JSCTracker: A Semantic Clone Detection Tool for Java Code

Rochelle Elva and Gary T. Leavens

CS-TR-12-04
March 2012

Keywords: semantic clone detection, input-output behavior, effd€@& behavior, Java language, JSCTracker.

2000 CR Categories:D.2.0 [Software Engineering] General — languages, tools, JSCTracker;

Department of EECS
University of Central Florida
4000 Central Florida Blvd.
Orlando, Florida, 32816, USA

JSCTracker: A Semantic Clone Detection Tool for Java Code

Rochelle Elva Dr. Gary T. Leavens
University of Central Florida University of Central Florida
4000 Central Florida Blvd. 4000 Central Florida Blvd.
Orlando Fl., 32816 Orlando Fl., 32816
Email: relva@eecs.ucf.edu Email: |eavens@eecs.ucf.edu

Abstract—This paper presents a tool and algorithm for standardized criteria for distinguishing between cloned a
the detection of semantic clones in Java methods. For our non-clones. Even when benchmarks are used, the criteria are
purpose, semantic clones are defined as functionally idesdl g4 g piective that the results are unreliable and incamist
code fragments. Thus, our detection process operates on the . .
premise that if two code fragments are semantic clones, then In one study for instance, when asked tp examine 317
their input-output behavior would be identical. We adopt a candidate clones, only 5 were categorized in the same way
wholistic approach to the definition of input-output behavior by three judges [4].
by including not only the return values of methods; but also In the limited work that has been done on semantic clone
their effects as reflected in the pre- and post-states of thedap. detection, we could only find one tool in the literature

We refer to this as a method’s| OE(input, output and effects)- .)
behavior. Our tool and algorithm ¢'E1rep testedpin a small ca)se [6] for automated detection, and another paper which used

study using the open source database management software Manual identification [2]. Both of these used input-output
DSpace and the reference management softwardabRef. as the technique for identifying semantic clones. However,

Keywords-Software Clone Detection, Semantic Clones, Se- f[his techr_wique is incomplete. The ber_lavior of_a method also
mantic Clone Detection Tool, Method IOE-behavior, Program includes its effects, which have been ignored in both ofehes
Understanding papers. While this omission lends to simpler computations,

it contributes to the problems of lower precision and higher
I. INTRODUCTION incidence of false positives.
Duplication in code exists in one of two forms: repre- In this paper we address these problems by outlining the

sentational or functional. The former case yields syntacti following re§earch goa.ls: . L .
clones, while the latter is responsible for the formation of 1) To défine semantic method clones in objective, concise

semantic clones. Although current literature indicatest th and comprehensive terms _

as many as 405 valid semantic clones can be found in as 2) To automate the detection of semantic method clones
few as 1589 kLOC of commercial software written in C using a combination of thellOE-behavior _

[1], the majority of clone detection algorithms and toole ar 3) TO develop a semantic method clone detection al-
limited to the detection of syntactic clones. For example, gorithm and tool, with precision values that are an

when tested on 109 variations in implementations of the improvement over the 27%-65% reported for existing

same functionality, 4 state of the art tools were only able tools and methods.

to identify 1% of the semantic clones [2]. The reason for Il. THE APPROACH

this mlght_ be that the detection of semantlc similarity is Our approach works at the method level in Java code. We
an undecidable problem. However, since the presence (H

) : efine functional similarity in terms of input and total outp
semantic clones can cause some of the same mamtenarg

. . : Ehavior. Input, is determined by two factors, namely: the
issues as their syntactic counterparts [3] they should aot bvalue of parameters passed to the method, and state of the

ignored, thus even a good approximation of their deteCtiorheap when the method is invoked. Output on the other hand,

IS Xalu;ble.d fici . isti | detecti tratedi is defined in terms of both the method’s return values and
nother deticiency In existing clone aetection sralegies, o «rovts The former is the value returned by the method

is that they fail to guarantee an adequate level .Of precisiogs represented by the return type in the method’s signature.
and thus are not accepted or implemented by industry [4}This value is ignored fovoid methods. The latter represents

According to the literature, such tools report as much B3he possible, persistent changes to the heap as a resuét of th

27.% - 65% [5] of f:_;\lse p03|t|_/é_s S_ome claim that the execution of the methotiThese changes include mutations
primary reason for this low precision is the lack of clear and

2Throughout this paper when we speak of a method’s effedis, vl
lFalse positives are code fragments output as clones wheallgicthey refer to the set of possible effects (which is a "may” analyisi the jargon
are not of static analysis).

Table | Table I

SAMPLE METHODS FORMETHODTYPE AND EFFECTANALYSIS SAMPLE METHODS FORMETHODTYPEANALYSIS
Method Code MethodType | MethodEffect Methods
doubl e double checkBalf)...;}
Balance checkBal () {return | double,void | {acct.balancp double calcInt(...;}
26“ zlnce: } void withdraw(double am{)...;}
ouble . void deposit(double amf)..;
calcint calcint(){return double, void | {acct.balance, acct.rgte Strin %ﬂ- (eQ T ...
bal ance * rate; } St'gg't)gzt“d’t -
String ring printState(date §)..;}
PrintState(date
PrintState | d) {return "The String, date | {acct.balancp Table 1lI
bal ance to date CANDIDATE METHOD CLONES AND THEIR EFFECTS
is: " + balance; }
Method Effect
double checkBalg)...;} {acct.balance
double calcint{...;} {acct.balance, acct.rgte

of stgtic field_s of classes and datz?\ members of objects. All Withdraw(double ami)..} | {acct.balanck

of this behavior we refer to collectively as a metholE- deposit(double amf)..;} {acct.balancp

behavior. (input, output and effects behavior).

The actual semantic clone detection involves 4 sub-

processes: abstraction, filtering, testing and collectms andcal cl nt, its return type is different; indicating devi-

shown in Figure 1 and discussed in the sections that followating output behavior. The last two methagist Type and
print St at e) do not form a candidate set either, because

A. Abstraction although their return types are the same, their parameter li

The first phase, abstraction, depicted in steps 1 - 2 iffé unequal, indicating a variant in input behavior;
Figure 1, uses a static analysis tool along with the JastAdd The second filter uses semantic information in the form of
compiler generator, to produce a decorated abstract syntdRethod effects. Using theffects properties of the decorated
tree (AST). This is achieved by defining parsing rules and®ST nodes, the candidate method clones returned by the
using a combination of aspect-oriented programming andi'st filter are further reduced by comparing theffects.
attribute grammar concepts to define program propertied;fom the information shown in Table IIl for example, the
These properties are later used to create an abstract repf&cond filter would result in only one candidate clone set -
sentation of the methods of the code parsed. The abstractidi t hdraw, deposit }. The first candidate set will no
encodes two types of information. The first isnathodtype. longer be considered sinaeheckBal andcal cl nt do
Methodtypes are represented as Java objects with data menflot have the sameffects. _
bers used to store a method’s signature and parameter types,The net reSL_JIt of the two filters, is that the only methods
plus the type of the returned value. The second areffigsts ~ 1€ft in any equivalence class, would have the samethod-
represented as pairs of class and field names (both stafifPe andeffects. The reduction in the number and sizes of
and instance fields). This produces an over-approximatioﬁqUiva|ence classes is important, as it decreases the mumbe
of the method effects, since any access of the variable type¥ computations at the next level of the detection process,
just described is treated as a possible mutation. Table Which is computationally the most costly.
demonstrates our properties othodtype and effects for Testing
3 methods of an account (acct) class.

The problem of determining if two methods are semanti-
B. Filtering cally equivalentis undecidable. However, it is our hypstae
, . o that we can approach a good approximation if we run the
As shown in step 2 of Figure 1, the filtering phase usesahqqs on a sufficiently large sample of their input domain
the code abstractions to identify preliminary sets of ptiéén _ (this includes state and valués).
method _clones, ca_lled t_mandldate clone sets. Two filters The candidate clones are submitted as equivalence classes
are applied to the identified methods. to the testing phase (step 3 in Figure 1). A test file is

The first filter uses _syntactic informatipn encoded in theautomatically generated for each set (step 5a in Figure 1).
methodtype. After this filter has been applied, only methods rs file facilitates the evaluation of the actual dynamic

with correspondingly equivalent return types and parameté,apayior of the clone candidates, by using method calls to

types will be consideredandidate clones. For example, yn each member of an equivalence class on the same input
given the six methods in Table I, applying the first filter 5 then comparing the corresponding outputs. To ensure
would result in 2 candidate clone sets{eheckBal , that each method is run on the same input we create a test-

calcint} and {wthdraw deposit}. The fifth ot of each type of receiver object. As the tests are run,
method -get Type would be filtered out from the first set,

since although it has the same parameter listlzesck Bal 30ur algorithm uses a timeout for method executions

AST

Decorated

- Candidate Automated Test
Filters 3 Clones Generator
Sb

% Java
- MethodTypes 5a Code
- MethodEffect)

4 Privileged Java Compiler
Decorated Aspects

AST

2

Aspect) Compiler 6b

Java

Aspect)

Clone Classes

Class
Class
1
Abstraction VM
:> Tool
Test Code 7
Equivalence

Clone

Collector

Figure 1.

JSCTracker Architecture

each method is called with each pre-created receiver objedata is collected and stored in the clone collector (as shown
in turn, and the output is recorded. Since there is potéytial in step 7 in Figure 1).

an infinite number of possible combinations of legitimate

object states and parameter values, and only a finite s& Semantic Clone Detection Algorithm

of those can practically be evaluated, randomly generated The semantic clone detection algorithm implemented by
values are used for each of the datamembers of the obje@yr tool can be summarized as follows:

to explore the space of the inputs. The reliability of the
results is enhanced by creating a user-defined number of =
test cases. Generally we used five, since our empirical tests
showed that the results did not vary when 5-10 tests were
selected. Thus, in the interest of time efficiency, we sekbct

the lower bound.

D. Collection

The testing phase also automatically generate®esh

Group methods that have the same return type
and the same corresponding type of parameters.
Discard all groups containing only one method
For each group of methods left after step 1, group
methods that have the sareffects - that is, they
may write to the same fields. Discard all groups
that have only one method

For each group remaining after step 2, for each
methodm in the group:

Driver file to run all of the test files (step 5b in Figure a if m is an instance method, randomly
1). As each test file is executed by tiiFiver, a subset generate a receiver object of's receiver

of the methods tested is returned as an equivalence class type. If mis static, skip this step.

of semantic clones - that is, each element of the class, b If the methodtype of m has an empty
produced identical results for every test case. A method’s parameter list, skip this step; otherwise
results in this context, is defined as the return values and generate a random instance of each pa-
the final states of all components of the methoeffects. rameter in the parameter list.

In addition, the members of any equivalence class output, c For instance methods, cath (using the

would be of the samenethodtype and thus they would have
the same observabl®E-behavior. The driver also outputs a
statistical summary of the clone data including: the number
location and size of clones and clone classes. Minimum,
maximum, and average values are also provided. All output

receiver object from (a) and the param-
eters created in (b)). For static methods,
call m using the parameters created in
(b). Record the value returned; record
the value and state afffects components

listed in step 2. Store result in results identify clones created by activities beyond mere copy and

array? paste.
d Repeat step 3 a pre-determined numTests]))
times Juergens and Gode [4] investigated commercially used

e Addmto a hashMap of results, hashed on Java code JabRef and out of 2,700 LOC they manually found
the key of the results array. This automat- that 32 out_of 86 Utility methods_ were partially semantic
ically groups methods that have the samectlones - a little over 37%. In their manual approach, they
results for all of the test casés. did not consider entire methods but focused on functionally

5 Discard hashMap rows for keys with only one |dent|cgl code fragments wnhm different method;. Thelr
associated method value. Output the rows of theSomparison was also nqt restncte.d Fo methods within the

hashMap that have a value field containing moreJabRef code. They also included S|m|Iar|t_y to Apache C_om—_
than one method. These are the equivalence class&so > methods_. Our_ approach {0 semantic clone_' de_tephon IS

of semantic clones different tq theirs. Firstly, we improve on the objectivity

the detection process by presenting a completely automated

I1l. RELATED WORK semantic clone detection. Secondly, our analysis is fatuse

on the behavior of entire methods within the same body of

code. We selected this level of granularity because of the

Over the last two decades, software clone research hagra| progression that it offers for code refactoring.
been growing in importance. Although at one time dubbed

the cause of bad smells in code [7], this perception is now Jiang and Su [6] investigated functional similarity in
evolving. There is a growing trend in the software clonecode within methods. Their evaluation was based on in-
research community, to accept that the presence of clongmit:output behavior while ignoring effects. In studying th
in code is not necessarily as bad as previously thought [8Linux system, they found that a little more than 42% of
However, detection is still viewed as important to programthe semantically similar code was also syntactically smil
understanding and maintenance. This has sparked a changhile more than 36% of syntactic clones are not semantic
in the direction of research from absolute elimination toclones. The overall precision is low due to the high number
more accurate detection, monitoring and interactive refacof false positives produced because effects are ignorex. Al
toring. clone candidates are not whole syntactic units like methods
The research on clone detection has lead to five genso inputs and outputs have to be computed. In computing
eral categories of algorithms based on: strings [9], [10];equivalence for each cluster they selected a represesytativ
tokens/lexicons [9], [11], [12]; abstract syntax trees TAS then ran sample code on that member and recorded the
[13], [14], [15], [16]; program dependence graphs (PDG)output. Each member of that equivalence class was then
[17], [18] and metrics [19], [20], [21], [10], [22], [23], . run on the same input and the output and then compared
A variety of combinations of these are also used in hybridto the result obtained from the representative one. Oneissu
techniques. However, all of these focus on syntactic cloneswith this algorithm is that the quality of the outcome is
Our contribution to this area of research is to join the fewgreatly determined by the element of the cluster that was
who have begun to venture into the detection of semanti€irst selected to represent the group. While our algorithm
clones and explore its relevance to software maintenance.in its current state does not scale as well as this one, our
. results have greater precision since clones are not selente
B. Research on Semantic Clones the basis of comparison to an arbitrarily selected candidat
The detection of semantic clones is an interesting area dhstead the behavior of each method is considered and
research. Not only does it facilitate a more complete pectur subgroups can be identified by use of hashing on the results.
of the code duplication in software, but it also identifies Also, since our focus is on methods which are naturally
the clones that are the most obvious and useful candidategcurring syntactic units, our computations are simplat an
for code improvement through refactoring. Recently thereprovide a less invasive and possibly less disruptive s@rti
has been some interest in the detection of semantic clongsint for code maintenance through refactoring.
although called by different names: wide-miss clones, high
level concept clones [25], functionally equivalent codg [6 Another application of semantic clone detection is demon-
behavioral clones [26], representationally similar codgyf ~ Strated by Kawrykow and Robillard [1]. They use semantic

ments andsimions [2], they all seek to address the need to clone detection to identify instances of less than optimal
usage of APIs, where developers re-implemented library

“All effects values and returned values (including excepstjoare con- functions instead of making a call to an available function.

A. Clone Detection Techniques

verted to Strings to facilitate ease of comparisons. " Using their detection tool iMaus, they studied 10 widely
The use of the hashMap improves the efficiency of our alguritsince dJ . f he S E . Th

the hash automatically groups methods with the same ouglues thus use_ ava prOj_eCtS_ rom the SourceForge _rePOS'tOW- e

eliminating the need for additional comparisons. projects ranged in size from 20 to 539 kLOC finding 4 to 341

method imitations with the median precision being 14%%. public static int flp2{int x) {

We present a very simple method for detecting semantic | //returns the greatest power of 2 less than or equal to x
clones. Our focus is on theDE-behavior of methods. We 23: :: ” ;;
simulated this behavior using several test cases, from the | ,_,| (s> 4);

input domain of the code and then analyzing the resulting x=x| (x >>> 8);
output behavior. One other contribution of our algorithm is x=x| (x >>>16);
that we do not employ any computationally complex code return (x - (x >>> 1))& Oxff;

}

abstractions as found in [1], [6]. I

IV. CASE STuDY

Our tool was pilot tested on code written by one of the public static int HighestPowerof2{int x){
authors. This included 22 classes ranging in size from 900 | //returns the greatest power of 2 less than or equal to x
lines of code (LOC) and 39 methods; to 70 LOC with int tmp =x;
12 methods. These small projects were used to test the | ntanswer=1;

. . o : i hil 1
algorithms robustness for identifying different categerof wa,']:v(vt:zz *)inswer;

semantic clones - from the syntactically identical to the tmp = tmp/2;

very structurally divergent yet functionally equivalertde. }

For the latter type of clone, we modified code found in return answer;

Hacker’s Delight [27] and created methods such falsp2 !

andHi ghest Power of 2 shown in Figure 2. Both of these

methods return the highest power of two that is less than or Figure 2. Semantic Clones from Hacker's Delight

equal to some input integer. Yet, this is not apparent just by

looking at them. Our tool was able to identify all 13 of the

semantic clones created from code adapted frtaoker’'s JabRef code, they included similarities between JabRef and

Delight, with 100% precision and recall. Apache. They also included partial methods (method frag-
Since we use methods, as our level of granularity, we alseonents) in their clone count, while we looked for semantic

explored both static and instance methods with a range dfimilarity between complete methods.

primitive and object return types and parameters, and srray

of the same. We were able to identify the semantic clone§- Limitations

with 100% precision and recall (thus there were no false This is a preliminary study on the effectiveness of JSC-

positives). Tracker, as such one of the primary limitations is the size of
In our actual case study we tested 1 package of the opee case study. In terms of our algorithm, two of its limita-

source database management softv@Bpace and 3 from tions are scalability and the use of only an approximation of

the Java Bibtex Reference softwal@Ref. The results are the input space of the tested methods. Since the input space

shown in Table IV. is possibly infinite in size, we need to obtain some finite

A Results sample set. To make this set representative of the whole,

, , samples were generated at random using an unbiased process

We found no semantic clones in the DSpace softwargq engyre that all cases were equally likely. However, begau

tested and four clones in one of the JabRef packages ye could not test all cases our results would not be 100%
gnu.tools.ritopt. After the filtering phase for this packag ... rate

our tool identified 16 equivalence classes of candidate In this first case study, our focus was on precision. Thus

c:ones.. This was rleducedl by the ters]tmg _phassl to f%“%e were primarily concerned with reducing the number of
clones |n.two ?q#'va egce c afssesdashs or\]/vn in Table IV. ”'f‘alse positives. We do acknowledge, however, that recall is
examination of the code, we found that these were actually g, important in the evaluation of the effectiveness ohelo

s_emantlc clones. None of the other JabRef packages te_St%gtection tools. We will therefore address this issue more,
yielded any clones. All of the pakages tested had EXECUtIOR, our further work. The merit of good recall values was not

times from 0.016-0.93 seconds. totally ignored though, as we were able to produce recall

The number of clones that JSCTracker found was |esgy a5 for the author's code (which was 100%), for which
than that recorded by Juergens and Gode [4] in the same, as easy to create the clone corpus

ﬁ?féwaﬁr; JablRte f('j HOWEV‘;:' ats already d'sﬁ ussted n sec;qon Our algorithm’s filters which are intended to improve ef-
I- Od tetfeae Wg.:cf' ei wﬁ_lapprofac esdo Slemar;h'cficiency, present some possible threatsdcall. First, using

clone detection were ditterent. Yvhile we focused only on emethodtypas, differences between types, suchzauible and
5The mean was 31% but the median gives a more true picture of thé_jOUbIe* which might not make any functional dlf_ference

overall precision of the system. in some abstract sense, would prevent the algorithm from

Table IV
RESULTS FROM RUNNINGJSCTRACKER ON COMMERCIAL SOFTWARE

#Candidatg Clone

Software Package #Classes | Clone #Clones Time(sec)
Classes

Classes
Jabref gnu.dtools.ritopt 35 16 2 4 0.850
Jabref net.sf.jabref.undo 11 4 0 0 0.016
Jabref net.sf.jabref.about 6 7 0 0 0.023
DSpace dspace.administer 12 16 0 0 0.093

grouping these methods together. Second, the effect asialys [4] E. Juergens and N. Gode, “Achieving accurate cloneatiete
since it's overly conservative, would split methods into results,” inProceedings of the 4th International Workshop on

; ; ; ; ; ; Software Clones, ser. IWSC '10. New York, NY, USA: ACM,
different groups that might not really differ in their write 2010, pp. 1-8, there are 17 references in this paper. [nline

effects (but only, in what they read). However, testing vwon’ Available: http://doi.acm.org/10.1145/1808901.180B90
affect recall, since it only splits apart method groups, it
doesn’t prevent them from forming. And when tests show [5] C. Kapser and M. W. Godfrey, “Aiding comprehension

that two methods aren’t semantic clones, then the tests are ©of cloning through categorization,” ifProceedings of the
right. Principles of Software Evolution, 7th International Workshop.

Washington, DC, USA: IEEE Computer Society, 2004, pp.
V. CONCLUSION 85-94, this paper has 23 references. [Online]. Available:

. . http://portal.acm.org/citation.cfm?id=1018436.10247
We began our study attempting to address three issues,

namely: providing a concise and objective definition for [6] L. Jiang and Z. Su, “Automatic mining of functionally
semantic clones, automating the detection process and pro- gqué\é:('j?nt C?deh ffa_gﬂﬂentsh via ra_ndglm testing,” in

; ; ; i roceedings of the eighteenth international symposium
ducing an algorithm W|th_preC|S|on values greater than the on Software testing and analyss ser. ISSTA '09.
average 27%-65%. In this paper we have met these goals ‘o~ York. NY USA: ACM. 2009 pp. 81-92
for code of limited size. We have presented a very objective this paper has 39 references. [Online]. Available:
definition of semantic clones using tH®E-behavior of http://doi.acm.org/10.1145/1572272.1572283
code. This leaves little room for personal interpretatitims 7] T. Bakota, R. F 4T Gvimothy. “Cl s if

i ; i it . Bakota, R. Ferenc, and T. Gyimothy, “Clone smells ift-so
Frglémlrﬁry study ct)f JS|CTraCkCe)r IS tenfouragln?hln |tsh@blll I ware evolution,” Software Maintenance, 2007. ICSM 2007.
0 1aentity semantic ciones. Lur test cases though small, IEEE International Conference on, pp. 24-33, Oct. 2007.
returned 0% of false positives. While we are able to say
that the recall was 100% for the author developed code, we[8] C. Kapser and M. W. Godfrey, “"cloning considered harifu
need to continue testing to find its recall for other larger \C/\%niider(e:d fflarmful," iﬂQERE ’(:56: Proceedings V\(/)f tﬂ? 13th

; ; i ; ; rking Conference on Reverse Engineering. Washington,
prOj_e.cts. It's not |mp9513|ble for our algprlthm to retgrrls_ia DC, USA: IEEE Computer Society, 2006, pp. 1928,
positives. However, it is our hypothesis, that the liketido
of false positives can be decreased by running more tesfg] c. K. Roy and J. R. Cordy, “Scenario-based comparison of
cases in thelesting phase. In the future we will continue clone detection techniquesgpc, vol. 0, pp. 153-162, 2008.
to develop and test our tool to improve scalability and to

evaluate its effectiveness in both precision and recall. 10] J. H. Johnson, “Identifying redundancy in source codmg

fingerprints,” inCASCON ‘93: Proceedings of the 1993 con-
REFERENCES ference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 1993, pp. 171-183.
[1] D. Kawrykow and M. P. Robillard, “Improving api
usage through automatic detection of redundant code,[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Ner

in Proceedings of the 2009 IEEE/ACM International “Comparison and evaluation of clone detection toolEEE
Conference on Automated Software Engineering, ser. ASE Transactions on Software Engineering, vol. 33, no. 9, pp.
'09. Washington, DC, USA: IEEE Computer Society, 577-591, September 2007.
2009, pp. 111-122, this paper has 21 references. [Online].
Available: http://dx.doi.org/10.1109/ASE.2009.62 [12] H. A. Basit and S. Jarzabek, “Detecting higher-levehisi
larity patterns in programs,” ifeSEC/FSE-13: Proceedings
[2] B.H. E. Juergens, F. Deissenboeck, “Code similaritiegind of the 10th European software engineering conference held
copy & paste,” inCSMR "10: Proc. of the 14th European jointly with 13th ACM SIGSOFT international symposium on
Conference on Software Maintenance and Reengineering, Foundations of software engineering. New York, NY, USA:
Madrid, Spain, March 2010, p. 10. ACM, 2005, pp. 156-165.
[3] V. R. Richard Fanta, “Removing clones from the code,” [13] W. S. Evans, C. W. Fraser, and F. Ma, “Clone detection via
Journal of Software Maintenance: Research and Practice, structural abstraction,” ilVCRE '07: Proceedings of the 14th
vol. 11, no. 4, pp. 223-243, July/August 1999, 17 pages. Working Conference on Reverse Engineering. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 150-159.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

B. Baker, “On finding duplication and near-duplicati@m
large software systemsSecond Working Conference on Re-
verse Engineering(WCRE *95), pp. 86 — 95, 1995.

I. Baxter, A. Yahin, L. Moura, M. Sant'’/Anna, and L. Bier,
“Clone detection using abstract syntax tre&sftware Main-
tenance, 1998. Proceedings. International Conference on, pp.
368-377, Nov 1998.

R. Koschke, R. Falke, and P. Frenzel, “Clone detection
using abstract syntax suffix treeRéverse Engineering, 2006.
WCRE ' 06. 13th Working Conference on, pp. 253-262, Oct.
2006.

R. Komondoor and S. Horwitz, “Using slicing to identify
duplication in source code,” in Proceedings of the 8th
International Symposium on Satic Analysis. Springer-
Verlag, 2001, pp. 40-56.

J. Krinke, “Identifying similar code with program depdence
graphs,” Proceedings of the Eighth Working Conference on
Reverse Engineering, pp. 301-309, 2001.

J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the
automatic detection of function clones in a software system
using metrics,” Software Maintenance 1996, Proceedings.,
International Conference on, pp. 244-253, Nov 1996.

F. Nielson and H. R. NielsonCorrect System Design, ser.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, January 1999, vol. 1710/1999, ch. Type and
Effect Systems, pp. 114-136.

K. Kontogiannis, “Evaluation experiments on the détat of
programming patterns using software metridRgierse Engi-

(22]

(23]

[24

(25]

(26]

(27]

neering, 1997. Proceedings of the Fourth Working Conference
on, pp. 44-54, Oct 1997.

H. Ding and M. H. Samadzadeh, “Extraction of Java progra
fingerprints for software authorship identificatiodgurnal of
System Software, vol. 72, no. 1, pp. 49-57, 2004.

S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing
local algorithms for document fingerprinting,” i8GMOD
'03: Proceedings of the 2003 ACM S GMOD international
conference on Management of data. New York, NY, USA:
ACM, 2003, pp. 76-85.

] K. Kontogiannis, “Evaluation experiments on the détat of

programming patterns using software metridelerse Engi-
neering, 1997. Proceedings of the Fourth Working Conference
on, pp. 44-54, Oct 1997.

A. Marcus and J. I. Maletic, “ldentification of high-
level concept clones in source code,” Proceedings of
the 16th IEEE international conference on Automated
software engineering, ser. ASE '01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 107-—
, this paper has 46 references. [Online]. Available:
http://portal.acm.org/citation.cfm?id=872023.872542

E. Juergens, F. Deissenboeck, and B. Hummel, “Clonecdet
tion beyond copy & paste,” ifProc. of the 3rd International
Workshop on Software Clones, 2009, there are 4 references
in this paper.

H. Hacker's delight. Addison-
Wesley, 2003. [Online]. Available:
http://books.google.com/books?id=iBNKMsplIgEC

Warren,

