
Use Concurrent Programming Models
to Motivate Teaching of Programming Languages

Gary T. Leavens

CS-TR-08-04a
April 2008, revised May 2008

Keywords: Programming language curriculum, concepts, concurrency, computa-
tional models, programming models, paradigms.

2008 CR Categories:
K.3.2 [Computers and Education] Computer and Information Science Education —
curriculum.

To appear in the proceedings of the Programming Languages Curriculum Work-
shop, May 28-29, 2008, Cambridge, Mass.

School of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA



Use Concurrent Programming Models
to Motivate Teaching of Programming Languages

Gary T. Leavens
College of Electrical Engineering and Computer Science

University of Central Florida
4000 Central Florida Blvd.
Orlando, Florida, 32816

leavens@eecs.ucf.edu

ABSTRACT
Undergraduate computer science students typically have only a lim-
ited understanding of their favorite languages and no inkling of
other programming paradigms. Yet modern programmers typically
work with several languages, and the availability of cheap con-
currency is exposing fundamental problems in standard concurrent
programming techniques (mutable objects and threads). This situ-
ation presents a great opportunity: by exploring nonstandard tech-
niques for gaining intellectual control over concurrent programs,
one can motivate and teach important semantic concepts (such as
scoping) and important programming concepts (such as functional
abstraction). Such a curriculum stimulates student interest in ex-
ploring new programming paradigms.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education — curriculum

General Terms
Languages

Keywords
Programming language curriculum, concepts, concurrency, com-
putational models, programming models, paradigms

1. INTRODUCTION
Motivating the study of programming languages is not easy. Most
students are not planning to write compilers or design programming
languages, and after 2 or 3 years honing their programming skills,
they are often unhappy to be forced to study the very tools they have
been using all along. Do carpenters study the concepts of hammer
design? Wouldn’t it be better to get more practice hitting nails?

Many educators also do not believe that undergraduates need to
study programming languages extensively. This is evident from
the reduced time allocated to programming language concepts in
Curriculum 2001 [6]. Thus many schools no longer have a required

course in programming languages and use some of the credit hours
formerly given to programming languages to study programming.

This situation is frustrating to those of us who study and teach
programming languages. We know that modern languages and
paradigms have great power to increase productivity and to encap-
sulate reusable programming knowledge. How can we motivate the
study of programming languages to skeptical students, colleagues,
and managers from industry?

My experience is that, while there is no single idea that will magi-
cally motivate all students, intellectual control over concurrency1 is
a powerful theme that can motivate and unify a syllabus in program-
ming languages. Thus I advocate using concurrent programming
ideas as motivation for teaching programming language paradigms
and concepts. In this way a course on programming languages can
simultaneously teach programming ideas and programming lan-
guage ideas, while holding student interest.

In this paper I describe my experience in more detail, describing
both my course’s design for motivating students and how I strive
to meet their heightened expectations. The course, “Programming
Languages I” at the University of Central Florida, is a semester
long (14 week) course that serves mostly junior and senior under-
graduate majors in computer science.

2. MOTIVATING THE STUDY OF PLS
In my experience, many undergraduate students think that a course
in programming languages may add particular “useful” languages
to their resume. They think the course will teach them practical
languages that they may use in programming jobs, such as C and
C++, or hone their skills in languages they already know, such as
C#, Java, or Python. These are the perceived demands of industry.

Moreover, all the programming techniques my students have seen
and all the languages mentioned by their professors use the imper-
ative paradigm. Students also seem to have a sufficient grounding
in the basics of imperative languages (assignment, procedures) and
object-oriented languages (dynamic dispatch, inheritance, and sub-
typing), that focusing the course on imperative and object-oriented
language mechanisms tends to reinforce their feeling that the main
purpose of a programming languages course should be to deepen
their understanding of “useful” languages. Thus, when forced to
learn a new programming paradigm, they are naturally reluctant,
since in the new paradigm they must start over as a beginner.

1By “concurrency” I mean both shared memory concurrency (task
parallelism) as well as data parallelism.

1



How to motivate such students? How to get them to see the power
of other paradigms and the power of programming languages?

I use several motivating arguments, and use concurrency as an over-
arching theme. Specifically I tell students that:

• Programming languages are changing constantly. Moreover,
professional programmers often use several languages in a
single application. Both of these factors make it important
that students learn how to grasp new languages quickly.

• To grasp new languages quickly, students can identify how
the new language relates to standard concepts taught in the
course. This will enable them to read a language’s reference
manual with greater understanding.

• Programing techniques are closely related to good language
design, since both use abstraction to create reusable parts.
Indeed many applications have customization features that
become more like programming languages over time. Thus
the principles of good language design are closely allied to
those needed for good program design, and vice versa.

• Cheap concurrent hardware will lead to increasing pressure
on programmers to effectively use concurrency. Yet, as many
students know from personal experience, writing and debug-
ging concurrent code using threads in an imperative language
is fraught with difficulty, due to the presence of race condi-
tions. I explain these problems and promise to show them
techniques that avoid these problems.

In my experience, the last point above really sells the course. I
have used the first three points in motivating previous programming
languages courses, and these were moderately successful. But stu-
dents still think of the first three points above as perhaps not directly
applicable to them. (They have not experienced major language
shifts, recall the pain of learning a new language, and have little
direct experience with software reuse.)

However, students are very aware of the well-publicized trend in
hardware toward multicore computers, and they easily see the prob-
lems that race conditions cause for concurrent programs. While
they are suspicious of anything deviating from standard techniques
that use threads, shared mutable objects, and locking to write con-
current programs, it is not hard to convince them that these standard
techniques are far less than ideal. (Indeed many of them have, ei-
ther in another class or on the job, experienced the problems with
such standard techniques for themselves.) Thus, this extra moti-
vation of learning techniques to conquer concurrent programming,
when carried through in the course’s design, seems to make a sig-
nificant difference in student excitement and interest.

3. SYLLABUS
The course is based on an unusual book, which is not designed as
a programming languages textbook — Concepts, Techniques, and
Models of Computer Programming (CTM) by Van Roy and Haridi
[7]. CTM uses the Oz programming language, which is a multi-
paradigm language with an interesting set of orthogonal features.
Although intended as a second course in programming, the book
has many features that make it well suited for delivering on the
motivating statements described above. In particular it has a large
amount of material on concurrency.

The course starts with an overview of different computation mod-
els (chapter 1), with a brief overview of each model. In this part
of course I emphasize the definition of race conditions and the dif-
ficulties it causes for debugging and reasoning about concurrent
programs. (There is opportunity here to do more to make these
problems clear to students, since Oz has threads and locking, and I
plan to do more of this in a future offering of the course.)

The second chapter of CTM introduces the declarative computa-
tion model. This model is motivated by promising that its exten-
sion, the declarative concurrent model, will avoid race conditions,
since it has no mutable storage. The declarative model is defined
using a statement-oriented kernel language. It computes over num-
bers, records (which includes atoms, like Lisp symbols, as a special
case), and procedures. Variables in the language have dataflow be-
havior: once their value is determined (by unification), the value
never changes. Attempts to read from an undetermined dataflow
variable cause the thread reading the variable to suspend until the
value is determined. Statements include unification of variables
and expressions, if-then-else, pattern matching case, and proce-
dure calls.

While CTM has a formal operational semantics that defines the ker-
nel language, presenting the operational semantics directly is not
helpful for my undergraduates (although it seems to work for grad-
uate students). Instead I present the semantics through examples.

The kernel language is very small, but Oz itself has a fair amount of
syntactic sugar that makes it easier to use. After explaining the cru-
cial concept of syntactic sugars I spend time teaching the students
to desugar from Oz to the kernel language. Many sugars translate
expressions and functions into statements and procedures. I also
emphasize the concepts of free and bound variable identifier occur-
rences, and use the desugaring to extend that notion to all of Oz.
Since CTM does not treat these concepts at length, I extensively
supplement its material, adding an on-line quiz for each concept
and more exercises.

The other key concept in the declarative model is referential trans-
parency. I emphasize how important this is for simple (equational)
reasoning about declarative programs, and I point out that all pro-
grams written in the declarative model (and by extension those that
desugar to it) are referentially transparent.

The third chapter covers declarative programming techniques. I
emphasize the idea of matching the structure of the data in the struc-
ture of the program (“follow the grammar!” [2, 4]). We also discuss
how to use examples to derive key steps in a recursive program, and
how to abstract away common parts of computations using function
arguments and results.

The centerpiece of CTM (its chapter 4) is a discussion of what
is called the “declarative concurrent model.” This programming
model adds, to the declarative model, threads and lazy execution.2

We discuss stream programming and flow control issues, such as
buffering. I show how lazy execution allows one to write concur-
rent demand-driven programs simply. Many of the examples are
data parallel programs with a pipelined architecture. The discus-
sion emphasizes that this model is still referentially transparent,

2The authors distinguish lazy execution from lazy evaluation. For
them, lazy evaluation uses coroutining—when a computation is
needed, the thread that needs the value is used to compute the value.
In lazy execution, a new thread is used to compute the value.

2



hence this is concurrent programming without any possibility of
race conditions.

Race conditions are necessary, however, to allow client/server pro-
gramming, where multiple clients can be served without fixing an
order in advance. This is the subject of chapter 5 on message pass-
ing. The message passing model adds “ports” and a send primi-
tive; all messages sent to a port are merged into a single stream.
The main programming technique is to use “port objects,” which
encapsulate the port’s stream of messages, thus provide an abstrac-
tion similar to an Erlang [1] process. The port object reads from
the stream, processing one message at a time. This is similar to
but simpler than monitors, as message sending is asynchronous,
and so deadlocks cannot directly arise from message sending. Fur-
thermore, declarative concurrent programming techniques can be
used inside the port object. In essence, each pair of a message and
the object’s current internal state is used to send some messages
to other port objects and to generate a new internal state. We also
discuss how this model relates to Erlang.

Finally, we discuss the “relational” model briefly. This model is
similar to logic programming, but features encapsulated search,
which meshes nicely with the declarative models.

I omit extensive coverage of the stateful computation models, in-
cluding the imperative model and the object-oriented model. While
CTM has separate chapters on these models, students already are
somewhat familiar with them and I want to focus on stimulating
their interest in new paradigms and thus indirectly stimulate their
interest in the study of programming languages.

4. RELATED APPROACHES
This section compares the approach discussed above to other ap-
proaches I have used in teaching undergraduate programming lan-
guages.

I first taught this subject using MacLennan’s book Principles of
Programming Languages [5]. This book has an interesting set of
principles that are used to discuss programming language concepts.
However, it does not lend itself to giving students first-hand experi-
ence in programming in various paradigms. I was unsatisfied with
the shallow level of learning that occurred in such an approach;
students seemed to memorize discussion points without really in-
ternalizing them. One way to alleviate this problem is to make stu-
dents write programs in the various languages. However, doing so
uses too much time teaching the syntax of each language, dealing
with their compilers, etc.

My next experience was with Kamin’s book Programming Lan-
guages: An Interpreter-Based Approach [3]. This was great for
teaching concepts and programming, as students could write pro-
grams using various interpreters. All the languages processed by
the interpreters were very similar syntactically, which facilitated
switching between languages and helped students focus on con-
cepts. However, when students stopped knowing Pascal, the inter-
preters in the book became less useful.

After that, I used the first and then second edition of Essentials of
Programming Languages (EOPL) by Friedman, Wand, and Haynes
[2]. EOPL is an excellent book that focuses on fundamental seman-
tics of imperative and object-oriented programs. The semantics are
explained using interpreters written in Scheme, and in many exer-
cises the students modify these interpreters. Students learn func-

tional programming in Scheme and then use those skills in writing
interpreters.3

Most of the functional programming material in EOPL is similar
to that in chapter 3 of CTM. The main difference is that Oz has a
case expression that does pattern matching, which is built into the
language and meshes with the record structures used for recursive
data (including lists). In my experience, Oz’s case statement is
a big advantage for teaching recursive programming. It makes the
key idea of “follow the grammar!” much more readily apparent in
the structure of programs, compared with Scheme.

The other major difference between EOPL and CTM is that my
EOPL-based course spends the second half of the semester teach-
ing fundamental semantic concepts from imperative programming
languages, while the CTM-based course spends its second half ex-
ploring concepts of the declarative concurrent model and the mes-
sage passing model. Again, this seems to be an advantage for stu-
dent motivation, as it allows the theme of controlled concurrency
to be elaborated in detail. Students also get to see the advantages
of concepts like referential transparency in action.

5. DISCUSSION
However, some differences in my CTM-based course may be seen
as drawbacks compared with a more traditional syllabus for a pro-
gramming languages course.

One difference is that there is little place in my syllabus for teach-
ing static type checking. That is, while I explain the distinction
between static and dynamic type checking, there is no material on
details of how to design or implement a static type system. One
difficulty is that Oz is dynamically typed; another is that CTM has
little material on this topic. However, it is my experience that stu-
dents are not interested in the details of static type checking until
they have programmed in a dynamically typed language. The ex-
perience of programming in a dynamically typed language (like
Scheme or Oz) is priceless background for teaching students about
static type checking, because it gives them first hand knowledge
of the purpose and benefits of static type checking, and the back-
ground to understand the tradeoffs involved in a type system’s static
approximations. Thus my syllabus may be especially valuable in
a curriculum where students are only taught statically typed lan-
guages (such as Java, C, C++, and C#).

Another difference compared to traditional programming languages
courses is that there is also little place in my syllabus for teaching
parameter passing modes. In part this is because it does not make
much sense to pass Oz’s dataflow variables by mechanisms such
as value-result or result. However, some supplementary material
could be added to distinguish call by value, call by name, and lazy
evaluation, from the call by reference mechanism used in Oz. In
particular a discussion of call by name would be easy to add, since
Oz has closures.

Finally, it would be better if more time could be spent having stu-
dents compare the different approaches to concurrency. That is,
I would like students to have more experience directly comparing
the standard techniques using shared mutable state and locking with
3EOPL also has material on type checking, continuations, and
compilers, but I am not usually able to get to that material in an un-
dergraduate course. In a curriculum where students already know
Scheme, it would be easy to cover at least some of the material on
type checking.

3



the declarative concurrent model and the message passing model.
There is considerable support in CTM for making such a compari-
son, but covering 3 more chapters and 200 more pages of the book
is beyond what my semester allows. I try instead to emphasize that
the techniques of declarative concurrent programming and message
passing can be used to supplement such standard techniques. How-
ever, this observation reinforces the need for all students to have
some first-hand experience with the difficulties of such standard
techniques at the beginning of the semester.

In the main, however, it is better to trade some coverage of tradi-
tional topics in order to better motivate students and to explore the
programming language perspective on concurrency.

6. CONCLUSION
Cheap concurrency is no longer coming to computing, it has ar-
rived. For too long programming language courses have ceded
concurrent programming topics to courses on operating systems or
systems software. But the programming approaches taught in such
courses reflect their low-level focus—they do not (typically) ex-
plore alternative paradigms that eliminate or greatly suppress race
conditions. We can take back concurrent programming, and by
exploring such alternatives in a class on programming languages
we can strongly motivate the study of “exotic” paradigms, such as
(lazy) functional programming, and message passing. By keep-
ing the students motivated, they are willing to learn the concepts
necessary to use these new paradigms, and thus learn about both
programming and programming languages.

Acknowledgments
Thanks to Ghaith Haddad who helped developed the initial ver-
sion of the CTM course at UCF as my teaching assistant, and who
gave comments and corrections on an earlier draft. Thanks to the
anonymous reviewers from the Programming Languages Curricu-
lum Workshop, whose thoughtful questions stimulated several clar-
ifications and much of the discussion section. Thanks also to the
students at UCF whose feedback has helped shape the CTM course.
This work was supported in part by a grant from the US National
Science Foundation CNS 08-08913.

7. REFERENCES
[1] J. L. Armstrong, M. C. Williams, C. Wikström, and S. R.

Virding. Concurrent Programming in Erlang. Prentice Hall,
2nd edition edition, 1995.

[2] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of
Programming Languages. The MIT Press, New York, NY,
second edition, 2001.

[3] S. N. Kamin. Programming Languages: An Interpreter-Based
Approach. Addison-Wesley Publishing Co., Reading, Mass.,
1990.

[4] G. T. Leavens. Following the grammar. Technical Report
CS-TR-07-10b, School of EECS, University of Central
Florida, Orlando, FL, 32816-2362, Nov. 2007.

[5] B. J. MacLennan. Principles of Programming Languages.
Holt, Rinehart and Winston, New York, NY, second edition,
1987.

[6] T. J. T. F. on Computing Curricula. Computing curricula 2001.
Journal on Educational Resources in Computing, pages
1–231, 2001.

[7] P. Van Roy and S. Haridi. Concepts, Techniques, and Models
of Computer Programming. The MIT Press, Cambridge,
Mass., 2004.

4


