
Modular Contracts with Procedures, Annotations, Pointcuts and Advice
Henrique Rebêlo, Ricardo Lima, and Gary T. Leavens,

CS-TR-11-05
September, 2011

Keywords: Aspect-oriented programming, programming by contract, modularity

2011 CR Categories: D.2.1 [Software Engineering] Requirements/ Specifications — languages, AOP, AspectJ; D.2.2 [Software
Engineering] Design Tools and Techniques — computer-aided software engineering (CASE); D.2.4 [Software Engineering] Soft-
ware/Program Verification — Assertion checkers, class invariants, formal methods, programming by contract, reliability, AOP,
AspectJ; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions, invari-
ants, pre- and post-conditions, specification techniques.

To appear in SBLP 2011.

Dept. of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd.
Orlando, FL 32816-2362 USA

Modular Contracts with Procedures, Annotations,
Pointcuts and Advice

Henrique Rebêlo1, Ricardo Lima1, and Gary T. Leavens2

1 Federal University of Pernambuco, Brazil
{hemr,rmfl}@cin.ufpe.br

2 University of Central Florida, USA
leavens@eecs.ucf.edu

Abstract. There are numerous mechanisms for modularizing design by contract
at the source code level. Three mechanisms have been the mainfocus of atten-
tion, metadata annotations, pointcuts and advice. The latter two are well-known
aspect-oriented programming mechanisms, and according tothe literature, fare
better in achieving contract modularization. However, previous efforts aimed at
supporting contract modularity actually hindered it. In this paper we report an
enhanced use of pointcuts and advice, and show how crosscut programming in-
terfaces (XPIs) can significantly improve contract modularity. In addition, we
also discuss how these XPIs can be used together with annotations to tackle the
pointcut fragility problem and minimize the limited enforcement of XPI interface
rules. We compare our approach with the literature’s in terms of code locality,
well-defined interfaces, reusability, changeability, fragility, and pluggability.

1 Introduction

Design by Contract (DbC) is a technique for developing and improving functional soft-
ware correctness [17]. The key mechanism in DbC is the use of the so-called “con-
tracts”. A contract formally specifies an agreement betweena client and its suppli-
ers. Clients must satisfy the supplier’s conditions beforecalling one of the supplied
methods. When these conditions are satisfied, the supplier guarantees certain proper-
ties, which constitute the supplier’s obligations. However, when a client or supplier
breaks a condition (contract violation), a runtime error occurs. The use of such pre-
and postconditions to specify software contracts dates back to Hoare’s 1969 paper on
formal verification [10].

In this context, numerous mechanisms have been developed toinstrument, modular-
ize, and document contracts at source code level, includingprocedures, aspect-oriented
programming mechanisms and others. In this paper we focus onthree mechanisms to
deal with design by contract modularization: metadata annotations [2, 3], and pointcuts
and advice [11]. The latter two are well-known aspect-oriented programming (AOP)
mechanisms. These mechanisms are attracting significant research on DbC [4, 6, 21]
and the special case of contracts known as design rules [18, 23].

It is often claimed in the literature [11, 4, 16, 6] that the contracts of a system are
de-facto a crosscutting concern and fare better when modularized with AOP mecha-
nisms such as pointcuts and advice. To the best of our knowledge, Balzer, Eugster, and

2 H. Rebêlo, R. Lima, and G. T. Leavens

Meyer [1] were the first to investigate the adequacy of aspects to modularize DbC. They
conclude that the use of aspects hinders design by contract implementation and fails to
achieve the main DbC principles such as contract inheritance.

In this paper, we go beyond Balzer, Eugster, and Meyer’s workwith an improved
understanding of why the common uses of AOP have failed to properly modularize
contracts with pointcuts and advice mechanisms. We introduce an enhanced use of such
pointcuts and advice mechanisms to modularize contracts. This enhanced use relies on
well-defined interfaces, known as crosscut programming interfaces, or XPIs [23]. The
key idea behind the use of XPIs is to introduce a crosscuttingprogramming interface for
design constraints of the design by contract concern. Note that throughout this paper,
two related, but distinct concepts are used:contract(description of the operations using
pre- and postconditions) anddesign constraint(a pre-/postcondition, or an invariant).
Hence, we can say that a contract may have one or more design constraints.

To this end, we present a classical example with four design constraints (contracts)
and a comparison between six implementations of this example regarding a set of mod-
ularization mechanisms (including procedures and XPIs). We also illustrate, through
XPIs (pointcuts and advice), how we can properly preserve DbC principles such as con-
tract inheritance [17, 13]. In addition, we also discuss howXPIs can be used together
with annotations to tackle the pointcut fragility problem [22].

We show that XPIs and annotations, unlike the previous efforts [11, 4, 16, 6], fare
better to modularize the design by contract concern using a modularity criteria [12]. We
say the code that implements a design constraint ismodularif:

(i) it is textually local (i.e. not scattered),
(ii) there is a well-defined interface that is an abstractionof the implementation,
(iii) the implementation of a particular design constraintcan be reused if applied to

other parts of the same system (e.g. contract inheritance [17]),
(iv) while performing change tasks, just the related designconstraint’s modules are

examined or changed and no new aspect is added if the change tasks are related
to existing design constraints,

(v) a particular refactoring (e.g. rename method [8]) does not invalidate the applica-
tion of a particular design constraint to one or a set of join points, and

(vi) we can remove or compose design constraints into the system without being inva-
sive (i.e. without modifications to the base code).

Based on this, this paper provides: (i) an understanding of how the XPIs (point-
cuts and advice) and annotations mechanisms work together to modularize contracts
in a system; (ii) an understanding of how the previous works can be improved; (iii) an
analysis of the different mechanisms that considers code locality, interface, reusability,
changeability, fragility, and pluggability.

This paper is structured as follows: Section 2 presents the example and its four
design constraint concerns. Section 3 presents six implementation of the studied mech-
anisms. Section 4 analyzes in qualitative ways these implementations. Section 5 dis-
cusses related work and outlines open research issues. We finish with a summary in
Section 6.

Modular Contracts with Procedures, Annotations, Pointcuts and Advice 3

Shape

moveBy(int, int)

getX()

getY()

setX(int)

setY(int)
moveBy(int, int)

Point

getP1()

getP2()

setP1(Point)

setP2(Point)
moveBy(int, int)

Line

PointBoundsChecking NonNullInputParameters

NonNullReturnTypes

MoveByParametersChecking

Fig. 1. The design of the traditional figure editor system [11, 12, 23], showing the main classes
and four design constraint concerns that crosscuts methodsin the Shape , Point , andLine
classes.

2 A Running Example

This section introduces the example that will be used throughout the paper. It consists
on a simple example from the literature: a figure editing system for editing drawings
made up of shape objects (e.g. points) [11, 12, 23]. Its design is shown in Figure 1.

2.1 Four Design Constraint Concerns

In addition to concerns involving the core functionality ofthe shapes, the design com-
prises four key design constraint concerns, which are shownas dotted-line boxes in
Figure 1. All these design constraint concerns are discussed and enforced in terms of
pre- and postconditions, and invariants [17].

Point-Bounds-Checking – Denotes an invariant constraint on all methods of thePoint

class. This constraint states that the coordinates of a point are stored in particular bounds
(between specificMIN andMAXvalues).

Non-Null-Input-Parameter – Denotes two preconditions that constrain the input ob-
ject parameters, of methodssetP1 andsetP2 of Line class, to be non-null.

4 H. Rebêlo, R. Lima, and G. T. Leavens

Non-Null-Return-Types – Denotes two postconditions that constrain the return object
types, of methodsgetP1 andgetP2 of Line class, to be non-null.

Move-By-Parameters-Checking – Denotes a precondition that constrains the input pa-
rameters of the methodmoveBy to be greater than or equal to zero. This precondition
crosscuts three types (the interfaceShape andPoint andLine classes) that declares
the methodmoveBy. Since this precondition is defined in the supertypeShape , it rep-
resents a contract inheritance [17].

Some of these constraints are interconnected in the sense that their realizations
crosscut the same class. For instance, as observed in Figure1, theLine class has its
methods constrained by three of the four design constraint concerns.

3 Six Implementations

This section presents the code for six implementations of the running example (Fig-
ure 1). As discussed, the running example also comprises four design constraint con-
cerns. Due to lack of space and for simplicity, we present theimplementations of some
design constraints (e.g.Move-By-Parameters-Checking) and informally argument about
the others. A complete implementation of the four design constraints is available at [20].
We conduct an analyzes of these implementations in Section 4.

3.1 GOFP

This first implementation uses good old-fashioned procedures (GOFP) to implement
the DbC concern code. In this implementation, each of the constrained methods of the
figure editor system (Figure 1) includes a call to a procedure(a static method in Java).
This call is placed at the beginning (for precondition code), at the end (for postcondition
code) or both (for invariant code) of each constrained method. Note that this is the
standard form commonly adopted in practice [5].

The following code illustrates the checking of the precondition constraint (stated by
theMove-By-Parameters-Checkingconcern) ofmoveBy method declared at thePoint

class.

void moveBy(int dx, int dy) {

JC.requires(dx >= 0 && dy >= 0,

"dx is "+dx+" dy is "+dy);

setX(getX() + dx);
setY(getY() + dy);

}

The shadowed code shows the precondition constraint code. It checks whether or not
the input parameters of methodmoveBy are greater than or equal to zero; if it is not, a
precondition error is thrown to signal the contract violation. Note that the body of the
procedurerequires (shown below) encapsulates/modularizes the signaling error code
(i.e. thethrow clause).

Modular Contracts with Procedures, Annotations, Pointcuts and Advice 5

However, the call to the procedurerequires and its related error message are still
tangled and scattered within the figure editor system. For example, the methodmoveBy

of classLine (not shown) must have an identical call to this procedure in order to check
the precondition constraint. The scattered call is a limitation of the object-oriented pro-
gramming mechanisms [11, 12] (later we discuss how to avoid such scattering). Regard-
ing the error message code, besides being tangled and scattered, it still makes the code
more polluted and verbose. This error message code is reallyimportant in the context
of DbC purposes [17, 14]. Once a precondition error is detected, a user should receive
a detailed description of the violation in order to track andfix the error. A detailed er-
ror message could be in terms of class name, method name, context values (e.g. values
of input parameters), and so forth.(The second shadowed line of the methodmoveBy

illustrates the context values passing.)

static void requires(boolean constraint, String errorMsg) {

if (!constraint)

throw new PreconditionError(errorMsg);

}

This implementation illustrates the declaration of the procedurerequires used to
check precondition constraints. Let us assume that this procedure was declared in a
Java class calledJC (used to encapsulate all Java contract based operations). This is an
alternative instead of Java assertions, since in Java we do not have other built-in support
for DbC [17].

The postcondition and invariant constraint are implemented similarly. The main
difference is that the procedure call is placed at the end of aconstrained method (for the
postcondition) or at beginning and end of a constrained method (for the invariant).

3.2 Enhanced-GOFP

This implementation enhances the previous one with the use of a strategydesign pat-
tern [9]. It is used to encapsulate the constraint and error message code. Hence, we need
only to pass the input parameters and the name of the method used to compose a useful
error reporting message. As a result, the precondition constraint is modularized in the
MoveByParametersCheckingTester class. This implementation is not commonly
used in practice [5], but it helps to reduce the tangling and scattered implementation of
the precondition constraint related to the GOFP procedure.

void moveBy(int dx, int dy) {

JC.requires(new MoveByParametersCheckingTester(dx, dy ,

"Point.moveBy"));

setX(getX() + dx);
setY(getY() + dy);

}

Even though we were able to modularize the precondition constraint and also the error
reporting code in the strategy classMoveByParametersCheckingTester , we cannot
remove the scattered calls to the procedurerequires (we still have a similar call to

6 H. Rebêlo, R. Lima, and G. T. Leavens

this procedure in the body of methodmoveBy in Line class). This is a limitation of the
object-oriented code [11, 12]. Later in this section, we discuss how to improve these
implementation through an enhanced use of pointcuts and advice.

3.3 Pointcuts-Advice

In this implementation, we show how the work described in thecurrent literature [11, 4,
16, 6] uses the aspect-oriented programming mechanisms such as pointcuts and advice
to implement and “modularize” the same discussed precondition. We evolve enhanced-
GOFP implementations with these AOP mechanisms.

void moveBy(int dx, int dy) {
setX(getX() + dx);
setY(getY() + dy);

}

before(int dx, int dy):
execution(void Point.moveBy(int, int))
&& args(dx, dy) {

JC.requires(new MoveByParametersCheckingTester(dx, dy ,

"Point.moveBy"));

}

A single before advice is used to modularize the call to procedurerequires in
Point.moveBy . For theLine class, a similarbefore advice is used; the only change is
in thepointcut (i.e.execution(void Line.moveBy(int, int))). In the litera-
ture [11, 4, 16, 6], other authors employ an aspect per class.Hence, we have two aspects
(one for classPoint and other for theLine one) where each one has abefore advice
used to check the precondition constraint stated by theMove-By-Parameters-Checking
concern.

However, as the reader can observe, this has the same scattering problem presented
as in the GOFP and enhanced-GOFP implementations. As a consequence, the following
question can be raised, “What are the benefits of the aspectization of design by contract
besides the physical separation?”. We answer this question based on some variations of
this implementation and some analysis and discussions carried out in Sections 4 and 5.

3.4 Annotation-Pointcuts-Advice

This implementation uses Java 1.5 metadata annotations [2,3]. Thus, each constrained
method that follows the restrictions imposed by theMove-By-Parameters-Checking
concern has a custom annotation that states that the execution of the constrained and
annotated method should check the precondition.

@PointMoveByParametersChecking
void moveBy(int dx, int dy) {

setX(getX() + dx);
setY(getY() + dy);

}

Modular Contracts with Procedures, Annotations, Pointcuts and Advice 7

The followingbefore advice differs from the previous one (without annotations)in
the sense that it intercepts the execution based on methods marked with the annotation
@PointMoveByParametersChecking . It is written as:

before(int dx, int dy):
execution(@PointMoveByParametersChecking * * (..))
&& args(dx, dy) {

JC.requires(new BoundsCheckingTester(dx, dy,

"Point.moveBy"));

}

Supplying annotations. Aspect-oriented programming languages such as AspectJ of-
fers specific static crosscutting constructs to supply (introduce) annotations in a cross-
cutting manner [3]. Hence, we do not need to directly mark themethod declaration,
instead we can perform the following:

declare @method: void Point.moveBy(int, int):
@PointMoveByParametersChecking;

This declaration introduces the annotation@PointMoveByParametersChecking on
methodPoint.moveBy in a crosscutting way. Such a mechanism is useful when we
have several methods with the same annotation, leading to annotation clutter. More-
over, this AspectJ feature [3] works as a contributing factor to the pointcut fragility
problem [22] encountered in AspectJ-like languages. If we apply a renamingmethod
refactoring [8] in methodPoint.moveBy , we got a compile-time error saying that the
method “void Point.moveBy(int, int) ” does not exist. In this case the developer
is forced to implement the exposed member. Note that this design rule enforcement [18]
is not possible in the literature-based approach without metadata annotations.

3.5 Enhanced-Pointcuts-Advice

In this implementation, we show how the use of pointcuts and advice, in contrast to the
literature [11, 4, 16, 6], can be enhanced. We seek an enhanced design by contract code
modularization by exploring the quantification property ofAOP. Quantification is one
of the main benefits when adopting aspect-orientation [7, 24].

Another key idea behind our methodology is to combine pointcuts and advice with
the notion ofcrosscut programming interfaces, or XPIs [23]. We use XPIs to introduce
a short design phase before the design of the base and aspect code. During this design
phase, for each (design constraint) concern, we define an (XPI) interface to decouple
the base design an the aspect design.

The following code is related to the XPI declaration used to expose all the con-
strained join points by theMove-By-Parameters-Checkingconcern.

aspect XMoveByParametersChecking {
public pointcut jp(int dx, int dy):

execution(void Shape+.moveBy(int, int))
&& args(dx, dy);

}

8 H. Rebêlo, R. Lima, and G. T. Leavens

By convention, aspects that specify XPIs begin with an “X” in order to distinguish them
from non-interface aspects. The syntactic part of the XPI exposes one named pointcut
(jp). Theexecution(void Shape+.moveBy(int, int)) pointcut means execu-
tion of any methodmoveBy defined inShape or a subclass ofShape , that returnsvoid
and take two integer arguments. In contrast to previous works [11, 4, 16, 6], our imple-
mentation of the precondition gains in reusability achieved by the AspectJ quantification
property, in this case, expressed by the use of ‘+’ (used to intercept a hierarchy).

The aspect code that uses the XPI for theMove-By-Parameters-Checkingconcern
is written as:

aspect MoveByParametersPreconditionChecking {
before(int dx, int dy):

XMoveByParametersChecking.jp(dx, dy) {

JC.requires(new BoundsCheckingTester(dx, dy,

"Shape+.moveBy"));

}
}

The aspect now depends only on the abstract public pointcut signature denoted byjp .
Unlike in the literature approach [11, 4, 16, 6], the pointcuts used within the advice code
do not depend anymore on implementation details of theShape , Point , orLine types.
As the pointcutjp intercepts execution of any Shape objects (including subclasses), the
precondition constraint code is reused and automatically applied to methodmoveBy of
Point andLine classes. As a result, we augmented the reuse by using the quantifica-
tion mechanism present in aspect-oriented languages such as AspectJ. Hence, instead
of two before advice with a duplicated call to the procedurerequires (precondition
checking code), we only have a localized one. This is one example of how to properly
implement the contract inheritance principle of DbC methodology [17].

One of the main objectives of the XPI interfaces is to guarantee that the exposed
join points are really implemented in a system, thus avoiding the pointcut fragility prob-
lem [22]. However, the XPI approach has limited enforcementof interface rules [23].
The application of object-oriented refactorings [8] such as renamingcan break the ex-
posed join points in the XPI interfaces. In the following, wediscuss how XPIs can be
significantly improved by using metadata annotations in combination with supplying
annotations [3] (previously discussed).

3.6 Enhanced-Annotation-Pointcuts-Advice

This implementation differs from the previous one only in the way that XPIs expose
the join points. We combine the Java 1.5 metadata annotations [2] with the AspectJ
supplying annotations mechanisms [3].

Consider the discussed XPI implementation (without annotations) of theMove-By-
Parameters-Checkingconcern. With the application of metadata annotations, theex-
posed pointcuts become as follows:

Modular Contracts with Procedures, Annotations, Pointcuts and Advice 9

aspect XMoveByParametersChecking {
declare @method: void Shape+.moveBy(int, int):

@MoveByParametersChecking;

public pointcut jp(int dx, int dy):
execution(@MoveByParametersChecking * * (..))
&& args(dx, dy);

}

The XPI now exposes all the@MoveByParametersChecking join points. The rest of
the code to check the precondition (the advising code) remains the same as discussed.
In addition, we mentioned that XPIs, without metadata annotations, have a limited en-
forcement of interface rules. For example, in the non-annotation approach, we can not
ensure that the subclasses ofShape really implements the exposed join point by the
XPI. Let us assume that we performed an OOrenamingrefactoring [8] to change the
name of the methodmoveBy. If the programmer does not change the XPI as well, the
crosscutting behavior will be discarded. This problem is caused by the pointcut fragility.
However, by employing annotations, all the marked methods must exist during compile-
time 1. Hence, if the hierarchy ofShape replaces the name of themoveBy method with
a new one, we got a compile-time error saying that the methodmoveBy does not exist
in the Shape’s hierarchy.

Therefore, the use of metadata annotations enhance the XPI specification when ex-
posing all the join points of a particular concern. This approach helps to improve the
enforcement (in a compile-time enforcement fashion) of interface (design) rules. The
idea to ensure design rules through a well-defined interfaceis discussed by Netoet
al.’s work [18]. They extend the AspectJ syntax with design rules that are enforced
for both base and advised code. Hence, they provide more powerful design rules than
those achieved by XPIs [23]. We rely on XPIs because they are AspectJ-based, require
no new constructs, and they are currently available for AspectJ users (including our
enhancements using metada annotations [2], Bonner).

4 Analysis of the Implementations

In this section, we present an analysis of the six implementations (non-AOP and AOP
based) of the figure editor (Figure 1) regarding the four design constraints concerns
identified in Section 2 and based on the different mechanismsinvestigated in this paper.
The assessment uses six modularity criteria (summarized inTable 1 and discussed in
Introduction Section): code locality, interface, reusability, changeability, fragility, and
pluggability. The analysis is broken into three parts: (i) non-AOP implementations, (ii)
AOP implementations, and (iii) reasoning about change. Thelast part uses the change-
ability modularity criterion.

1 This can only be enforced for those join points that were explicitly defined without quantifica-
tion.

10 H. Rebêlo, R. Lima, and G. T. Leavens

Table 1. Analysis of the six implementations.

Locality Interface Reusability Changeability Fragility Pluggability
non AOP GOFP no low no no n/a no

EGOFP medium medium medium medium n/a no
PA(1) medium medium medium medium yes yes

AOP APA(2) medium medium medium medium no yes
EPA(3) high high high high yes yes

EAPA(4) high high high high no yes

(1) Pointcuts-Advice.
(2) Annotation-Pointcuts-Advice.
(3) Enhanced-Pointcuts-Advice.
(4) Enhanced-Annotation-Pointcuts-Advice.

4.1 The Non-AOP Implementation

In the non-AOP code, the GOFP implementation of the figure editor system (Figure 1)
fails to satisfy our modularity criteria related to the fourdesign constraints. Firstly, it
is not localized. The GOFP implementation is good in the sense that it modularizes
the signaling of contract violation. However, its realization is still scattered due to all
necessary calls to it. The legibility and tangling become even worse in GOFP due to the
error message code (including context information).

The GOFP implementation has a clearly defined interface, butthis interface fail to
say anything about the design constraints. Even if the interface in GOFP is an abstrac-
tion of the implementation, any change to a design constraint may propagate several
other changes due to the tangled and scattered nature of suchconstraint. This also hin-
ders our reusability and pluggability criteria.

On the other hand, the enhanced procedure implementation (EGOFP) fares better
than the GOFP one. Since we use a strategy design pattern [9] to encapsulate the con-
straint and error reporting code, we have augmented the reuse of DbC constraints such
as preconditions. The encapsulation of the constraint codealso improved the code lo-
cality criterion. Finally, the use of the strategy pattern isolates code related to design
constraints; this leads to a notion of interface that we do not have with plain GOFP.
However, EGOFP implementation still have scattered and tangled calls to procedures
that check constraints.

A common property of both GOFP and EGOFP is that they compromise our plug-
gability criterion, because the DbC concern removal is veryinvasive in a non-AOP way.
Table 1 summarizes our analysis results.

4.2 The AOP Implementation

In the AOP code, each implementation exhibits better code locality (against non-AOP)
resulting in a non-tangled DbC code. However, only the enhanced AOP implemen-
tations really exhibit improved code locality (see Table 1). This happens due to the
reusability achieved for procedure calls (which check pre-and postconditions, and in-
variants). The non-enhanced AOP implementations only exhibit reusability (quantifica-
tion) for invariant code. This compromises the overall reusability (in terms of pre- and

Modular Contracts with Procedures, Annotations, Pointcuts and Advice 11

postconditions) and code locality (pre- and postconditions are still scattered in AOP
code as procedure calls).

The enhanced AOP implementations offer better interfaces for the DbC concern
than non-enhanced ones. The interfaces are now a more accurate reflection of the design
constraints. For example, one can look at a particular XPI and reason about the effect of
a design constraint in the entire system. This separation simplifies the reasoning during
a change (our changeability criterion). Since the DbC code is well-localized, we just
need to change the pointcut declaration of XPIs in order to reuse and apply a common
constraint code, for example, to new added methods of an existing Shape class.

All AOP implementations satisfy the pluggability criterion, because the DbC code
is completely localized as aspects and can be easily removedand composed when nec-
essary. Only the implementations that consider metadata annotations can improve the
fragility pointcut problem. In summary, our last implementation fares better in all mod-
ularity criteria.

4.3 Reasoning about Change

This section analyzes the implementations in terms of how well they fare when per-
forming some change tasks (Table 1 summarizes how fare the changeability criteria
for all the implementations). The selected change tasks combined affect all the design
constraint concerns discussed in Section 2. This is useful to analyze the impact of the
changes regarding the existing implementation of the design constraints.

Adding Color to Figure editor. The first change task (used in other work [23]) adds
Color (new class) as an attribute, with getter and setter methods,in both Point and
Line classes. The requirement is that added (Color) setter methods must fulfill the
constraints imposed by theNonNullInputParametersconcern. The added (Color) get-
ter methods should in turn fulfill the constraints imposed bythe NonNullReturnTypes
concern. Finally, any method added inPoint class must satisfy the invariant condition
imposed by thePointBoundsCheckingconcern.

Adding a new Shape class. Our second change task adds a new Shape (Square) class
in the figure editor system. This new added class has a set of new getter and setter meth-
ods in addition to themoveBy method (implemented through theShape interface). The
getter methods must satisfy the constraints imposed by theNonNullReturnTypescon-
cern, the setter ones must satisfy theNonNullInputParametersconcern, and themoveBy

method must satisfy theMoveByParametersCheckingconcern.
In GOFP, the programmer must edit all the added operations tofulfill the design

constraint concerns of these change tasks. These edits are related to the addition of
procedure calls responsible for checking the design constraint and passing the context
information useful for generating good error messages. Besides the changes of every
added operation, this implementation also fails if we change or refine the existing de-
sign constraints. This again leads to changes on every operation related to the refined
design constraints. This is a direct consequence of the lackof reuse previously dis-
cussed. In EGOFP, it also involves editing the same added operations (related to the

12 H. Rebêlo, R. Lima, and G. T. Leavens

change tasks). However, these edits are related only to procedure calls since the de-
sign constraint code are, in fact, encapsulated in the strategy design pattern. As a result,
EGOFP implementations fare better while maintaining existing design constraints.

Another important issue to consider is when the number of shape classes increases.
This indicates that the number of edited places also goes up while using the GOFP and
EGOFP implementation mechanisms. In sum, the GOFP and EGOFPimplementations
have limited benefits to satisfy our changeability criteria.

In the AOP-based, only the enhanced ones have exhibited better changeability. In
relation to the non-enhanced ones, we have limited improvements because they have
failed to properly deal with calls to procedures that check pre- and postconditions.
Thus, for a new added operation that has pre- and postcondition constraints associ-
ated, we need to add two new advice with a call to a corresponding procedure. Without
quantification, we tend to have the same problems occurred with GOFP and EGOFP
implementations.

The use of quantification [7, 24] combined with a well-definedcriteria to decom-
pose the design constraints, led us to mitigate the limitations of the non-enhanced AOP
implementations. This is the approach discussed in this work, which employs XPIs for
modularizing DbC code. The main benefit of our approach is that, unlike the previous
analyzed implementations, we always modify the same placeswhile adding new shapes
classes. This is an evidence that our approach is more scalable and has maintenance
advantages than previous ones. Table 1 summarizes these findings. All the six imple-
mentations along with their implemented change tasks are available on the web [20].

5 Discussion

When a concern’s implementation is not modularized, that is, the implementation is
scattered across the program and tangled with the source code related to other concerns,
the concern is said to becrosscutting[11]. As advocated, DbC [17] is an example of
a concern in which its realization become crosscutting [11,4, 16, 6] and that its imple-
mentation is better modularized by AOP.

However, as mentioned (in the Introduction Section), the work by Balzer, Eugster,
and Meyer [1] contradicts this common belief. The authors conducted a study similar
to the one we did here by using the same figure editor system [11, 12]. They argue that
the use of AOP hinders the proper usage of DbC, since the former fails to emulate the
latter. Their main complaints are: (i) aspects cannot deal with contract inheritance [17,
13], (ii) AOP breaks the documentation [17] property inherent of DbC, and (iii) the
aspects appear separately from the base program.

In fact, our analysis confirms Balzer, Eugster, and Meyer’s [1] findings. On the other
hand, our work goes beyond theirs in the sense that we have also identified the main
reasons why the literature efforts [11, 4, 16, 6] have failedto address the modulariza-
tion problem and the main DbC principles. In this context, wediscussed how best to
use AOP mechanisms such as quantification [7, 24], pointcuts, and advice, in addition to
their combination with metadata annotations [2, 3] which inturn makes the design more
stable and less fragile [22]. These new findings confirm that common DbC objectives
such as contract inheritance (complaint i) can be successfully implemented using AOP

Modular Contracts with Procedures, Annotations, Pointcuts and Advice 13

(we demonstrated this regarding the implementation of theMoveByParametersCheck-
ing constraint which is common to all shape figures).

In relation to the claim that AOP hinders the documentation property (complaint ii)
that is inherent in DbC, we argue that AOP languages such as AspectJ offer new mech-
anisms and possibilities that solve this problem. In particular, metadata annotations [2]
can be used directly on the advised code, or in a crosscuttingmanner [3], to provide way
to document the design constraints. Tools like AJDT alreadyoffer similar functionality
that indicate which advice apply in a certain join point [12].

Regarding the last complaint, Where we document and instrument the contracts
of libraries which source code is not available? This complaint goes against the run-
time verification of APIs which we do not control source code.Hence, the previous
works [11, 4, 16, 6] already showed how to properly separate/abstract the behavior (con-
tracts) from its implementation details.

Another point to highlight is that by using XPIs [23], we explicitly make a well-
defined interface that is responsible for introducing a short design phase that decouples
the base and aspect designs. The application of well-definedinterfaces help to decom-
pose the DbC concern into small common design constraints and change the proper XPI
interface whenever needed. Finally, we also demonstrated that by using annotations we
can increase the design rules enforcement of XPIs, for example, that all exposed join
points should exist in the advised (base) code.

5.1 Other forms of Aspectized DbC

As discussed throughout the paper, there are several works in the literature that ar-
guments if favor or implementing DbC with AOP [11, 4, 16, 6]. Kiczales opened this
avenue by showing a simple precondition constraint implementation in one of his first
papers on AOP [11]. After that, several other authors explored how to implement and
separate the DbC concern with AOP [4, 16, 6, 21]. All these works offer common tem-
plates and guidelines for DbC aspectization. However, as wehave shown, only invari-
ants have benefited from these original guidelines. We complement previous work in
the sense of how to better separate and reason about contracts with aspects. One impor-
tant issue to point out about these researched templates is that they have been shown to
be very useful in the context of generative programming [21,19].

5.2 Open Issues

A first open issue is to expand our concept of applying XPIs forDbC to investigate how
it fares when used to modularize advanced concepts of designby contract [17], such as
frame properties, information hiding with datagroups, history constraints, and abstract
contracts (such as model fields and model methods used in JML [14, 15]). All these
features are available in JML [14, 15] (an interface specification language for Java).

Another next important step is the large-scale validation.There are several works [11,
4, 16, 6, 21] in the literature that advocate the use of AOP to modularize DbC. Other
work criticizes this use [1]. So a larger-scale validation seems necessary to more defini-
tively settle this question. Furthermore, a predictive model for using aspects to imple-
ment design by contract will be useful to guide developers torecognize the situations

14 H. Rebêlo, R. Lima, and G. T. Leavens

where it is advantageous to aspectize DbC code. Studies focusing on modular reason-
ing and comprehensibility denote another issue. Comparison with other advanced tech-
niques (like JML [14, 15]) will be also useful to extend or refine this work.

6 Summary

Metadata annotations, pointcuts and advice are useful mechanisms for separating the
design by contract concern in source code. To better understand and be able to work
with these mechanisms, we proposed the use of well-defined interfaces, known as XPIs.
Such interfaces are useful to decompose and reason about thedesign by contract code as
recurrent design constraint concerns. We also combined this use of XPIs with metadata
annotations, to improve the limited enforcement of XPI interfaces on advised code.
Finally, we evaluated these mechanisms, in a small classical example, in terms of some
modularity criteria and how they fared when performing change tasks.

The model proposed here provides a good basis for further research on design by
contract implementation and modularization. We expect improvements to the model
and guidelines to the combined use of annotations, pointcuts and advice.

Acknowledgements

We thank Eric Eide, Mario Südholt, Arndt Von Staa, David Lorenz and Mehmet Aksit
for fruitful discussions (we had during the AOSD 2011) aboutthe ideas developed in
this paper and about design by contract modularization in general.

This work has been partially supported by CNPq under grant No. 314539/2009-
3 for Ricardo Lima. Henrique Rebêlo is also supported by FACEPE under grant No.
IBPG-1664-1.03/08. The work of Leavens was partially supported by a US National
Science Foundation grant, CCF-10-17262.

References

1. Stephanie Balzer, Patrick Th. Eugster, and Bertrand Meyer. Can aspects implement contracts.
In In: Proceedings of RISE 2005 (Rapid Implementation of Engineering Techniques, pages
13–15, September 2005.

2. Joshua Block. A metadata facility for the java programming language, 2004.
3. Jonas Boner. Aspectwerks. http://aspectwerkz.codehaus.org/.
4. Lionel C. Briand, W. J. Dzidek, and Yvan Labiche. Instrumenting Contracts with Aspect-

Oriented Programming to Increase Observability and Support Debugging. InICSM ’05: Pro-
ceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05),
pages 687–690, Washington, DC, USA, 2005. IEEE Computer Society.

5. Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages.
In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 2103–
2110, New York, NY, USA, 2010. ACM.

6. Yishai A. Feldman, Ohad Barzilay, and Shmuel Tyszberowicz. Jose: Aspects for Design by
Contract80-89.sefm, 0:80–89, 2006.

7. Robert E. Filman and Daniel P. Friedman. Aspect-orientedprogramming is quantification
and obliviousness. Technical report, 2000.

Modular Contracts with Procedures, Annotations, Pointcuts and Advice 15

8. Martin Fowler.Refactoring: improving the design of existing code. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1999.

9. Erich Gamma et al. Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

10. Charles Antony R. Hoare. An axiomatic basis for computerprogramming.Commun. ACM,
12(10):576–580, 1969.

11. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of aspectj. InProceedings of the 15th European Conference
on Object-Oriented Programming, ECOOP ’01, pages 327–353, London, UK, UK, 2001.
Springer-Verlag.

12. Gregor Kiczales and Mira Mezini. Aspect-oriented programming and modular reasoning. In
Proceedings of the 27th international conference on Software engineering, ICSE ’05, pages
49–58, New York, NY, USA, 2005. ACM.

13. Gary T. Leavens. JML’s rich, inherited specifications for behavioral subtypes. In Zhiming
Liu and He Jifeng, editors,Formal Methods and Software Engineering: 8th International
Conference on Formal Engineering Methods (ICFEM), volume 4260 ofLecture Notes in
Computer Science, pages 2–34, New York, NY, November 2006. Springer-Verlag.

14. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-
ioral interface specification language for Java.ACM SIGSOFT Software Engineering Notes,
31(3):1–38, March 2006.

15. Gary T. Leavens and Peter Müller. Information hiding and visibility in interface specifica-
tions. InInternational Conference on Software Engineering (ICSE), pages 385–395. IEEE,
May 2007.

16. Marius Marin, Leon Moonen, and Arie van Deursen. A classification of crosscutting con-
cerns. InICSM ’05: Proceedings of the 21st IEEE International Conference on Software
Maintenance, pages 673–676, Washington, DC, USA, 2005. IEEE Computer Society.

17. Bertrand Meyer. Applying “design by contract”.Computer, 25(10):40–51, 1992.
18. Alberto Costa Neto, Arthur Marques, Rohit Gheyi, Paulo Borba, and Fernando Castor. A de-

sign rule language for aspect-oriented programming. InSBLP ’09: Proceedings of the 2009
Brazilian Symposium on Programming Languages, pages 131–144. Brazilian Computer So-
ciety, 2009.

19. Henrique Rebêlo, Ricardo Lima, Márcio Cornélio, Gary T. Leavens, Alexandre Mota, and
César Oliveira. Optimizing generated aspect-oriented assertion checking code for jml using
program transformations: An empirical study.Sci. Comput. Program., 2010. Submitted
for publication. Also available as a TR at:http://www.eecs.ucf.edu/ ˜ leavens/
tech-reports/UCF/CS-TR-10-01/TR.pdf .

20. Henrique Rebêlo, Ricardo Lima, and Gary T. Leavens. Modular contracts with procedures,
annotations, pointcuts and advice. Available from:http://cin.ufpe.br/ ˜ hemr/
sblp11 .

21. Henrique Rebêlo, Sérgio Soares, Ricardo Lima, Leopoldo Ferreira, and Márcio Cornélio.
Implementing java modeling language contracts with aspectj. In SAC ’08: Proceedings of
the 2008 ACM symposium on Applied computing, pages 228–233, New York, NY, USA,
2008. ACM.

22. Maximilian Störzer and Christian Koppen. Pcdiff: Attacking the fragile pointcut prob-
lem, abstract. InEuropean Interactive Workshop on Aspects in Software, Berlin, Germany,
September 2004.

23. Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuanyuan Song, Yuanfang Cai, Mac-
neil Shonle, and Nishit Tewari. Modular aspect-oriented design with xpis.ACM Trans. Softw.
Eng. Methodol., 20:5:1–5:42, September 2010.

24. Marco Tulio Valente, Cesar Couto, Jaqueline Faria, and Sérgio Soares. On the benefits of
quantification in aspectj systems.J. Braz. Comp. Soc., 16(2):133–146, 2010.

	TR
	sblp_2011.pdf

