
Extensible Dynamic Analysis for JML:
A Case Study with Loop Annotations

Ghaith Haddad and Gary T. Leavens

CS-TR-08-05
April 2008

Keywords: Formal method tools, runtime assertion checking, dynamic analysis,
specification languages, JML, JastAdd, attribute grammar tool, extensible compiler.

2008 CR Categories:
D.2.2 [Software Engineering] Design Tools and Techniques — computer aided soft-
ware engineering; D.2.4 [Software Engineering] Software/Program Verification — for-
mal methods, programming by contract; D.3.4 [Programming Languages] Processors
— compilers, parsing, translator writing systems and compiler generators.

Submitted for publication.

School of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA

Extensible Dynamic Analysis for JML:
A Case Study with Loop Annotations

Ghaith Haddad and Gary T. Leavens
College of Electrical Engineering and Computer Science

University of Central Florida
4000 Central Florida Blvd.
Orlando, Florida, 32816

haddad@ieee.org,leavens@eecs.ucf.edu

ABSTRACT
Modern programming languages, such as Java, are large and com-
plex, as are practically useful behavioral interface specification lan-
guages that extend them, such as JML. Their size and complexity
make it difficult for researchers to build dynamic analysis tools,
such as runtime assertion checkers. Researchers wishing to experi-
ment with a small change to a specification language or a dynamic
analysis face a prohibitive amount of work before they can run ex-
periments. Even if a research prototype is built, it is difficult to
keep it current with rapidly evolving languages, since the changes
to the underlying compiler infrastructure are not easily separated
from that infrastructure. However, extensible dynamic analysis
tools can be written more easily with modern attribute grammar
tools, in particular with JastAdd. We describe a small case study
that shows how using JastAdd eases development of a runtime as-
sertion checker for the specification language JML.

1. INTRODUCTION
Runtime assertion checking is an important and practical technique
for improving the quality of programs. However, building a run-
time assertion checker for a large practical language, such as Java
[15] is a significant effort. Writing a runtime assertion checker for
Java involves building or understanding and reusing a Java com-
piler, and then extending that compiler with features of the formal
specification language used to specify what to check dynamically.
Even using Java 5 annotations does not relieve much of this bur-
den [18], as one must still compile the strings that must be used in
Java 5 annotations to write assertions. Such problems afflict many
efforts in formal methods, such as those envisioned for the verified
software initiative [16].

The Java Modeling Language (JML) project is an example of such
a formal methods project; it has experienced all these difficulties
in the past several years. Although we believe the lessons we draw
are general, we focus on JML because it is well-known and we are
intimately familiar with it.

One of the most important of the many tools that are available for

JML is its runtime assertion checker (jmlc) [6]. This tool was built
as an extension of the MultiJava compiler [7]. The MultiJava com-
piler is itself an extension of the Kopi Java compiler [1]. This ar-
chitecture allowed the JML project to reuse the Kopi compiler’s
support for the features of Java 1.4, including inner classes, which
a previous home-grown checker did not support adequately.

However, since the Kopi and MultiJava compilers are not being
maintained, the JML project has been struggling to support the fea-
tures of Java 5, especially generics. Even support for Java 5’s en-
hanced for loop is not currently available in the current release of
the “Common JML Tools,” also known as JML2. A major diffi-
cultly is that the size and complexity of the JML2 project, together
with an architecture that is not designed for easy extension, makes
it difficult for researchers to understand the JML2 software well
enough to easily extend it.

One direction for overcoming these problems has been launched by
Patrice Chalin and his group at Concordia University [4]. This ef-
fort, called JML4, is based on the Eclipse Java Development Tools
(JDT) [13]. It builds support for JML, including runtime assertion
checking, on the Eclipse JDT, using the JDT in much the same
way that JML2 used the MultiJava compiler. There are two signifi-
cant advantages to this architecture: (1) the Eclipse JDT is actively
maintained, (2) JDT’s existing integration with Eclipse eases inte-
gration of the JML runtime assertion checker into Eclipse [4].

On the other hand, our experience with the writing small parts of
code for the JML4 effort has also shown that this architecture has
some significant drawbacks for researchers. A major problem is
that the code base of the JDT is quite large, which still leaves a sig-
nificant hurdle for researchers who want to build and experiment
with small extensions to JML and its runtime assertion checker.
Furthermore, the JDT is not designed to be extensible, so integra-
tion of JML4 requires a fairly large amount of boilerplate code,
especially to extend the parser. The JDT also aims for execution
speed, not only for the compiled code, but also for parsing and
static analysis (such as type checking). While compilation speed
is important in an IDE such as Eclipse, it is less important for a
research prototype. Thus extra coding overheads that attempt to
squeeze out a bit more speed tend to complicate life for researchers
hoping to make small extensions. Finally, once a researcher adds
a new feature to JML4, it is not necessarily easy to combine that
with other new features, as the JML4 architecture does not support
extensions of extensions or combinations of extensions.

In this paper we describe a different approach to building an ex-
tensible runtime assertion checker for JML, based on the JastAdd

1

attribute grammar tool [12, 9], and hence called JAJML. The de-
velopers of JastAdd have provided an extensible Java compiler,
upon which we are building JAJML. As we will describe below, us-
ing JastAdd to build the runtime assertion checker solves the main
problems described above. In particular the JastAdd extensible Java
compiler is about 1/4 the size of the Eclipse JDT: the JastAdd com-
piler is only 21K lines of code, while the Eclipse JDT compiler is
83K lines of code [11]. Moreover, extensions built using JastAdd
are themselves extensible, due to JastAdd’s declarative and mod-
ular architecture. The disadvantages of using JastAdd are that the
resulting checker is harder to integrate into Eclipse, and support for
future enhancements to Java is less sure. On the other hand, there
are existing tools for building IDEs for Eclipse that can aleviate the
first disadvantage (such as Eclipse IMP [14]). Also, JastAdd’s ease
of extensibility makes the second disadvantage less of a problem
than with a more monolithic compiler. For example, the JastAdd
developers developed their Java 5 compiler as an extension to their
Java 1.4 compiler, in only 6K lines of code [11].

In the remainder of this paper we describe a case study of adding
loop annotations (loop invariants and variant functions) to our JA-
JML prototype (Section 2). To allow a comparison with JML4, we
also explain how JML4 supports these same features and give a
detailed comparison (Section 3).

2. LOOP ANNOTATION CASE STUDY
In this section, we begin our case study where we add loop anno-
tations to JAJML using JastAdd. We first give a brief overview of
JastAdd and then discuss the various tasks needed to make an ex-
tension: scanning, abstract syntax tree declaration, parsing, static
analysis, and code generation. Code for our case study is available
from sourceforge.net.

The JastAdd Compiler Construction System [10, 11, 12] extends
Java with rewritable circular reference attribute grammars. In addi-
tion, JastAdd has other mechanisms like static aspect-oriented pro-
gramming, declarative attributes, and context-dependent rewrites,
that support the tool’s modularity and extensibility. These tech-
niques make writing extensible compilers more efficient. In this
section, we describe the features of JastAdd and its extensible Java
compiler that we use in the remainder of this paper.

In the following we say “JAJC” for the JastAdd extensible Java
compiler and “JastAdd” for the JastAdd compiler construction tool.

2.1 Scanning
JAJC uses Flex for lexical analysis. Thus, in order to extend the
JAJC, we also found it necessary to use Flex.

The scanner for JAJC is split into several files. Each file contains
part of the overall Java lexical grammar, organized to ease exten-
sion. For example, the lexical grammar for comments is found in a
file Comments.flex.

Flex has a feature that is very valuable for JML, namely the abil-
ity to use states to control the lexical analysis. JML specifica-
tions are contained within special annotation comments of the form
/*@ ... @*/ or from //@ to the end of a line. Thus the lexi-
cal grammar should use states to make sure it only recognizes JML
keywords within such assertions [17, Section 4]. (Our prototype
lexical analysis needs more work to accomodate all of JML’s lexi-
cal details.)

2.2 The Abstract Grammar
JastAdd supports a concise “abstract grammar” for declaring ab-
stract syntax trees (ASTs). All classes that compose the AST are
defined in abstract grammar files. JastAdd automatically generates
Java classes to represent these ASTs.

JAJC uses several abstract grammar files to define ASTs for Java.
(There is one file for the Java 1.4 features and a file for each new
feature added in Java 5.) The code below is an excerpt from the
JAJC abstract grammar files that defines the ASTs for loop state-
ments.

WhileStmt : BranchTargetStmt ::=
Condition:Expr Stmt;

DoStmt : BranchTargetStmt ::=
Stmt Condition:Expr;

ForStmt : BranchTargetStmt ::=
InitStmt:Stmt* [Condition:Expr]
UpdateStmt:Stmt* Stmt;

JastAdd makes extending the hierarchy with new AST classes easy.
This is done by adding new rules to the abstract grammar.

Our added abstract grammar file describes the ASTs for JML’s loop
annotation statements. The JAJC already has several AST classes.
We start by declaring two AST classes that will serve as super-
classes for other ASTs and will help organize them. The following
is the entire contents of the file JAJML.ast.

abstract JmlAnnotation: Stmt;
abstract JmlHelper;

The abstract AST class JmlAnnotation inherits from Stmt,
which is a part of the original JAJC AST hierarchy. JmlHelper
is just a class used to implement static helper methods used in im-
plementation. For each feature we add a file that declares the ASTs
for that feature. Loop annotation ASTs are declared in the file
possibly_annotated_loop.ast, which contains the fol-
lowing declarations.

abstract JmlLoopStmt: Stmt ::=
JmlLoopInvariant
JmlLoopVariant
LoopStmt: BranchTargetStmt;

JmlWhileStmt: JmlLoopStmt;
JmlForStmt: JmlLoopStmt;
JmlDoStmt: JmlLoopStmt;
abstract JmlLoopAnnotation:

JmlAnnotation ::= Expr*;
JmlLoopInvariant: JmlLoopAnnotation;
JmlLoopVariant: JmlLoopAnnotation;

The AST class JmlLoopStmt is also a subclass of Stmt. The
abstract grammar above says that a JmlLoopStmt contains three
nodes: a JmlLoopInvariant, a JmlLoopVariant, and a
third, named LoopStmt that is of type BranchTargetStmt.

The AST type BranchTargetStmt is an AST node type from
JAJC. This AST node type is the superclass of all JAJC loop state-
ments. Similarly, we use the abstract JmlLoopStmt as a super-
class of the AST node types for while loops, for loops and do-while
loops. We did not implement JML annotations for labeled state-
ments and the enhanced-for statement in this prototype.

We also use an abstract node class JmlLoopAnnotation, which
is itself a subclass of the JmlAnnotation class, as the subclass

2

of loop invariant and variant function nodes. Each node of type
JmlLoopAnnotation holds a list of expressions, which is in-
herited by both loop invariant ASTs and loop variant ASTs.

2.3 Parsing
Once we have added all types needed for parsing, we are ready to
write the parsing rules.

Our runtime checker uses the Beaver LALR(1) parser generator [8]
because it is used by JAJC for parsing. Beaver accepts grammars
expressed in EBNF and is well-integrated into JastAdd. This inte-
gration makes it easy to use Beaver’s AST nodes, which are rep-
resented as instances of generated Java classes when manipulating
attributes from within JastAdd.

The parser for JAJC is not split over several files, but Beaver allows
new context-free rules to be added to the grammar. This makes it
easy to extend the grammar simply by adding new productions in
separate files. For example, we can add productions for annotated
loop statements by adding productions for the statement nontermi-
nal as shown in Figure 1. This grammar follows the one in the JML
Reference Manual [17, Section 12.2]. We put the grammar for each
such feature, in a separate file.

In Beaver semantic actions are enclosed in {: and :} brackets.
Each rule is responsible for creating and returning the correspond-
ing AST node. Each AST node type is defined in the abstract gram-
mar files as described above. The AST for a nonterminal N is re-
ferred to by the notation N.g in the grammar. For example, in Fig-
ure 1 the AST for the while_statement nonterminal is named
w in the first production of Figure 1. These names are thus made
accessible in the semantic actions, and this allows child AST nodes
to be used in constructing larger ASTs from these children.

2.4 The Attribute Grammar
After parsing, and before applying rewrites and tree transforma-
tions, JastAdd compilers perform type checking and other static
analysis. This allows messages about any problems in the user’s
program to be generated from unmodified ASTs that directly re-
flect the user’s input and are thus easy for users to understand.

Type checking and other kinds of static analysis are performed us-
ing JastAdd’s attribute grammar facilities.

Attribute grammars attach attributes to ASTs. Attributes can be
defined in either declarative or imperative style. While impera-
tive style allows for writing regular Java code to manipulate the
nodes, declarative style simply specifies the relations that compute
each attribute. Attributes are evaluated in an order determined au-
tomatically by JastAdd. Imperative style attribute definitions are
executed when their values are needed by the declarative style at-
tributed definitions, which control the overall order of execution.
Imperative style attribute definitions are written in Java code, and
are useful when making complex decisions, for example in trans-
fomation code.

Attributes are either inherited or synthesized. Synthesized attributes
propagate information upwards in the AST (towards the root), while
inherited attributes propagate information downwards.1 Inherited

1Inheritance in attributed grammars is different than inheritance in
object-oriented programming.

JMLWhileStmt jml_while_statement =
jml_loop_statement_invariant_header.j
while_statement.w
{: return new JMLWhileStmt

(new JMLLoopInvariant(j),
new JMLLoopVariant(), w

);
:}

| jml_loop_statement_variant_header.j
while_statement.w
{: return new JMLWhileStmt

(new JMLLoopInvariant(),
new JMLLoopVariant(j),w

);
:}

| jml_loop_statement_invariant_header.i
jml_loop_statement_variant_header.j
while_statement.w
{: return new JMLWhileStmt(

new JMLLoopInvariant(i),
new JMLLoopVariant(j),w
);

:}
;

Stmt statement =
jml_while_statement.w {: return w; :}
| jml_for_statement.w {: return w; :}
;

List jml_loop_statement_invariant_header :=
JMLMAINTAINING expression.e SEMICOLON

{: return new List().add(e); :}
| jml_loop_statement_invariant_header.l

JMLMAINTAINING expression.e SEMICOLON
{: return l.add(e); :}

;

List jml_loop_statement_variant_header :=
JMLDECREASING expression.e SEMICOLON

{: return new List().add(e); :}
| jml_loop_statement_variant_header.l

JMLDECREASING expression.e SEMICOLON
{: return l.add(e); :}

;

Figure 1: Beaver grammar for possibly annotated loop state-
ments, from file possibly_annotated_loop.parser.

attributes are mainly used to make child nodes aware of informa-
tion from their parent nodes.

Attributes are implemented inside JastAdd aspects. Inside an as-
pect, one can define new attributes and equations that are added to
the different ASTs. This approach supports modularity as each fea-
ture is implemented in a single aspect. Each aspect can affect many
different types of ASTs, which supports separation of concerns.

2.4.1 Standard Java Analyses
There are several Java analyses that must be implemented in a com-
piler based on the JAJC, in particular Java’s definite assignment
and definite unassignment analyses [2, Chapter 16]. These are im-
plemented in JAJC with synthesized attributes that are defined in
abstract classes. Thus they must be implemented by AST classes
such as JmlLoopStmt. In JAJML this is done as follows in the
file possibly_annotated_loop.jrag.

eq JmlLoopStmt.isDAafter(Variable v) =

3

getLoopStmt().isDAafter(v);

This code simply tells the attribute evaluator that the definite as-
signment status for a variable v is determined by the LoopStmt
node of the JMLLoopStmt. Several other attributes needed to be
defined in this manner due to pre-existing analyses from the JAJC.
Examples are shown in the following table:

analysis attribute
assignment checking isDAbefore(Variable)
definite unassignment isDUafter(Variable)
unreachable statements canCompleteNormally()
variable lookup lookupVariable(String)
name classification nameType()
type checking typeCheck()).

For example, all the code for type checking in our case study is
contained in Figure 2.

public void JmlLoopInvariant.typeCheck() {
for (Expr exp:getExprs()) {

TypeDecl cond = exp.type();
if (!cond.isBoolean()) {

error("the type of \"" + exp + "\" is "
+ cond.name()
+ ", but should be boolean");

}
}

}

public void JmlLoopVariant.typeCheck() {
for (Expr exp:getExprs()) {

TypeDecl cond = exp.type();
if (!cond.isLong() && !cond.isInt()) {

error("the type of \"" + exp + "\" is "
+ cond.name()
+ ", but should be int or long");

}
}

}

Figure 2: Code from possibly_annotated_loop.jrag,
for type checking.

We also added several attributes to extract parts of the JML loop
statement ASTs, but all these are trivial.

2.5 Compiling Runtime Assertion Checks
In this section we describe how our prototype uses the facilities of
JastAdd to compile runtime assertion checking code for JML loop
annotations.2 Annotations in JAJML are implemented by trans-
forming the AST to include the original code weaved with asser-
tion checking code. Assertion checking code throws JML-specific
error objects when an assertion fails.

2.5.1 Plan for Checking
JAJML checks assertions derived from both loop invariants and
variant functions. A loop invariant must hold before and after each
iteration of the loop. A variant function gives a loop progress met-
ric that must decrease after each iteration of the loop. The variant

2Similar considerations would apply for such tasks as verification
condition generation.

//@ maintaining Inv1; . . . maintaining Invn;
//@ decreasing E1; . . . decreasing En;
while (B) { S }

Figure 3: A general form of the annotated while loop

{ boolean fir$tTime = true;
long variant$Var1 = 0, . . ., variant$Varn = 0;
while(true) {

if (!(Inv1) || . . . || !(Invn)) {
throw new JMLLoopInvariantError(); }

if (fir$tTime) fir$tTime = false;
else {

if (!(variant$Var1 >= 0) || . . .
|| !(variant$Varn >= 0)
|| !(variant$Var1 < E1) || . . .
|| !(variant$Varn < En)) {
throw new JMLLoopVariantError();

}
}
variant$Var1 = E1; . . . variant$Varn = En;
if (!(B)) break;
S

}
}

Figure 4: A transformed form of the annotated while loop

function is an expression of type long (or int); it must also be no
less than 0 when the loop is executing.

We consider a loop iteration to include the loop test and any in-
crement statements that are implicitly executed at the end of a for
loop. Exactly what constitutes a loop iteration is important for ver-
ification of Java or similar languages (such as C, C++, and C#). To
explain this precisely, we specify how the annotated JML source
code is transformed into Java with runtime assertion checks. We
start by writing a general form of an annotated while loop. Code of
the form shown in Figure 3, can be transformed to the form shown
in Figure 4, where the names fir$tTime, and variant$Var1,
. . ., variant$Varn are all fresh.

Moving the loop condition, B, into the body of the loop effectively
treats any side-effects in B as part of the loop iteration.3 These may
even be useful in making the variant function decrease, hence the
loop variant is tested at the top of the translated loop, effectively at
the end of each loop body. Note that a continue statement in the
body S will thus immediately check the invariant and the variant
function assertions, since the loop iteration has just ended. How-
ever a break in S will simply exit the loop, without performing
any additional checks. In particular the invariant is not checked
when a break is executed.

Our prototype expresses this kind of transformation directly at the
level of abstract syntax trees in JastAdd. The prototype also trans-
forms for and do loops in a similar way.

2.5.2 Transformation Using JastAdd
For tree transformation we used JastAdd’s transformation()
function. We preferred this to JastAdd’s Rewrite construct, be-
cause transformations are done after the static analysis steps de-
3However, there can be no side effects in the invariant or variant
function expressions in JML, since they must be pure.

4

public void JmlLoopStmt.transformation() {
super.transformation(); // (1)
List<Stmt> blklist = new List<Stmt>();
Block replaced = new Block(blklist);
LinkedHashMap<Integer, Expr> variantExprs =

getNumberedVariantExpressions();
LinkedHashMap<Integer, Stmt> variantDecls =

addVariableDeclarationsForVariants(
variantExprs,blklist);

VariableDeclaration vdFirstTime = // (2)
JmlHelper.createBooleanVarDecl(

"fir$tTime","true");
blklist.add(vdFirstTime);
List<Stmt> LoopStmtblklist = // (3)

new List<Stmt>();
addIfNotFirstTimeStmt(// (4a)

variantDecls,variantExprs,
vdFirstTime,LoopStmtblklist);

addLoopInvariantChecks(LoopStmtblklist);// (4b)
addLoopVariantUpdates(variantDecls, // (4c)

variantExprs,LoopStmtblklist);
// (4d) follows
addConditionCheckAndUpdate(LoopStmtblklist);
// (4 & 4e) follows
blklist.add(getNewLoopStmt(LoopStmtblklist));
replace(this).with(new Block(blklist)); // (5)

}

Figure 5: Transformation for runtime checking of loop asser-
tions.

scribed above, and thus as we described above, generally leads to
better error message generation. This transformation function is
implemented for JmlLoopStmt, which allows its functionality to
be inherited by all three kinds of loops.

The transformation function is shown in Figure 5. It has the fol-
lowing steps also indicated in the code.

1. Apply transformations bottom by first visiting the children.

2. Add a declaration for a long variable for each variant func-
tion introduced in the loop annotation.

3. Define the fir$tTime boolean variable to check if loop is
executed for the first time.

4. Add a loop statement with condition true, the type of the
loop, whether its a while, for, or do loop, is similar to the
type of the original loop statement. For simplicity, we con-
vert do statements into while statements in our implementa-
tion. The body of the loop statement includes:

(a) An if statement that flips the FirstTime condition if true,
and checks all variant functions otherwise,

(b) Assert statements for all invariants in the loop,

(c) Statements to update all variant variables with their cur-
rent value calculated from the variant functions,

(d) An if statement to break the loop if the break condition
is satisfied,

(e) The body of the original loop, and

(f) If this is a do-while loop, then the body and break in
the last two steps are switched.

5. Replace the generated block with the original JMLLoopStmt

3. COMPARISON WITH ALTERNATIVES
The JML community has been working for some time to revise
their tools and provide support for both Java 5’s features and better
integrated development (IDE) support. As with the current genera-
tion of JML tools [3], it is very helpful to build on an existing Java
compiler. The main alternatives to using JAJC are to build the JML
tools on the Open JDK or Eclipse compiler.

David Cok has done some preliminary work on the Open JDK com-
piler,4 which has advantages because the compiler is kept up to date
by Sun and is relatively small. However, it is not designed to be ex-
tensible and there is little direct support for IDE integration.

The alternative currently favored for JML’s further development is
JML4. The JML4 effort was pioneered by Patrice Chalin and his
group [5, 4]. It is based on the Eclipse Java development tools
(JDT) compiler, maintained by the Eclipse foundation. The tight
integration of the JDT compiler with Eclipse is a major advantage
of the approach, compared with our approach.

However, the main disadvantage of the JML4 approach is that the
JDT compiler is not designed to be extensible. In the remainder
of this section we compare the extensibility of the JML4 approach
with our approach using JastAdd. For this comparison we use the
case study of loop annotations described above. This case study
was developed as an exercise for the JML Winter School by Patrice
Chalin and Perry James.5 Besides being a tutorial example, it has
been fully implemented in JML4.

3.1 JML4 Overview
At the package level, JML4 is a customization of some Eclipse
packages that add JML support to the scanner, parser, code gen-
erator, and UI of the Eclipse JDT compiler. At this level, our im-
plementation in JastAdd is very similar, because both approaches
extend an existing (Java 5) compiler. However, at this level of ab-
straction, one should note that the implementation of JML features
is introduced in distinct places in those two approaches. In JML4,
features are implemented at the bytecode generation step, while in
JAJML, features are implemented right before the bytecode gener-
ation step by AST transformation. This generally results in less and
simpler (and thus perhaps more reliable) code in our approach.

3.2 Implementing Loop Annotations in JML4
We now explain how the loop annotations case study works in more
detail in JML4, relying on the work of Chalin and James.

3.2.1 Scanning and Parsing
Scanning involves adding new keywords to the scanner’s Java file,
Scanner.java in the internal.compiler.parser pack-
age of org.eclipse.jdt. This hand-written scanner has over
4000 lines of code. One adds keywords by adding lines of the form

m.put("maintaining",
new Integer(TokenNameloop_invariant));
//$NON-NLS-1$

to the static initializer for ML_KEYWORD_TO_TOKEN_ID_MAP,
which is a Java Map.

4Email message on the jmlspecs-reloaded mailing list from De-
cember 11th, 2007, see http://tinyurl.com/3r5qbo.
5See http://tinyurl.com/3ogtxo.

5

private void consumeLoopInvariant() {
String lexeme

= new String(this.identifierStack[
this.identifierPtr]);

long pos
= this.identifierPositionStack[

this.identifierPtr--];
this.identifierLengthPtr--;
Expression exp

= this.expressionStack[this.expressionPtr--];
this.expressionLengthPtr--;
JmlLoopInvariant invariant

= new JmlLoopInvariant(lexeme,
this.jmlKeywordHasRedundantSuffix, exp);

invariant.sourceStart = (int)(pos >>> 32);
invariant.sourceEnd = this.endStatementPosition;

this.pushOnAstStack(invariant);
}

Figure 6: The semantic action consumeLoopInvariant.

The parser is generated from a grammar file named java.g in
org.eclipse.jdt.core.grammar. It is written in the lan-
guage of the Jikes Parser Generator (JikesPG). This file is more
than 3000 lines long. Productions are added by editing this file (us-
ing tags to make finding the edits easier) along with the suitable
function call to perform the needed semantic action. For example,
the following is a small example of a loop invariant clause written
for the JikesPG (omitting comments and tags).

LoopInvariant ::= MaintainingKeyword Predicate
ExitJmlClause ’;’

/.$putCase consumeLoopInvariant() ; $break ./
/:$readableName LoopInvariant:/

ExitJmlClause ::= $empty
/.$putCase consumeExitJmlClause(); $break ./
/:$readableName ExitJmlClause:/

MaintainingKeyword -> ’loop_invariant’
/:$readableName MaintainingKeyword:/

The reader will notice a fair bit of “boilerplate” in the grammar file.
The nonterminal ExitJmlClause is used to have a semantic ac-
tion at the end of each clause. The lines starting /.$putCase and
ending with ; $break ./ enclose semantic actions, which are
calls to methods in the file Parser.java, found in the package
org.eclipse.jdt.internal.compiler.parser. The
lines /:$readableName ... :/ give a readable name to the
production, used in error messages and in debugging the grammar.
There is also a need to add separate entries for terminal symbols in
an early section of java.g.

All semantic actions must be hand written in methods in the file
Parser.java. This file is currently close to 15000 lines of code.
Semantic actions are accomplished by writing code to manipulate
the seven stacks that the parser maintains. For example, Figure 6
shows the semantic action consumeLoopInvariant, without a
15 line comment that illustrates the action of the code on the stacks.
It seems fair to say that writing such semantic actions is somewhat
tedious and error prone.

3.2.2 Abstract Syntax Trees and Analysis
ASTs for new productions are built manually by adding new classes
to the org.jmlspecs.jml4.ast package. Constructors and

public void resolve(BlockScope scope) {
if (hasPred()) {

TypeBinding type =
pred.resolveTypeExpecting(

scope, TypeBinding.BOOLEAN);
pred.computeConversion(

scope, type, type);
}

}

Figure 7: The JML4 type-checking action resolve in the su-
perclass JmlClause.

public void resolve(BlockScope scope) {
TypeBinding type =

this.expr.resolveTypeExpecting(
scope, TypeBinding.LONG);

this.expr.computeConversion(
scope, type, type);

createLocalForStore(scope);
scope.addLocalVariable(

this.variantLocal.binding);
this.variantLocal.binding

.recordInitializationStartPC(0);
}

Figure 8: The JML4 type-checking action resolve in the sub-
class JmlLoopVariant.

relationships between ASTs must be hand-coded.

Other methods for type-checking and static analysis are handled
either automatically, by subclassing existing AST classes that im-
plement static analysis methods, or manually, by overriding these
methods in the added AST subclasses. For example, the expres-
sion JmlLoopInvariant must be of type boolean, so it is
subclassed from JmlClause. The type-checking is implemented
in the superclass JmlClause using the function resolve and is
shown in Figure 7. However, in JmlLoopVariant, the expres-
sion must be of type long, so the function resolve is overridden
as shown in Figure 8.6

3.2.3 Code generation
Code generation is implemented by directly generating bytecode in
a method of each AST node class. For our running example, this
involves modifying the method generateCode in the AST class
WhileStatement. These modifications are needed to add hooks
where bytecode needs to be inserted to do runtime checking. These
hooks emit bytecode that creates auxiliary variables and evaluates
expressions in way that is very similar to Figure 4.

3.3 Comparing JAJML and JML4
Overall there are several advantages that emerge from the extensi-
bility features of JastAdd and the JAJC. In terms of scanning, pars-
ing, and AST definition, JastAdd makes the work in JAJML signif-
icantly less tedious and less error prone than that in JML4’s modifi-
cation of the JDT. In particular automatically generating AST node
classes is significantly less work than writing them by hand. The
JikesPG that is used in the JDT compiler is a significant headache,
both in terms of the amount of tedious boilerplate it requires and

6We modified this code slightly to use long instead of int to
reflect recent changes in the JML Reference Manual.

6

in terms of the tedious and error prone manipulation of the seven
stacks in semantic actions. By contrast, Beaver seems less tedious
and has semantic actions that are shorter and more automatic.

Even more automation is provided by JastAdd’s support for at-
tribute grammars, which can automate many of the tasks that would
otherwise be hand coded as visitors in JML4. The use of attribute
grammars also allows the JAJC to be more easily extensible, and
the JAJC is designed as an extensible compiler framework.

Another advantage is the use of transformations instead of direct
generation of bytecode for runtime assertion checking. This is more
automatic and less error prone than direct bytecode generation.

A crude measure of the automation given by JastAdd in obtained
by counting noncommentary lines of code. For our loop annotation
case study, implementing the same feature and the same functional-
ity in JML4 and JAJML required less than 100 lines of code. This
includes defining the AST nodes, writing the rules for the parser
generator, and implementing the attributes. We ignored counting
the lines of code that are used from the JmlHelper as these func-
tions are used in many features. However, the total implementation
for JmlHelper class is about 55 lines of code. For the same case
study, JML4 require about 600 lines of code.

4. CONCLUSION
In this paper we used JastAdd to build an extensible runtime asser-
tion checker for JML. The JastAdd extensible Java compiler pro-
vided an extensible framework for our case study, which was how
to add runtime assertion checks for loop annotations.

We also compared JAJML and JML4 on our case study. We con-
cluded that there are both advantages and disadvantages to building
a runtime assertion checker with JastAdd. The main disadvantages
of JAJML are the lack of tight IDE integration with Eclipse and
relatively lower guarantee of support for future versions of Java.
However, the simplicity and extensibility of building JAJML with
JastAdd says a lot for our approach. In summary, JAJML needs
less code to be implemented, and is easier to extend.

Our case study also shows that the use of modern attribute grammar
tools may be advantageous for quickly building dynamic analysis
tools that are easily extensible. For example, we were able to eas-
ily extend our case study by adding support for pre- and postcondi-
tions, as well as JML’s ghost fields and set statements.

Future work is implementing the rest of JML, and checking how
easy it is for researchers to experiment with new features.

Acknowledgments
The work of both authors was supported in part by the National
Science Foundation under grant CNS 08-08913. Thanks to Perry
James and Patrice Chalin for comments on an earlier draft. Thanks
to Torbjörn Ekman for help with JastAdd.

5. REFERENCES
[1] Kopi project home page. http://www.dms.at/kopi,

2004.
[2] K. Arnold, J. Gosling, and D. Holmes. The Java

Programming Language Third Edition. Addison-Wesley,
Reading, MA, 2000.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June
2005.

[4] P. Chalin, P. R. James, and G. Karabotsos. An integrated
verification environment for JML: Architecture and early
results. In Sixth International Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2007),
pages 47–53. ACM, Sept. 2007.

[5] P. Chalin, P. R. James, and G. Karabotsos. The Architecture
of JML4, a Proposed Integrated Verification Environment for
JML. Technical Report 297, Concordia University, May
2007.

[6] Y. Cheon. A runtime assertion checker for the Java Modeling
Language. Technical Report 03-09, Department of Computer
Science, Iowa State University, Ames, IA, Apr. 2003. The
author’s Ph.D. dissertation.

[7] C. Clifton. MultiJava: Design, implementation, and
evaluation of a Java-compatible language supporting
modular open classes and symmetric multiple dispatch.
Technical Report 01-10, Department of Computer Science,
Iowa State University, Ames, Iowa, 50011, Nov. 2001. The
author’s masters thesis.

[8] A. Demenchuk. Beaver - a lalr parser generator.
http://beaver.sourceforge.net/index.html, 2006.

[9] T. Ekman. Extensible Compiler Construction. PhD thesis,
Lund University, Dept. of Computer Science, Lund, Sweden,
2006. Dissertation 25.

[10] T. Ekman. Extensible Compiler Construction. PhD in
Computer Sience, Lund University, Department of Computer
Science, Lund University, Box 118, SE-221 00 Lund,
Sweden, 2006. ISBN 91-628-6839-X.

[11] T. Ekman and G. Hedin. The jastadd extensible java
compiler. In OOPSLA ’07: Proceedings of the 22nd annual
ACM SIGPLAN conference on Object oriented programming
systems and applications, pages 1–18, New York, NY, USA,
2007. ACM.

[12] T. Ekman and G. Hedin. The JastAdd system — modular
extensible compiler construction. Sci. Comput.
Programming, 69(1-3):14–26, 2007.

[13] E. Foundation. The Eclipse Project.
http://www.eclipse.org/.

[14] R. M. Fuhrer et al. Eclipse IDE Meta-tooling Platform.
http://eclipse-imp.sourceforge.net/.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, Third Edition. The Java Series.
Addison-Wesley, Boston, Mass., 2005.

[16] C. A. R. Hoare. The verifying compiler, a grand challenge
for computing research. In Verification, Model Checking, and
Abstract Interpretation, 6th International Conference,
VMCAI 2005, volume 3385 of Lecture Notes in Computer
Science, page 78. Springer-Verlag, Jan. 2005.

[17] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R.
Cok, P. Müller, J. Kiniry, and P. Chalin. JML Reference
Manual. Available from http://www.jmlspecs.org,
Oct. 2007.

[18] K. B. Taylor. A Specification Language Design for the Java
Modeling Language (JML) Using Java 5 Annotations.
Master’s thesis, Iowa State University, 2008. To appear.

7

