
The Design of SafeJML, a Specification Language for SCJ
with Support for WCET Specification

Ghaith Haddad, Faraz Hussain, and Gary T. Leavens

CS-TR-10-06
June 2010

Keywords: safety-critical, real-time, WCET, timing analysis, timing constraints, formal specification, verification, oSCJ, RapiTime, Safety
Critical Java language, SCJ, SafeJML specification language.
2010 CR Categories: D.2.1 [Software Engineering] Requirements/Specifications — languages, tools, JML; D.2.4 [Software Engineering]
Software/Program Verification — Formal methods, programming by contract, reliability, tools, JML; D.2.7 [Software Engineering] Distribu-
tion, Maintenance, and Enhancement — Documentation; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning
about Programs — Assertions, logics of programs, pre- and post-conditions, specification techniques;

Submitted for publication.

School of EECS
4000 Central Florida Blvd.

University of Central Florida
Orlando, Florida 32816, USA

The Design of SafeJML, a Specification Language for SCJ
with Support for WCET Specification

Ghaith Haddad
University of Central Florida,

Orlando, FL, USA
haddad@ieee.org

Faraz Hussain
University of Central Florida,

Orlando, FL, USA
fhussain@eecs.ucf.edu

Gary T. Leavens
University of Central Florida,

Orlando, FL, USA
leavens@eecs.ucf.edu

ABSTRACT
Safety-Critical Java (SCJ) is a dialect of Java that allows program-
mers to implement safety-critical systems, such as software to con-
trol airplanes, medical devices, and nuclear power plants. SafeJML
extends the Java Modeling Language (JML) to allow specification
and checking of both functional and timing constraints for SCJ pro-
grams. When our design of the SafeJML is implemented, it will
help check the correctness of detailed designs, including timing for
real-time systems written in SCJ.

1. INTRODUCTION
Safety-critical systems are systems in which an incorrect response
or an incorrectly timed response can result in significant loss, in-
cluding loss of life. Safety-critical systems are usually also real-
time systems. They must also be extremely reliable and safe, as
they control critical systems like airplanes and nuclear reactors.
Moreover, response time is crucial in these systems, as they interact
with a hardware interface [3].

Software reliability is a major issue for safety-critical systems. Many
life-threatening incidents have been caused by real-time software
malfunctions or bugs. Examples include the Apollo 11 mission,
where an overloaded processor nearly caused the first moon land-
ing to fail, and the Therac-25 radiation therapy machine, where a
timing bug in the code controlling the machine resulted in five pa-
tient deaths [28]. Many other examples can be found in literature
and news [29]. Thus safety-critical systems require a rigorous vali-
dation and certification process. For example, in the United States,
the Federal Aviation Administration requires certification of air-
craft software using the DO-178B standard [33].

One benefit of using SCJ is that, being a dialect of Java, it promises
higher productivity than programs written in lower-level languages,
such as C, or assembler. Higher software productivity could greatly
help the development of real-time and safety-critical embedded sys-
tems, given their intrinsically higher development costs. In partic-
ular, using SCJ gives the potential for better tool support, such as
integrated development environments, and will allow more seam-
less development of embedded systems that are tightly integrated

Copyright retained by authors. Submitted to JTRES 2010.

with (non-critical) back-end systems.

The Java Modeling Language (JML) [2, 5, 23, 22, 26] is a behav-
ioral interface specification language (BISL) [38] that boasts many
state of the art features for functional specification.

JML’s design currently has minimal support for specification of
timing constraints, in the form of the duration clause, which
is based on the work of Krone et al. [20]. This clause is designed
to specify the maximum time (i.e., worst case execution time or
WCET) needed to process a method call in a particular specifica-
tion case in “JVM cycles” [26]. However, the duration clause
has never been implemented in the JML tools or used in actual case
studies. Further, it is not clear that measuring speed in JVM cycles
is appropriate for real-time systems.

Our design of SafeJML revises the duration clause to make it
be based on absolute time units, and adds several other features
that enable the use of various tools to check timing constraints. We
describe both our rationale for the language design and our initial
design of an implementation. To our knowledge, this is the first
publicly released and documented real-time extension to JML. The
main contribution of this work is the specification language design.

2. AN OVERVIEW OF SAFEJML
SafeJML is designed to allow SCJ users to be able to specify both
functional and timing behavior. In this section we first give an
overview of SCJ and the implementation of SCJ that we use — the
oSCJ virtual machine. While there is also a reference implemen-
tation of SCJ available, the oSCJ implementation is the most ma-
ture implementation, and, because it translates SCJ programs into
C code, allows us to work with low level WCET analysis tools.

As an example of how SafeJML can integrate with WCET analysis
tools we also introduce RapiTime [19]. Our design of SafeJML is
intended to be usable with other WCET analysis tools, for example
AbsInt’s aiT static analysis tool [9, 15, 14]. However, we chose
RapiTime because the annotation information that RapiTime can
process is a superset of that understood by aiT. Thus by targeting
RapiTime, we have a good start on making our tool work for both
RapiTime and aiT.

2.1 Safety Critical Java (SCJ)
While Java offers the possibility of high software productivity, it is
not tailored for safety critical or real-time systems. In particular,
Java’s garbage collection may cause unpredictable worst case exe-
cution times. To avoid these problems, SCJ was developed as a Java
Specification Request [37]. SCJ is designed to enable the creation

1

of safety-critical applications built using a safety-critical Java in-
frastructure and using safety-critical libraries that are amenable to
certification under DO-178B, Level A [33] and other safety-critical
standards. JSR-302 is near completion now [17].

Vitek’s group at Purdue has produced oSCJ [7], an open-source SCJ
implementation based on OVM [32]. (Currently oSCJ implements
all of Level 0 of SCJ [37].) Like OVM, oSCJ takes the approach of
compiling both the SCJ code and virtual machine into a (large) C
program, which is then compiled with a standard C compiler (such
as gcc) appropriate for the hardware. This process allows SafeJML
to use WCET tools that are targeted at C program object files (as
opposed to Java bytecodes). It also allows users to combine Java
code with C code. Such C code is often used for device drivers
and other low level parts of safety critical systems. (SafeJML is
designed to specify such C code by specifying the Java Native In-
terface (JNI) declarations used to interface the Java code to the C
code.)

2.2 Timing Analysis with RapiTime
Standard WCET analysis tools such as aiT use static program anal-
ysis techniques. This approach requires having a precise timing
model for the target processor. By contrast, the RapiTime tool
[19], uses a hybrid WCET analysis using runtime measurements
together with static program analysis [1]. This approach promises
more portability to new processors than an approach based purely
on static analysis.

For these reasons both the oSCJ team at Purdue and our team at the
University of Central Florida have decided to use RapiTime as their
main analysis tool. However, we intend the design of SafeJML to
also allow the use of other tools, such as aiT. As mentioned above,
another reason for our decision is that RapiTime seems to accept
more information from user annotations than aiT, and so a design
of SafeJML that targets RapiTime should also allow the use of aiT.

In order for RapiTime to do WCET analysis, it first derives a static
model by parsing the source code to build a control flow graph.
Then the user runs various test inputs on the target machine, while
RapiTime records execution times for the program’s basic blocks.
RapiTime then uses the worst case recorded time for each basic
block and information from static analysis or from user annotations
about the maximum number of times control may pass through var-
ious basic blocks (such as the bodies of loops) to complete a model
of the timing behavior of the software. Rapitime calculates the
worst case execution times of each method by multiplying the max-
imum number of executions for each basic block and the maximum
recorded execution time for that block. The model can also provide
a path-sensitive calculation of the worst case execution time for a
program, by using the program’s call graph.

Note, however, that RapiTime’s technique for modeling worst case
execution times requires the user to provide sample inputs (test
cases) that exercise the worst case execution time for each basic
block. Such inputs must also provide complete code coverage. The
possibility that the user might not know how to provide such inputs
is the main disadvantage of this approach. However, this disadvan-
tage can be mitigated by providing more sample inputs.

Rapitime can be considered path-sensitive; although it needs the
code to be executed in order to perform analysis, it collects timing
information for each execution path, and then it uses the program’s
call graph and flow graph to calculate the WCET for each path.

2.3 A First SafeJML Example
In this subsection we give a first example of SafeJML. This exam-
ple is taken from MiniCDj, a SCJ rewrite of the CDx benchmark
suite [18]. The CDx benchmark suite is an open-source family of
collision detection benchmarks that can measure performance of
various soft and hard real time platforms. The example is a method
call that is responsible for computing the motions and the current
positions of aircrafts; it then stores the positions of the aircrafts in
a state table.

1 public List createMotions() {
2 Benchmarker.set(6);
3 final List ret = new LinkedList();
4

5 Aircraft craft;
6

7 for (int i = 0, pos = 0;
8 i < currentFrame.planeCnt; i++) {
9 /*@ maximum_loop_iterations

MAX_PLANES_PER_FRAME; @*/
10 / / pe r fo rm some c a l c u l a t i o n s.. .
11 if (old_pos == null) {
12 / / new a i r c r a f t ; c a l c u l a t e more.. .
13 //@ path new_aircraft;
14 /*@ local_worst_case

MAX_NEW_PLANES_PER_FRAME; @*/
15 ...
16 } else {
17 / / o l d a i r c r a f t ; o t h e r c a l c u l a t i o n s.. .
18 /*@ path old_aircraft
19 \exclude new_aircraft; @*/
20 ...
21 }
22

23 ret.add(m);
24 }
25 }
26 Benchmarker.done(6);
27 return ret;
28 }

Figure 1: The createMotions method from the collision de-
tection benchmark, with SafeJML annotations added.

The package uses the method call Benchmarker.set() and
Benchmarker.done() (lines 2 and 26, respectively) as an an-
chor for RapiTime to measure the time spent between the two calls.
RapiTime then uses static analysis techniques to calculate the WCET
for different program paths.

To improve RapiTime’s timing analysis, RapiTime uses various an-
notations to restrict loop bounds, and restrict execution times, and
prune infeasible paths. SafeJML has annotation comments (which
look like /*@ ... @*/ or lines starting with //@) that translate
into the corresponding RapiTime annotations. For example, in Fig-
ure 1, line 9 specifies the maximum number of times the loop may
iterate. Line 14 specifies the maximum number of new airplanes
that can be handled in a single frame. This restricts the number of
times a new airplane will appear in a single frame. Lines 14 and
20 specify that the two paths in which these lines are included are
mutually exclusive.

A key requirement in the implementation of SafeJML is to translate
these annotations to the corresponding RapiTime annotations.

3. SAFEJML SYNTAX AND SEMANTICS

2

In this section we describe the syntax and semantics of the additions
that SafeJML makes to JML.

3.1 Statement Annotations
SafeJML, like JML [26], allows several annotations to be written
where statements may occur in Java code. Many of SafeJML’s an-
notations are intended to be directly translated into inputs for the
RapiTime tool (or other, similar, WCET tools). We discuss the de-
tails of these statements below.

statement ::= . . . | loop-max-iter-stmt
| local-worst-case-stmt
| path-anchor-stmt
| refining-statement

3.1.1 Loop Maximum Iteration Statements
In SafeJML a loop statement body can include a new annotation
statement that specifies the maximum number of iterations of a
loop. The loop-max-iter-stmt is used to specify the maximum num-
ber of iterations the loop can have. This annotation has one argu-
ment, a constant-expression, which is a (side-effect free) Java ex-
pression that can be resolved at compile time, and must be of type
int or long. The expression’s value specifies the maximum num-
ber of times that the body of the loop executes on any invocation,
and one less than the number of times the loop test executes.

The following is the syntax of the SafeJML annotated loop state-
ments.

loop-max-iter-stmt ::=
maximum_loop_iterations constant-expression ;

The example in Figure 2 includes a loop-max-iter-stmt. In this ex-
ample, the constant MAX_ARR_SIZE is used with prior knowledge
from the programmer to bound the loop with an upper limit.

//@ public abstract model int MAX_ARR_SIZE = 100;

public abstract class SumArrayLoop {
public static long sumArray(int [] a) {

long sum = 0;
int i = a.length;
while (--i >= 0){

/*@ maximum_loop_iterations
MAX_ARR_SIZE; @*/

sum += a[i];
}
return sum;

}
}

Figure 2: SafeJML maximum loop iterations statement anno-
tation.

3.1.2 Local Worst Case Statements
SafeJML has a new annotation construct for blocks of code nested
inside conditional statements, the local-worst-case-stmt. This state-
ment specifies the maximum number of times that a conditionally-
guarded block of code can be executed, in total, during all iterations
of the smallest enclosing loop (per activation of that loop). Such a
statement must occur nested within a loop and also within a condi-
tional statement (such as an if or switch statement).

local-worst-case-stmt ::=
local_worst_case constant-expression ;

The local-worst-case-stmt has one argument, a constant-expression.
This argument denotes the maximum number of times that all paths
on which the local-worst-case-stmt appears may execute during an
instance of the enclosing loop. Figure 3 gives an example.

count = 0;
for(i=0; i < limit; i++)
{

//@ maximum_loop_iterations 100;
if(buffer[i] == ’*’)
{

//@ local_worst_case 50;
count++;
if(count >= 50)
{

//@ local_worst_case 1;
/∗ .. . ∗ /

}
}

}

Figure 3: SafeJML local worst case statement annotations.

In this example, the body of the outer if-statement may execute
at most 50 times (during each activation of the enclosing loop),
and the inner if-statement may execute at most one time during the
entire loop execution.

3.1.3 Path Annotations
From RapiTime, SafeJML takes the concept of specification of
paths, and in particular which paths exclude which other paths.

Path annotations are based on the concepts of path names and path
groups. A path name is an identifier that is declared to be associated
with an enclosing basic block. A path group is a collection of path
names. Path groups are used to specify sets of execution paths. To
declare a new path group, the new name has to appear in the \in
or \exclude clause of the "path" statement. If neither \in or
\exclude clauses are used, then the path group for that path is
just the singleton group, whose name is the same as the same path
name. The main purpose for introducing path groups is to be able to
optimize the WCET analysis by reducing the number of paths to be
analyzed, and improve the WCET estimate by explicitly describing
infeasible paths.

The path name \default is used to represent the default exe-
cution path of the code, which will include the WCET path after
analysis, so the annotation statement

path myPath \in \default;

will not have any affect on the path group of myPath, but using

path myOtherPath \exclude \default;

will cause the analysis to exclude the path named myOtherPath
from the analysis. Excluding a path is useful when that path con-
forms to a special mode of operation that will never be used (in
the system being built or as it will be deployed), or when the path
should not be considered as part of the normal behavior of the sys-
tem.

3

The following is the syntax for the path-anchor-stmt, which is used
to describe path names and path groups.

path-anchor-stmt ::= path path-name [\in path-group-name]
[\exclude path-group-name] ;

path-name ::= ident | \default
path-group-name ::= path-name

Figure 4 shows the usage of path names and path groups. Note
that in line 4, we give the path inside the if statement a name,
char_found, to indicate that this path will be executed only if
the search method has a hit on the searched character. Similarly,
in line 9, we specify a new path, char_found2, and we specify
that this path is part of the implicit path group generated earlier,
char_found. This technique urges the verification tool to con-
sider those two paths as one, hopefully reducing analysis time.

1 void search(int limit) {
2 /∗ .. . ∗ /
3 if(count != 0){
4 //@ path char_found;
5 /∗ .. . ∗ /
6 }
7 /∗ .. . ∗ /
8 if (count !=0){
9 /*@ path char_found2 \in char_found; @*/

10 /∗ .. . ∗ /
11 }
12 if (count == 0){
13 /*@ path char_not_found \exclude

char_found; @*/
14 /∗ .. . ∗ /
15 }
16 if (limit == 101){
17 /*@ path path_not_reachable \exclude

\default; @*/
18 /∗ .. . ∗ /
19 }
20 }

Figure 4: SafeJML path annotations used with if statements.

In line 13, we annotate a new path, and we exclude it from the
original group that was implicitly declared earlier. This means that
this path, char_not_found cannot be executed along with the
previous two paths declared as part of the group char_found.
This reduces the number of feasible paths to consider from 8 to
2. Thus less time and memory should be required to perform the
analysis.

The last part of the example is line 17, which indicates that this part
of the code is not reachable (at least in normal operation), hence,
should be excluded from the analysis.

Figure 5 shows a small example on how path and path group anno-
tations can be used in switch statements.

3.2 Contract Clauses
SafeJML, like JML, specifies methods using contracts (“specifica-
tion cases”) [26]. As we will discuss below, the clauses in such a
contract can also be used to specify the behavior of blocks of code.
The clauses of particular interest here are the following, which we
discuss below.

void method1 (int arg1, int arg2)
{

if (arg1 == 0){
//@ path path_a;
/∗ .. . ∗ /

}
switch(arg1) {
case 0:

//@ path path_b \in path_a;
/∗ .. . ∗ /
break;

default:
//@ path path_c \exclude path_a;
/∗ .. . ∗ /
break;

}
}

Figure 5: SafeJML path annotations in a switch statement.

simple-spec-body-clause ::= . . .
| splits-wcet-clause
| duration-clause

3.2.1 Context-Dependent Annotations
A static analysis method is context-dependent if it performs differ-
ent analyses for method calls depending on the place in the code
where the method is called. Context dependency can aid the pre-
cision of WCET analysis if different calls of a method will have
greatly differing timing behavior.

Following RapiTime, SafeJML allows annotations on method spec-
ifications to specify when RapiTime (or some other tool) should
track the context of method calls. This is the splits-wcet-clause.
The clause gives a predicate that describes if a context-dependent
analysis should be used.

splits-wcet-clause ::= splits_wcet predicate ;

Figure 6 on the next page shows how this clause is used in a method
specification. In this example, calls to splitter will be consid-
ered a separate analysis path each time this method is called with
a different set of arguments. Calls to method splitIf3 how-
ever, are only considered for a separate path analysis when the
actual argument is 3, since that is the condition specified in its
splits_wcet clause.

3.2.2 Duration Annotations for Methods
SafeJML, like JML itself [26] has a duration clause, that is in-
tended for specifying the worst case execution time of a method (or
block of code).

duration-clause ::= duration spec-expression ;

The semantics of JML’s duration clause is based on the work of
Krone et al. [20, 21]. It specifies the maximum execution time
needed for a method call (for a given precondition, since it forms
part of a specification case [26, 22]). Unfortunately, JML’s dura-
tion clause measures execution time in “JVM cycles,” which does
not make it easy to match against software requirements stated in

4

/*@ splits_wcet true; @*/
void splitter(int arg1) {

/∗ .. . ∗ /
}

/*@ splits_wcet arg1==3; @*/
void splitIf3(int arg1) {

/∗ .. . ∗ /
}

void method1() {
splitter(1); / / c o n t e x t−d e p e n d e n t a n a l y s i s
splitter(2); / / c o n t e x t−d e p e n d e n t a n a l y s i s
splitter(0); / / c o n t e x t−d e p e n d e n t a n a l y s i s
splitIf3(1); / / u n i f i e d a n a l y s i s
splitIf3(2); / / u n i f i e d a n a l y s i s
splitIf3(3); / / c o n t e x t−d e p e n d e n t a n a l y s i s

}

Figure 6: SafeJML example using the splits_wcet clause.

absolute time units (such as seconds). JVM cycles are also not a
good match for compiler-based virtual machines, such as the OVM,
which translate SCJ code into C code, as with such a VM there is
no obvious definition of the virtual machine’s cycle time.

Thus, in SafeJML, we change the semantics of the duration clause
and measure time in nanoseconds (as RapiTime also uses nanosec-
onds as units). We assume that the built-in SafeJML package named
org.jmlspecs.lang contains definitions of constants such as
MILLISEC, SEC, etc. to allow expression of timing constraints in
units that are more convenient for the specifier.

As in JML, SafeJML method specifications can contain multiple
specification cases (separated by the keyword also), each of which
specifies the behavior when a certain precondition is met. When
the precondition more than one specification case holds, each of
the corresponding specification cases must have all their clauses
satisfied by the method’s execution. For the duration clause, this
allows the specification of a global worst case execution time (in a
specification case with no precondition or precondition “true”),
and more stringent constraints that are governed by other precondi-
tions.

Figure 7 shows how the duration clause is used in multiple be-
havior specification cases for a method. These specification cases,
cover three different scenarios for x and y in the position object, as
distinguished by their requires clauses. In this example each spec-
ification case contains a requires clause and a duration clause. The
duration clause will be used by SafeJML during the WCET anal-
ysis for the method. The SafeJML tool will check that the WCET
for this method is no larger than the specified time for each case,
given that the method’s position argument satisfies the correspond-
ing precondition. The tool also uses these expressions for WCET
analysis when this method is called. If at a particular call site it
can be shown that the precondition of one specification case holds,
then the corresponding duration clause can be used as the black-
box value for the WCET of that call. (If at a call site one cannot
prove one of the preconditions, then one can use the maximum of
all the duration clauses during verification.)

3.3 Duration Annotations for Blocks
As in JML, duration clauses, like other method specification con-
tract clauses, can be applied to a block of code using the refining

/∗∗ T h i s method c r e a t e s a V e c t o r 2 d t h a t
r e p r e s e n t s a v o x e l . ∗ /

/*@ public behavior
@ requires position.x >= 0.0f && position.y

>= 0.0f;
@ duration 3 * MILLISEC;
@ also
@ public behavior
@ requires position.x < 0.0f ^ position.y <

0.0f;
@ duration 4 * MILLISEC;
@ also
@ public behavior
@ requires position.x < 0.0f && position.y

< 0.0f;
@ duration 5 * MILLISEC;
@*/

protected void voxelHash(Vector3d position,
Vector2d voxel) {

Benchmarker.set(7);
int x_div = (int) (position.x / voxel_size);
voxel.x = voxel_size * (x_div);
if (position.x < 0.0f) voxel.x -= voxel_size;
int y_div = (int) (position.y / voxel_size);
voxel.y = voxel_size * (y_div);
if (position.y < 0.0f) voxel.y -= voxel_size;
Benchmarker.done(7);

}

Figure 7: SafeJML method specification example. The
method’s specification has 3 specification cases, which are sep-
arated by also.

statement. The syntax for the refining statement [26, 35] con-
tains the following syntax (with various complications omitted).

refining-statement ::= . . .
| refining generic-spec-statement-case statement

generic-spec-statement-case ::= . . . | simple-spec-statement-body
simple-spec-statement-body ::=

simple-spec-statement-clause simple-spec-statement-clause*

The meaning of a statement refining S C is that the code C has
to satisfy the specification S. For example, the following code

//@ refining
//@ duration 3 * MILLISEC;
{ m(); }

says that the call to m may take at most 3 milliseconds.

The use of such refining statements can help both designers and
verification tools. Designers can use refining statements with dura-
tion clauses to allocate a method’s time budget to individual blocks
of code. Verification tools can also use refining statements that
specify durations to better pinpoint timing errors. Verification tools
can also use refining statements as context-sensitive specifications
of the time that particular blocks of code may take. This could be
useful when calling methods that do not have SafeJML specifica-
tions.

3.4 Subtype Polymorphism Annotations
A major intellectual challenge in our work is the object-oriented
(OO) nature of SCJ. That is, the dynamic dispatch mechanism of

5

Java, which is also present in SCJ, permits subtype polymorphism:
the ability to make the same method call on objects of all sub-
types of a given type [4]. In many works on real-time systems,
authors suggest disallowing subtype polymorphism [10]. In addi-
tion to such healthy conservatism, one reason for avoiding subtype
polymorphism is that applying behavioral subtyping to timing con-
straints poses a practical problem. This problem is that instances
of a proper subtype of an OO type often contain more information
than instances of its supertypes. So if the supertype’s method has a
very tight timing constraint (given by its duration clause), that spec-
ification may not allow enough time to execute a subtype’s overrid-
ing method. The alternative, underspecification of the supertype’s
method, would, by definition, not permit tight timing constraints.

In sum, the problem is how to specify (supertype) methods in a way
that allows some subtypes to use more time, while retaining modu-
lar verification and precision (tightness of a timing analysis). Since
this problem is both a problem of specification and of verification,
we treat specification and verification separately below.

For specification, we follow recent specification ideas [6, 31, 30]
by including in SafeJML features that allow users to write spec-
ifications with meanings that vary with the dynamic type of the
method’s receiver. In SafeJML this is accomplished by writing
specifications using a (JML) feature called “model methods.” These
are side-effect free (pure) methods that are written to be used in
specifications. As shown by Parkinson’s work with the equiva-
lent of model methods,1 the ability to write different implementa-
tions of model methods in subtypes allows the meaning of a model
method to vary depending on the dynamic type of the receiver; it
can thus have different meanings in each subtype. For example,
one could specify a method m with a duration clause duration
mTime();, where mTime is a pure model method. And then a call
such as o.m() would be known to have a WCET of o.mTime(),
where the exact value of o.mTime() may vary with the runtime
type of the receiver, o.

Parkinson’s work gives sound rules for reasoning about specifica-
tions that are written using such model methods. In essence, during
verification one must either have a type-independent specification
of the model method’s meaning or one must perform a case anal-
ysis on the runtime type of the receiver. In the first approach, we
can take advantage of a property of SafeJML that, as in JML, the
specification of model method must be obeyed in all subtypes [22].
Thus, if the static type of the receiver (i.e., o’s type) has a specifica-
tion for the model method (mTime) that is sufficiently exact, then
one can use that specification to compute the WCET (i.e., to bound
the value of the call o.mTime() and hence to bound the time of
o.m()).2

The second approach is needed when the model method (mTime)
does not have a sufficiently exact specification (to draw the desired
conclusions). In this case, during verification one would need to be
able to prove some tight bounds on the runtime type of the receiver
(o). That knowledge would allow the verification to use the defini-
tions of the model methods that are given for the possible receiver
types.

To facilitate this second kind of reasoning we advocate using Safe-
JML’s assume statements together with a built-in predicate named
1 Parkinson calls them “abstract predicate families.”
2 Reasoning about OO programs using the specifications of each
receiver’s static type is called “supertype abstraction” [27, 22, 24].

SafeJML.type_bound. An assume statement gives a predi-
cate that is believed to be true at runtime, and can be checked by
a runtime assertion checker. SafeJML.type_bound(S,E,T)
is true just when the value of the expression E has a dynamic type
that is between types S and T (i.e., a supertype of S and a subtype
of T). Assumptions written using SafeJML.type_bound can
thus restrict the cases that need to be considered during verification.

Figure 8 on the next page gives an example of the usage of the
subtype polymorphism annotations. In this example, v_pre is de-
clared to have type Vector2d. Thus the calls on lines 28 and 32
to the getIntersection() method will be dynamically dis-
patched. Line 27 helps the tool to determine a subset of methods
that the call can be dispatched to by narrowing the available meth-
ods to, in this case the receiver has dynamic type Vector2d. Line
31 serves the same purpose.

4. SAFEJML IMPLEMENTATION
Our implementation of SafeJML is built on the JAJML compiler
[13]. JAJML is built using the JastAdd tool for developing ex-
tensible compilers [8]. JAJML also builds on JastAddJ, the Java
compiler implemented by the makers of JastAdd. JAJML is open
source, as is SafeJML. SafeJML’s code is available using subver-
sion from http://refine.eecs.ucf.edu/svn/scjml.

SafeJML extends JML by introducing the constructs described in
the previous section. However, there are restrictions as to where
in a piece of code, these new constructs will be recognized by the
parser. For example, the maximum_loop_iterations anno-
tation can only be used as the first statement inside a loop.

In the implementation we have used JastAdd’s synthesized and in-
herited attributes, which provide convenient mechanisms for prop-
agating type information around the abstract syntax tree of an SCJ
program. So far, we have implemented the typechecking for loop
maximum iteration statements and local worst case statements. The
restrictions on the use of other SafeJML annotations can be imple-
mented in a similar way.

One limitation in our implementation is that duration annotations
(Section 3.2.2 on page 4) are not implemented completely yet. This
is because JML’s specification statements [25, Section 14.6] are
currently not implemented in JAJML.

The most challenging part of the implementation, translating Safe-
JML annotations into the annotations needed by RapiTime, is fu-
ture work.

5. SAFEJML EVALUATION
To gain more confidence with the proposed language design, we
picked several examples from MiniCDj and specified them. A first
example is shown in Figure 1 on page 2. This example shows
clearly the ability of the language to reduce the complexity of the
analysis.

Another example is shown in Figure 9 on the next page. Line
6 specifies the maximum number of motions the system can en-
counter in a single frame. Since we can argue that the system can
only have as many motions as the number of planes the system can
encounter, it is safe to specify the loop this way. Since the inner
loop will execute one time less than the outer loop, it is specified
as in line 9. The last specification statement, on line 13, can be
used in a real life situation, if the assumption is made such that the

6

http://refine.eecs.ucf.edu/svn/scjml

1 class Vector {
2 public abstract Point getIntersection(Vector

v);
3 }
4 class Vector1d extends Vector {
5 public Point getIntersection(Vector v); { /∗

.. . ∗ / }
6 }
7 class Vector2d extends Vector {
8 public Point getIntersection(Vector v); { /∗

.. . ∗ / }
9 }

10 class Vector3d extends Vector {
11 public Point getIntersection(Vector v); { /∗

.. . ∗ / }
12 }
13 class client {
14 Vector v_pre;
15 Vector v_post;
16 Vector[] data = new Vector[5];
17 public void client() {
18 v_pre = new Vector2d();
19 v_post = new Vector3d();
20 for (int i=0;i<5;i++) {
21 if (i%2 != 0) { data[i]=new Vector2d();

}
22 else { data[i] = new Vector3d(); }
23 }
24 }
25 public List<Point> getIntersections() {
26 List<Point> points = new

LinkedList<Point>();
27 /*@ assume SafeJML.type_bound(Vector2d,

v_pre, Vector2d); @*/
28 points.add(v_pre.getIntersection(v_post);
29 for (int i=0;i<4;i++)
30 {
31 /*@ assume SafeJML.type_bound(Vector2d,

data[i], Vector3d); @*/
32 points.add(data[i].getIntersection(data[i+1]);
33 }
34 return points;
35 }
36 public static void main(String[] args) {
37 client c = new client();
38 System.out.println(
39 c.getIntersections().toString());
40 }
41 }

Figure 8: SafeJML example that uses assumed type bounds to
limit the range of types that must be considered during analy-
sis.

system is good enough if it can detect at least one collision. How-
ever, in a simulated environment, this assumption does not hold,
hence, it is safer to omit this specification statement, and leave the
if statement unspecified.

1 public int determineCollisions(final List
motions, List ret) {

2 Benchmarker.set(5);
3 int _ret = 0;
4 Motion[] _motions = (Motion[])

motions.toArray(new
Motion[motions.size()]);

5 for (int i = 0; i < _motions.length - 1; i++) {
6 /*@ maximum_loop_iterations

MAX_PLANES_PER_FRAME; @*/
7 final Motion one = _motions[i];
8 for (int j = i + 1; j < _motions.length;

j++) {
9 /*@ maximum_loop_iterations

MAX_PLANES_PER_FRAME - 1; @*/
10 final Motion two = _motions[j];
11 final Vector3d vec =

one.findIntersection(two);
12 if (vec != null) {
13 /*@ local_worst_case 1; @*/
14 ret.add(new Collision(one.getAircraft(),

two.getAircraft(),vec));
15 _ret++;
16 }
17 }
18 }
19 Benchmarker.done(5);
20 return _ret;
21 }

Figure 9: The determineCollisions method from the col-
lision detection benchmark, with SafeJML annotations added.

6. RELATED WORK
We know of no other design of a specification language for SCJ.

A well-known example of WCET static analysis is Shaw’s book
[36]. Shaw discusses measurement and analysis methods that use
path expressions for a precise (tight) analysis. However, Shaw’s
is a whole program analysis, which is not designed for modular
verification, and it does not consider subtype polymorphism for OO
languages.

Schoberel and Pedersen [34] describe a precise WCET for Java
Systems based on the Java Optimized Processor (JOP). Like Shaw’s
analysis, it is a whole program static analysis; however Schoberl’s
analysis is path insensitive. The tool uses integer linear program-
ming to find WCET solutions from Java bytecode. Java bytecodes
for the JOP are predictable due to JOP’s design, which supports
predictable timing behavior by design. Since it is a whole pro-
gram analyzer, Schoberl’s tool is not modular. Furthermore, it only
handles subtype polymorphism by taking the worst case over all
possible method calls. SafeJML allows more refined case analysis
to handle subtype polymorphism, as described in Section 3.4.

Hehner [16] formalized verification of timing constraints by intro-
ducing a ghost (specification-only) variable t to represent the cur-
rent time. He use standard axiomatic reasoning techniques (in a
refinement calculus style) to specify timing constraints in postcon-
ditions and to do static verification. While it is modular, since it
is based on specifications, and while it describes how to automate

7

verification, Hehner’s work does not provide an interface to veri-
fication tools such as RapiTime or aiT. It also does not treat OO
language features.

Both JML and our work build on the work of Krone et al. [20,
21]. They use specifications augmented with a duration clause
that can state timing constraints. These clauses can depend on pa-
rameters and on the post-state of a method (which is useful for
underspecified methods). Their work supports modular verifica-
tion of timing constraints using specifications, however, it does not
deal with OO features. JML adopts their design for the duration
clause, which our work takes as its starting point.

Many ideas in SafeJML are taken from RapiTime, a tool that uses a
hybrid WCET analysis using runtime measurements together with
static program analysis [1, 19]. The heavy influence of RapiTime
on SafeJML largely results from our desire to translate SafeJML
into RapiTime’s input language. However, RapiTime does not in
itself deal with SCJ, nor does it have facilities for specification of
functional behavior. SafeJML, since it builds on JML, has exten-
sive facilities for specification of functional behavior (which we
have largely ignored in this paper). Such specification facilities
may be quite useful for safety-critical systems.

Gustafsson et al. [12] suggest using abstract execution to aid WCET
analysis. They introduced their idea first in [11]. Abstract Execu-
tion is a form of symbolic execution which is based on abstract
interpretation. They introduce a tool called SWEET, which uses
abstract execution to automatically derive loop bounds and infeasi-
ble paths from C programs. SWEET is integrated with a compiler
and performs its analysis on the intermediate representation of the
compiler, which makes its usage limited to code compiled using
that compiler. Such automatic derivation of annotations reduces
manual intervention and thus makes the analysis process easier,
less error prone and more accurate. SafeJML could benefit from
abstract execution to reduce the need for many of the annotations
that are designed to help RapiTime. However, SWEET itself does
not treat SCJ programs and is not modular.

7. CONCLUSION
In this work, we have described the design of SafeJML, an ex-
tension to the Java Modeling Language (JML) for specification of
safety critical Java programs. SafeJML’s design as a JML extension
supports the modular specification of both functional and timing
constraints for SCJ programs. We are implementing SafeJML as
an extension to JAJML, an open-source extensible JML compiler.

Future work includes integration of the nascent SafeJML tool with
RapiTime via the oSCJ virtual machine, and evaluating the utility
of the language design with feedback from more extensive case
studies. Besides evaluating the design of SafeJML more fully,
we also expect to evaluate different specification and verification
methodologies. In particular, we would like to understand better
the tradeoffs in using underspecification vs. case analysis to spec-
ify subtype polymorphism in safety-critical and real time systems.

Acknowledgment
The work of all the authors was supported in part by NSF grant
CCF-0916350 titled “SHF: Specification and Verification of Safety
Critical Java.” The authors also thank Ales Plesk and Purdue team
for their support and help.

APPENDIX

A. INSTALLATION INSTRUCTIONS
We provide a wiki page for SafeJML at
http://tinyurl.com/28zllux. The page contains docu-
mentation on how to build and test SafeJML.

B. REFERENCES
[1] G. Bernat, A. Colin, and S. Petters. pwcet: A tool for

probabilistic worst-case execution time analysis of real-time
systems. In Proc. 3rd Int. Workshop on WCET Analysis,
Satellite Workshop of the Euromicro Conference on
Real-Time Systems, Porto, Portugal, July 2003.

[2] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June
2005.

[3] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages. Addison Wesley Longmain, 3
edition, 2001.

[4] L. Cardelli and P. Wegner. On understanding types, data
abstraction and polymorphism. ACM Comput. Surv.,
17(4):471–522, Dec. 1985.

[5] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond
assertions: Advanced specification and verification with JML
and ESC/Java2. In Formal Methods for Components and
Objects (FMCO) 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 342–363.
Springer-Verlag, 2006.

[6] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Enhancing
modular oo verification with separation logic. In P. Wadler,
editor, ACM Symposium on Principles of Programming
Languages, pages 87–99, New York, NY, Jan. 2008. ACM.

[7] Computer-Science Department Annual Report, Purdue
University. oSCJ: Open Safety-Critical Java Project, White
Paper, January 2010.

[8] T. Ekman and G. Hedin. The JastAdd system — modular
extensible compiler construction. Sci. Comput.
Programming, 69(1-3):14–26, 2007.

[9] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm.
Reliable and precise WCET determination for a real-life
processor. In Proc. First International Workshop on
Embedded Software (EMSOFT 2001), volume 2211 of
Lecture Notes in Computer Science, pages 469–485.
Springer-Verlag, 2001.

[10] J. Gustafsson. Worst case execution time analysis of
object-oriented programs. Object-Oriented Real-Time
Dependable Systems, IEEE International Workshop on,
0:0071, 2002.

[11] J. Gustafsson and A. Ermedahl. Automatic derivation of path
and loop annotations in object-oriented real-time programs.
Parallel and Distributed Real-Time Systems, Workshop,
0:257, 1997.

[12] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper.
Automatic derivation of loop bounds and infeasible paths for
wcet analysis using abstract execution. Real-Time Systems
Symposium, IEEE International, 0:57–66, 2006.

[13] G. Haddad and G. T. Leavens. Extensible dynamic analysis
for jml: A case study with loop annotations. Technical
Report CS-TR-08-05, School of Electrical Engineering and
Computer Science, University of Central Florida, Orlando,
Florida, April 2008.

8

http://tinyurl.com/28zllux

[14] R. Heckmann and C. Ferdinand. Worst-case execution time
prediction by static program analysis.
http://www.absint.com/aiT_WCET.pdf, 2006.

[15] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and the
results of WCET tools. Proceedings of the IEEE,
91(7):1038–1054, July 2003.

[16] E. C. R. Hehner. Formalization of time and space. Formal
Aspects of Computing, 10:290–306, 1998.

[17] T. Henties, J. J. Hunt, D. Locke, K. Nilsen, M. Schoeberl,
and J. Vitek. Java for safety-critical applications. 2nd
International Workshop on the Certification of
Safety-Critical Software Controlled Systems (SafeCert 2009),
Mar. 2009.

[18] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and
J. Vitek. Cdx: a family of real-time java benchmarks. In
JTRES ’09: Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Systems,
pages 41–50, New York, NY, USA, 2009. ACM.

[19] R. Kirner, P. Puschner, and I. Wenzel. Measurement-based
worst-case execution time analysis using automatic test-data
generation. In Proc. 4th Euromicro International Workshop
on WCET Analysis, pages 67–70, June 2004.

[20] J. Krone, W. F. Ogden, and M. Sitaraman. Modular
verification of performance correctness. In ACM OOPSLA
Workshop on Specification and Verification of
Component-Based Systems (SAVCBS), pages 60–67, 2001.

[21] J. Krone, W. F. Ogden, and M. Sitaraman. Profiles: A
compositional mechanism for performance specification.
Technical Report RSRG-04-03, Department of Computer
Science, Clemson University, Clemson, SC 29634-0974,
June 2004. Invited as one of the best papers from the
SAVCBS Workshop series and under consideration for
Formal Aspects of Computing, Springer-Verlag.

[22] G. T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Z. Liu and H. Jifeng, editors, Formal
Methods and Software Engineering: 8th International
Conference on Formal Engineering Methods (ICFEM),
volume 4260 of Lecture Notes in Computer Science, pages
2–34, New York, NY, Nov. 2006. Springer-Verlag.

[23] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. ACM SIGSOFT Software Engineering Notes,
31(3):1–38, Mar. 2006.

[24] G. T. Leavens and D. A. Naumann. Behavioral subtyping,
specification inheritance, and modular reasoning. Technical
Report 06-20b, Department of Computer Science, Iowa State
University, Ames, Iowa, 50011, Sept. 2006.

[25] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R.
Cok, and J. Kiniry. Jml reference manual. Department of
Computer Science, Iowa State University. Available from
http://www.jmlspecs.org, Apr. 2003.

[26] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R.
Cok, P. Müller, J. Kiniry, P. Chalin, and D. M. Zimmerman.
JML Reference Manual. Available from
http://www.jmlspecs.org, Sept. 2009.

[27] G. T. Leavens and W. E. Weihl. Specification and verification
of object-oriented programs using supertype abstraction.
Acta Informatica, 32(8):705–778, Nov. 1995.

[28] N. Leveson. Safeware : System Safety and Computers.
Addison-Wesley Pub Co., Reading, Mass., 1995.

[29] P. G. Neumann. The risks digest.

http://catless.ncl.ac.uk/Risks.
[30] M. Parkinson and G. Bierman. Separation logic, abstraction

and inheritance. In P. Wadler, editor, ACM Symposium on
Principles of Programming Languages, pages 75–86, New
York, NY, Jan. 2008. ACM.

[31] M. J. Parkinson. Local reasoning for Java. Technical Report
654, University of Cambridge Computer Laboratory, Nov.
2005. The author’s Ph.D. dissertation.

[32] Purdue University - S3 Lab. The Ovm Virtual Machine
homepage, http://www.ovmj.org/, 2005.

[33] Radio Technical Commission for Aeronautics (RTCA).
DO-178B: Software Considerations in Airborne Systems and
Equipment Certification, 1982.

[34] M. Schoeberl and R. Pedersen. WCET analysis for a java
processor. In JTRES ’06: Proceedings of the 4th
international workshop on Java technologies for real-time
and embedded systems, pages 202–211, New York, NY,
USA, 2006. ACM.

[35] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular
verification of higher-order methods with mandatory calls
specified by model programs. In International Conference on
Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Montreal, Canada, pages 351–367,
New York, NY, Oct. 2007. ACM.

[36] A. Shaw. Real-Time Systems and Software. John Wiley &
Sons, New York, NY, 2001.

[37] Sun Microsystems, Inc. JSR 302: Safety critical java
technology. From
http://jcp.org/en/jsr/detail?id=302 (Date
retrieved: March 19, 2008), 2007.

[38] J. M. Wing. Writing Larch interface language specifications.
ACM Trans. Prog. Lang. Syst., 9(1):1–24, Jan. 1987.

9

http://www.absint.com/aiT_WCET.pdf
http://www.jmlspecs.org
http://www.jmlspecs.org
http://catless.ncl.ac.uk/Risks
http://www.ovmj.org/
http://jcp.org/en/jsr/detail?id=302

	Introduction
	An Overview of SafeJML
	Safety Critical Java (SCJ)
	Timing Analysis with RapiTime
	A First SafeJML Example

	SafeJML Syntax and Semantics
	Statement Annotations
	Loop Maximum Iteration Statements
	Local Worst Case Statements
	Path Annotations

	Contract Clauses
	Context-Dependent Annotations
	Duration Annotations for Methods

	Duration Annotations for Blocks
	Subtype Polymorphism Annotations

	SafeJML Implementation
	SafeJML Evaluation
	Related Work
	Conclusion
	Installation Instructions
	References

