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Abstract. Static reasoning tools for object-oriented (OO) languages use super-
type abstraction, by verifying calls to methods using the specification associated
with the receiver’s static type. Unfortunately, contemporary runtime assertion
checkers for OO are inconsistent with such static reasoning tools, since they
check assertions in an overly-dynamic way on the supplier side. For method
calls, such supplier-side checking occurs at the exact runtime type of the re-
ceiver object, which in general can be a proper subtype of the receiver object’s
static type. Since such a subtype can have a refinement of the corresponding su-
pertype’s specification, this specification difference can cause an inconsistency
between runtime assertion checking and static verification tools. We explain how
our technique of client-side checking allows runtime assertion checkers to use the
specifications associated with static types, gaining consistency with static verifi-
cation tools. Another advantage of such client-side checking is that it provides
a way for runtime assertion checkers to use privacy information associated with
specifications, which promotes information hiding.

1 Introduction

Runtime assertion checking (RAC) is a useful technique for finding errors in a program
[8]. It is popular because it can be used to find where a program does not meet its func-
tional specification at many stages of the development or maintenance process. Several
behavioral interface specification languages, including Eiffel [24], the Java Modeling
Language (JML) [17], Spec# [2], and Code Contracts [11], have RAC tools.

In object-oriented (OO) programming, RAC faces additional complications due to
subtyping and dynamic dispatch. These features are problematic for reasoning about
OO programs because subtypes may satisfy different specifications than their super-
types. Thus when dynamic dispatch selects a method to execute at the site of a poly-
morphic call, the set of method codes, to which the call may dispatch, do not necessarily
satisfy a single specification. One way to reason about such polymorphic method calls
would be to use an exhaustive case analysis, taking into account all possible dynamic
types for the method’s receiver object. However, that would be non-modular, as it would
involve whole-program knowledge of all subtypes, and it would lead to re-verification
whenever new subtypes are added to the program.
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To tackle this modularity problem, Leavens and Weihl described a technique called
supertype abstraction [20]. In supertype abstraction one uses a type system that stati-
cally determines a type for each expression. Each such static type should be a supertype
of all possible values of that expression, as is common in OO languages. Then, one does
verification of method calls using the specifications associated with the static type of
each call’s receiver object. Supertype abstraction is valid when each subtype is a behav-
ioral subtype of all its supertypes [16, 19, 20, 23]. Furthermore, supertype abstraction is
modular, since it does not require knowledge of all types in the program; instead, for
soundness, it relies on each new type added to the program being a behavioral subtype
of its supertypes. This avoids both the need for global knowledge of the program and
the need for respecification and reverification.

However, most contemporary runtime assertion checkers for OO languages do not
follow supertype abstraction precisely,1 since when checking the pre- and postcondi-
tions of a method call, they use the specifications from the receiver’s dynamic type. This
is inconsistent with static verification tools and with supertype abstraction. Chalin’s
work pointed out the desires of practitioners for a uniform semantics between in static
and dynamic checking tools [5]. It also noted the practical problems that can arise from
inconsistencies between the semantics of assertions.

The reason that contemporary RAC compilers for OO languages suffer from this
inconsistency is due to the way they implement runtime assertion checks for methods.
At the beginning of each method’s code, RAC compilers typically inject code to check
the method’s precondition. At the end of the method they also inject code to check
the method’s postcondition. This checking code is then run from within the method
found at runtime, using the receiver’s dynamic type, and so these runtime checks reflect
the specifications associated with that dynamic type. We say that a RAC compiler that
checks specifications based on dynamic types in this way is overly-dynamic. In Find-
ler and Felleisen’s work on contract soundness [12], such an overly-dynamic RAC is
unsound, since it does not assign blame (issue error messages) properly.

Besides the inconsistency caused by this overly-dynamic checking, RAC compilers
have additional problems that we discuss in detail in Section 4.

This paper has two main contributions. The first is the explicit recognition of the
inconsistency problems that plague contemporary RAC compilers due to their overly-
dynamic checking. Second, it contributes an improved and more consistent form of
runtime assertion checking for OO programs. We introduce the concept of client-aware
interface specification checking (CAISC), and show how it checks pre- and postcon-
ditions for OO programs in a way that respects supertype abstraction and information
hiding. This paper is the first to explicitly identify and fix these problems related to
runtime checking of OO programs.

Our CAISC technique works by injecting code to check pre- and postcondition
checks into clients at the sites where they call methods. Because code is injected at
the site of each method call, it can properly use the specifications associated with the
receiver’s static type.

1 The only OO RAC tools that follow supertype abstraction are: Code Contracts [11], which
only checks preconditions on the client-side and does not allow differences in preconditions
for subtypes, and the checker for Racket, which follows the ideas in [12].
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In this paper, we focus on formal interface specifications and runtime assertion
checking for methods. Formal interface specifications include contracts written in Eif-
fel [24], JML [17], Spec# [2], and Code Contracts [11]. We use JML for concreteness,
but the ideas we present could also be applied to Eiffel, Spec#, Code Contracts, or
other interface specification languages. We prototype the notion of client-aware inter-
face specification checking with our Aspect-JML RAC compiler (ajmlc) [31, 29].

The rest of the paper is organized as follows: Section 2 provides definitions and
background. Section 3 presents the main example used in the paper. Section 4 sur-
veys the problems of runtime checking for OO programs. Section 5 presents the key
properties of client-aware interface specification checking. Section 6 analyzes the ef-
fectiveness of client-aware interface specification checking based on our findings and
observations. Related work and open research issues are discussed in Section 7, and
Section 8 summarizes our work.

2 Definitions

This section provides some definitions of important terms we use later.

2.1 Behavioral Subtyping

In essence, behavioral subtyping means that each type obeys the specifications of all of
its supertypes. Subtypes must obey the specifications of their supertypes; because these
supertype specifications are the ones used in reasoning with supertype abstraction [19].
This idea is reflected in the Liskov Substitution Principle, which was stated at Liskov’s
invited talk during OOPSLA 1987 [22, p. 25]:

“If for each object o1 of type S there is an object o2 of type T such that for all programs
P defined in terms of T, the behavior of P is unchanged when o1 is substituted for o2
then S is a subtype of T.”

2.2 Specification Inheritance in JML

In JML, behavioral subtyping is enforced by specification inheritance. That is, a subtype
inherits not only fields and methods from its supertypes, but also specifications such as
pre- and postconditions. The way that method specifications are inherited ensures that
each overriding method must satisfy the specifications of the methods it overrides [16].

To explain JML’s method specification inheritance, let T B (pre, post) denote an
instance method specification written in a type T with precondition pre and postcon-
dition post According to Leavens’s definition [16, Definition 1], if T B (pre, post)
and T ′ B (pre′, post′) are specifications of an instance method m, and U is a sub-
type of both T and T ′, then the join of (pre, post) and (pre′, post′) for type U , written
(pre, post)

⊔U
(pre′, post′), is the specification U B (p, q), where the precondition p and

postcondition q are respectively given by Formulas (1) and (2) below [16].

pre || pre′ (1)
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(\old(pre) ⇒ post) && (\old(pre′) ⇒ post′) (2)

This definition states that the precondition p is the disjunction of pre and pre′. The post-
condition q is the conjunction of implications, such that when one of the preconditions
holds in the pre-state, then the corresponding postcondition must hold.

2.3 Modularity and Inconsistency

We say that a specification language supports separated specification if specifications
for a module can be written outside of its implementation’s code (e.g., in a separate
file).

A RAC and a static verification tool (or a verification logic) are inconsistent if for
some executable method specification2 and some call of that method, one of the follow-
ing happens:

1. the static verification tool says that the call has a specification violation, and yet the
RAC never detects that violation, or

2. the RAC detects a violation for that call, but the static verification tool says there is
no violation.

The first kind of inconsistency is an incompleteness of the RAC, and the second is an
unsoundness. The RACs we mentioned previously are sound, so we do not expect the
second kind of inconsistency.3 We will show an example of the first kind of inconsis-
tency with respect to checking of preconditions, due to the overly-dynamic nature of
contemporary RACs.

A RAC has modular runtime checking if it can dynamically check each method
call based on the interface specifications associated with the receiver’s static type. That
is, to have modular runtime checking, a RAC should consistently apply the principle
of supertype abstraction [20]. Note that in a specification language like JML that has
specification inheritance, the specifications associated with a given static type will also
include specifications inherited from that type’s supertypes [16].

We combine these ideas in the following definition.

Definition 1. Suppose a specification language has a standard static verification logic
or static verification tool. Then a RAC for that specification language supports modular
reasoning if it supports separated specification, is not inconsistent with the language’s
verification logic or a static verification tool, and has modular runtime checking.

3 JML Background and Information Hiding

This section introduces a simple example that will be used throughout the paper. We
use it in this section to explain the concepts of information hiding that our technique
enforces.

2 A method specification is executable if the RAC can always evaluate it. For example, in JML,
some specifications that use quantifiers are not executable.

3 The fact that contemporary RACs for OO languages are not unsound, but only incomplete,
partly explains why these inconsistencies have been tolerated for many years.
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3.1 Running Example in JML

Our running example is a figure editor system for editing graphical shape classes (e.g.,
points) [13, 15, 18, 30].

Figure 1 shows two JML specifications of this example: a protected specification
for privileged clients (e.g., subclasses) on the left-hand-side, and a public specification
on the right-hand-side. JML specifications are written in annotation comments4, which
start with an at-sign (@). In JML, a method specification may have several specifica-
tion cases which are written before the method’s header. The specification cases shown
start with a visibility modifier and normal_behavior. The normal_behavior
keyword indicates that the method must not throw exceptions when that specification
case’s precondition is satisfied; thus it must finish normally in a post-state that satisfies
the corresponding postcondition. In JML, preconditions are introduced by the keyword
requires and postconditions by ensures.

The JML specification cases for a method are separated by the keyword also,
which represents the join operator defined by equations (1) and (2) (see Section 2). The
meaning of also is thus that each specification case must be obeyed when its precon-
dition holds [16]. Specifications of overridden methods start with also to remind the
reader that the method must also obey all inherited specification cases. The JML nota-
tion \old(_x+dx) means the pre-state value of _x+dx. The invariants in JML are
expressed by the keyword invariant. The invariants defined in this example restrict
points to the upper right quadrant.

3.2 Information Hiding

Leavens and Müller [18] present rules for information hiding in specifications for Java-
like languages. Normally, information hiding [26] controls which parts of a class are
visible to clients (including subclasses). This aids maintenance because hidden imple-
mentation details can be changed without affecting clients. However, the benefits of
information hiding apply also to other artifacts, such as documentation and specifica-
tions [18]. For example, one should keep invariants that describe implementation details
hidden, so that when either is changed, clients are not affected.

Leavens and Müller’s Rule 1 [18] says that specifications should not expose hid-
den class members. This implies that the protected invariant of class Point must not
mention, for example, private fields.

In the same manner, a public client cannot use the protected specifications of class
Point to check the correctness of calls to method moveBy, since they are not visible to
such a public client [18, Rule 2]. However, clients must obey specifications that they can
see. For example, the overridden method moveBy in the subclass ScreenPointmust
refine the protected specification cases for moveBy that it inherits from Point [18,
Rule 3]. Furthermore, such protected specification cases can be used to verify super-
calls [32].

4 JML annotation comments should not be confused with Java 5’s annotations, which are quite
different.
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package p; |package p;
interface Shape {} |public class Point2 implements Shape {
public class Point implements Shape { | //@ public model int x, y;
protected int _x, _y; | protected int _x, _y;

| //@ protected represents x = _x;
/*@ protected invariant _x >= 0 | //@ protected represents y = _y;

@ && _y >= 0; @*/ |
| /*@ public invariant _x >= 0

/*@ protected normal_behavior | @ && _y >= 0; @*/
@ requires _x + dx >= 0 |
@ && _y + dy >= 0; | /*@ public normal_behavior
@ ensures _x == \old(_x + dx) | @ requires x + dx >= 0
@ && _y == \old(_y + dy); | @ && y + dy >= 0;
@*/ | @ ensures x == \old(x + dx)

public void moveBy(int dx, int dy) { | @ && y == \old(y + dy);
_x += dx; | @*/
_y += dy; | public void moveBy(int dx, int dy) {

} | // implementation like in class Point
} | }
package p; |}
public class ScreenPoint extends Point { |package p;

|public class ScreenPoint2 extends Point2{
/*@ also |

@ protected normal_behavior | /*@ also
@ requires _x + dx < 0; | @ public normal_behavior
@ ensures _x == 0; | @ requires x + dx < 0;
@ also | @ ensures x == 0;
@ protected normal_behavior | @ also
@ requires _y + dy < 0; | @ public normal_behavior
@ ensures _y == 0; | @ requires y + dy < 0;
@*/ | @ ensures y == 0;

public void moveBy(int dx, int dy) { | @*/
if(_x + dx >= 0) _x += dx; | public void moveBy(int dx, int dy) {
else _x = 0; | // implementation like in
if(_y + dy >= 0) _y += dy; | // class ScreenPoint
else _y = 0; | }

} |}
} |

Fig. 1. The protected and public specifications of the shape classes with JML.

On the other hand, invisible specifications need not be refined or obeyed. Thus over-
riding methods cannot be required to refine supertype specification cases that they can-
not see. Similarly, since the protected precondition of method moveBy in class Point
is not visible to public clients, so calls from such clients need not satisfy the moveBy’s
protected precondition. Hence the example in the left-hand-side of Figure 1 is an un-
satisfiable specification, because the public precondition (true) does not allow the
implementation to satisfy the protected postcondition and invariant.

To prevent such unsatisfiable specifications, Leavens and Muller complement their
rules with two guidelines [18]: (i) one should write at least one specification case with
the same visibility as the method and (ii) one should make sure that the method’s effec-
tive public precondition is at least as strong as the disjunction of the hidden precondi-
tions.

Because of this, we should either change the visibility modifier of the method
Point.moveBy to protected or write a public (client-visible) specification that
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can be respected by a public caller. We take the latter approach in the right-hand-side
of Figure 1, where we define variants of classes Point and ScreenPoint named
Point2 and ScreenPoint2, respectively.

The classes Point2 and ScreenPoint2 are specified using model fields [7, 16,
21]. A model field is a specification-only field that is an abstraction of some concrete
state. In the right-hand-side of Figure 1, the value of the public model fields x and y are
determined directly by the values of the corresponding protected fields _x and _y. This
relationship is specified by JML represents clauses. These represents clauses
are protected, since they mention protected fields. This illustrates how model fields can
be used to hide design details [7, 16, 21].

4 The Problems and their Importance

This section presents the key problems of the overly-dynamic effect of runtime assertion
checking on OO programs in presence of subtyping and dynamic-dispatch. We discuss
these problems in the following using the running example (in Figure 1).

4.1 Inconsistent Reasoning Problem

The first runtime assertion checking problem occurs when the specifications used to
check the correctness of a method call are based on the receiver’s dynamic type. The
problem, as described in the introduction, is that such checking is inconsistent with
supertype abstraction.

For example, consider the following client code that works with class Point2 (of
Figure 1):

package q; // public client
public class ClientClass {

public void clientMeth(Point2 p) {
//@ assume p.x == 0 && p.y == 0;
p.moveBy(-1,-1);

}
}

The technique of supertype abstraction uses the specification of the static type of the
receiver p to reason about the method call to moveBy. Since p’s static type is Point2,
supertype abstraction tell us to use the specifications given for Point2. Assuming that
the point’s x and y coordinates start at 0, this tells us that the call violates Point2’s
public specification’s precondition.

However, when using the JML runtime assertion checker (jmlc) [4, 6], we got no
precondition violation when the receiver p has the dynamic type ScreenPoint2.
That is, the effective precondition used to check the method call p.moveBy(-1,-1)
is the specification given for type Point2 joined with the specification cases of p’s
dynamic type ScreenPoint2. This yields the effective precondition:

(x+dx >= 0 && y+dy >= 0) || ((x+dx < 0) || (y+dy < 0)) .

Because this precondition allows negative arguments (the shadowed part), we got no
precondition violation, contradicting Point2’s specifications. This overly-dynamic
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nature of RACs results in a common symptom that we call masked precondition vi-
olation.

For a programmer, this masked precondition violation is not quite intuitive without
a proper understanding of the overly-dynamic execution techniques employed by the
contemporary RACs. Hence, these RACS are inconsistent with supertype abstraction.
In other words, the existing RACs check programs in a non-modular way.

This problem happens when the runtime precondition checks are instrumented on
the supplier side. For instance, the JML RAC compiler (jmlc) [6], replaces the original
method implementation with an assertion-checking method with the same name, into
which checks for the pre- and postconditions that are injected. Thus, all client calls
have pre- and postconditions checked on the supplier side. As a result, thanks to dy-
namic dispatch, method calls like p.moveBy include the specifications of subtypes,
like ScreenPoint2.

Another way to look at this inconsistency problem is from the perspective of static
verification tools. Consider again the method call p.moveBy(-1,-1). If we use a
static verification tool such as ESC/Java2 [4], we detect the expected precondition vio-
lation, based on the specifications of p’s static type Point2. This shows the modularity
difference between such static verification tools and overly-dynamic RACs.

The overly-dynamic nature of contemporary RACs does not only affect precondi-
tions; it also affects the runtime checking of other DbC features like postconditions
and invariants. For example, suppose we strengthened the postcondition of the method
moveBy in ScreenPoint2:

public class ScreenPoint2 extends Point2 {
/*@ also

@ public normal_behavior
@ requires \same;
@ ensures x <= 200 && y <= 200;
@ also
@ ...
@*/

public void moveBy(int dx, int dy) {
// implementation like in class ScreenPoint

}
}

The refined postcondition restricts the Point2’s coordinates to be less than or equal to
200. Note that the corresponding precondition for this refined postcondition is the same
defined in Point2. Hence, we use the JML keyword \same to avoid duplicating the
same precondition already defined in class Point2. Now consider the following client
code:

package q; // public client
public class ClientClass {

public void clientMeth(Point2 p) {
//@ assume p.x == 0 && p.y == 0;
p.moveBy(201,201);

}
}

As mentioned, since p’s static type is Point2, we should use the specifications given in
Point2. However, assuming that the receiver p has dynamic type ScreenPoint2,
we get a postcondition violation for such method call. According to the Formula 2, the
effective postcondition used to check the method call p.moveBy(201,201) was:
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\old((x+dx >= 0 && y+dy >= 0))
==> (x == \old(x+dx) && y == (\old(y+dy)))
&& (x <= 200 && y <= 200)) .

Since this postcondition requires the coordinates to be less than or equal to 200, the
contemporary RACs like the jmlc reports a postcondition violation. In relation to the
supertype abstraction, we should not consider the strengthened postcondition (the shad-
owed part) in reasoning about the method call p.moveBy(201,201). So the RACs
should not report any postcondition violation. We call this overly-dynamic symptom as
unexpected contract violation. This term is more general since it comprehends any DbC
feature that can be conjoined by conjunction such as postconditions and invariants.

Unexpected contract violation are inconsistencies (with respect to static verification
tools) involving postconditions. With our technique of client-side RAC, such inconsis-
tencies disappear.

4.2 Visibility Rules Checking Problem

As discussed above, Leavens and Müller’s rules for information hiding in specifications
[18] restrict proof obligations on method calls so that reasoning about such calls can
only use specifications that are visible at the call site.

Recall that the right-hand-side of Figure 1 is written with public specifications,
which are visible to all clients. Suppose now that we change the visibility modifier of
method moveBy’s specification cases in class ScreenPoint2 to be protected5 as
we had before with class ScreenPoint. Suppose further that we have the following
public client code of this modified version of ScreenPoint2:

package q; // public client
public class ClientClass {

public void clientMeth(SceenPoint2 p) {
//@ assume p.x == 0 && p.y == 0;
p.moveBy(-1,-1);

}
}

In this scenario, according to supertype abstraction, ScreenPoint2’s specification
must be used to reason about the correctness of such a call. However, in this scenario
the specification cases of ScreenPoint2 are not visible at the call site, since we are
assuming that they have been made protected. Thus the only specification visible
for moveBy is the public specification case inherited from class Point2. As a result,
based on supertype abstraction and these information hiding rules, in this scenario there
should be a precondition violation for the call to moveBy.

However, the supplier-side checking code generated by existing RACs ignores visi-
bility modifiers in specifications, which is inconsistent with the proper way that the call
in this scenario should be checked. For instance, if we use jmlc [4] in this scenario, it

5 As discussed in our running example section, making the specification cases more hidden in
method moveBy of class ScreenPoint2 is valid because the Leavens and Müller’s Rule
2 [18] and guidelines are respected. Note that the method ScreenPoint2.moveBy has a
public specification case which is inherited from its supertype denoted by Point2.
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does not detect any precondition violation. This happens because the protected specifi-
cation cases, which are not visible to public clients, are used during runtime checking

In summary, due to the supplier-side instrumentation approach adopted by RACs,
all specifications with different visibility levels are checked without respecting the in-
formation hiding rules [18]. In this case, when a method call occurs, the runtime checks
in the supplier class do not take into account what kind of client (i.e., privileged or
non-privileged) called the method. This is inconsistent with proper static verification of
JML client code for such calls.6

4.3 Library Runtime Checking Problem

Nowadays there is large-scale reuse of components, due to standardization of libraries
and frameworks in popular programming languages such as C++, Java, and C#. Yet
most libraries and frameworks are only specified informally using natural language [27].
However, the use of natural language as the primary documentation technology can
cause problems [27]:

“The information must be precise, i.e. have only one possible interpretation. When
reader and writer, (or two readers) can interpret a document differently, compatibil-
ity problems are very likely. Experience shows that it is very hard to write unambiguous
documents in any natural language.”

Besides the problem of specification for such libraries, for a RAC compiler the
problem is how to check calls to library methods. Contemporary RAC compiler (e.g.,
jmlc [4]) need the source code for libraries, in order to inject checking code into the
library classes (on the supplier side). This makes it impossible for them to check client
code for such libraries at runtime.

5 Client-Aware Interface Specification Checking (CAISC)

To avoid the problems described above, one needs to avoid the overly-dynamic nature of
contemporary RAC compilers, which results from their checking method specifications
on the supplier side. By contrast, our approach, which we call client-aware interface
specification checking, or CAISC, uses client-side checking to avoids these problems.

To give an example, consider Figure 2, which contains code for the type Point2
(lines 4-13) and a separated specification for it (lines 14-32). This separated specifica-
tion would be contained in a file Point2.jml. The figure also shows a public client
(lines 33-50).

In a program logic, CAISC is embodied in the proof rule for method calls, which
allows us to derive {P} p.m(a) {Q} only from a specification (T B preTm, postTm)
associated with the static type T for the receiver p. Usually, an automated verifier uses
weakest precondition semantics and achieves modularity by replacing a call p.m(a)

6 Unfortunately, none of existing JML static verification tools properly check these visibility
rules [18] either.
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01 package p; 14 package p; 33 package q; // public client
02 interface Shape {} 15 /** interface specifications (.jml) */ 34 public class ClientClass1 {
03 /** implementation (.java) */ 16 public class Point2 implements Shape{ 35 /** client-side reasoning */
04 public class Point2 17 //@ public model int x, y; 36 /** and instrumentation */
05 implements Shape{ 18 protected int _x, _y; 37 public void clientMeth1(Point2 p) {
06 protected int _x, _y; 19 //@ protected represents x = _x; 38 /*@ assume p.x == 0
07 20 //@ protected represents y = _y; 39 && p.y == 0; @*/
08 public void moveBy(int dx, 21 40
09 int dy){ 22 /*@ public invariant x >= 0 41 /*@ assert p.x + -1 >= 0
10 _x += dx; 23 @ && y >= 0; @*/ 42 @ && p.y + -1 >= 0; @*/
11 _y += dy; 24 43 p.moveBy(-1,-1);
12 } 25 /*@ public normal_behavior 44 /*@ assume p.x == \old(p.x + -1)
13 } 26 @ requires x + dx >= 0 45 @ && p.y == \old(p.y + -1); @*/

27 @ && y + dy >= 0; 46
28 @ ensures x == \old(x + dx) 47 /*@ assume p.x >= 0
29 @ && y == \old(y + dy); 48 @ && p.y >= 0; @*/
30 @*/ 49 }
31 public void moveBy(int dx, int dy); 50 }
32 }

Fig. 2. Example for Client-Aware Interface Specification Checking.

by the sequence of “assert preTm[a/f ]; assume postTm[a/f ]” [1]. (The notation [a/f ]
means the substitution of the actual parameters a for the formals f .)

In our example, the reasoning as well as the instrumentation of the public client can
be observed on lines 38-48 of Figure 2. In runtime assertion checking, all assume
statements are checked, just like assert statements. Thus we can illustrate the runtime
checks as a sequence of assert and assume statements. The resulting code is the right
way to reason about the dynamically-dispatched method call p.moveBy(-1,-1) us-
ing supertype abstraction. That is, we inject runtime checks at the site of each method
call to check the pre- and postconditions of the statically visible specifications for the
call.

5.1 Design Decisions for CAISC

Tool support is necessary to automatically instrument and check the specifications in
CAISC.

We added support for CAISC to the Aspect-JML RAC compiler (ajmlc) [31, 29]
which is available online at http://www.cin.ufpe.br/˜hemr/JMLAOP/ajmlc.htm. This is the
first RAC to support CAISC. This section discusses the key design decisions in our
implementation.

Information-Hiding Specifications. One decision is to use all the information hiding
facilities of JML, including privacy modifiers for specifications. While this leads to
more complex specifications and forces the runtime assertion checking to be aware of
such privacy modifiers, it has benefits for information hiding.

Separated Specification. A second decision is to allow specifications to be separated
from program code. While this complicates the RAC, which must find and use these
extra specification files, it allows the specification of proprietary libraries and frame-
works.
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Open Classes Support. To support separated specifications we follow JML in allowing
a programmer to add new members (e.g., methods or fields) to existing classes without
modifying existing code.7 These added members can be used to enhance the expressive
power of the behavioral specifications. For example, in Figure 2 we show how to add
new public model fields and use them in public specifications.

An implementation challenge is how to support this open class feature even if the
source code is not available. For this our prototype implementation relies on the inter-
type declaration feature of AspectJ [13].

Compilation and Code Injection. We decided to allow specifications to be added
or modified whenever needed. This implies that either client side checks redirect to
a central place where assertion checking code is stored, or that all client code must
be recompiled with the RAC compiler whenever a type’s specifications change. How-
ever, because our prototype implementation uses AspectJ to inject code, the generated
aspects are a central place where assertion checking code is stored. Furthermore, As-
pectJ’s weaver injects into the client code only what are essentially calls to the generated
assertion checking code at client call sites. Indeed AspectJ’s weaver could reweave a
program without the need to recompile all client code when a specification changes.

Full client assertion checking. In order to investigate the power of CAISC, our pro-
totype implementation does no supplier-side assertion checking. That is, all specifica-
tions are only checked on the client side. This means that only visible specifications
are checked at the sites of client method calls. It also implies that the implementation
supports modular reasoning.

Implementation Strategy. It is often claimed in the literature that the contracts of
a system are de-facto a crosscutting concern and fare better when modularized with
aspect-oriented programming (AOP) [14, 13] mechanisms such as pointcuts and ad-
vice [13, 3, 30]. Generative programming is another research area in which AOP has
been successfully used [10]. The ajmlc RAC combines the best of both of these worlds
by generating an AspectJ program [31, 29]. Hence, we decided to adapt ajmlc to imple-
ment CAISC. In ajmlc, the generated AspectJ advice for checking pre- and postcondi-
tions is compiled through an AspectJ weaver (e.g., ajc), which weaves them with the
standard Java code or jar files if the source code is not available.

6 Analysis

In this section we present an analysis of the benefits of runtime checking with CAISC.
The analysis is broken into two parts: (i) first we compare our approach, using our
definitions (see Section 2), against other interface specifications languages using the
running example (Section 3), and (ii) we describe some preliminary experience with
checking a real system. Detailed results are available from [28].

7 This functionality originated in Flavors [25] where Flavor declarations did not lexically contain
their methods. The term open class is due to [9]. In JML such added features are called “model”
fields and methods.
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Table 1. Analysis of non-CAISC and CAISC-based interface specifications of shape classes.

Separated Privacy Consistency Modular Reasoning
Eiffel no(1) medium(2) medium(3) no

non CAISC JML/jmlc no(1) high medium(3) no
Spec# no(1) medium(2) medium(3) no
Code Contracts no(1) medium(2) medium(3) no

CAISC JML/ajmlc high high high yes

(1) Shape classes are contaminated with scattered and tangled behavioral specifications.
(2) The privacy of specifications are not a documented part of the interface and/or they are

not automatically enforced.
(3) Because checking does not respect supertype abstraction or privacy modifiers.

6.1 Analysis of RAC Compilers

We first analyzed the non-CAISC and CAISC-based RACs according to our definitions
from Section 2 using the shapes example (see Section 3). This analysis is summarized
in Table 1. Note that in Table 1 the column labeled “Supports Modular Reasoning”
summarizes our judgment related to our definition of what it means for a RAC to sup-
port modular reasoning. For this comparative study, we considered the RAC tools of
Eiffel [24], JML (i.e., jmlc [6]), Spec# [2], and Code Contracts [11].

The Supplier-Side Approach With RAC compilers that use the supplier-side ap-
proach, the runtime checking of the Shape classes (e.g., Point) fails to satisfy our
criteria:

- they are not textually separated from the implementation code,
- they do not properly check privacy specifications, and
- due to the overly-dynamic supplier-side checking subtyping and dynamic-dispatch,

these tools are inconsistent with supertype abstraction, and so do not support modular
reasoning according to our definition.

The Client-Side Approach The ajmlc tool, which we modified to use CAISC meets
our criteria for modular reasoning for the Shape classes:

+ it works with textually-separated specifications,
+ it properly checks specifications with privacy modifiers, and
+ due to the CAISC approach, it is consistent with supertype abstraction and thus sup-

ports modular reasoning according to our definition.

6.2 The Health Watcher Case Study

We also validated our client-aware interface specification checking through a medium-
sized case study. The chosen system was a real web-based information system, called
Health Watcher (HW) [33]. The main purpose of the HW system is to allow citizens to
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register complaints regarding health issues. This system was selected because it has a
detailed requirements document available [33]. This requirements document describes
11 use cases.

We analyzed the runtime checking for the HW system, comparing the non-CAISC
and CAISC ajmlc-based. The JML specifications used were for 5 of the 11 HW use
cases. Then we monitored these use cases of the HW system at runtime. We are able
to confirm that the benefits of CAISC were obtained in this case study. Our results is
available online at [28].

Understanding the Overly-Dynamic Structure of HW. One of the most important
issues is to recognize how the overly-dynamic checking done by contemporary runtime
assertion checkers works, and how it harms the runtime verification of real systems like
HW. We now analyze the aforementioned symptoms of the overly-dynamic nature of
RACs called such as masked precondition violation.

In relation to masked precondition violation symptom, let us consider the “search
employee” use case. The HW’s requirements document says that the actor employee
must provide a valid login and password in order to successfully try to login in the HW
system. In the requirements document, a valid login and/or password should be neither
empty nor blank. Hence, we provide the following JML specification for the HW facade
interface:
1 //@ requires login != null;
2 //@ requires !login.equals("");
3 //@ requires !login.equals(" ");
4 //@ ensures \result.getPassword() != null;
5 //@ ensures !\result.getPassword().equals("");
6 //@ ensures !\result.getPassword().equals(" ");
7 public Employee searchEmployee(String login) {...}

However, even though an employee user passes a blank login string, the error recovery
(exception handling) of the HW system asks the employee user to try again since blank
logins and/or passwords are not allowed and therefore not persisted in the system. As
such, in the HealthWatcherFacade class (which is a subtype of IFacade inter-
face), there is an added specification case with weaker precondition:
1 //@ also
2 //@ requires login.equals(" ");
3 //@ ...
4 public Employee searchEmployee(String login) {...}

This JML specification case says that one can now pass blank logins to the system. In the
HW servlet denoted by the type ServletLogin responsible for the searchEmployee
(login) use case, there is the following method call:
Employee employee = facade.searchEmployee(login);

The static type of facade is IFacade. Hence, according to the supertype abstrac-
tion technique, we need to look at the specifications associated with IFacade to rea-
son about the such a method call. Suppose the variable login has a blank string,
thus by using the specifications of the method searchEmployee in IFacade we
should have a precondition violation. However, since the runtime type of facade
is HealthWatcherFacade, the non-CAISC runtime assertion checkers consider
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a weaker precondition instead, resulting in no precondition violation, i.e., a masked
precondition violation occurs. In the HW system we can only detect the precondition
violation (in conformance with the specifications of type IFacade) when we employ
our CAISC approach. In the following we show the precondition violation generated by
our ajmlc compiler, which adopts the CAISC approach:
> ajmlrac
Exception in thread "main"
org.jmlspecs.ajmlrac.runtime.JMLInternalPublicPreconditionError:
by method:
healthwatcher.view.IFacade.searchEmployee regarding specifications at
File "healthwatcher.view.IFacade.java",
[spec_case]:
line 113, character 27, when
’login’ is ’ ’

... more

More Discussions. First, we found a bug in the “insert employee” use case. The code
snippet below was extracted from the business layer. It illustrates the piece of code of
the IFacade class responsible for implementing the “Insert Employee” use case.
1 //@ requires !employee.getLogin().equals("");
2 //@ requires !employee.getName().equals("");
3 //@ requires !employee.getPassword().equals("");
4 //@ requires !employee.getLogin().equals(" ");
5 //@ requires !employee.getName().equals( );
6 //@ requires !employee.getPassword().equals(" ");
7 public void insert(Employee employee) {...}

Note that in order to successfully insert a new employee in such a system, a user name,
login, and password should be provided. Any missing employee information violates
the use case requirement. Hence, in order to prevent any malicious client from bypass-
ing such a validation (leading to inconsistent data in the system), 6 basic preconditions
(lines 1-6) are added to the insert method from the Business layer (line 7).

Hence, any attempt to insert a new employee with missing required data, should
result in a precondition violation that should be presented to the user. The key point is
that in the CAISC approach we had a precondition violation pointing out the visibility of
that precondition. This is useful because, unlike the standard approaches (non-CAISC),
we can now identify what kind of clients are violating a precondition. Consider we
have the method call f.insert(new Employee("login","","pwd")); in
which f’s static type is IFacade. This method call passes an invalid name (empty in
this case), according by the precondition described on line 2. As a result, by using our
CAISC approach, we got the following precondition error:
> ajmlrac
Exception in thread "main"
org.jmlspecs.ajmlrac.runtime.JMLInternalPublicPreconditionError:
by method:
healthwatcher.model.employee.Employee.<init> regarding specifications at
File "healthwatcher.model.employee.Employee.java",
[spec_case]:
line 28, character 39
(healthwatcher.model.employee.Employee.java:28),
... more

This error message says that we had a precondition violation in the constructor of class
Employee. This is due to the constructor call passed as argument to create a new
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Employee object. Since we have the same preconditions for the Employee’s con-
structor, we got this precondition violation first. We can have a precondition error di-
rectly associated with the method insert if we turn off the preconditions of the class
Employee. The main point here is that we can now blame the public client that made
the invalid call to the Employee’s constructor.

Second, for this particular system, we observed no significant difference in the final
bytecode size between the bytecode generated by both non-CAISC and CAISC versions
of our ajmlc tools. The reason for this is that AsepctJ only injects a small amount of
code at each client call site; the injected code just calls the advice that checks assertions,
and so the overhead is fairly small. The code to check pre- and postconditions is not
repeated at each client site, but is centralized in the generated aspect.

Third, if one want to make a library of the HW system, one can only be benefited
of runtime checking when employing our CAISC approach; otherwise, since the source
could is missing for third party applications, we can neither specify nor check specifi-
cations of the HW library. If we look at the HW’s source code, this is particular true for
the util package that the HW system contains. In other words, one can make this util
package available as a library to other projects besides the HW. In this case the CAISC
is suitable to distribute the library with its interface specifications that can be checked
during runtime.

The last but not least, we realize that the HW complaints are implemented by means
of a hierarchy. In addition, in the HW servlets (e.g., ServletInsertFoodComplaint)
responsible for including complaints in the system are based on the Complaint type,
which is the supertype of all specialized complaints of the system (e.g., food complaint).
Hence, if we are using runtime assertion checking without CAISC, the more kinds of
complaints we add in the system compromise the overall modular reasoning of the
method insertComplaint, contained in the HW’s IFacade that is called within
those HW servlets (which handles the HW complaints). This happens because we need
to extend our case analysis to include the new kinds of complaints. With CAISC we
avoid any attempt to perform a case analysis to reason about the method calls.

7 Discussion

7.1 Tackling the Runtime Checking Problems

Since CAISC is based on the static type of the receiver of a particular method call, we
can exploit all the modularity benefits of supertype abstraction during runtime check-
ing, which solves the inconsistency problem. Consistency with static verification tools
is beneficial in that it is less confusing to users. In addition, CAISC respects privacy
modifiers in interface specifications, solving the visibility rules checking problem.

Finally, our implementation of CAISC supports separated specifications and even
allows model fields and model methods to be specified in separate specification files.
This is a great help in solving the library runtime checking problem, since the specifier
does not need to modify library sources or byte codes to do runtime assertion checking
with ajmlc.
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7.2 Benefits of Using AspectJ as a Back-End

Since our approach is based on client-side instrumentation, the more clients a program
has, the more instrumentation code will be generated and added to the program. This is
a small overhead, compared to supplier-side instrumentation, where the runtime checks
are generated only in a single place (in the supplier class). However, due to ajmlc’s
use of AspectJ, most of the code that it generates goes into a single place, namely an
aspect. As mentioned, only a small amount of overhead was observed in the HW system
(compared to jmlc).

Similarly, the use of AspectJ avoids the need to recompile client code when new
clients are added to a program or when specifications change, as all that is needed is
for AspectJ to reweave any changed specifications, a process that can be done as late as
load time.

7.3 Other Interface Specification Languages and Related Work

As mentioned in the introduction, besides JML [17], there are several other interface
specification languages, such as Eiffel [24], Spec# [2], and Code Contracts [11]. The
latter two are both interface specification languages for the C#.

Eiffel has the same runtime checking problems discussed here with JML’s jmlc tool
(since the implmentation of jmlc drew heavily on techniques pioneered by Eiffel).

In Spec# and Code Contracts (as in Eiffel and JML), a method’s specification is
inherited by its overriding methods. However, Spec# and Code Contracts do not allow
a programmer to changes the precondition of an overriding method. A method override
can only add more (stronger) postconditions or invariants. The authors of Spec# and
Code Contracts say that callers (clients) expect the specification of the static resolution
of the method call to agree with runtime checking, which is what we have called con-
sistency with supertype abstraction. However, their design limits what one can specify
for subtypes and only works for preconditions.

Code Contracts has another interesting relationship to our work: it supports runtime
checking at call sites. However, in Code Contracts only preconditions can be checked at
call sites. With CAISC, we can also check postconditions and invariants at call sites. In
addition, Code Contracts do not support open classes, information hiding in separated
specifications, and private members cannot be mentioned in specifications (e.g., post-
conditions) when specifications are separated from the source code. As a consequence,
it would not be able to properly check postconditions with different privacy modifiers.8

The work on Spec# and Code Contracts points out that the major differences be-
tween RAC compilers has to do with their treatment of preconditions, since precondi-
tion checking is the main way that users can observe inconsistencies between runtime
and static checking. However, our CAISC approach is more general, because it also
allows checking of postconditions (and other specifications, such as invariants) for li-
braries when source code is not available.

8 Code contracts does not support privacy modifiers at all at present. But if they were added, then
the ability of Code Contracts to do client-side checking only for preconditions would make it
possible for the tool to respect privacy modifiers only for preconditions.
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Findler and Felleisen’s work [12] describes contract soundness for a language called
Contract Java. In Contract Java a programmer can specify pre- and postconditions of
methods defined in classes and interfaces. Their work uses supertype abstraction to do
runtime checking of pre- and postconditions for method calls — using specifications
associated with the static type of the receiver. Their translation rules, which inject run-
time checking code, check pre- and postconditions associated with the static types at
call sites (client-side checking). Hence their work is a precedent for runtime checking
for violations of supertype abstraction, and for our work on CAISC.

However, Findler and Felleisen’s work has some limitations when compared to our
CAISC. First, their work neither considers separate specifications for different privacy
levels nor enforces information hiding of specifications, as we do. Furthermore, our
client-side checking can check other JML DbC features at call sites (e.g., invariants,
constraints, and model specifications), while their work only mentions and provides
rules for pre- and postconditions. Findler and Felleisen’s work also has a different fo-
cus than our work, as they are primarily concerned with enforcing behavioral subtyp-
ing and presenting the novel idea of soundness of contract checking. Thus, unlike our
work, they do not explicitly point out the problems that can occur if a runtime assertion
checking tool is over-dynamic and does not obey supertype abstraction. Their contract
checking mechanism has two steps: (1) checking pre- and postconditions according to
the receiver’s static type, and (2) checking the dynamic type of the receiver for properly
obeying Liskov and Wing’s [23] conditions for behavior subtping, in order to detect
hierarchy violations. To detect such hierarchy violations, this second check compares
the values of the (self-contained) pre- and postconditions of the dynamic type’s method,
m, against the values of the contracts for all methods that m overrides in supertypes.
One difference is that JML does not presume that method contracts are complete and
self-contained, since it joins contracts with those of supertypes using also; thus in
JML every subtype is a behavioral subtype [16], so no hierarchy violations are possi-
ble. A second difference is that we consider Findler and Felleisen’s checks for hierarchy
violations to be overly-dynamic, since they involve the dynamic type’s specification.

7.4 Open Issues

Our evaluation of CAISC is limited to two systems, Health Watcher [33] and shape
classes [15, 18, 30]. Larger-scale validation is necessary to analyze more carefully the
benefits and drawbacks of CAISC. Library specification and runtime checking studies
are one interesting open challenge. Another open issue is related to IDE support. We
expect that IDE support could aid programmers by showing, for example, the scope of a
precondition’s applicability at the client-side site of a method call. Tools like AJDT al-
ready offer similar functionality for AspectJ programs that indicate which advice apply
in a certain join point [15].

The interfaces we describe are the client-aware versions of standard Java classes
and interfaces. More sophisticated interface technologies have been developed for OOP.
One of these is the aspect-aware interfaces for AspectJ [15]. Our belief is that the basic
idea of CAISC can be enhanced with some principles behind aspect-aware interfaces.
Hence, comparison with other advanced interface technologies will be also useful to
extend or refine this work.
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8 Summary

Client-aware interface specification checking, CAISC, enables consistent modular run-
time checking and modular reasoning in the presence of subtyping, dynamic dispatch,
and information hiding in specfifications. CAISC represents a change in the way that
runtime checks are injected into code, since checks are placed in client code as opposed
to being only done in supplier classes. Furthermore, by using AspectJ as a back-end,
our tool is able to carry out this approach even for interfaces that are textually separated
from source code. Since runtime checks are injected at the point of method calls, the
client’s perspective on the called method can be taken into account, which allows run-
time checking to be consistent with supertype abstraction and privacy modifiers used
for information hiding.
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