return type
and the same corresponding type of parameters.
Discard all groups containing only one method

2. For each group of methods left after step 1, group
methods that have the sameeffects - that is, they
may write to the same fields. Discard all groups
that have only one method

3. For each group remaining after step 2, for each
methodm in the group:

a if m is an instance method, randomly
generate a receiver object ofm’s receiver
type. If m is static, skip this step.

b If the methodtype of m has an empty
parameter list, skip this step; otherwise
generate a random instance of each pa-
rameter in the parameter list.

c For instance methods, callm (using the
receiver object from (a) and the param-
eters created in (b)). For static methods,
call m using the parameters created in
(b). Record the value returned; record
the value and state ofeffects components

3



listed in step 2. Store result in results
array.4

d Repeat step 3 a pre-determined numTests
times

e Addm to a hashMap of results, hashed on
the key of the results array. This automat-
ically groups methods that have the same
results for all of the test cases.5

5 Discard hashMap rows for keys with only one
associated method value. Output the rows of the
hashMap that have a value field containing more
than one method. These are the equivalence classes
of semantic clones

III. R ELATED WORK

A. Clone Detection Techniques

Over the last two decades, software clone research has
been growing in importance. Although at one time dubbed
the cause of bad smells in code [7], this perception is now
evolving. There is a growing trend in the software clone
research community, to accept that the presence of clones
in code is not necessarily as bad as previously thought [8].
However, detection is still viewed as important to program
understanding and maintenance. This has sparked a change
in the direction of research from absolute elimination to
more accurate detection, monitoring and interactive refac-
toring.

The research on clone detection has lead to five gen-
eral categories of algorithms based on: strings [9], [10];
tokens/lexicons [9], [11], [12]; abstract syntax trees (AST)
[13], [14], [15], [16]; program dependence graphs (PDG)
[17], [18] and metrics [19], [20], [21], [10], [22], [23], [24].
A variety of combinations of these are also used in hybrid
techniques. However, all of these focus on syntactic clones.
Our contribution to this area of research is to join the few
who have begun to venture into the detection of semantic
clones and explore its relevance to software maintenance.

B. Research on Semantic Clones

The detection of semantic clones is an interesting area of
research. Not only does it facilitate a more complete picture
of the code duplication in software, but it also identifies
the clones that are the most obvious and useful candidates
for code improvement through refactoring. Recently there
has been some interest in the detection of semantic clones
although called by different names: wide-miss clones, high-
level concept clones [25], functionally equivalent code [6],
behavioral clones [26], representationally similar code frag-
ments andsimions [2], they all seek to address the need to

4All effects values and returned values (including exceptions) are con-
verted to Strings to facilitate ease of comparisons.

5The use of the hashMap improves the efficiency of our algorithm, since
the hash automatically groups methods with the same output values thus
eliminating the need for additional comparisons.

identify clones created by activities beyond mere copy and
paste.

Juergens and Gode [4] investigated commercially used
Java code JabRef and out of 2,700 LOC they manually found
that 32 out of 86 Utility methods were partially semantic
clones - a little over 37%. In their manual approach, they
did not consider entire methods but focused on functionally
identical code fragments within different methods. Their
comparison was also not restricted to methods within the
JabRef code. They also included similarity to Apache Com-
mons methods. Our approach to semantic clone detection is
different to theirs. Firstly, we improve on the objectivityof
the detection process by presenting a completely automated
semantic clone detection. Secondly, our analysis is focused
on the behavior of entire methods within the same body of
code. We selected this level of granularity because of the
natural progression that it offers for code refactoring.

Jiang and Su [6] investigated functional similarity in
code within methods. Their evaluation was based on in-
put:output behavior while ignoring effects. In studying the
Linux system, they found that a little more than 42% of
the semantically similar code was also syntactically similar;
while more than 36% of syntactic clones are not semantic
clones. The overall precision is low due to the high number
of false positives produced because effects are ignored. Also
clone candidates are not whole syntactic units like methods
so inputs and outputs have to be computed. In computing
equivalence for each cluster they selected a representative,
then ran sample code on that member and recorded the
output. Each member of that equivalence class was then
run on the same input and the output and then compared
to the result obtained from the representative one. One issue
with this algorithm is that the quality of the outcome is
greatly determined by the element of the cluster that was
first selected to represent the group. While our algorithm
in its current state does not scale as well as this one, our
results have greater precision since clones are not selected on
the basis of comparison to an arbitrarily selected candidate.
Instead the behavior of each method is considered and
subgroups can be identified by use of hashing on the results.
Also, since our focus is on methods which are naturally
occurring syntactic units, our computations are simpler and
provide a less invasive and possibly less disruptive starting
point for code maintenance through refactoring.

Another application of semantic clone detection is demon-
strated by Kawrykow and Robillard [1]. They use semantic
clone detection to identify instances of less than optimal
usage of APIs, where developers re-implemented library
functions instead of making a call to an available function.
Using their detection tool iMaus, they studied 10 widely
used Java projects from the SourceForge repository. The
projects ranged in size from 20 to 539 kLOC finding 4 to 341
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method imitations with the median precision being 14.5%.6

We present a very simple method for detecting semantic
clones. Our focus is on theIOE-behavior of methods. We
simulated this behavior using several test cases, from the
input domain of the code and then analyzing the resulting
output behavior. One other contribution of our algorithm is
that we do not employ any computationally complex code
abstractions as found in [1], [6].

IV. CASE STUDY

Our tool was pilot tested on code written by one of the
authors. This included 22 classes ranging in size from 900
lines of code (LOC) and 39 methods; to 70 LOC with
12 methods. These small projects were used to test the
algorithms robustness for identifying different categories of
semantic clones - from the syntactically identical to the
very structurally divergent yet functionally equivalent code.
For the latter type of clone, we modified code found in
Hacker’s Delight [27] and created methods such asflp2
andHighestPowerof2 shown in Figure 2. Both of these
methods return the highest power of two that is less than or
equal to some input integer. Yet, this is not apparent just by
looking at them. Our tool was able to identify all 13 of the
semantic clones created from code adapted fromHacker’s
Delight, with 100% precision and recall.

Since we use methods, as our level of granularity, we also
explored both static and instance methods with a range of
primitive and object return types and parameters, and arrays
of the same. We were able to identify the semantic clones
with 100% precision and recall (thus there were no false
positives).

In our actual case study we tested 1 package of the open
source database management softwareDSpace and 3 from
the Java Bibtex Reference softwareJabRef. The results are
shown in Table IV.

A. Results

We found no semantic clones in the DSpace software
tested and four clones in one of the JabRef packages -
gnu.tools.ritopt. After the filtering phase for this package,
our tool identified 16 equivalence classes of candidate
clones. This was reduced by the testing phase to four
clones in two equivalence classes as shown in Table IV. On
examination of the code, we found that these were actually
semantic clones. None of the other JabRef packages tested
yielded any clones. All of the pakages tested had execution
times from 0.016–0.93 seconds.

The number of clones that JSCTracker found was less
than that recorded by Juergens and Gode [4] in the same
software - JabRef. However, as already discussed in section
III-B of the related work, the two approaches to semantic
clone detection were different. While we focused only on the

6The mean was 31% but the median gives a more true picture of the
overall precision of the system.

Figure 2. Semantic Clones from Hacker’s Delight

JabRef code, they included similarities between JabRef and
Apache. They also included partial methods (method frag-
ments) in their clone count, while we looked for semantic
similarity between complete methods.

B. Limitations

This is a preliminary study on the effectiveness of JSC-
Tracker, as such one of the primary limitations is the size of
the case study. In terms of our algorithm, two of its limita-
tions are scalability and the use of only an approximation of
the input space of the tested methods. Since the input space
is possibly infinite in size, we need to obtain some finite
sample set. To make this set representative of the whole,
samples were generated at random using an unbiased process
to ensure that all cases were equally likely. However, because
we could not test all cases our results would not be 100%
accurate.

In this first case study, our focus was on precision. Thus
we were primarily concerned with reducing the number of
false positives. We do acknowledge, however, that recall is
also important in the evaluation of the effectiveness of clone
detection tools. We will therefore address this issue more,
in our further work. The merit of good recall values was not
totally ignored though, as we were able to produce recall
values for the author’s code (which was 100%), for which
it was easy to create the clone corpus.

Our algorithm’s filters which are intended to improve ef-
ficiency, present some possible threats torecall. First, using
methodtypes, differences between types, such asDouble and
double, which might not make any functional difference
in some abstract sense, would prevent the algorithm from
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Table IV
RESULTS FROM RUNNINGJSCTRACKER ON COMMERCIAL SOFTWARE

Software Package #Classes
#Candidate
Clone
Classes

Clone
Classes

#Clones Time(sec)

Jabref gnu.dtools.ritopt 35 16 2 4 0.850
Jabref net.sf.jabref.undo 11 4 0 0 0.016
Jabref net.sf.jabref.about 6 7 0 0 0.023
DSpace dspace.administer 12 16 0 0 0.093

grouping these methods together. Second, the effect analysis,
since it’s overly conservative, would split methods into
different groups that might not really differ in their write
effects (but only, in what they read). However, testing won’t
affect recall, since it only splits apart method groups, it
doesn’t prevent them from forming. And when tests show
that two methods aren’t semantic clones, then the tests are
right.

V. CONCLUSION

We began our study attempting to address three issues,
namely: providing a concise and objective definition for
semantic clones, automating the detection process and pro-
ducing an algorithm with precision values greater than the
average 27%-65%. In this paper we have met these goals
for code of limited size. We have presented a very objective
definition of semantic clones using theIOE-behavior of
code. This leaves little room for personal interpretation.This
preliminary study of JSCTracker is encouraging in its ability
to identify semantic clones. Our test cases though small,
returned 0% of false positives. While we are able to say
that the recall was 100% for the author developed code, we
need to continue testing to find its recall for other larger
projects. It’s not impossible for our algorithm to return false
positives. However, it is our hypothesis, that the likelihood
of false positives can be decreased by running more test
cases in theTesting phase. In the future we will continue
to develop and test our tool to improve scalability and to
evaluate its effectiveness in both precision and recall.
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