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ABSTRACT

The Common Object Request Broker Architecture (CORBA) provides mechanisms

for developing heterogeneous, interoperable distributed object systems. In CORBA,

the interfaces of objects are speci�ed using the Interface De�nition Language (IDL).

However, clients and object implementors also need information on the behavior of

such objects. Larch/CORBA extends IDL to formally specify the behavior of objects.

The language provides mechanisms to specify the concurrency that is inherent in

distributed systems. Our goal is to design a language that is usable directly by

system designers and programmers. A notable feature of Larch/CORBA is its focus

on data rather than on objects in specifying concurrency. It also provides a general

mechanism for specifying synchronization. This report presents a preliminary design

of Larch/CORBA and a suite of example speci�cations.



1

CHAPTER 1. INTRODUCTION

The computer industry, in recent years, has witnessed a proliferation of large

networks with many heterogeneous distributed systems. The Common Object Re-

quest Broker Architecture (CORBA), de�ned by the Object Management Group [16],

describes an computing model for distributed systems, that is, programs that reside

at nodes connected by a network. It provides the mechanisms by which objects1 com-

municate among themselves and with their clients. The main functions of CORBA

are based on the Object Request Broker (ORB) that transports messages to objects

independent of the location (which node the object resides in) of the object. Thus,

the ORB hides, from clients and other objects, the actual location of the server ob-

ject in the distributed environment. The ORB also provides language and operating

system transparency between objects and clients and between objects.

CORBA achieves this by de�ning protocols by which the objects in a distributed

environment interact and co-operate. CORBA uses a client-server model, where each

server object provides a known set of services that its clients use to build the desired

functionality of the application. Objects use interfaces to describe the services they

o�er to the clients. Clients request services from an object using the operations2 de-

scribed in this interface. In CORBA, the interface of an object is described using the

Interface De�nition Language (IDL). Interfaces written using IDL give information

about the types and numbers of parameters for operations, but they do not give any

information on the functional behavior of the service. This information is not easy

to get for the following reasons:

� The source code might contain a lot of implementation details.

1De�nitions of terms introduced in this section are given in the next section.
2By an operation, we mean a service provided by an object i.e., one of the proce-

dures of an object's interface.
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� The programming language and the operating system used in the implementa-

tion of the object can be di�erent from those familiar to the person writing the

client.

� Informal descriptions and documentation are not always precise enough.

We believe that it would be useful to have precise and high-level documentation

available for application developers and the people who need to maintain the object

implementations. The approach we take in providing this mechanism is to extend

the IDL language to be capable of specifying functional behavior. This extended

language is called Larch/CORBA. The language provides mechanisms to specify

concurrency that is inherent in distributed systems. In specifying concurrency, we

follow Lerner [15] and focus on data rather than on the processes themselves. We

believe that this encourages modularity and abstraction making the language directly

usable to system designers and implementors. Also this maps directly to CORBA's

software development model, which depends on a suite of co-operating objects in a

distributed environment, providing services to their clients.

It is our hope that Larch/CORBA will eventually evolve into a useful tool in the

development of reliable applications in the CORBA framework. It could also serve

as a tool in the veri�cation of the implementation and as a formal documentation.

CORBA - A Brief Introduction

This section provides a brief introduction to the Common Object Request Bro-

ker Architecture based on [16]. The Common Request Broker Architecture, de�ned

by the Object Management Group (OMG), provides mechanisms for objects to

transparently3 make requests and receive responses. It provides interoperability be-

tween applications on di�erent machines in heterogeneous distributed environments

and interconnects multiple object systems4.

3Two transparencies are involved here: location and implementation transparency
4This is part of the version 2 of CORBA speci�cation that has not yet been

released at this time
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The distributed object management framework helps in thinking of programs

as objects in a logically-centralized system. The users of the system are able to use

the objects and their services as if they were present locally. CORBA provides the

facilities to integrate large numbers of objects present in heterogeneous systems into

one single logical object system that hides the implementation and inter-platform

interface details.

We give here a brief introduction to the CORBA framework through two topics

relevant to this discussion:

� The object model

� The Object Request Broker interface

Object Model

An object is an identi�able, encapsulated entity that provides one or more services

that can be requested by a client. An object system is a collection of objects that

decouples the clients (service requesters) from the servers (service providers) by an

encapsulating interface. In the object model, the client sends a message to an object

to request service. The message identi�es the object and the actual parameters.

An object reference is an object name that denotes a particular object. An object

may be denoted by multiple, distinct object references. Clients refer to objects by

their object references.

Each object has an interface, which is a description of the set of possible opera-

tions that a client may request of the object. The interface of an object is speci�ed

using the IDL.

When a service is requested of an object, the object executes some code to

provide the service. The code that is executed is called a method. The execution of

a method is called a method activation.

Object Request Broker

One of the aims of CORBA is to provide location and implementation trans-

parency of objects to the clients. The Object Request Broker(ORB) is responsible



4

for all the mechanisms required to �nd the object implementation for the request, to

prepare the object implementation to receive the request, and to communicate the

data making up the request. This mechanism is necessary because the objects can be

resident anywhere in the distributed system and the client does not have the objects

location information (nor should it be required to have the information).

In some situations, some of the interfaces to be used at run-time are unknown.

So, in addition to IDL, interfaces can also be speci�ed using the Interface Reposi-

tory(IR), which permits run-time access to compile-time unknown interfaces.

Programming Language Mapping

Clients see the objects and ORB interfaces through a programming language

mapping. Thus clients should be portable across any ORB implementation that sup-

ports the language mapping for the client's implementation programming language.

A language mapping speci�es the mapping between the programming language's

types to the types given in the interface de�nition and also provides type represen-

tations for CORBA's built-in types. Another function of the language mapping is to

provide the object representation mechanism, that is the way in which the objects in

the system are represented in the programming language. This is an area in which

language mappings di�er most. Language mappings for C language is provided as

part of the CORBA speci�cation5.

5At the time of writing, the mapping for C++ and other languages are in the
process of discussion and voting by OMG
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CHAPTER 2. INTRODUCTION TO INTERFACE DEFINITION

LANGUAGE

The Interface De�nition Language(IDL) [16] is the language used by CORBA

to describe the interfaces that the objects provide. An interface de�nition declares

the operations an object can perform and their parameters. IDL can also declare

attributes of objects, which act as �elds or data members of an object. For each

attribute de�ned, \set" and \get" operations are implicitly available to clients to

change and fetch the attribute's values. Attributes can be declared as readonly, in

which case, the set operation is not made available. An inheritance mechanism is

available through which interfaces can be inherited. This mechanism provides a way

to develop an object-oriented system, even though the implementation language may

not support object-oriented features (like inheritance). In such a case, these features

get implemented by a mapping to the particular implementation language's features.

As an example, the interface speci�cation of a printer queue, written in IDL,

is given in Figure 2.1. The name of the interface is PrinterQueue. The interface

contains declarations of types and constants. Three operations (in addition to the

implicit operations) are de�ned, namely enqueue, dequeue and size. These are the

services that clients can request. The keyword raises declares an exception that the

operation enqueue can signal. Three di�erent parameters mechanisms { in, out

and inout { are permitted. The keyword in refers to an value parameter, out refers

to a result parameter and inout refers to a value-result parameter.

An interface can include (by means of the #include pre-processor directive)

other interfaces and use the attributes and types de�ned for that interface.

An IDL interface is processed by an IDL compiler that is speci�c to a program-

ming language, which generates the necessary header �les and the stub �les, in the

target language, for the clients and the object implementation to use.
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interface PrinterQueue f

const int MAX QUEUE SIZE = 20;

void enqueue (in int id) raises (QUEUE FULL);

int dequeue ();

int size ();

g

Figure 2.1: IDL de�nition of a PrinterQueue



7

CHAPTER 3. THE LARCH APPROACH TO FORMAL

SPECIFICATION

Larch/CORBA is a model-oriented speci�cation language that uses the Larch

approach to interface speci�cations [9]. In this approach, the behavior of operations

is speci�ed by Hoare-style pre-conditions and post-conditions [13], together with a

speci�cation of what the objects are allowed to change (a frame axiom) and an

extension for concurrency [15].

We use the Larch Shared Language(LSL) (Chapter 4 in [9]) to describe abstract

models. An interface speci�cation consists of a Larch/CORBA speci�cation part and

a Larch Shared Language part. The Larch/CORBA part provides the information

needed to use the speci�ed object and to write programs that implement it, while

the LSL part describes the abstract values of the speci�cation and some vocabulary

that is used to manipulate the abstract values that get used in the Larch/CORBA

interface. All Larch/CORBA speci�cations use LSL traits in the same way. LSL

plays the same role for other Larch family languages, such as LCL (Chapter 5 in [9]),

Larch/C++ [5], LM3 (Chapter 6 in [9]) and Larch/Smalltalk [4]. LSL comes with a

set of traits in the form of a LSL Handbook (Appendix A in [9]).

The Larch family of languages support a two-tired, de�nitional style of for-

mal speci�cation. Larch interface languages encourage the use of abstractions that

provides a mechanism for specifying abstract data types. The vocabulary for manip-

ulating the abstract values of the speci�cation is concentrated in the LSL part for

important reasons [9]:

� LSL is used by all Larch interface speci�cation languages.

� LSL speci�cations have simpler semantics than interface speci�cation languages.
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� Assertions about properties of the abstract values can be veri�ed using auto-

mated tools like the Larch Prover(LP) [8].
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CHAPTER 4. SEQUENTIAL SPECIFICATIONS IN Larch/CORBA

An Example

An example Larch/CORBA speci�cation, of a printer queue object, is given in

Figure 4.1. The associated PrinterQueueTrait trait is given in Figure 4.2. This

example gives the speci�cation for the IDL interface given in Figure 2.1.

In the Larch/CORBA speci�cation, all the syntax of the IDL speci�cation has

been retained while new syntax has been added to specify behavior. The speci�cation

proper can be considered in two parts: the header and the operation speci�cations.

The header consists of the uses clause and the initially clause. The uses clause

lists the LSL traits used by this speci�cation. We use the initially clause to set

initial values for the tuple variables used in the trait. We use this clause to specify

what the constructor of the object should be initializing. The clause is a predicate

that must be true after the constructor has executed. We do not want to specify

explicit functions for constructors since object they are typically not called by clients.

The for clauses specify the type-to-sort mapping. Sorts are names given to the

type of abstract values in LSL. The type-to-sort mapping maps the types used in

the interface speci�cation to sort names in the traits. Thus it identi�es the set of

abstract values for each type or object in the speci�cation.

The PrinterQueueTrait describes the abstract values of PrinterQueue objects.

In the trait, these abstract values have sort PQ and we map the PrinterQueue object

to the sort PQ in the uses clause.Thus the PrinterQueue object is mapped to the trait

Queue (Page 171 in [9]) by the combination of the uses clause and the trait included

in the PrinterQueue trait. So the operations de�ned in the Queue trait can be used

on the PrinterQueue object.

Three operations have been speci�ed for this object. The behavior of these oper-
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interface PrinterQueue f

const int MAX QUEUE SIZE 20;

uses PrinterQueueTrait(PrinterQueue for PQ);

initially self' = empty;

void enqueue (in int id) raises (QUEUE FULL) f

requires true;

modifies self;

ensures if len(self^) = MAX QUEUE SIZE then

raise(QUEUE FULL) /\ self' = self^

else

self' = append(self^,id);

g

int dequeue () f

requires ~isEmpty(self^);

modifies self;

ensures self' = tail(self^)

/\ result = head(self^);

g

int size () f

ensures result = len(self^);

g

g

Figure 4.1: Larch/CORBA speci�cation of PrinterQueue
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PrinterQueueTrait(PQ): trait

includes Queue(Int for E, PQ for C)

Figure 4.2: PrinterQueueTrait

ations are speci�ed by writing, for each operation, a requires clause, which gives the

pre-condition and an ensures clause, which gives the post-condition. The modifies

clauses lists all the entities that are changed by the execution of the operation. The

keyword self denotes the object of type PrinterQueue that is the receiver of the

message. Two states are de�ned for each entity: the pre-state and the post-state.

The pre-state gives the value of the entity at the time of invocation and the post-state

refers to the value at the time of exit from the invocation. The pre-state value of

an object in the pre-state is written with a ^ after the entity (as in self^) and its

post-state value is written with a ' after the entity (as in self'). The symbol ~

means a logical negation. The keyword result is used to denote the value returned

by the operation to the client.

Method Speci�cation

Each method speci�cation has an ensures clause. The other clauses are op-

tional. An absent requires clauses signi�es that the pre-condition is always true,

the weakest possible pre-condition. When there is no modifies clause given, the

method may not change the state of any object. A correct implementation of the

interface guarantees the client that if the pre-condition is true when the invocation

is made, then the assertions made in the post-condition will be true when the op-

eration terminates. The implementation does not guarantee that the operation will

terminate. It only assures that if the operation terminates, the post-condition will

be true. Thus the speci�cations imply partial correctness. In the CORBA model, if

an operation does not terminate normally, an exception is raised. In case no user-
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de�ned exceptions are declared, one of the standard exceptions (See [16] for the list

of standard exceptions) de�ned by the CORBA speci�cation are raised.

The post-condition of the size method in Figure 4.1 speci�es that the value

returned (denoted by the keyword result) is given by the predicate len from the

Queue trait. Note that the speci�cation de�nes a post-state value for out parameters.

It does not make sense to de�ne a pre-state value for such a parameter. An inout

parameter has a value in both these states.
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CHAPTER 5. SPECIFYING CONCURRENCY IN Larch/CORBA

Systems that comply with the CORBA standards are likely to use concurrency.

Concurrency can typically help in enhancing performance and often presents e�cient

solutions to problems that can be decomposed into parts. These separate compu-

tations (either at the same site or di�erent sites) require co-operation from other

objects/computations, thus leading to complex interactions.

Speci�cation languages for concurrent systems have been developed before. Some

of them focus on processes. For example, the CSP language, designed by Hoare[14],

speci�es synchronization in terms of the set of allowed traces of all objects. In

contrast, Larch/CORBA focuses on data, which seems more appropriate in its role in

specifying behavior of interface functions. In this it follows the Generic Concurrent

Interface Language (GCIL) [15].

Larch/CORBA's concurrency model is that of a set of sequential processes

(clients) invoking operations (requests) on a set of objects that can execute con-

currently, in a distributed environment.

The main issues in programming distributed and concurrent systems are [7]:

� Synchronization

� Atomicity

� Exceptions and Partial Failures

In the following, we describe how each of these issues are speci�ed in Larch/CORBA.

We also give example speci�cations (or parts of speci�cations) to illustrate the ideas.



14

Synchronization

In speci�cation of sequential programs, an operation is assumed to execute as

soon as it is invoked. This may not be the case in concurrent execution of multiple

processes. Other operations could be executed between the time an operation is

invoked and the time it starts executing [2]. Such interleaved operations may change

the state of the system that a�ects the way an operation executes. For example,

consider an operation to update a record from a database. Before this operation

can be executed, another operation might have locked that particular record. Then

the update operation should be delayed until the record is unlocked. Correctness

conditions may dictate that an operation be delayed under certain circumstances.

Since an operation's execution may be delayed, we must consider not only the state

in which it was invoked, but also the state before its execution. Synchronization

conditions are used to describe the conditions when an operation should execute.

An implementation of a concurrent operation executes in a state where the pre-

condition is true and synchronization conditions satis�ed. For this purpose we use

the when clause of [15], which speci�es when the operation should execute, if the

pre-condition was satis�ed. Figure 5.1 shows the state changes at each stage of an

operation execution, from invocation to termination. The boxes represent states. In

a speci�cation, the pre-state (denoted by ^) refers to the state of the �rst box, before

execution starts. Once the when clause is true, pre-state refers to the state of the

second box and the post-state (denoted by ') is the state of the third box.

Synchronization conditions describe the requirements on when an operation may

execute, while the pre-condition represents the client's responsibilities when invoking

the operation. With concurrent execution of operations, the state of an object may

change between the invocation and execution. It is possible that that this state change

causes the pre-condition to be falsi�ed. Thus, for the pre-conditions to be e�ective,

the pre-condition should have only conditions that cannot be falsi�ed between the

operation's invocation and execution. Any other condition that needs to be checked

before execution should be speci�ed in the when clause.

As an example, consider the dequeue operation of a concurrent queue given in

Figure 5.2 The condition that speci�es that the queue should not be empty would
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when clause

is true

Operation executes

Operation is invoked

is true

pre-condition

Operation starts execution

is true

post-condition

Figure 5.1: State Diagram for an Operation Execution

int dequeue() f

requires true;

when ~isEmpty(self^);

modifies self;

ensures self' = rest(self^) /\ result = first(self^);

g

Figure 5.2: Example of when clause



16

have been stated in the pre-condition in a sequential speci�cation. But, in this,

concurrent version, it has been moved to the when clause, because this condition

could be falsi�ed between the operation's invocation and execution. If the when

clause is false, the dequeue operation waits till the queue is not empty and then

starts execution.

Atomicity

Larch/CORBA distinguishes between two types of operations: atomic and non-

atomic operations. Atomic operations execute till completion once the execution

is started, without any visible interleaving with other operations. Thus the state

changes made by these atomic operations are visible only at the completion of the

operation.

A non-atomic operation consists of a sequence of atomic actions between which

actions of other operations may execute. Thus non-atomic operations allow other

operations to execute concurrently. (LM3 has a similar model; see Chapter 6 in

[9]). When an operation is split into many atomic actions, the operation is said to

be composed of these actions. An operation that is composed of only one action is,

by default, considered an atomic operation and we omit the references to atomic

actions inside the speci�cation. The behavior of non-atomic operations are speci�ed

by a single pre-condition for the operation and a sequence of when, modifies and

ensures clauses, each of which describe the behavior of an atomic action.

In most speci�cations, atomic operations would su�ce. But the very nature of

some systems may require the use of non-atomic operations. For example, a multi-

user game operating over a network needs to re
ect the state of each user in the game

environment very frequently. If lengthy operations are executed atomically, then it

would not allow the user's states to be updated. Thus these operations have to be

split up into atomic actions allowing other operations to interleave. It is sometimes

possible to make the actions in an operation themselves as atomic operations, thus

eliminating the need for non-atomic operations. But the downside to this is that

now the client is responsible for invoking each of these operations, which leads to

increased network tra�c and performance degradations. Thus systems involving a
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high degree of user-interaction, reactive systems (systems that have to react to their

environment) and real-time systems might require the use of non-atomic operations.

Composition Clause

A composition clause, which starts with the keywords composed of, is used to

specify the order in which the atomic actions of an operation are to be executed. It

indicates that any execution of the operation must be equivalent to the execution

of the named actions in the given order, possibly interleaved with actions of other

operations. The speci�cation of the atomic actions follow the composition clause.

Each atomic action speci�cation is pre�xed by the keyword action. The composition

clause is analogous to Path Expressions discussed in operating systems literature [3].

Just as Path Expressions describe the order of process execution, the composition

clause describes the order of execution of atomic actions. But the comoposition clause

de�ned here is more powerful than Path Expressions due to the capability to compose

arbritrary sets and not just regular sets.

Conceptually, we can imagine the presence of an imaginary scheduler inside

each operation. The scheduler has two functions { to decide when each action in the

operation executes (synchronization) and to execute the actions in the operation in

an order permitted by the composition clause.

Atomic actions themselves are not client callable. They exist only within the op-

eration speci�cation. There is no constraint on the implementation to use atomicity.

As long as the changes to the state made by the actions are visible at the appropriate

times, the implementation is free to consider various implementations.

In de�ning the composition clause, we extend the work of [15] and LM3 [9] by

allowing user-de�ned forms of composition to be speci�ed by arbitrary trait functions.

This gives the speci�cation developer 
exibility in terms of how he/she wants to

`compose' the actions. Since LSL traits can de�ne any computable function, any

such function could be used in the composition. We have taken this general purpose

approach because speci�cations might need to have a very complex interaction and/or

sequencing of actions

We now de�ne the model we have used in composing actions. To specify sequen-

tial execution of actions, a sequence of actions is formed, in which the �rst action
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is executed �rst, then the second, and so on. To specify choices between sequences,

a set of sequences is formed, from which the execution must choose. This model is

general enough to specify arbitrary executions [12].

The traits, built into Larch/CORBA, for de�ning the composition clause are

given in Figures 5.3, 5.4, 5.5 and 5.6.

Figure 5.5 de�nes sets of action sequences, and Figure 5.4 de�nes action se-

quences. Figure 5.3 de�nes some syntactic sugar in the form of the trait functions do

and \then. The List and Deque traits that are used in these traits are given in the

LSL Handbook (Pages 173 and 172 in [9] respectively). We give in this report only

the traits that we use to de�ne the composition clause and provide basic functionality.

These are meant to be extended by users.

Helper functions that can be used in composing complex composition clauses

are given in the ComposeHelpers trait. These functions are just a sample to show

how helper functions can be written and how to use them. For example, using the

functions ifTrue and oneFromEach, we could create a composition clause like:

composed of do( oneFromEach(toSequence(ifTrue(i^,action1),action2)),

\then do(toSequence(ifTrue(j^,action3),ifTrue(k^,action4))) );

This clause generates the set of action sequences in Table 5.1, depending on

the values of the booleans i,j and k. It also shows how one can generate complex

sequences of action executions based on the values of operation parameters. Note

that since the composition clause is given before actual operation speci�cation, we

require the use of pre-state values for variables used in the trait functions in the

composition clause (See Figure 6.3 for an example). Currently we have a few helper

functions that operate on action sequences. If there is a need, we could add more

functions that manipulate sets of action sequences.

We will now examine a speci�cation using atomicity and the composition clause.

Consider an object that collects data from some real-time data source. The system

can be stopped and restarted at any time by the user. The speci�cation of this object
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Composition: trait

includes SetActionSequence

introduces

do: actionSequence -> setActionSequence

\then : actionSequence, actionSequence -> setActionSequence

do: Action -> setActionSequence

\then : Action, Action -> setActionSequence

do: setActionSequence -> setActionSequence

\then : setActionSequence, setActionSequence -> setActionSequence

asserts

8 as, as1: actionSequence, a,a1: Action,

sas, sas1: setActionSequence

do(sas) == sas;

do(as) == toSet(as);

as \then as1 == toSet(as || as1);

do(a) == toSet(toSequence(a));

a \then a1

== toSet(toSequence(a) || toSequence(a1));

(as 2 sas) /\ (as1 2 sas1) == (as || as1) 2 sas \then sas1

Figure 5.3: Composition trait
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ActionSequence(Action,actionSequence): trait

includes List(Action for E, actionSequence for C, [ ] for f g,

emptySeq for empty)

introduces

skip: -> Action

toSequence: Action -> actionSequence

toSequence: Action, Action -> actionSequence

addtoSequence: actionSequence, Action -> actionSequence

asserts

8 a,a1:Action, s:actionSequence

toSequence(skip) == emptySeq;

toSequence(a) == [a];

toSequence(a,a1) == addtoSequence(toSequence(a), a1);

addtoSequence(s,a) == s || [a]

implies 8 a: Action

toSequence(a,skip) == toSequence(a);

toSequence(skip, a) == toSequence(a);

Figure 5.4: ActionSequence trait

Table 5.1: Sets of action sequences generated by the example composition clause

i j k Sequence

F F F f[action2]g
T F F f[action1, action2]g
T T F f[action1, action3, action2]g
T T T f[action1, action3, action2, action4]g
F T F f[action3, action2]g
F T T f[action3, action2, action4]g
F F T f[action2, action4]g
T F T f[action1, action2, action4]g
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SetActionSequence(actionSequence, setActionSequence): trait

includes ActionSequence,

ChoiceSet(actionSequence for E, setActionSequence for C)

introduces

toSet: actionSequence -> setActionSequence

asserts

8 as:actionSequence, sas:setActionSequence

toSet(as) == fasg

Figure 5.5: SetActionSequence trait

and the associated trait are given in Figures 5.7 and 5.8. The object is modelled as

having an input stream (istream) and output stream (ostream) of data. For simplic-

ity, we assume the data collected to be integers. Also we assume that the input stream

has been �lled with the appopriate data. Two tuple variables { system started and

system stopped { are used to model the stopping and restarting of the system by

the user. We use an invariant clause in this speci�cation to state a condition that

must always remain true. In this case, the condition is that when the system is in a

started state, it is not in a stopped state.

The operation get data collects n integers from the input stream and adds them

to the output stream. Because of the need to be able to stop and start the system,

we cannot have an atomic operation that collects all the n pieces of data. We have

used the helper function nTimes to execute the atomic action one step, that collects

one piece of data, n times. Thus at the end of each step, other operations could be

interleaved that can stop the system. When the system is again restarted, the when

clause of the one step action is satis�ed and the data collection is resumed. Two

operations { start system and stop system { have been de�ned to restart and stop
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ComposeHelpers: trait

includes Composition, ActionSequence, Bool

introduces

ifTrue, IfFalse: Bool, Action -> actionSequence

oneFromEach: actionSequence, actionSequence -> actionSequence

nTimes: Int, Action -> actionSequence

asserts

8 a, a1:Action, b: Bool, i:Int, as,as1: actionSequence

ifTrue(true, a) == [a];

ifTrue(false,a) == emptySeq;

ifFalse(b, a) == ifTrue(~b,a);

nTimes(i,a) == if i >= 1 then [a]

|| nTimes(i-1,a) else emptySeq;

oneFromEach(emptySeq,as) == as;

oneFromEach(as,emptySeq) == as;

oneFromEach([a] || as, [a1] || as1)

== ([a] || [a1]) || (oneFromEach(as,as1))

implies

oneFromEach(emptySeq, emptySeq) == emptySeq;

Figure 5.6: ComposeHelpers trait
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the system respectively.

In the post-condition of the one step action, the pre-state values refer to the

state of the system after any previous operations and actions have been completed and

the when clause has been satis�ed. In other words, the notation for refering to pre-

state values has been over-loaded. Any pre-state values used in the requires clause

refers to the state of the system at the time of invocation. Any pre-state values used

in the when clause refer to the state after any other operations and previous actions

have terminated. Any pre-state values used in the post-condition refer to the state

after the when clause has been satis�ed.

Exceptions and Partial Failures

An operation's execution may need to be stopped during execution, when some

error or exception condition arises. The speci�cation in Figure 4.1 uses exceptions to

notify the client that the printer queue is already full. The keyword raise is used to

denote that an exception is being raised. Exceptions that an interface can raise are

mentioned in the interface header, as part of the IDL syntax.
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interface Collect Data f

uses CollectDataTrait(Collect Data for CD);

initially self'.system stopped = true;

invariant self.system started = ~self.system stopped;

get data(in int n) f

requires n > 0;

composed of nTimes(n,one step);

action one step f

when system started /\ ~system stopped;

modifies self;

ensures self'.ostream = self^.ostream || head(self^.instream)

/\ self'.instream = tail(self^.instream)

/\ self'.system started = self^.system started

/\ self'.system stopped = self^.system stopped; g g

start system() f

when system stopped;

modifies self;

ensures self' = set system started(

set system stopped(self^,false),true); g

stop system() f

when system started;

modifies self;

ensures self' = set system stopped(

set system started(self^,false),true); g

Figure 5.7: Example with a non-atomic operation
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CollectDataTrait: trait

includes List(int for E)

CD tuple of

system started: Bool, system stopped: Bool,

instream: C, outstream: C

Figure 5.8: CollectDataTrait
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CHAPTER 6. EXAMPLE SPECIFICATIONS IN Larch/CORBA

In this section, we give a few example object speci�cations to illustrate the

features and the power of Larch/CORBA.

Mutual Exclusion

Consider the speci�cation of an object that implements mutual exclusion in

Figure 6.3. Mutual exclusion (See section 2.1.6 in [17]) is used to protect variables

from being acted upon by other processes till the process that is using them is done

with them. Thus mutual exclusion can be used to implement critical regions in code.

In this example, the system contains multiple threads of execution.

In this speci�cation we introduce the initially clause to set initial values for the

tuple variables used in the trait. We use this clause to specify what the constructor

of the object should be initializing. The clause is a predicate that must be true

after the constructor has executed. We do not want to specify explicit functions for

constructors since object creation and destruction are handled by the Object Request

Broker in CORBA.

The Mutex (See Figure 6.3) interface uses a mutex queue containing a set of

Threads that wish to acquire it. The mutex queue holds the identity of threads that

wish to acquire it or NONE, if no thread is waiting in the queue. Acquire and Release

operations allow a thread to gain hold of a mutex and release it. The when clause of

Acquire prevents a thread from acquiring a mutex when some other thread is holding

it. It has to wait until the mutex is released.

We use two traits - ThreadTrait and MutexTrait (given in Figures 6.1 and 6.2)

- to de�ne models for threads and mutex queues. The ThreadTrait introduces the

NONE value as a legal thread identi�er. The MutexTrait models the queue with the
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LSL trait Queue (Page 171 in [9]). Note that we do not provide any assertions for

the id and thread operations in the ThreadTrait. This is because de�ning these

operations would go into unnecessary detail. CURRENT is a Larch/CORBA reserved

word used to denote the current thread of execution.

The Wait operation is composed of two atomic actions. It allows a thread to

temporarily release a mutex (relinquish), wait for some activity by some other thread

and then reacquire the mutex (reacquire). A thread may invoke Wait only if it holds

the mutex. When it relinquishes, it adds itself to the mutex queue. The reacquire

action waits until the mutex is available and some other thread has removed it from

the mutex queue (using a signal or broadcast operation). Note that even though the

thread has been removed from the queue, some other threads might have also been

removed from the queue and they could have (re)acquired the mutex before it. Thus

it will have to wait till the mutex is available again (and the scheduler schedules

it to execute). This is because each action is atomic. This operation is typically

used to allow some other thread (say t2) to do something, the e�ects of which are

needed in a thread (say t1) that called Wait. The Signal operation removes one or

more threads from the mutex queue, if the queue is non-empty and the broadcast

operation removes all of them. The WhoisHolding operation can be used to �nd

which thread is holding the mutex variable.

The mutex mechanism could be used to implement the locking model. Locking

is commonly used in multi-user databases to protect data from being updated by

multiple users at the same time. In an implementation, a mutex variable can exist

for each record (or table, based on the granularity of the lock). When a user wants to

update a record, the database `Waits' on the mutex for that record, and when it has

acquired the mutex, does the update and then it signals (or broadcasts) the mutex

variable, so that it can be used by other users.

Semaphores

The speci�cation of a semaphore variable (See section 2.1.5 in [17] and [6]) is

given in in Figure 6.4. The SemaphoreTrait (given in Figure 6.5) provides the ab-

stract values of a semaphore object. There are two possible states de�ned - available
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ThreadTrait(Thread): trait

introduces

NONE: -> Thread

id, .Id : Thread -> int,

thread : int -> Thread

asserts 8 t: Thread

t.Id == id(t)

Figure 6.1: ThreadTrait

MutexTrait(M): trait

includes ThreadTrait, Queue(Thread for E, M for C)

MT tuple of holder:Thread, queue: M

Figure 6.2: MutexTrait
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interface Mutex f

uses MutexTrait(Mutex for M);

initially self'.holder.Id = id(NONE) /\ self'.queue = fg;

void Acquire( void ) f

requires self^.holder.Id != id(CURRENT);

modifies self;

when self^.holder.Id = id(NONE);

ensures self'.holder.Id = id(CURRENT)

/\ CURRENT =2 self'.queue; g

void Release( void ) f

requires self^.holder.Id = id(CURRENT);

modifies self;

ensures self'.holder.Id = id(NONE)

/\ CURRENT =2 self'.queue; g

void Wait( void ) f

requires self^.holder.Id = id(CURRENT);

composed of relinquish \then reacquire;

action relinquish f

modifies self;

ensures self'.holder.Id = id(NONE)

/\ self'.queue = append(self^.queue,CURRENT); g

action reacquire f

when self^.holder.Id = id(NONE);

modifies self;

ensures self'.holder.Id = id(CURRENT)

/\ self'.queue = self^.queue g g

void Signal( void ) f

requires self^.holder.Id = id(CURRENT);

modifies self;

ensures (self'.queue = fg \/ self'.queue � self^.queue)

/\ self'.holder.Id = id(NONE); g

void Broadcast( void ) f

requires self^.holder.Id = id(CURRENT);

modifies self;

ensures self'.queue = fg /\ self'.holder.Id = id(NONE); g

int WhoIsHolding( void ) f

ensures result = self^.holder.Id; g g

Figure 6.3: Mutual Exclusion object : A speci�cation
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interface Semaphore f

uses SemaphoreTrait(Semaphore for S);

initially self' = available;

void P() f

when self^ = available;

modifies self;

ensures self' = unavailable;

g

void V() f

modifies self;

ensures self' = available;

g

g

Figure 6.4: Semaphores: A speci�cation

and unavailable through the enumeration in the trait. Two operations are de�ned

on the semaphore variable { the P operation and the V operation. The P operation is

used to wait (or halt the execution) till the semaphore becomes available. The V oper-

ation is used to make the semaphore available to other processes. After a semaphore

becomes available and if more than one process is waiting for the semaphore, the

scheduler can start the execution of any of such waiting processes.

SemaphoreTrait(S): trait

S enumeration of available, unavailable

Figure 6.5: SemaphoreTrait
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ProdConsTrait(PC): trait

includes Queue(Int for E)

PC tuple of buffer: C, free: Int

introduces

add to buffer: PC, Int -> PC

asserts 8 pc: PC, i: Int

add to buffer(pc,i) == set buffer(pc, append(i,pc.buffer))

Figure 6.6: ProducerConsumerTrait

Producer Consumer Problem

We consider here the producer-consumer problem (See section 2.1.6 in [17]) that

frequently occurs among cooperating processes. In its general form, a set of producer

processes supplies messages to a set of consumer processes. They share a limited

common pool of space where the messages are placed and removed. Multiple produc-

ers can be active at the same time as long there is place in the common pool to place

the produced message. If not, producers have to wait till some consumer removes a

message from the pool. In the same way, consumers can go concurrently as long as

there are messages to be removed or they have to wait for some producer to place a

message.

The ProdConsTrait, in Figure 6.6, de�nes the abstract values used by the pro-

ducer and the consumer. The speci�cation is given in Figure 6.7.

A CD-ROM Scheduler

Imagine a central CD-ROM device, in a networked environment, that services

requests for video (or say, documentation) data from multiple clients. In a CORBA

environment, the CD-ROM scheduler could be built as an object that provides some

speci�c service to clients (e.g., providing video data upon request). In this section,
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interface ProducerConsumer f

const int N = 20;

uses ProdConsTrait(ProducerConsumer for PC);

initially self'.free = N /\ self'.buffer = empty;

void CallProducer(in int m) f

modifies self;

when self^.free >= 1;

ensures self' = add to buffer(set free(self^,

((self^.free - 1))),m)

void CallConsumer(out int m) f

modifies self;

when self^.free < N;

ensures m' = head(self^.buffer)

/\ self' = set buffer(set free(self^,(self^.free - 1)),

tail(self^.buffer))

g g

Figure 6.7: Producer-Consumer problem: A speci�cation
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CDROMTrait(LD): trait

LD tuple of discpos: Int, busy: Bool

Figure 6.8: CDROMTrait

we present a simple speci�cation of a scheduler for such a device, in Figures 6.8 and

6.9.

The Request operation waits till the device is not busy. Then it makes the device

busy. In the trait, discpos refers to the position of the device's head. The Request

operation sets the device's head to the destination given by the input parameter dest.

The Release operation just makes the device not busy. The client of this inter-

face will �rst call the Request operation to take control of the device; then it will use

the device for whatever purpose it wants to use it for and �nally it calls the Release

operation to relinquish control of the device.
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interface CDROM f

uses CDROMTrait(CDROM for LD);

initially self'.busy = false /\ self'.dispos=0;

void Request(in int dest) f

when ~self^.busy;

modifies self;

ensures self' = set busy(set discpos(self^,dest),true);

g

void Release() f

when self^.busy;

modifies self;

ensures self' = set busy(self^,false);

g g

Figure 6.9: CD-ROM Scheduler: A Speci�cation
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CHAPTER 7. RELATED WORK

Larch/CORBA extends CORBA-IDL to be able to formally specify interface be-

havior. In this respect, the ADL language [18], designed at Sun Microsystems Labs,

is very close in its purpose to Larch/CORBA. But it di�ers from Larch/CORBA in

that ADL's main use is for testing software. ADL speci�cations are post-condition

based and have a well-de�ned error de�nition facility. In addition, ADL constructs

are designed to allow translation of the formal speci�cations into natural language

documents. In its use in unit-testing software modules, ADL functions as the descrip-

tion of what the software does. In order to enable automated software testing, ADL

does not have complex constructs like quanti�ers and algebraic speci�cations1. ADL

does not meet the goals of Larch/CORBA of being a general purpose speci�cation

language for CORBA interfaces due to its lack of complex speci�cation constructs

and concurrency support and its main purpose as an aid in testing software.

The Generic Concurrent Interface Language (GCIL) [15] is a Larch interface

speci�cation language for specifying concurrent systems. Larch/CORBA and GCIL,

being members of the Larch family of interface speci�cation languages, share many

common features like the two-tiered model and usage of LSL. Larch/CORBA's con-

currency speci�cation features like synchronization (when clause) and its focus on

data rather than on processes are modeled after GCIL. A GCIL speci�cation de-

scribes the objects with which the concurrent processes interact. GCIL can be used

in specifying concurrent systems of all kinds. In contrast, Larch/CORBA is tailored

to work with IDL interfaces. Another important di�erence between the two lan-

guages is the support for 
exible composition of atomic actions using LSL traits and

the ability to be able to specify initial conditions on abstract values of interfaces.

1The designers of ADL have plans to include these constructs in future.
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CHAPTER 8. CONCLUSION AND FUTURE WORK

We have given a preliminary design of a Larch/CORBA speci�cation language

which is tailored to describe the behavior of CORBA-IDL interfaces. This language

extends the syntax of the IDL speci�cations and is based on the Larch family of

speci�cation languages. It is a hope that the design of Larch/CORBA will serve as

a basis for further development of a truly useful tool for formal speci�cation and

documentation of CORBA-compliant software.

Some important contributions of this design include the initially clause, which

allows setting initial values to abstract values and the model for complex composition

of atomic actions based on sets of action sequences. This model is powerful enough to

be able to express compositions of arbitrary complexity and 
exible since it it de�ned

by LSL traits which can be extended easily. This work �lls an important need for a

facility to formally specify CORBA-IDL interfaces.

Work needs to be done in examining the usefulness (and problems) of specifying

large real-world systems using this language. We have not investigated inheritance

of interface speci�cations in this design. Some design changes might be necessary to

incorporate this. Practical tools to help build-edit-maintain these speci�cations are

also needed as part of the package. A parser and type-checker should be implemented.

Also needed is a careful de�nition of the semantics of Larch/CORBA. Another area

of future research is to examine the implications for Larch/CORBA if IDL is changed

or extended.
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APPENDIX REFERENCE GRAMMAR FOR Larch/CORBA

This section lists the reference grammar of Larch/CORBA in an extended BNF

with the following conventions:

� nonterminal symbols are enclosed in angle brackets (e.g. hmethod-headeri),

� Larch/CORBA keywords and other terminal symbols are written in bold face (e.g.,

requires),

� optional symbols are surrounded by square brackets (e.g., [ hrequires-clausei ]),

� the notation \: : : " means that the preceding symbol (or a group of optional sym-

bols) can be repeated zero or more times (e.g., hmethod-speci�cationi : : :). and

� the notation + after a nonterminal means that the preceding nonterminal can occur

one or more times. For example hde�nitioni+ means that hde�nitioni occurs one or

more times.

The lexical conventions are the same as those of CORBA-IDL. For example,

hidenti�eri is an arbitrary long sequence of letters and digits whose �rst character is

a letter. The complete grammar for CORBA-IDL and LSL are not given here for the

sake of brevity. Only the relevant parts of these grammars are used. The complete

grammar for CORBA-IDL is available in [16].

hspeci�cationi ! hde�nitioni+

hde�nitioni ! htype-dcli ;

j hconst-dcli ;

j hexcept-dcli ;

j hinterfacei

j hmodulei+

hmodulei ! module hidenti�eri ( hde�nitioni )
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hinterfacei ! hinterface-dcli hforward-dcli

hinterface-dcli ! hinterface-hdri f hinterface-bodyi g

hinterface-hdri ! interface hidenti�eri [ hinheritance-speci ]

hinterface-bodyi ! [hattr-dcli ;] [hconst-dcli ;] [htype-dcli ;] [hexcept-dcli ;]

huses-clausei ; hinitially-clausei ] ; [ hinvariant-clausei ] ; hmethod-speci

huses-clausei ! uses htrait-namei ( [ htype-to-sort-listi ] ) ;

htype-to-sort-listi ! htype-def-namei for hsort-namei [ , htype-to-sort-listi ]

hinitially-clausei ! initially hpredicatei

hinvariant-clausei ! invariant hpredicatei

hmethod-speci ! hmethod-hdri [ f hmethod-bodyi g

hmethod-hdri ! [ hmethod-atti ] hmethod-type-speci hmethod-namei

hparameter-dcli [ hraises-expri ] [ hcontext-expri ]

hmethod-bodyi ! [hrequires-clausei] [hwhen-clausei] [hmodi�es-clausei]

hensures-clausei

j [hrequires-clausei] [hcomposition-clausei] hactioni+

hcomposition-clausei ! composed of hlsl-op-termi ;

hactioni ! action haction-namei f [ hwhen-clausei ] [ hmodi�es-clausei ]

hensures-clausei g

hrequires-clausei ! requires hpre-condi ;

hwhen-clausei ! when hpredicatei ;

hmodi�es-clausei ! modi�es hstore-ref-listi ;

hensures-clausei ! ensures hpost-condi ;

hpre-condi ! hpredicatei

hpost-condi ! hpredicatei

hpredicatei ! htermi

htermi ! if htermi then htermi else htermi

j hlogical-termi
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hlogical-termi ! hlogical-termi hlogical-opri hequality-termi

j hequality-termi

hequality-termi ! hlsl-op-termi [ heq-opri hlsl-op-termi ]

j hquanti�eri hquanti�eri : : : ( htermi )

hquanti�eri ! hquanti�er-symi hquanti�er-listi

hquanti�er-symi ! 8 j 9

hquanti�er-listi ! hidenti�eri : hsort-namei [, hidenti�eri : hsort-namei ] : : :

hsort-namei ! hidenti�eri

j htype-def-namei

hlsl-op-termi ! hlsl-opi+ hsecondaryi

j hsecondaryi [ hlsl-opi hsecondaryi ] : : :

j hsecondaryi hlsl-opi+

hstore-ref-listi ! hstore-refi+

hstore-refi ! htermi

hsecondaryi ! hprimaryi

j [ hprimaryi ] hsc-bracketedi [ : hsort-namei ]

j [ hprimaryi ]

hsc-bracketedi ! [ [ hterm-listi ] ] f [ hterm-listi ] g

hterm-listi ! htermi [ hterm-listi ]

hprimaryi ! ( htermi )

j hlco-primaryi

hlco-primaryi ! hliterali j self j result j CURRENT

htype-def-namei ! hidenti�eri

j hidenti�eri ( htype-def-namei [ , htype-def-namei ] : : : )

hmethod-namei ! hidenti�eri

haction-namei ! hidenti�eri

hsort-namei ! hidenti�eri

htrait-namei ! hidenti�eri
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