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Abstract
This paper presents a type-inference system for Scheme that is designed to be used by
students in an introductory programming course.  The major goal of the work is to present
a simple type inference system that can be used by beginning students, yet is powerful
enough to express the ideas of types, polymorphism, abstract data types (ADTs), and
higher-order procedures.  The system also performs some rudimentary syntax checking.
The system uses subtyping, but only in a primitive fashion.  It has a type datum which is a
supertype of all types, and a type poof which is a subtype of all types.  It uses and-types
(intersection types) to control the use of datum and to generate accurate but simple types.
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1.  INTRODUCTION

This paper presents a type inference system for Scheme that is designed to be used by
students in the Introduction to Programming class (CS227) at Iowa State University.  The
system is designed to aid students in understanding types, as well as help them find simple
syntax and type errors in their programs.  The main focus is on developing a type inference
program that can handle Abstract Data Types (ADTs) and polymorphic procedures.
However, the type system developed can handle a large subset of Scheme and its ideas
may be more widely applicable.  Another goal for the system is to infer types that are
simple enough for students to understand.  This paper motivates the need for the system,
explains the subset of Scheme handled, describes how the algorithm works, provides
pointers to related work, and discusses some future directions the work might take.

1.1. Motivation

Understanding types can often help beginning students grasp how their procedures
should behave.  For example, students often do not understand the difference between
returning a value and printing it to the terminal.  This can be clarified by showing students
the types of two similar procedures, one that returns a specific value, and one that simply
prints it.  Understanding types also helps students build larger systems: by seeing the type-
interface between various parts, students can understand how the system as a whole
works, and can begin to see the utility of programming in modules or with ADTs.

With these ideas in mind, the major goal of this project is to help students understand
types; by type-checking their procedures, students can see if their procedures have the
types that they should, and they can use types of procedures to see how different parts of
a large program work together.  This aids students in understanding their own programs,
as well as in understanding types.  Other type-inference systems have been developed for
Scheme; for example, STYLE [Lin93] and Soft Scheme [WrC93]. However, the
complexity of the types output by these systems is often daunting for beginners.

The facilities for building and using ADTs with these systems is also different from the
approach used in the text used in CS227, Scheme and the Art of Programming [SpF89].
Thus, another goal is to aid students in understanding and using Abstract Data Types
(ADTs).  By using the type-checker, they can see if their code makes proper use of an
ADT's selectors, constructors, and mutators.  This is perhaps the most important use of
the type-checker.

1.2. Brief description of the type inference system

The type inference system presented in this report provides several useful features to
beginning (and advanced) programmers: it infers types for a large subset of possible
programs; it has provision for type declarations, especially ADTs; it handles procedures of
variable arity in a limited fashion; the system introduces a bottom type called poof and a
supertype of all types, datum.  Intersection types are also handled in a limited fashion.
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The algorithm itself extends a well-known approach to typing (i.e., Hindley-Milner type
system with polymorphic type inference [Hin69][Car87]).  The system is also
approachable by students; almost all of the code has been written using the same subset of
Scheme that students in introductory classes learn and that the type inference system
works for.  Thus, students can read the code to see how such a system works, and they
can expand it themselves, providing further insights into type inference systems.

2.  TYPE SYSTEM

This chapter covers the type system used in this paper.  The first section discusses the
subset of Scheme that the type inference system operates over, and the second section
presents the type inference rules.

2.1. Domain of the type inference system

Since the type-checking system is designed to be used by students, it has some unusual
features.  The emphasis is on presenting useful information to students; i.e., information
the students can understand.  Thus, the syntax for types is quite simple.  Also, the system
is more restrictive than the Scheme language itself; for example, there are facilities to
prevent the use of nested defines, even though nested defines are permitted in Scheme.
The motivation for this is that the text for the class, Scheme and the Art of Programming
[SpF89] does not use nested defines in the first thirteen chapters, which is the portion of
the text normally covered in CS227.  In general, the syntax accepted by the type-checker
is the subset of Scheme covered in the first thirteen chapters of [SpF89]; however, some
extensions have been made to increase the usefulness of the program.  For example,
define declarations can be of the form (define name (lambda (arg1 ...) body)), and of
the form (define (name arg1 ...) body).  This has been done primarily so that programs
from Structure and Interpretation of Computer Programs [AS85] could be used to test
the type-inference system developed.

Another restriction is that intermediate values in a begin expression must have type
void.  This is because students often do not intend to use an implicit begin, yet they often
do so in a cond expression.  The last line of the following shows a fairly typical error.

(define add1-all
  (lambda (ls)
    (cond
     ((null? ls) '())
     ((pair? (car ls)) (add1-all (car ls)) (add1-all (cdr ls)))
     (else (add1 (car ls)) (add1-all (cdr ls))))))

In this procedure, the student, perhaps, has thought that add1 has a side effect of
incrementing the item it is applied to.  Thus, the student thinks once add1 has been
applied to an element, it is sufficient to move to the next item in the list.  By warning of
intermediate expressions in an implicit begin having a non-void return type, this type of
error can be prevented.
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A restriction placed on cond and if expressions is that all of the test arguments must
have type boolean.  Hence, LISP programmers used to such programs as member, which
returns #f or a value, will need to limit their use of symbols as booleans.

Another restriction is that students cannot define procedures that take a variable
number of arguments (i.e., cannot define procedures using unrestricted  lambda).
However, students can use procedures that have variable arity as long as the procedures
and their types are known to the type-inference program.  Inferring types for procedures
with variable arity could be handled as described in [DH94].  This restriction also implies
that students cannot define procedures with rest parameters.

Functions that are used for their side-effects must have return types of void; for
example, the procedure for-each requires that its first argument be a procedure that
returns void.

The type system also makes no provisions for file I/O.  This is not a great restriction to
students as file I/O is beyond the scope of the introductory course, and in the first release
of the code, types will be provided in the system.  Other concepts covered in later chapters
of [SpF89] have received only sporadic coverage.  For example, call-cc is included in the
type system, yet with-input-from-file  is not.  Completing the coverage of [SpF89] and,
eventually, all of Scheme, as defined in [CR91] would make this work more widely useful.

These restrictions are made, both to simplify the type-checker, as well as to help
simplify students' code.  While these restrictions are not part of the Scheme language
itself, we believe that students produce better code when obeying these restrictions.

2.2. Type information

This paper represents type information according to the following grammar:
<type> ::== number | boolean | string | character | symbol | void | datum | poof

| (-> (<type>*) <type>)
| (-> (<type> ...> <type>)
| (pair <type> <type>)
| (list <type>)
| (vector <type>)
| <type-variable>
| (and <type>+)

<type-variable> ::== A | B | C | D | ... | Z|?1|?2|...
Some of the rules require more explanation:

1. Types of procedures are represented by a list of three elements: an arrow (either 'D or
'->, depending on the context), a list containing the types of the arguments to the
procedure, and the return type of the procedure.

2. Complex types are represented as a list where the first item is the name of the complex
type and the rest of the items are the primitive types in the complex, or container, type.
The three complex types are lists, pairs, and vectors.  For example, (make-vector 10
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0) has type (vector number), and (cons 3 #t) has type (pair number boolean).  These
types can be nested, e.g., (pair (list number) (pair number boolean)).

3. Constrained quantification, for example, [a.(D (list a) a), is represented by
(-> ((list T)) T).  Here, of course, the letter chosen to represent the type variable is
arbitrary.

4. If an expression has more than one type, the type information is a list consisting of an
and, followed by a list of the possible types.  For example, cons has type

(and (D (S (list S)) (list S))
   (D (T (list U)) (list datum))
   (D (V W) (pair V W))

Thus, cons creates all of these: homogenous lists, non-homogenous lists, and pairs.
Procedures which have more than one type will be referred to as and-types within the
rest of the paper.  These are a form of intersection types as presented by [CD80].

To allow much of the power of Scheme without showing students very complex, if
accurate, types, subtyping is used in a very restricted way.  Two new types have been
introduced: the type poof, and the type datum.  The first is the return type of procedures
that do not return to their caller.  Such procedures do error handling or certain types of
control flow; e.g., error  and call-cc.  The second is used for polymorphic procedures.  For
example, cons can have a return type of (list datum) if the second argument is not a list of
the type of the first argument (i.e., cons is used with the type (D (S (list T)) (list datum))).

A further extension to standard typing is the addition of procedures that can take an
arbitrary number of arguments.  These are handled by the ... (pronounced "dot-dot-dot")
type.  For example, the procedure + has type (D (number ...) number), meaning that the
procedure takes zero or more arguments, all of which are numbers, and returns a number.
When combined with datum, this allows procedures like writeln  to be given a type.

TYPE-INFERENCE RULES

The type-inference rules used here are quite simple and are based on Hindley-Milner
type-system.  To handle poof and datum, as well as a sub-typing notion, the following
subtype relation holds: ∀ ≤ ≤T poof T datum, .  The diagram below shows a graphical
representation of the subtyping and supertype relationships.
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datum

boolean

number

character

poof

void

(list number)

(pair number boolean)

(vector character)

(-> (number) boolean)

Note that list, pair, vector, and  D are type constructors.  That is, an expression may
have type (list number), or (pair number boolean), or even (vector (pair number
boolean)).  These types can be considered as container types, like container classes in an
object-oriented paradigm.

The list of the type inference rules used is given below.  Most of the notation follows
Cardelli's presentation of type rules for his subset of ML [Car87].  For type environments,
the expression x:τ is the binding of variable x to type τ.  If Γ is a type environment, then
Γ.x:τ is the same as Γ except x has type τ.  If A and B are type environments, then Α∪Β is
A with the types from B.  The expression A e� : τ means that given the type environment
A, we can infer that e has type τ.  The horizontal bar can be read as implies, where the top
rule implies the bottom.  The type-inference rules for the system are as follows.

[LAMBDA]
Γ

Γ
∪

→
x x e

lambda x x e
n n

n n

1 1

1 1

: , . . . , : :

( ( . . . ) ): ( ( . . . ) )

σ σ τ
σ σ τ

l q�
�   

[BEGIN]
Γ Γ

Γ
� �

�

e c i void

begin c e
i i i: , : , ( )

( . . . ):

τ γ γ
τ

∀ ≤
 1

[APPL]
Γ Γ

Γ
� �

�

e i n e

e e e
n i i

n

0 1

0 1

1: . . . , :

( . . . ):

→ ∀ < ≤σ σ τ σ
τ

b gc h

[DATUM]
Γ

Γ
�

�

e

e datum

:

:

τ
[POOF]

Γ
Γ
�

�

e poof

e

:

: τ

[IDE] Γ . : :x xτ τ�

[IF1]
Γ

Γ
�

�

e boolean e e

if e e e
0 1 2

0 1 2

: , : , :

:

σ σ
σ   b g

[IF2] 
Γ

Γ
�

�

e boolean e void

if e e void
0 1

0 1

: , :

:  b g

[LET]

′ = ∪
′

Γ Γ
Γ Γ Γ

Γ

x x

e e e

let x e x e e

n n

n n

n n

1 1

1 1

1 1

: , . . . , : ,

: , . . . , : , :

( ( ( ) . . . ( ) ) ):

τ τ
τ τ τ

τ

l q
� � �

�   
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[LETREC]

′ = ∪
′ ′ ′

Γ Γ
Γ Γ Γ
Γ

x x

e e e

letrec x e x e e

n n

n n

n n

1 1

1 1

1 1

: , . . . , : ,

: , . . . , : , :

( ( ( ) . . . ( ) ) ):

τ τ
τ τ τ

τ

l q
� � �

�   

(Note: for all xi, if they occur
in a right-hand side expression,
then they must be in a lambda
expression.)

Note that there is no rule for define; this is because define is desugared into a letrec
expression and then handled specially by the type inference system.  The types poof and
datum also require further discussion, as well as our use of and-types and procedures of
variable arity.  In general, these are restricted by not allowing the type system to infer
expressions of these types.  However, procedures of these types may be declared.  This
restriction enables us to do polymorphic type inference.  Allowing procedures of variable
arity to be declared lets us use the arithmetical procedures in a wide variety of settings.

3.  TYPE INFERENCE ALGORITHM

The algorithm used to infer types is discussed in this section.  It consists of three basic
parts: desugaring of syntax, type-inference, and presentation sugaring.  Each of these basic
parts are defined separately.  After presenting the basics of the algorithm, details of the
interesting extensions to standard type inference are discussed in section 3.4.

3.1. Desugaring

To accomodate various types of procedural declarations, as well as simplify the type
inference system and type table, several types of syntactic desugaring are done in the first
stage.

All declarations with define are normalized to a standard syntax.  For example, all
procedures will look like

(define identity
(lambda (x)
  x))

That is, a declaration of the form (define (identity x) x)) will be translated into the above
syntax.  Once this has been done, the define expression is transformed into a letrec
expression.  For the identity  procedure above, the letrec expression would be

(letrec ((identity (lambda (x) x)))
identity)

By doing this transformation, the actual type inference algorithm only needs to deal with
letrec, not any form of define.  This is a great help in the complexity of the program.  It
also enables different styles of procedure declaration to be quickly added, modified, or
deleted.
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After the type for the transformation has been found, the global type environment is
updated by binding the type of the letrecs body with the name of the procedure, so that
any future reference to the name of the procedure will refer to the correct type.

Another desugaring that takes place is the translation of the procedures caar, cadr,
cddddr, etc. procedure calls into the equivalent car and cdr combinations.  This reduces
the size of the type table by 28 entries, and provides greater flexibility.  For example, if the
instructor wishes to only allow lists, i.e., to disallow pairs, the only changes need to be
made in the types of car, cons, and cdr, not to all 31 of the procedures that operate on
lists.

Translation of cond expressions to the equivalent if  expressions is done at this point.
A flag can be set to require each cond expression to have an else condition, or not, as the
user desires.  This desugaring is only for simplicity of the type inference algorithm; fewer
cases need to be handled once cond expressions are transformed into if  expressions.  No
real efficiency gain is found, nor does it allow greater flexibility.  This is merely done to
reduce the complexity of the type inference algorithm itself.

Another desugaring that takes place is the translation of implicit begin expressions into
explicit ones.  This permits the handler for begin in the type inference algorithm to check
for each intermediate expression returning a void type.

3.2. Type-Inference

As stated earlier, the algorithm used here is essentially the j  algorithm from Milner's
original paper on type inference [Mil78].  Given an expression, f, and an initially empty
environment, p, type variables are instantiated for procedures and variables of unknown
types.  Then, once all variables are instantiated, unification is used to propogate
constraints.  If no solution to the set of constraints can be found, an error is signalled.  A
more complete description follows.

The algorithm only has ten cases: symbols, non-pairs (e.g. numbers, strings, vectors,
etc.), quote expressions, begin expressions, if  expressions, lambda expressions, let
expressions, letrec expressions, and generic, or user-defined, expressions.  Each of these
are checked using the appropriate type-inference rules.

The most interesting case, of course, is the user-defined case.  Here, the procedure
being applied is checked to see if it has an entry in the global type table.  If so, then its
arguments are checked to make sure they match those given.

At this point, and-type expressions are taken care of by an ordered search.  Thus, the
first type given in the list of conjoined types that produces a usable unification is returned.
Care must then be taken in entering new rules so that this property does not cause weak
typing.  For example, the type of cons is

(and (D ?a (list ?a) (list ?a))
   (D ?b (list ?c) (list datum))
   (D ?d ?e (pair ?d ?e)))

The internal representation of types in the global type environment, *global-var-types*,
uses symbols constructed from ? and the lower-case letters.  Thus, ?a is a type variable,
like ?T, which is how the type variable might be printed out to the user.  The first type that
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is tested is (D ?a (list ?a) (list ?a)), i.e., that cons is constructing a homogenous list.  If
that fails, then a unification is attempted to see if it is contructing a non-homogenous list.
Finally, if both of the previous fail, the algorithm attempts to unify the actual arguments
with the formal parameters ?d and ?e, thus the algorithm determines cons constructs a
pair in such an expression.

Procedures with variable arity are then given a type that matches the length of the
argument list.  For example, + is given the type (D (number number number) number)
when it is called as in (+ 3 4 5).

Once this has all been done, the bindings created by unification as in [Mil78] are all
applied and, if no set of possible bindings exists, an error message is returned.  If a
possible set of bindings exists, then it is applied and the type is returned.

3.3. Re-sugaring

Once the type has been found, it is displayed (not returned) to the user.  All type
variables, which are of the form ?a, are rewritten as capital letters, e.g., T.  This is simply
an aid to the student in comprehending the types.

3.4. Implementation of type inference rules
This section describes the extensions to standard type inference that have been

implemented by this system.

3.4.1. And-types

The system treats and-types by doing an ordered search over the possible types of a
procedure.  As mentioned in the section on the algorithm, the order of the rules is very
important.  Placing the most restrictive rule first and proceeding to the least restrictive will
provide the strongest typing of an expression.  In the example using cons, the rule could
have been specified as follows.

(and (D ?d ?e (pair ?d ?e))
(D ?a (list ?a) (list ?a))

  (D ?b (list ?c) (list datum)))

In this case, however, the algorithm would always infer that cons creates pairs; it would
never infer that cons creates lists.  Thus, while still technically correct, the system would
give a weaker and more complex type than is necessary.  Therefore, care must be taken
when creating and-types for the system.

3.4.2. Poof

The type poof is the subtype of all types.  It is  used for the types of procedures that do
not return to their caller.  In our system, it is only used to denote the return type of error
and in the type of call-cc.  For the purposes of CS227, though, error  is important.  The
example below shows a typical use.
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(define make-ratl
(lambda (numr denr)

(if (zero? denr)
(error "The denominator cannot be zero!")
(list numr denr))))

Here, the type of make-ratl should be (D (number number) (list number)) (or, more
abstractly, (D (number number) ratl)), but unless the type of error can be unified with
(list number) and result in (list number), or ratl, the type-checking will be incorrect.  Since
error  is used in similar situations, and must always unify with other types, its return type,
poof, must be the subtype of all types in Scheme.  In the implementation, any occurrence
of the type poof is automatically unified with any type variable.

3.4.3. Datum

In general, datum is the supertype of all Scheme types; all other types are subtypes of
datum.  However, it is well-known that having such a type can suppress detection of all
type-errors because every expression could have type datum.  The novel aspect of our
program is its controlled use of datum.  This is done by only allowing datum to be
declared as part of a procedure's type, not inferred.  With this in mind, only a few
procedures should have type datum.  Its primary uses are in building heterogenous lists
(via cons or list) and producing output (via writeln  or in error ).  One other use is in the
procedure make-vector.  If make-vector is passed a length as its only argument, then the
vector created has undetermined fill values, hence the use of datum.

Within the algorithm, any other type or type variable unifies to type datum.  Thus
number and datum unify to datum.  However, if datum is not one of the type variables,
then normal unification takes place: datum is not introduced by the unification algorithm,
but must be present from the type information stored in the global type table.

3.4.4. Procedures of Variable Arity

While procedures that take a variable number of arguments are handled somewhat, only
procedures whose optional arguments are homogenous are handled; for example, the
procedure map-all defined below can be typed, although its type cannot be inferred.

(define map-all
(lambda args

(cond ((null? args) '())
((null? (cdr args)) '())
(else (apply map-all (list (car args)

       ((car args) (cadr args))
   (cddr args)))))))
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While map-all can be typed, its type cannot be inferred in the present system; hence,
procedures of variable arity are similar to datum.  Currently, the only way for a procedure
with variable arity to be typed is to use the procedure deftype to add an entry for map-all
in the type table, unless the procedure is one of the built in procedures that have variable
arity.  The entry for map-all would be as follows: (D ((D ?a ?b) ?a ... ) (list ?b)); i.e.,
map-all takes a procedure that operates on the arguments that follow after the procedure.
Note that the optional arguments must all be the same type (even though that type might
be datum).

Even though map-all can be typed, it cannot be type-checked.  Using the current type-
checker, an error would occur while attempting to translate the definition, as lambda
must be followed immediately by a list of arguments, not by a name.  One direction this
research should take in the future is the addition of a type-inferencing system for these
procedures.  The work of Dzeng and Haynes looks particularly interesting for this
[DH94].

3.4.5. ADTs

A major innovation of this project is producing a type-checker that will handle ADTs.
Such a type-checker should allow the creation of new types, and be able to type-check the
new types, their creators, selectors and mutators, as well as any procedures built using
these types.  Also, there must be a facility to handle information hiding, so that students
will not be able to depend on a certain implementation for their ADTs.  To see how these
goals have been achieved, we will look at the ADT ratl, i.e., rationals.  This is the first
ADT students in the CS227 encounter in Scheme and the Art of Programming[SpF89].

The implementation for the constructors and selectors are shown below.  Note that
there are no mutators for this ADT.

(define make-ratl
(lambda (numr denr)

(if (zero? denr)
(error "The denominator cannot be zero.")
(list numr denr)))))

(define numr
(lambda (ratl)

(car ratl)))

(define denr
(lambda (ratl)

(cadr ratl)))

The types of this code can be inferred, and the types will be as follows:
• make-ratl: (D number number (list number))
• numr: (D  (list T) T)
• denr: (D (list T) T)
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Note, however, that the 'D symbol will be represented by '-> in the actual program.
However, to hide an implementation, a file called foo.def, where foo is the name of

the ADT, can be used.  If a student is to use the file foo.ss, she can simply type
(type-check-file "foo.ss") and the system will automatically look for a file foo.def that
contains type information both for the representation of ADTs as well as the correct types
for the ADTs procedures.  At this point, the representation and the procedures' types will
be stored in a table.  Then the file foo.ss will be read in.  Every procedure in foo.ss that
has a corresponding entry in the table (from foo.def) must have a type that is unifiable
with the type from the table using the given representation.  For example, the contents of
the file ratl.def are shown below.

(defrep ratl (list number))
(deftype make-ratl (-> (number number) ratl))
(deftype numr (-> (ratl) number))
(deftype denr (-> (ratl) number))

Here, defrep marks that the implementation of a ratl  is (list number).  Hence, any
procedures in this file that are marked by a deftype should have all occurences of ratl
replaced by (list number) in their actual implementation in the ratl.ss file.  Thus, if the
implementation of numr  in ratl.ss is not of type (-> ((list number)) number), then there is
an mismatch between the specification and the implementation.
  At this point in the research, every .def file must contain one and only one defrep
expression.  This is used to simplify checking the specification versus the implementation.
It would significantly increase the complexity of this checking if more than one ADT were
allowed to be specified in one file as coordinating the primitive procedures with their
respective types would be more difficult.  However, this restriction could be relaxed in
future versions of this work if it is determined that the current system is needlessly
restrictive.

3.5. Extending the system

Extending the system to accomodate all of R4RS compliant Scheme should not be too
difficult.  Much of the extension merely requires entries in the global type table.  For
example, the I/O procedures open-input-file, open-output-file, etc. merely require the
appropriate types to be entered into the table.  Other features, however, will require more
difficult modifications.  These include the aforementioned procedures of variable arity, as
well as defines using rest parameters.  Even though these additions will be more complex
than simply entering types in a type table, they do not seem to be unrealistic.  Dzeng and
Haynes [DH94] have described a system that will solve the first problem.  It only remains
to be seen how difficult implementing their ideas into our framework will be.  Also,
implementing rest parameters should not be difficult once the framework for handling
procedures of variable arity is in place.  In short, the system seems to be flexible enough to
handle further extensions without sacrificing its simplicity.

4.  DISCUSSION
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This section shows some sample student problems and demonstrates how the type
inference system can help students solve some of their problems in understanding
procedures.  It also discusses the applicability of the system, and how effective it is in
inferring types for code.  The section also attempts to place this work in context with
other works in developing type systems for Scheme.  Specifically we look at STYLE and
Soft Scheme, two approaches to type-checking Scheme.  We then conclude the section by
looking at future directions for this research.

4.1. Common Programming Problems

This section presents a brief discussion of programming problems students encounter.
It is followed by an extended set of examples of interactions with Scheme interpreters and
the type inference system.

1. attempt to take car or cdr of a non-list or non-pair
2. calling a procedure with the wrong number of arguments
3. a parenthesis problem
4. a problem with ADTs
5. a problem with if
6. a problem with cond
7. scoping problems within let and letrec

The following shows some typical examples of these errors and, where it may be unclear,
discusses the problems encountered in each.  The Scheme interpreter used in these
examples, unless otherwise stated is SCM.

> (cdr 3)
The interpreter produces:
ERROR: cdr: Wrong type in arg1 3

The type system, however, is not much more instructive, as it complains:
Cannot be typed or your expression is too hard.

> (cons (cons (cons 3 '())))
Here, SCM is slightly more helpful:
ERROR: Wrong number of args to #<primitive-procedure cons>
in top level environment.

The type system, though, still reports:
Cannot be typed or your expression is too hard.

>(define buggy-remove
(lambda (item ls)

(cond
((null? ls) '())
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((eq? item (car ls)) (buggy-remove (cdr ls)))
(else (cons car ls) (buggy-remove (cdr ls))))))

Here, no problem is reported by the interpreter, yet there is a serious problem: in the last
line, the student has misplaced parentheses around the car ls.  The last line should be

(else (cons (car ls) (buggy-remove (cdr ls))))))).  The type system produces both a
warning, and an error message.
Implicit begin in cond expression.
ERROR: map: wrong type in arg2 item.

The error reported is a fatal error from the type system itself.

Another type of problem occurs in using Abstract Data Types (ADTs).  Students often do
not understand how to use these ADTs; they will access data members using
inappropriate, or low-level, operations.  An implementation for an example ADT ratl is
given below.

(define make-ratl
   (lambda (num den)

(list num den)))

(define numr
   (lambda (ratl)
      (car ratl)))

(define denr
   (lambda (ratl)
      (cadr ratl)))

This ADT is the first ADT students in the class encounter.  The usual assignments
require them to write various arithmetical operations for ratls.  The most common
programming error is for students to access the data members of a ratl using car or cadr
instead of the selectors numr  and denr.  To force students to use the selectors, the
implementation is sometimes changed or hidden from the students via loading a random
implementation (e.g., dotted pair, Gödelized number, list with denr as the first element,
procedural representation,etc.), yet students complain that using a random implementation
is confusing, even though the instructor is merely trying to emphasize data hiding.

An additional tool to teach students to use data abstraction would be a type checker
that could check students' code for low level selectors.  Thus, a major goal of this project
has been to implement a type checker that is sufficiently robust to handle ADTs, as well as
provide better error information when expressions are improperly typed.

>(if #t 3 else 4)
The interpreter reports:
ERROR: no binding for else in the current environment.
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The type system's message is similar:
Error: (unknown global name: else)

Here, the student is perhaps carrying over some syntax from another language; hence the
use of else.  Some other problems with if  are listed below.

>(if 3 4)

In this example, the error is that the first argument does not evaluate to a boolean, and so
the interpreter accepts it silently.  The type system, though, reports an error:
Cannot be typed or your expression is too hard.

>(if #f (write "oops") 3)

Here, the second and third expressions have different types, yet is legal Scheme.  The type
system reports an error here, too.

Cannot be typed or your expression is too hard.

Students have similar problems with cond, as noted in the section on the subset of Scheme
that is type-checked by this system.

Students also have scoping problems within a let or letrec.  For example, the following
code contains an invalid reference to the variable x.

>(let ((x 3)
(y x))

(+ x y))

The x in the second line does not refer to the binding for x made in the first line.  This is a
very common error for beginning students to make, and the error message returned by the
system is not always helpful.

ERROR:  unbound variable: x

The message given by the type inference system is similar:
Error: (unknown global name: x)
Cannot be typed or your expression is too hard.

These seven types of problems are typical of beginning programming students, and a
good type-checker should be able to at least point out these problems.  Thus, the system
described within this paper attempts to handle all of these problems, as well as some other,
minor, points.  It is clear, however, that the messages produced by the type system need
improvement.
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4.2. Demonstration of applicability

This section demonstrates that the type inference system is effective over its restricted
domain.   In most cases the type inference system correctly caught type errors, and
correctly typed syntactically correct procedures.  The procedure for checking this body of
code was to type-check each file containing code, and examine the output.  Procedures
must be typed before they are referred to; thus mutually recursive procedures can cause
problems; however, the mutually recursive procedures can be placed into a letrec
expression, and then the individual procedures type-checked one at a time within the body
of the letrec.  A preliminary program, type-check-file has been developed that does this
dependency handling, but it is limited in its usefulness as the size of files increases.  The
program reads in a file and attempts to resolve all dependencies; however, if there are
more than one version of a program per file (for example, 3 versions of the factorial
program), then the dependencies do not get resolved properly.  Usually, though, a simple
renaming takes care of this problem.    Procedures of variable arity also cause significant
problems: often the type system will die attempting to handle them.  Also, since the
programs below were from various sources, some of them relied on implementation-
specific, or non-standard Scheme procedures.  This problem was easily solved: definitions
for the undefined helping procedures were included in the file, but not shown in the results
table (they aren't included so as not to inflate the results).  The results shown below were
generated by running type-check-file over each of the files, with the three modifications
mentioned: renaming of procedures, removal of procedures with variable arity, and
inclusion of helping procedures.

The code from the first ten chapters of [SpF89] have been checked, as well as sample
student code from exercises.  Code from other sources was also examined.  In particular,
code from the first chapter of [AbS85] was examined.  Since SICP uses nested defines,
the report generated in the table was used setting the variable *allow-nested-defines* to
#t, which then allowed the programs using nested defines to be desugared into programs
using letrec.  A final category of programs checked is a collection of polymorphic code by
Gary Leavens.  This was the most challenging set for the system as the interdependencies
were more complex; it can be considered 'production level' code, and not just a set of
small toy programs.  It clearly shows the limitations of the type system.

The table below summarizes the results of using the type inference system over these
bodies of Scheme code.

Source of Code Number of
procedures

Number of
error
message

Number
of type
errors

Percentage of
procedures
correct

Chapter 2, SAP 11 2 0 82%
Chapter 3, SAP 23 0 0 100%
Chapter 4, SAP 20 0 0 100%
Chapter 5, SAP 27 1 0 96%
Chapter 6, SAP 19 2 1 84%
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Chapter 7, SAP 36 3 1 78%*(4 not
included)

Chapter 9, SAP 23 1 3 74%*(2 not
included)

Chapter 10, SAP 22 0 6 73%
Student code, SAP 16 3 0 81%
Chapter 1, SICP 101 5 0 95%
Polymorphic 26 5 4 65%
Totals 324 22 16 86%

There were few surprises while checking the code.   Most problems occurred with
recursive types, such as trees, or with make-vector, which will be discussed in detail later.

Chapter 2 of [SpF89] produced 4 errors: three of these were problems with procedures
taking advantage of Scheme's using any non-#f value to mean true. The only other
problem was with a procedure that performed ad hoc polymorphism, and, thus, is beyond
the scope of our system.  The code for the procedure is shown below.

(define describe
(lambda (s)

(cond
((null? s) (quote '()))
((number? s) s)
((symbol? s) (list 'quote s))
((pair? s) (list 'cons (describe (car s)) (describe (cdr s))))
(else s))))

Chapter 3 produced no errors.  Even though much of the procedures deal with the
ADT ratls, all the procedures built on top of the ADT successfully checked.

Almost all of the problems in chapter 4 were caused by procedures that operate over
trees producing error messages.  An example is the procedure remove-all:

(define remove-all
(lambda (item ls)

(cond
((null? ls) '())
((equal? (car ls) item) (remove-all item (cdr ls)))
((pair? (car ls))
  (cons (remove-all item (car ls))

       (remove-all item (cdr ls))))
(else (cons (car ls) (remove-all item (cdr ls)))))))

The flat version of remove-all can be handled; i.e., without the case where ls is a pair.
But there are no facilities for recursive types, such as trees, in the type system.  The
problem also came up later when checking the polymorphic code of Gary Leavens.

In chapter 5, the only problem is with a deep-recursive procedure, as in chapter 4.
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In chapter 6, all of the problems were caused by interactive procedures:  some of the
interactive procedures were fine; however, some did not like being able to handle different
kinds of input via read.  For example, the following code produces an error:

(define interactive-square
(lambda ()

(let ((val (read)))
(if (eq? val 'done)

(writeln "Thanks for playing")
(begin

(writeln "The square of " val " is " (* val val))
(interactive-square))))))

The problem occurs because read returns both a symbol (i.e., 'done) and a number.
Chapter 7 had problems with trees, also, and our inability to infer types for procedures

with variable arity also produced the majority of these errors.  A typical example for
problems with variable arity is this:  (define list (lambda args args)).

Chapters 9 and 10 produced errors almost every time vector-generator was used.
This is simple to understand as vector-generator uses make-vector, which produces a
vector of type datum when called with no fill value.  These, though, were the primary
problems in these chapters.  The code for vector-generator causes a problem as it initially
creates a vector of type datum using make-vector, and then updates it according to the
gen-proc.  However, since vector-set! does not allow non-homogenous vectors to be
created, all vectors made with vector-generator are of type datum.  Thus chapters 9 and
10 have few error messages produced, but several incorrect types.  The code for vector-
generator is given here.

(define vector-generator
(lambda (gen-proc)

(lambda (size)
(let ((vec (make-vector size)))

(letrec ((loop (lambda (i)
(if (< i size)

(begin
(vector-set! vec i (gen-proc i))
(loop (add1 i))))))

(loop 0))
  vec))))

The student's code consisted of 16 procedures (all correct Scheme code) that were
solutions to exercises from the first ten chapters of [SpF89].  The problems here, as
mentioned above, were primarily with vector-generator and procedures that take a
variable number of arguments.

The code from the first chapter of [AbS85] was the most successfully typed code set.
Essentially no errors were produced after some simple transformations were done; i.e.,
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renaming several versions of the same procedure, and adding definitions for some system-
specific procedures (e.g., 1+ and 1-).

The final group of code checked consists of code by Gary Leavens.  The problems
encountered here were from a recursive ADT, much as from the tree code in chapter 4.
The example here is a type type, which can be a symbol or a list of (type -> type), much as
types can be expressed in the system developed in this project.

From this data it is clear that a large portion of Scheme code (i.e., the subset we have
delimited) can be successfully type-checked using our system.  The major limitation is in
the use of recursive types.

4.3. Related works

In this section we attempt to place out type inference sytem in context with other type
systems for Scheme, as well as other functional languages.  We will take a brief look at
PLEAT [Cur90], STYLE [Lin93], Soft-Scheme [WrC93], and SPS [Wan89], with the
emphasis in the section being on STYLE and Soft-Scheme.  We will look at three main
areas: domain of the type systems, representation of types, and complexity of code.

The work of Curtis [Cur90] provides an example of a type-system for a small,
functional language, PLEAT, much in the style of Scheme.  However, the types produced
by the system are far too complex for beginning students to handle.  For example, the
procedure sum, which takes a list of numbers and returns the sum of the list has type (->
(list number) number) in our type system, but in Curtis', it has the type

∀ →α β α β. ( . : , : : int , : int )rec Empty NonEmpty hd tl

While to someone familiar with Curtis' presentation of recursion and his type for cons, this
is understandable, it is clearly beyond beginning students' ability to use.  However, his type
system is quite rich and complete.  It is just not a good fit for our goal of helping students
understand types by showing them how typing problems in their code are usually errors.

The Semantic Prototyping System (SPS) of Wand is also instructive.  While the types
produced by it are more usable for students, there is a serious problem in using it: it
requires that students enter in types for their procedures, and then attempts to perform a
unification with the type defined by the student, and the type of the procedure declared.
Using this on top of existing code proves difficult without employing macros to translate
procedures with their types into this language.  The only other option would be to teach
the students the syntax of SPS, in addition to the regular syntax of Scheme.  Below shows
code, with the type, for a procedure myzero?, along with the equivalent type in our
system.

(define-checked myzero?
(-> (seq int) bool)
(lambda (n) (eq? n 0))))

The equivalent type in our system is (-> (T) boolean).  Thus, the notation for types is not
very different, yet the overhead of define-checked, and requiring students to enter
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presumed types makes using the system burdensome.  The concept, though, does have
merit.  As part of the introductory course, students are required to include types for all
procedures.  However, requiring these types to be correct puts too much pressure on
them.

There are two other major problems with SPS: it does not correctly implement let and
it has no facilities for ADTs.  While the first is not crucial to the use of a type system (until
students reach higher-order procedures in Scheme), the second causes SPS to be rejected
as a possibility for our use.  Thus, while SPS does meet some of our goals, it is not a
proper fit for our course.

A type system that is very close to ours is Christian Lindig's STYLE [Lin93].  It offers
a type system that operates over the entire specification of Scheme, as well as provides a
solid type system.  However, at the time of this writing, we have been unable to locate a
copy of the implementation, although the report we have states that the code will be soon
made available via anonymous ftp.  Thus, any data we have on STYLE relies on the
technical reports, and we have been unable to compare it directly with our system.
Another drawback of STYLE is its complex type system.  The types produced are not
very palatable.  For example, a version of member?, has type (A_nv (B_nv . C_nv) =>
bool) in Lindig's system, while it has type
(-> (T (list T)) boolean) in ours.  Note that the comparison is made on the basis of the
type given in [Lin93], which does not provide the source for member?; it is assumed that
the implementation is something resembling:

(define member?
(lambda (item ls)

(cond
((null? ls) #f)
((equal? item (car ls)) #t)
(else (member? item (cdr ls))))))

In his paper, Lindig provides some results from type-checking code from [AbS85], and
from that, we see that his system appears quite practical.  However, since we have been
unable to obtain a copy, we cannot make any accurate comparisons of our two systems at
this time.

The last system examined is Wright's and Cartwright's Soft Scheme [WrC93].  Soft
Scheme infers types, and, instead of producing error messages on untypable expressions,
inserts run-time checks.  The system covers all of R4RS Scheme and produces readable,
usable types.  This system is very poweful, and has been shown to perform very well.  For
our purposes, there are only two problems with the system: it is too complex for students
to comprehend the implementation, and it doesn't handle ADTs in the same manner that
[SpF89] does.  It does, however, have facilities for defining and using structures.  These,
however, are more suited for  more advanced programmers, not students learning about
ADTs.  Its handling of recursive types and intersection types is based on the work of
Fagan [Fa90] and is richer, yet more complicated, than ours.

The implementation of Soft Scheme is available via ftp from the Scheme repository
(ftp.cs.indiana.edu in pub/scheme-repository/imp).  A working implementation consists of
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nearly 7000 lines of Scheme code, using many of the more advanced constructs of Scheme
(namely call/cc and extend-syntax).  Thus, the system is far more complex that what
students could be expected to look over in their first semester programming.  However,
this author has found Soft Scheme to be quite nice, and had the system been available at
the beginning of this project, the facilities for ADTs might have been merely built on top
of Soft Scheme.

4.4. Theoretical Basis

The theoretical basis for this work can be found primarily in the papers of Cardelli and
Milner.  The type-checking algorithm is essentially the j  algorithm of Milner, with a few
additions as noted in the sections on datum, poof, and-types, and ....

Milner, of course, provides the basic type-checking algorithm, as well as the underlying
notions of type-checking polymorphic functions.  Milner's work is built upon the
framework of Hindley [Hin69].

The paper by Cardelli [Car87] presents the basis for polymorphic type-checking, as
well as provides some basic type-expressions and type-inference rules.  The goal for the
system implemented here is to have the same functionality as the system described in
[Car87], as well as provide for ADTs and some exception-handling.  However, unions of
types have been simplified as noted in the section on datum.  Thus we have implemented
Cardelli's ideas for polymorphic type inference in Scheme, and provided a simple,
controlled use of subtyping, along with some facilities for creating and using higher-order
types.

Curtis [Cur90] introduces the use of quantified variables, and presents his version of a
type-inference system for a language similar to Scheme called PLEAT.  As noted in the
previous section, however, his type system is too complicated for our needs.

The work by Pierce [Pie91], Reynolds [Rey88], and Coppo, Dezani-Ciancaglini, and
Venneri [CD80], provide additional insight into and-types, even though they are only
handled in a primitive fashion in this work.

5.  FUTURE DIRECTIONS
All of the syntactic features used to create the system are covered in the

introductory programming course, except for a few functions on file handling.  Thus, not
only can students use the system to type check their code, but they can also modify it on
their own and experiment with different approaches.  Also, all of the code is compliant
with R4RS, and thus is completely portable: no special, implementation dependent
features have been used.  This system has been tested under SCM, Chez Scheme, and PCS
and runs with no modifications.  The only procedure not in R4RS compliant Scheme is
file-exists?, which exists on all three of the above implementations.

Further goals for this research include extending it to include all features of Scheme,
not just a selected subset.  However, the inclusion of more features might impair the
portability of the system; thus any modifications will be made with care.  While the
addition of record types would be nice, their inclusion could impair the portability of the
system.  However, depending on SLIB to provide the appropriate facilities would aid the
portability of this kind of extension.  Thus, if SLIB where already installed in the Scheme
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system, no other modifications would be necessary.  This would be especially helpful for
handling macros, as SLIB currently provides a portable version of extended-syntax.

6.  CONCLUSION
In conclusion the project has achieved most of its goals.  The type-inference system is

sufficiently adequate and robust to handle the needs of beginning students.  And it is
simple enough for them to use, understand, and even modify.  The simplicity of the type
system allows users to experiment with different types for different procedures and allow
great flexibility in how much polymorphism is allowed (i.e., via and-types).  However, it
would be nice to cover all of the features used in Scheme, not just a restricted subset.
Thus, the further goal of this work is to incorporate all of R4RS.
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