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Abstract

The interface speci�cation of a procedure describes the procedure	s behavior

using pre
 and postconditions� These pre
 and postconditions are written using

various functions� If some of these functions are partial� or underspeci�ed� then

the procedure speci�cation may not be well
de�ned�

We show how to write pre
 and postcondition speci�cations that avoid such

problems� by having the precondition �protect
 the postcondition from the

e�ects of partiality and underspeci�cation� We formalize the notion of pro


tection from partiality in the context of speci�cation languages like VDM
SL

and COLD
K� We also formalize the notion of protection from underspeci�ca


tion for the Larch family of speci�cation languages� and for Larch show how

one can prove that a procedure speci�cation is protected from the e�ects of

underspeci�cation�

� The Problem

This paper seeks to explain and precisely de�ne properties of �good� procedure spec�
i�cations� These properties say when the precondition of a procedure speci�cation
protects the postcondition from partiality or underspeci�cation in the vocabulary
used in the speci�cation� While we will precisely de�ne protection for formal speci�
�cations
 it can be applied and used in even informal speci�cations �with
 of course

less precision��

To explain what a protective speci�cation is
 we start with an informal example�
Consider an �ill�de�ned� speci�cation of an integer�valued factorial procedure
 such as
that found in Figure 	� This behavioral interface speci�cation is to be implemented
in C��
 which explains why C�� syntax is used to specify how it is to be called�
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 a faculty improvement
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Washington�
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 under grant
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int factorial�int x��

behavior �

requires informally �x is not too big��

ensures informally �result is the factorial of x��
�

Figure 	� An ill�de�ned informal speci�cation of a factorial procedure�

int factorial�int x��

behavior �

requires informally �x is nonnegative and x is not too big��

ensures informally �result is the factorial of x��
�

Figure �� A protective informal speci�cation of a factorial procedure�

The pre� and postconditions follow requires and ensures
 respectively
 when the
precondition is satis�ed
 the procedure must terminate in a state that satis�es the
postcondition� �The keyword informally in Larch�C�� ���� signals the start of an
informal predicate�� This speci�cation is ill�de�ned
 because it is not clear what the
procedure should return when x is negative� The problem is that mathematics does
not de�ne what �the factorial of x� means when x is negative
 but for that case the
speci�cation seems to require a correct implementation to return some integer� Note
that the problem with this speci�cation has nothing at all to do with the particu�
lar mathematical formalism used to write the pre� and postconditions
 or with any
particular logic for reasoning about what they mean�

A better
 yet still informal
 speci�cation of the factorial procedure is given in
Figure �� In this speci�cation the precondition requires that the argument x is non�
negative
 and thus has a well�de�ned factorial� We say that the precondition of
Figure � �protects� the postcondition
 because for all values of the arguments that
satisfy the precondition
 the vocabulary used in the post�condition is well�de�ned�
Thus whatever the phrase �the factorial of x� might mean when x is negative does
not matter�

The concept of protection
 even in informal speci�cations
 does have one subtle
twist� It is that one part of a precondition may protect other parts of the precondition
itself
 so that the entire precondition is well�de�ned� Most programmers are familiar
with examples where they must check that a number is nonzero before checking
some condition involving a ratio or modulo calculation� The same idea applies in
speci�cations such as the one in Figure �
 where the �rst conjunct in the precondition
��denom is positive�� protects the second� That is
 if the �rst conjunct is false

the entire precondition is false
 and so the meaning of the second conjunct does
not matter
 as the implementation will not have any speci�ed behavior in such a
case� �Note that the postcondition is also protected by the �rst conjunct in the
precondition��

In the example of Figure �
 the �informal� logic used to reason about the meaning
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double taxFor�int base� int num� int denom��

behavior �

requires informally �denom is positive and 	 � �num
denom� � ���

ensures informally �result is approximately �num
denom� � base��
�

Figure �� A protective speci�cation that demonstrates protection within the precon�
dition�

of the precondition matters� In our informal argument we assumed that if the �rst
conjunct in the precondition is false
 then the entire precondition is false �and hence
well�de�ned�� However
 since the precondition is informal
 one could plausibly argue
that since the ��� operator used in the second conjunct is partial
 it has no meaning
when �denom� is zero
 and in that case perhaps the entire precondition should be
considered meaningless� To resolve such questions
 one must take the �rst step to�
wards a formal speci�cation language
 and agree on some conventions for interpreting
such formulas�

In this paper we consider what protection means with respect to partiality and
underspeci�cation� Our treatment of protection is not meant to be exhaustive
 but
merely to illustrate concepts that are useful with some logics that are widely used for
formal speci�cation� �See ��
 	�� for surveys that also cover additional kinds of logics
that might be used in formal speci�cation
 and hence might need their own concepts
of protection� Also PVS ���� represents another kind of speci�cation logic that should
be considered in extending our concepts��

The �rst concept of protection we discuss is appropriate for behavioral interface
speci�cation languages �BISLs� that use a logic that accepts the existence of partial
functions and has various non�classical ways to reason about them� For example

VDM�SL �	�
 	� uses a logic called LPF �	�
 Section ���� ��
 �
 ���
 which has three
logical values and two kinds of equality�� As another example
 the speci�cation lan�
guage COLD�K �	�� uses a logic having just two logical values
 but in which all other
types have an improper value
 �
 which models the �unde�ned� results of partial
functions
 and also models computations that go into in�nite loops or cause errors�
All other values are proper� In COLD�K there is also a de�nedness predicate
 D
 that
allows one to reason explicitly about whether a term denotes a proper value or not�
There are several other languages with similar concepts ��
 �
 ��
 �	
 ����

The second concept of protection we discuss is appropriate for BISLs that use a
logic that does not admit the existence of partial functions
 but uses underspeci	ca�
tion� In such a logic
 one avoids specifying a value for unde�ned terms �	�
 	��� In this
approach
 to make a term �unde�ned� one simply does not specify its value
 hence it
will not be possible to prove anything about such a term� This kind of logic is used
in the Larch Shared Language
 LSL �	�
 Chapter �� �	��
 which is the mathematical
component of the Larch family BISLs �	��
 in the BISLs of the RESOLVE family ����


�However
 in LPF nonstrict �i�e�
 strong
 equality and the de�nedness operator
 �
 are only used
in meta�arguments
 since the logic is designed so that one only needs to use strict �i�e�
 weak
 equality
in proofs�
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and in Z �	�
 ��� �according to its draft standard ������ The subtle problems that
underspeci�cation may cause for the unwary in LSL �and similar logics� are discussed
in Appendix A
 indeed Jones�s paper pointing out these problems �	�� motivated the
present work�

It is not the purpose of this paper to advocate one kind of logic over another� In�
stead
 this paper explores concepts of protection
 with the aim of improving intuition
about it and providing more guidance to speci�ers� We also discuss how to prove
protection from the e�ects of underspeci�cation�

� Protective Procedure Speci�cations

The idea of protection in a BISL was �rst formulated by Wing ���
 Section ��	����
Although we generalize that notion here
 our goal is the same as Wing�s original�
knowing when a behavioral interface speci�cation protects �its users from the incom�
pleteness of the� mathematical vocabulary used in that speci�cation �by ensuring that
the meaning of the procedure speci�cation is independent of any incompleteness� in
that vocabulary �p� 	����

��� Partiality Protection

In a speci�cation language like VDM�SL or COLD�K
 and TROLL light �	��
 the no�
tion of a procedure speci�cation that protects against partiality is relatively straight�
forward� This is because the associated logic explicitly includes a �bottom� element

�
 and a de�nedness predicate
 which we will write as D �where D��� � false and if x
is proper then D�x� � true�� The symbol � stands for provability in the appropriate
logic �for LPF
 at the metalogical level�� The idea is that a speci�cation is protective
if for all possible inputs
 the precondition is de�ned
 and whenever the precondition
is true
 then the postcondition is de�ned�

De�nition ��� 	partiality
protective� A procedure speci	cation� S� that uses a

mathematical theory� T � and has formal parameters� �x � �U � precondition� Q��x�� and
postcondition� R��x�� is partiality�protective if and only if

� T � ��x � �U � D�Q��x��� and

� T � ��x � �U � Q��x�� D�R��x��


For example
 the VDM�SL speci�cation of factorial in Figure � is partiality�
protective
 because the precondition is always de�ned
 and whenever x satis�es the
precondition
 the postcondition is always de�ned�

��� Underspeci�cation Protection

The Larch family
 the RESOLVE family
 and Z use logics in which all functions are
total� Since we are most familiar with Larch
 we concentrate on Larch in the discussion
below� The appropriate notions for RESOLVE and Z can be de�ned similarly� For
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fact� int �� int

fact�i� �� if i � � then 	 else i 
 fact�i�	�

FACTORIAL�x� int� result� int

pre � �� x and x �� �

post result � fact�x�

Figure �� An auxiliary function speci�cation and a protective procedure speci�cation
for factorial in VDM�SL� �Note that the factorial of � is larger than �����

bufferTrait
 trait

includes Integer

introduces

bufSize
 � Int

asserts

equations

	 � bufSize � bufSize � �	���

Figure �� A trait with an underspeci�ed constant�

a logic that regards all functions as total
 the notion of partiality protection has
no meaning� The analogous notion
 which we call �underspec�protection
� is a test
that the meaning of a procedure speci�cation does not rely on underspeci�ed terms�
Note
 however
 that an operator may be underspeci�ed for reasons other than being
�partial�� For example
 in Figure �
 bufSize is underspeci�ed but not partial in any
sense��

We de�ne the notion of underspec�protection in three steps� First we de�ne the
notion of a primed LSL trait and primed LSL term� �A LSL trait is a speci�cation of
mathematical vocabulary in an augmented form of �rst�order logic with equality �	�

Chapter ���� That notion is used to describe a notion of a �completely�de�ned� term�
An LSL term is completely�de�ned if it can be proved to have the same value in all
models of its trait� A completely�de�ned term is similar to a de�ned �non��� term
in logics like LPF
 this is the main technical distinction between the two notions of
protection� Finally we de�ne the notion of underspec�protection itself�

The notion of a primed trait and term is a variation of the idea of �priming� traits
and terms found in the Larch Prover �where it is used in proving that an operator is
�converted� �	�
 pp� 	�������

De�nition ��� 	Primed Trait� T �� Let T be an LSL trait
 Let T � be a version
of the trait T with every operator f in T replaced by f �� except that the following
operators are left alone�

�In these logics
 there is also no way to separate underspeci�cation that is used to make operators
�partial� from underspeci�cation that is used to make speci�cations intentionally less constraining

as in a choose operator for sets�
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factTrait
 trait

includes Integer

introduces

fact
 Int � Int

asserts

� i
 Int

fact�	� �� ��

�i � 	� � �fact�i� � i � fact�i�����

Figure �� A trait for factorial
 written in LSL�

� all operators in the built�in trait Boolean�

� all operators in all instances of the built�in traits Conditional �which speci	es
if then else�� and Equality �which speci	es the operators � and ���� and

� all operators mentioned in a generated by clause


For example
 consider the trait factTrait
 given in Figure �� The trait factTrait�

has fact replaced by fact�
 but true and the boolean operators are not primed
 and
neither are �
 pred
 and succ
 because they are mentioned in the generated by
clause of the trait Integer �	�
 p� 	�	�� Operators mentioned in a generated by
clause are meant to give a way to produce all values of a given sort
 priming these
would add �junk� to the speci�cation� Another reason why not priming operators
mentioned in a generated by clause is reasonable is that if one imagines constructing
equivalence classes from terms
 one starts with the terms formed from the generators

and collapses equivalent ones
 in this process
 a generator applied to the same argu�
ments always ends up in the same equivalence class� This re ects the model theory
of LSL
 in which operators are all �deterministic� functions� Hence it is not necessary
for generators to be canonical
 i�e�
 it is not necessary that the generation process be
free� Furthermore
 it is okay if there is more than one set of generators asserted for a
type
 as all must be functions�

Similarly
 if P is a term in the language of T 
 then let P � be a copy of P with
every operator f that appears in P replaced by f �
 with the same exceptions as for
primed traits� For example
 if P is �result � fact�x��
 then P � would be �result �
fact��x��
 because fact is not exempted from priming
 ��� is exempt from priming

and result and x are not operators� As another example
 if P is �bufSize� from the
trait in Figure �
 then P � would be bufsize�
 because bufSize is an operator�

In what follows
 we write T � P to mean that P is provable from trait T �

De�nition ��
 	completely
de�ned� An LSL term� P ��x�� with free variables �x of

sorts �U � is completely�de�ned for trait T if and only if

T � T � � ��x � �U � P ��x� � P ���x��

Trivial examples of completely�de�ned terms include variables
 because for each
trait T 
 T � T � � �x � U � x � x� A more interesting example is that
 for factTrait
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uses factTrait�int for Int��

int factorial�int x��

behavior �

requires 	 � x � x � ��

ensures result � fact�x��
�

Figure �� A speci�cation of the factorial procedure in Larch�C���

the term fact�
�� is completely�de�ned
 but both fact��	� and fact�x�
 where
x�Int
 are not� As another example
 consider the trait ChoiceSet �	�
 p� 	��� where
the operator choose is speci�ed as follows�

b �� � � � choose�b� � b

For this trait
 the term choose�f	g � f
g� is not completely�de�ned�
The following de�nition of when a procedure speci�cation is protective says
 in

essence
 that the precondition must be completely�de�ned for the used trait
 and that
whenever the precondition holds
 then the postcondition must be completely�de�ned�
The two requirements in the de�nition are analogous to those for partiality protection

with complete�de�nition tests playing the role of the de�nedness predicate�

De�nition ��� 	underspec
protective� A procedure speci	cation� S� that uses trait

T � has formal parameters �x � �U � precondition Q��x�� and postcondition R��x�� is
underspec�protective if and only if

� T � T � � ��x � �U � Q��x� � Q���x�� and

� T � T � � ��x � �U � Q��x�� �R��x� � R���x��


The de�nition of underspec�protective suggests a direct proof technique� For
example
 to prove that the speci�cation of factorial in Figure � is underspec�
protective
 one must show that factTrait � factTrait� proves both of the following�

� �x � int � �� 	 x 
 x 	 �� � �� 	� x 
 x 	� ���
 and

� �x � int � �� 	 x 
 x 	 �� � �result � fact�x�� � �result � fact��x���

Proofs
 such as the one sketched above
 that a procedure speci�cation is underspec�
protective are quite tedious to carry out in detail
 at least by hand� While they may
be amenable to machine support
 it is also convenient to de�ne a notion that is easier
for humans to deal with�

� Proving Underspec�Protection

In this section we describe an easier way to prove underspec�protection in a Larch
family BISL� This proof technique uses extra information that speci�ers could add
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biggerTrait
 trait

includes Integer

introduces

muchBigger� somewhatBigger
 Int � Int

asserts

� i
 Int

somewhatBigger�i� �� muchBigger�i��

implies

converts somewhatBigger
 Int � Int

Figure �� An LSL trait in which somewhatBigger is convertible
 but
somewhatBigger�i� is not completely�de�ned�

to LSL traits� This extra information would also allow a user of LSL to specify more
precisely and check what is intended to be completely�de�ned�

Since we are only concerned with underspec�protection in this section and the
next
 we will simply refer to it as �protection� in informal remarks�

��� Specifying What is Not Underspeci�ed

LSL already has some provision for specifying what is not underspeci�ed � the
speci�cation of when an operator is �converted�� This is done by using a converts
clause� A converts clause says that the axioms of the trait uniquely de�ne the
operators named in the clause
 �relative to the other operators in the trait� �	�
 p�
	���� �We include in Appendix B a more detailed explanation of conversion for the
sake of completeness��

However
 proving that an LSL operator is converted does not mean it is completely�
de�ned
 it may still be underspeci�ed� For example
 consider the trait in Figure �� In
this trait
 the operator somewhatBigger is de�ned to be equal to muchBigger
 how�
ever
 muchBigger is quite underspeci�ed
 since no assertions constrain it� Yet
 the
converts clause in the implies section is still provable
 because somewhatBigger is
completely�de�ned
 relative to muchBigger� That is
 once muchBigger is determined

somewhatBigger becomes completely�de�ned�

Because of this distinction between conversion and complete de�nition
 we propose
adding another implication clause to LSL� This clause
 which we call the exact clause

has a form similar to that of the LSL exempting clause �although it would not be
a subclause of a converts clause�� The idea is that it would allow one to make
redundant claims that terms are completely�de�ned� For example the exact clause
in Figure � says that terms of the form fact�k� are intended to be completely�de�ned

if k � �� The syntax would be as follows�

exact�clause ��� �exact� �quantifier� �such�that� term��

such�that ��� �such� �that� term

The extra information in the exact clause
 which does not a�ect the trait�s theory

can be used to help debug an LSL speci�cation
 by trying to prove the following
property�
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factTraitE
 trait

includes factTrait

implies

exact � k
 Int such that k � 	

fact�k�

Figure �� A trait that demonstrates the exact clause� The includes directive has
the e�ect of textually including the trait factTrait given above�

De�nition 
�� 	provable for exact clauses� Let T be a trait that contains an ex


act clause of the form exact ��a � �A such that Q��a� P ��a�� where Q��a� is a predicate
and P ��a� is a term in the language of T 
 This clause is provable for T if and only if�

T � T � � ��a � �A � �Q��a� 
Q���a��� P ��a� � P ���a�� �	�

For example
 in Figure �
 the exact clause is provable for factTraitE if the
following condition is provable from factTraitE � factTraitE��

�k � Int � �k � � 
 k �� ��� fact�k� � fact��k��

The proof would proceed by induction on k�

��� Exact Predicates

For use in proving protection
 we de�ne predicates of the form Exact��E��
 based on
the form �i�e�
 the text� of each expression E� These resemble the domain predicates

Dom��E��
 described by some authors �	�
 �
 ��� However
 they have a di�erent
purpose
 since an operator
 such as choose on nonempty sets
 may be underspeci�ed
for a reason other than being partial� They also resemble the de�nedness predicate
�D� used in studies of partial algebras ��� and in COLD �	��
 however D is de�ned
model�theoretically
 not syntactically� The de�nition of Exact����� is based on the
exact clauses given in the trait�s implications and those of included traits� This
de�nition is lifted to arbitrary terms by requiring terms substituted for the variables
in an exact clause to be themselves exact
 and using the structure of terms formed
from LSL�s built�in trait operators �boolean operators
 equality
 and conditionals��
See Figure 	� for the de�nition��

For example
 for the trait of Figure �
 the following holds�

Exact��fact�k��� � �k � 	�

��� Using Exact Predicates to Prove Underspec�Protection

Provided the information given in the exact clauses is provable for a trait T 
 then
Exact predicates can be used as a su!cient condition for determining when a term
is completely�de�ned for T �

�The free variables of these terms are not important
 so they are suppressed�



	�

Exact��x�� � true
 if x is a variable

Exact��P � �E��� �
V
Ei�

�E
Exact��Ei�� 
 Q� �E�


if the trait�s implies section contains a clause�

exact ��a � �A such that Q��a� P ��a�
Exact��
E�� � Exact��E��

Exact��E� � E��� � Exact��E��� 
 Exact��E���

if � is �
 ��
 or a boolean operator� 

 �
 or �

Exact����x � �T � E�� � ��x � �T � Exact��E��

Exact����x � �T � E�� � ��x � �T � Exact��E��

Exact��if E� then E� else E��� � Exact��E���


 Exact��E��� 
 Exact��E���

Exact��E�� � false
 otherwise

Figure 	�� De�nition of Exact�

Lemma 
�� Let T be a trait in which each exact clause is provable for T 
 Let R��x�

be a term with free variables� �x � �U 
 If T � ��x � �U � Exact��R��x���� then R��x� is
completely�de	ned for T 


Proof� �by induction on the structure of terms�� Suppose T � ��x � �U�Exact��R��x����

For the basis
 suppose R��x� is a variable xi� Then ��x � �U � xi � xi is trivially
provable
 and so xi is completely�de�ned by de�nition�

For the inductive step
 suppose that the result holds for all subterms of R��x�� If
R��x� is an invocation of some operator of T that is not a boolean operator
 equality

inequality
 or if then else
 then by de�nition
 it must be that R��x� has the form

P � �E��x�� and that trait T has a clause of the form exact ��a � �A such that Q��a�
P ��a�� Furthermore
 by de�nition of Exact�� � ��
 it must be the case that

T �
�

Ei��x�� �E��x�

Exact��Ei��x��� 
Q� �E��x��� ���

Since T � is a primed copy of T 
 it must also be the case that

T � �
�

E�

i
��x�� �E���x�

Exact��E �

i
��x��� 
Q�� �E ���x��� ���

Because the �x are free in the above two formulas
 by universal generalization

T � T � � ��x � �U � Q� �E��x�� 
Q�� �E ���x��� ���

By the inductive hypothesis
 since each Ei��x� is exact
 for each i


T � T � � ��x � �U � Ei��x� � E �

i
��x�� ���

Since the exact clauses are assumed to be provable for T 
 by de�nition we have

T � T � � ��a � �A � �Q��a� 
Q���a��� P ��a� � P ���a�� ���



		

Instantiating �a to �E��x�
 we obtain the following�

T � T � � ��x � �U � �Q� �E��x�� 
Q�� �E��x��� P � �E��x�� � P �� �E��x�� ���

Then using Formula ���
 it follows that

T � T � � ��x � �U � �Q� �E��x�� 
Q�� �E ���x���� P � �E��x�� � P �� �E ���x��� ���

But by ���
 the hypothesis of this implication is provable
 so T�T � � ��x � �U�P � �E��x�� �

P �� �E ���x�� follows�
The other cases follow directly from the inductive hypothesis and the de�nition

of Exact�� � ���
However
 the converse to the above lemma does not hold� One reason is that the

speci�er of the used trait may not note when some terms are exact� But even if the
information given is complete
 the de�nition of Exact does not take into account other
knowledge from the theory of the trait� For example
 consider the trait bufferTrait

which is speci�ed in Figure �� It speci�es the constant bufSize
 but bufSize is
underspeci�ed �hence no exact clause is given�� The term

bufSize � �	��

is completely�de�ned for bufferTrait� However


Exact��bufSize � �	���� � false�

because Exact��bufSize�� is false�

De�nition 
�
 	exact procedure speci�cation� A procedure speci	cation� S� that

uses trait T � has formal parameters �x � �U � precondition Q��x�� and postcondition R��x��
is exact if and only if

� T � ��x � �U � Exact��Q��x���� and

� T � ��x � �U � Q��x�� Exact��R��x���


Our suggested technique for proving protection
 therefore
 is to prove that the
speci�cation in question is exact�

Corollary 
�� Let T be a trait in which each exact clause is provable for T 
 Let
S be a procedure speci	cation that uses trait T 
 If S is exact� then S is underspec�
protective


Proof� Let Q��x� be the precondition of S
 and let R��x� be its postcondition�

Suppose S is exact� Then by de�nition
 T � ��x � �U � Exact��Q��x���� So by

Lemma ���
 Q��x� is completely�de�ned for T � Also by de�nition
 T � ��x � �U �Q��x��
Exact��R��x���� Suppose for each �x
 Q��x� holds� Then
 for each �x
 Exact��R��x���
holds
 and so by Lemma ���
 R��x� is completely�de�ned for T �

As an example of the use of the above corollary
 we show how to prove that the
speci�cation of factorial in Figure � is completely�de�ned with respect to the trait



	�

void chaos��int� x��

behavior �

modi�es x�

ensures true�
�

Figure 		� The Larch�C�� speci�cation of a procedure that is underspec�protective

even exact
 but not deterministic�

factTraitE of Figure �� To do this we prove that the speci�cation is exact with
respect to factTraitE� First
 the precondition is exact
 because Exact��x � ��� is
true� Exact����� is true
 because � is a generator� We assume the trait Integer
has been extended with implications that say that � is exact�

Then for the postcondition
 one can calculate as follows
 for all x � int�

x � 	 � Exact��result � fact�x���

� �by definition of Exact�

x � 	 � �Exact��result�� � Exact��fact�x���

� �by definition of Exact for fact�

x � 	 � �Exact��result�� � Exact��x�� � x � 	�

� �by definition of Exact for variables� treating result as a variable�

x � 	 � �true � true � x � 	�

� �by predicate calculus�

true

However
 if a procedure speci�cation is protective
 it is not necessarily exact� For
example
 a speci�cation that uses the term bufSize � ���� as its precondition could
be protective without being exact� Thus exactness is a su!cient
 but not necessary

condition for protection�

� Discussion of Underspec�Protection

One might wonder whether a procedure speci�cation is underspec�protective if and
only if it is deterministic� However
 the two notions are orthogonal� For example
 the
speci�cation given in Figure 		 is protective �even exact� but very nondeterministic�
It speci�es a C�� procedure that can change the value of the object x �passed by
reference� to any integer� Figure 	� is an example of a speci�cation that is not
protective
 because the precondition is not completely�de�ned
 but the procedure
speci�ed must be deterministic when its precondition is met�

The notion of underspec�protection should also not be confused with the speci�ca�
tion being �well�de�ned� in the sense of not containing any mathematically suspect
terms� For example
 the speci�cation in Figure 	� is not protective
 because the
operator choose is �intentionally� underspeci�ed� However
 the speci�cation is well�
de�ned because the precondition does protect choose from being applied outside its
intended domain� �Note that the speci�cation describes a set of functions that are
each deterministic
 but which individually can use any algorithm to pick elements of



	�

uses bufferTrait�

int foo�int x��

behavior �

requires bufSize � x�

ensures result � ��
�

Figure 	�� A speci�cation that is deterministic but not underspec�protective�

uses IntSetTrait�

int pick�IntSet s��

behavior �

requires size�s�� � 	�

ensures result � choose�s�� � s� � delete�choose�s��� s���
�

Figure 	�� A speci�cation that is �well�de�ned� but not underspec�protective� The
notations s" and s� mean the starting and ending values of s�

a set�� Thus a speci�cation that is not protective is not necessarily ill�de�ned
 there
is no problem as long as the underspeci�cation at the interface level is intentional�

Our technical results related to underspec�protection are summarized in Table 	�
The main concept is determining when a procedure speci�cation is protective
 in the
sense that it does not force implementations to satisfy unintended consequences of
an LSL trait� We have given two proof techniques for proving protection� The �rst is
equivalent to the de�nition and based on the notion of completely�de�ned terms� The
second is a su!cient but not necessary test and based on the notion of exact terms

which makes it easier to apply� The concept of an exact term is based on an extension
to LSL that allows one to specify which terms are not intended to be underspeci�ed�
This extension to LSL provides better documentation and allows enhanced debugging
�in the sense of �		� �	�
 Chapter ��� of LSL speci�cations�

Level Facts

Trait exact � completely�de�ned Lemma ���
completely�de�ned �� convertible Figure �

BISL exact � underspec�protective Corollary ���
underspec�protective �� deterministic Figures 		 and 	�
well�de�ned �� underspec�protective Figure 	�

Table 	� Summary of results related to underspec�protection�



	�

� Summary and Conclusions

In this paper we have given two de�nitions that are instances of the concept of
protection� The de�nition of partiality�protection can be used with languages like
VDM�SL and COLD�K
 since these languages use a logic that admits the existence
of partial functions� Underspec�protection is an analogous notion that is necessary
for languages like Larch
 RESOLVE
 and Z
 since they use logics that deal only with
total functions�

Both kinds of protection may be useful in VDM�SL or COLD�K
 where one can
de�ne partial functions and use underspeci�cation� For example
 after checking that
a VDM�SL speci�cation is partiality�protective
 then one could check that it was also
underspec�protective �assuming that the procedure was intended to be completely
speci�ed and not underspeci�ed�� Checks that a VDM�SL procedure is underspec�
protective can be done in same way as we described them for the Larch family�

Both kinds of protection may also be useful for writers of executable speci�cations�
For example
 in a language like Ei�el ����
 partiality�protection for a procedure would
ensure that its precondition would be  agged as false instead of encountering an error

allowing an error to happen in its body
 or encountering an error in its postcondition�
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A Appendix� Understanding Underspeci�cation in

LSL

A partial function is a function that does not give a value for some elements of its
declared domain� For example
 the operator that returns the head of a list can be
modeled as a partial function on lists
 if that is done
 then head�empty� fails to
denote an element� �That is
 head�empty� is �unde�ned���

The logic used by the Larch Shared Language �LSL� �	�
 Chapter �� �	�� deals with
partiality by using underspeci�cation� As noted in the main body
 this means that one
avoids specifying a value for unde�ned terms
 but the logic assumes that all functions
are total� For example
 head�empty� denotes some element of the appropriate type

even if the user has not speci�ed what element that term denotes� Where an LSL
speci�cation is silent
 terms take on some �unspeci�ed� value�

In common with other logics that use underspeci�cation to avoid the unde�ned
�	��
 the logic of LSL is classical
 and thus has several pleasing formal properties�
However
 as Jones pointed out in a recent paper �	��
 there are a few subtle aspects
to this kind of logic that users should be aware of�



	�

JonesExample�
 trait

includes Integer

introduces

it
 � OneElem

f
 Int � OneElem

asserts

OneElem generated by it

� i
 Int

f�i� �� if i�	 then it else f�i���

implies

converts f
 Int � OneElem

Figure 	�� Jones�s �rst example
 a function into a one�element set�

factTrait
 trait

includes Integer

introduces

fact
 Int � Int

asserts

� i
 Int

fact�i� �� if i�	 then � else i � fact�i����

implies

equations

fact��� �� ��

fact���� �� � fact�����

Figure 	�� Jones�s factorial example�

We translate Jones�s �rst example into the LSL trait shown in Figure 	�� This trait
de�nes a sort
 OneElem
 a constant it
 and a function f� Because of the generated by
clause
 the sort OneElem has only one element
 the constant it� �The current version
of LSL allows such sorts
 contrary to �	���� In LSL f��	� � it
 because f has to
take on some value when applied to �	
 and the only possible value is it� Although
Jones notes that this is �not an inconsistency� he says that �it is certainly likely to
surprise someone who views� the de�nition of f as specifying �a partial function� �p�
���� Another way of putting Jones�s point is that it is simply impossible to specify
partial functions in LSL
 even using recursion�

Jones�s other major example brings out a more important warning about the
underspeci�cation approach� This example is a recursive de�nition of the factorial
function
 and is translated into LSL in Figure 	�� Jones�s warning about this example
is that
 in a logic such as LSL�s
 a model of fact must satisfy irrelevant equations
such as the following
 which is also highlighted in the redundant implies section of
the trait�

fact��	� �� �fact��
� ���

This follows because fact��	� denotes some �unspeci�ed� value�



	�

badRecTrait
 trait

includes Integer

introduces

zero
 Int � Int

asserts

� k
 Int

zero�k� �� if k � 	 then 	 else min�k� zero�k�����

implies

� k 
 Int

zero���� � ���

zero���� � k�

Figure 	�� A trait with an inconsistent recursive de�nition�

Jones�s warning could have been stated more strongly
 since not only is there
a danger that one might specify unwanted properties
 but there is also a danger
that these unwanted properties might cause inconsistency� The trait factTrait of
Figure 	�
 actually has quite a few such unwanted equations but manages to escape
inconsistency because of special properties of the integers� �That is
 the following
equations are also consequences of the trait�

fact���� �� ���� � fact����

fact���� �� ���� � fact����

fact���� �� ���� � fact����

However
 the trait is not inconsistent
 because one can let fact�i� �� � for all neg�
ative integers i
 which allows all these equations to be satis�ed��

To illustrate what can happen if one is not careful
 consider the trait badRecTrait
of Figure 	�� At �rst glance
 it looks like zero is a �silly� de�nition of a constant
function that returns zero for any nonnegative integer� However
 this speci�cation
is not careful to explicitly underspecify the value of zero for negative arguments�
That is
 although the speci�er might think that it does not matter what zero returns
for negative arguments
 just ignoring the issue in the speci�cation does not mean
that the value is underspeci�ed� For example
 what does the speci�cation say about
zero��	�# It is easy to see that it is less than �	
 and less than �

 and indeed
less than any integer� But the Integer trait in Guttag and Horning�s handbook �see
�Guttag�Horning���
 p� 	��� does not allow there to be such an integer
 so this trait
is inconsistent
 because the value of zero��	� is overspeci	ed � it has to satisfy too
many constraints� Although none of these constraints were intended
 the trait is just
as inconsistent as if they were intentionally speci�ed�

To avoid the possibility of such inconsistency arising from unintentional over�
speci�cation
 it is best to use intentional underspeci�cation� That is
 to avoid the
possibility that an operator may be inconsistently speci�ed �and the need to prove
that the inconsistency does not happen�
 it is best to use conditional equations in�
stead of unguarded recursive equations� For example
 one can write factTrait as
in Figure �
 where the equation for the recursive case is only postulated to hold for



	�

its intended domain �	��� By writing factTrait in that way
 one avoids postulating
Equation ���
 that is
 nothing at all is speci�ed about the value of fact��	��

B Appendix� Conversion and an Extension to LSL

This appendix explains the notion of conversion in LSL
 and also presents an extension
to LSL that makes the speci�cation of conversion more expressive�

B�� Conversion

In an LSL trait
 one can state redundant properties �theorems� that one believes do
�or should� hold� These redundant properties are stated in the implies section of the
speci�cation� Proofs of such properties can be attempted
 and are a way of debugging
the trait �		� �	�
 Chapter ���

For our purposes
 the most interesting kind of redundant property one can state in
the implies section is that an operator is well�de�ned with respect to other operators�
This is done by using a converts clause
 as was done in Figure 	�� A converts clause
says that the axioms of the trait uniquely de�ne the operators named in the clause

�relative to the other operators in the trait� �	�
 p� 	���� To prove this
 one must
show it for all possible arguments� The Larch Prover �LP� uses the following proof

technique �	�
 pp� 	������ Let T ��f� be a trait
 which names operators �f in converts

clauses in its implies section� Let T ��f �� be a version of the trait T ��f� in which each
of the operators fi named in a converts clause is replaced by f �

i
� Then one proves


for each such fi � �A� B


T ��f� � T ��f �� � ��a � �A � fi��a� � f �

i
��a�� �	��

The proof would show that there cannot be two di�erent interpretations of the oper�
ator fi�

For example
 to prove the converts clause for f in Figure 	�
 one axiomatizes an
operator f� in the same way as f
 and then proves the following�

� i
 Int f�i� �� f��i�

�This is proved by using the rule given by the generated by clause in Figure 	���
Often one wants to prove that an operator is converted
 except for some arguments�

For example
 one would want to prove that the head operator on lists is converted

except that head�empty�
 which is purposely left underspeci�ed� To do this one uses
a converts clause of the following form in LSL�

converts

head
 List�T� � T

exempting head�empty�

The exempting clause allows the speci�er to state what terms are intentionally
underspeci�ed� In terms of the proof that head is converted
 except where it is not
intentionally underspeci�ed
 the exempting clause allows one to use the following
equation



	�

factTrait
 trait

includes Integer

introduces

fact
 Int � Int

asserts

� i
 Int

�i � 	� �

�fact�i� � �if i�	 then � else i � fact�i������

implies

� i
 Int

fact��� �� ��

converts

fact
 Int � Int

exempting � k
 Int such that k � 	

fact�k�

Figure 	�� A trait demonstrating the extended exempting clause�

head�empty� �� head��empty�

in the proof that
 for all lists l
 head�l� �� head��l��

B�� An extension to LSL

The exempting clause in the current LSL �	�
 Chapter �� �	�� does not have enough
expressive power to state
 in general
 what is left underspeci�ed� One can only exempt
a class of terms that are described by constants or universally quanti�ed variables�
For example
 one cannot specify that fact in Figure � is intentionally underspeci�ed
by adding an exempting clause
 because the current LSL only allows one to specify
that constants
 or all integers
 are exempted� That is
 there is no way to say that
only the negative integers are exempted�

We propose extending LSL by allowing domain predicates for the variable decla�
rations in an exempting clause� For example
 we would allow the exempting clause
of the trait given in Figure 	�� This form of the exempting clause allows one to
specify the intended exemptions with an arbitrary �boolean�valued� LSL term�� The
syntax would be as follows�

exemption ��� �exempting� �quantifier� �such�that� term��

such�that ��� �such� �that� term

The extension to the LP proof technique for proving the converts clause in Fig�
ure 	� is simple� The exempting clause gives one the following formula

� k
 Int

�k � 	� � �fact�k� � fact��k��

�There is logical problem if the predicate following such that uses an operator being speci�ed
as converted in the same converts clause� The simplest thing to do is not to allow the use of such
operators in the domain predicate �following such that
�



	�

which one can use in the proof that
 for all integers i
 fact�i� �� fact��i�� Given
that fact� is axiomatized with a copy of the axioms for fact
 this allows one to prove
that fact is converted where it is not intentionally underspeci�ed�

This extension to LSL increases its expressive power by its ability to state redun�
dant and checkable information�
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