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Abstract

A common change to object�oriented software is to add a new

type of data that is a subtype of some existing type in the program�

However� due to message passing unchanged parts of the program

may now call operations of the new type� To avoid reveri�cation

of unchanged code such operations should have speci�cations that

are related to the speci�cations of the appropriate operations in their

supertypes� This paper presents a speci�cation technique that uses

inheritance of speci�cations to force the appropriate behavior on the

subtype objects� This technique is simple� requires little e�ort by the

speci�er� and avoids reveri�cation of unchanged code� We present two

notions of such behavioral subtyping� one of which is new� We show

how to use these techniques to specify examples in C���

� Introduction

Object�oriented �OO� software can be extended by adding new subtypes to
existing types� Such extensions provide reuse of existing functions by al�
lowing one to use subtype objects in place of supertype objects� However
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due to message passing unchanged functions will then execute operations of
the newly added subtypes
 potentially requiring respeci�cation and reveri��
cation of the function �	��� Respeci�cation and reveri�cation go against the
ease of extension promised by proponents of OO software� Speci�cation and
veri�cation techniques which evolve with software
 that is which do not re�
quire respecifying or reverifying whenever new components are added to the
system
 are called modular�

Behavioral subtyping
 subtyping based on the behavior of types
 can be
used for modular speci�cation and veri�cation of OO software� A set of con�
ditions for behavioral subtyping has been proposed both proof�theoretically
�	
 	��
 and model�theoretically �	�
 ��� It has been shown that with the
addition of new behavioral subtypes
 existing unchanged software does not
have surprising behavior �	�
 ��� Leavens and Weihl �	�� present a technique
for modular veri�cation of OO programs� But to use such a technique one
needs to verify that each speci�ed subtype relation constitutes a behavioral
subtype�

In this paper we present a modular speci�cation technique
 which auto�
matically forces behavioral subtyping �and thus also avoids reveri�cation��
We also de�ne a new
 weaker notion of behavioral subtyping that permits
more behavioral subtype relations than previous work �	��� Though we use
C�� ���� as an OO language and Larch
C�� ��
 	�� as a speci�cation lan�
guage
 the techniques we present can also be applied to other programming
languages and with other speci�cation languages�

� Background on Larch�C��

Larch ��� is a family of speci�cation languages with a two�level approach to
speci�cation� One level of speci�cation
 the interface language
 describes the
interface and behavior of the modules of a programming language like C��

and Modula��� Larch
C�� �		� plays this role in this paper� The other com�
ponent
 the Larch Shared Language �LSL�
 describes the underlying model
and the vocabulary that can be used in the interface language� For lack of
space we sometimes omit details of the LSL traits�

Figures 	 and � give the speci�cation of a C�� class
 BankAccount in
Larch
C��� The interface speci�cation is given in Figure 	� The �rst uses
clause in Figure 	 says that the abstract values of BankAccount objects and
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class BankAccount �

public�

uses BankAccountTrait�

constraint self��owner 	 self��owner�

BankAccount�long int cts� const char 	name
� ��constructor

behavior �

uses cpp�const�char�string�

requires 
 � dollars�cts
 � nullTerminated�name� pre
�

modifies self�

ensures self� 	 �dollars�cts
� uptoNull�name� pre
��

�

virtual long int balance�
 const�

behavior �

ensures approx�equal�dollars�result
� self��credit
�

�

virtual void withdraw�long int cts
�

behavior �

requires 
�dollars�cts
 � dollars�cts
�self��credit�

modifies self�

ensures self� 	 �self��credit � dollars�cts
�

self��owner��

�

�� ��� pay�interest and deposit are omitted
��

Figure 	� Interface Speci�cation for BankAccount
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BankAccountTrait� trait

includes long� Rational�long for Int
�

String�char for E� String�char� for C
�

NoContainedObjects�BankAccount


BankAccount tuple of credit�Q� owner�String�char�

introduces

dollars� long � Q

approx�equal� Q� Q � Bool

asserts � q��q��Q� c� long

dollars�c
 �� c��

�

approx�equal�q�� q�
 �� abs�q� � q�
 � ����




Figure �� Speci�cation of BankAccountTrait

the vocabulary used to specify them are given by the trait BankAccountTrait
�in Figure ��� The abstract values are de�ned as tuples with a credit com�
ponent and an owner component� The constraint clause in Figure 	 states
that the owner of BankAccount cannot be changed� Following this history
constraint �	�� in Figure 	 are the speci�cations of the C�� member func�
tions�

The pre�condition for the constructor BankAccount follows the keyword
requires� It requires that the amount be positive and that the name be
a valid C�� string� �The trait function nullTerminated is speci�ed in the
trait listed by the uses clause in the constructor�� The modifies clause
is sugar for conjoining a frame axiom to the postcondition� It states that
only self
 the receiver of the message
 can be changed by the function� The
postcondition
 given by the ensures clause
 forces the value of the self in
the post�state to be the tuple with cts converted to dollars and the string
denoted by name in the pre�state� Speci�cation for the member function
balance ensures that the result is approximately equal to the amount in
credit converted into dollars� The member function withdraw modi�es
self by decreasing its credit component by dollars�cts�
 provided cts is
non�negative and is less than the credit of self in the pre�state�

After specifying and implementing BankAccount
 a programmer might
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�include �BankAccount�lcc�

void transfer�BankAccount� source� BankAccount� sink�

long int cts
�

behavior �

let amt� Q be dollars�cts
�

requires source �	 sink � source��credit � amt

� amt � 
�

modifies source� sink�

ensures sink� 	 �sink��credit � amt� sink��owner�

� source� 	 �source��credit � amt� source��owner��
�

Figure �� Speci�cation of the function transfer

de�ne functions to manipulate BankAccount objects� Figure � gives the
Larch
C�� speci�cation of such a function� The pre�condition prevents the
two accounts from being the same object and requires the amount being
transferred to be non�negative� The post�condition describes the transfer
from source to sink� The speci�cation uses the trait BankAccountTrait for
its model and vocabulary
 by importing the interface for BankAccount�

� The Problem

One set of problems caused by OO programming techniques is illustrated by
the following scenario� Suppose that
 after using the type BankAccount
 a
new type of account
 PlusAccount
 is added to the program� A PlusAccount

object has both a savings and a checking account� PlusAccount is intended
to be a behavioral subtype of BankAccount� Such an extension does not
change the existing code either for BankAccount or for transfer�
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��� Speci�cation and veri�cation problems

Subtype polymorphism allows one to send PlusAccount objects in place
of BankAccount objects as arguments to transfer� However
 Figure �
speci�es transfer using the vocabulary for BankAccount values de�ned
in BankAccountTrait� How can one interpret what the speci�cation of
transfer says about PlusAccount objects
 which might have completely dif�
ferent abstract values� For example
 what does the trait function �credit

mean when applied to a PlusAccount� Do we need to respecify transfer

or do we need to use the same abstract values and trait functions when
PlusAccount is added� Respeci�cation goes against the modularity of OO
software� Using the same abstract values and trait functions would not
work in this example
 because PlusAccount contain more information than
BankAccount objects� One alternative would be to specify all abstract val�
ues as tuples
 and treat subtype values in supertype contexts by projecting
away the extra components
 as is done in other OO speci�cation languages
�such as Object�Z
 VDM��
 MooZ
 and Z�� �	�
 ���� But then viewing
PlusAccount objects as BankAccount objects whose balance is the sum of
the two account balances would require the PlusAccount abstract values to
have three components
 the total balance
 and amounts in savings and check�
ing� one would also have to maintain an invariant that the total balance is
always the sum of the savings and checking� Although this alternative works

it requires more cleverness than in a speci�cation language that does not use
tuples for all abstract values�

To see the veri�cation problem
 consider the case that transfer is ver�
i�ed
 before PlusAccount is added
 using the speci�cation of BankAccount�
When the subtype PlusAccount is added
 the implementation of transfer
is not changed
 but the code it executes changes when PlusAccount objects
are passed� In such cases
 the code will execute methods with di�erent spec�
i�cations than those used during veri�cation� Therefore the veri�cation of
transfermight no longer be valid� Reverifying transfer for such cases
 us�
ing the new speci�cations of methods of PlusAccount would solve this prob�
lem� However
 reverifying all unchanged functions whenever new subtypes
are added is not practical or desirable� A modular veri�cation technique is
needed to avoid reveri�cation�
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��� Overview of the Solution

Our approach to solving the speci�cation problem is to require that behav�
ioral subtypes provide a way to interpret the mathematical vocabulary of
their supertypes� In this paper the interpretation is given by specifying sim�
ulation function
 which are mappings from the abstract values of a subtype
to those of its supertypes� The use of such functions dates back to Hoare�s
work ���
 and has been used in the context of subtyping by other authors
�	�
 �
 	
 	���

If all the subtypes used in a program are behavioral subtypes
 the tech�
nique of supertype abstraction can be used for modular veri�cation of OO
programs �	��� Supertype abstraction uses static types of variables to reason
about code and restricts the runtime types of variables to be behavioral sub�
types of the static types� Such veri�cation is valid because of the semantic
conditions imposed on behavioral subtypes
 which constitute an additional
proof obligation� When new behavioral subtypes are added such a technique
does not require reveri�cation
 because subtype objects behave like supertype
objects�

In this paper we illustrate how these two techniques are combined in
Larch
C�� to give a semantics for speci�cation inheritance that forces sub�
types to be behavioral subtypes �following ��	��� We also de�ne a new
 weaker
notion of behavioral subtyping for mutable types
 which has advantages over
Liskov and Wing�s de�nitions �	���

In the next section we discuss di�erent notions of behavioral subtyping�
In Section � we describe semantics of speci�cation inheritance and show how
speci�cation inheritance forces behavioral subtyping� Section � discusses our
techniques
 and the last section presents our conclusions�

� Behavioral Subtyping

In contrast to structural subtyping ���
 behavioral subtyping should be based
on both the syntax and the semantics of types� That is
 behavioral subtyping
is a property that relates type speci�cations� Syntactic constraints
 as in
structural subtyping
 ensure that an expression of a subtype can be used
in place of an expression of its supertype without any type error� Semantic
constraints ensure that subtype objects behave like supertype objects� that is
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the use of subtype objects in place of supertype objects does not produce any
unexpected behavior� Expected behavior is characterized by the supertype�s
speci�cation�

To de�ne behavioral subtyping
 we use the following notation� We use
strong behavioral subtyping
 �s
 to refer to a notion similar to Liskov and
Wing�s constraint�based behavioral subtyping �	�� and weak behavioral sub�
typing
 �w
 to refer to our new
 weaker notion of behavioral subtyping� Type
symbols are represented by S
 T and type vectors by �U 
 �V � A simulation
function from type S to T is denoted by cS�T 
 an invariant of a type T 
 by
IT 
 and a constraint of T 
 by CT � The notation prem

T
�self� �x� denotes the

precondition of method m in T 
 with receiver self and additional parameters
�x� Substituting z for y in predicate p�y� is written as p�z�� We use x�s for
the value of x in state s
 and x � and x � for values of x in pre and post states
respectively� �Hence x�pre is equivalent to x ���

We present the de�nitions of �s and �w in two steps� We �rst de�ne pre�
behavioral subtyping
 which captures the common parts of these de�nitions�
Then we de�ne �s and �w using pre�behavioral subtyping
 which highlights
the di�erences between the two de�nitions� The de�nition of pre�behavioral
subtyping uses ideas from �	
 	��� The de�nition is specialized for single
dispatching languages like C��
 Ei�el
 and Smalltalk�

De�nition ��� �Pre	Behavioral Subtyping
 S is a pre�behavioral sub�
type of T with respect to a binary relation � on types if and only if the
following properties are satis�ed�
Syntactic For every method m in T there exists a method m in S such that
the following hold�

� Contravariance of arguments� If the types of the additional arguments
of m in S and T are �U and �V respectively� then j�U j � j�V j���i�Vi � Ui��

� Covariance of result� If the result types of m in S and T are Ur and Vr
respectively� then Ur � Vr�

� Exception rule For each exception e � ES of m in S� m in T has an
exception e � ET � and ES � ET �

Semantic There exists a family of simulation functions� hcX�Y � X � Y i�
such that the following hold�
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� Invariant rule� For all values vS of S� IS�vS� � IT �cS�T �vS��

� Methods rule� For all common methods m� if the types of the additional
arguments types of m in S and T are �U and �V respectively and the result
types of m in S and T are Ur and Vr respectively� then for all objects
self � S� �y � �V � and result � Ur

� Precondition rule�

prem
T
�cS�T �self ��� �y �� � prem

S
�self �� c�V��U

��y ����

� Postcondition rule�

�premS �self �� c�V��U
��y ���

� postmS �self �� self
�� c�V��U

��y ��� c�V��U
��y ��� result ���

� �prem
T
�cS�T �self ��� �y ��

� postmT �cS�T �self ��� cS�T �self
��� �y �� �y �� cUr�Vr �result

����

In C�� the additional arguments of a method must have the same types
as in the corresponding method of the supertype
 otherwise overloading in�
stead of inheritance results� �Also
 in C�� one can think of self as �this��
Therefore
 for C�� we can state the methods rule more simply as follows
�compare �	�
 Figure ����

For all common virtual functions m� if the types of the ad�
ditional arguments of m in S and T are �V and the result types
of m in S and T are Ur and Vr respectively� then for all objects
self � S� �y � �V � and result � Ur

� Precondition rule�

premT �cS�T �self ��� �y �� � premS �self �� �y ���

� Postcondition rule�

�prem
S
�self �� �y ��
� postmS �self �� self

�� �y �� �y �� result ���
� �premT �cS�T �self ��� �y ��

� postmT �cS�T �self ��� cS�T �self ��� �y �� �y �� cUr�Vr �result
����
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An additional semantic condition on the history constraints of the types
distinguishes between strong and weak behavioral subtyping� History con�
straints are introduced by Liskov and Wing in order to capture the properties
of objects that are true in any execution history �which Liskov and Wing call
a computation� �	��� For example
 the history constraint of BankAccount
speci�ed in Figure 	 states that the name of the owner does not change in
any computation�

��� Strong behavioral subtyping

The following de�nition is a modi�ed version of Liskov and Wing�s de�ni�
tion �	�
 Figure ��� The exception rule and the methods rule are changed
from the original de�nition �see the section on related work below for details
on the di�erences��

De�nition ��� �Strong Behavioral Subtyping
 �s
 S �s T if S is a
pre�behavioral subtype of T with respect to �s� and the following constraint
rule is satis�ed�
Semantic

� Constraint rule� For all valid computations� c� for all states pre and
post in c such that pre precedes post� and for all objects self � S�

CS�self�pre� self�post� � CT �cS�T �self�pre�� cS�T �self�post���

Unlike Liskov and Wing�s de�nition
 the exception rule for �s allows sub�
type methods to return objects of a behavioral subtype of the supertype�s
exception type� This change is necessary for languages like C�� where ex�
ceptions are allowed to return subtype objects�� For lack of space
 the post�
condition rule ignores exception results and their coercions� technically this
is justi�ed because the semantic conditions on exceptions are captured in
the postcondition
 and because one can model methods with exceptions by
methods that return a tagged union of the normal result and exception re�
sults�

The syntactic conditions can be checked by the type system of a lan�
guage� But the semantic conditions need to be veri�ed and are gener�
ally beyond the power of most type systems to check� Several examples

�Technically
 in C�� one has to use a pointer or a reference	
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of �s
 like Bag �s PriorityQueue
 are given by Liskov and Wing �	���
The PlusAccount referred in Section � is a strong behavioral subtype of
BankAccount� A detailed discussion of that example is provided in the next
section�

��� Weak behavioral subtyping

The constraint rule in the de�nition of strong behavioral subtyping requires
even the extra mutators in subtypes to satisfy the history constraints of the
supertype� The only kinds of mutations permitted by this requirement are
those that are possible in the supertype or those that mutate extra state
�state lost in simulation functions� in the subtype objects� For example
 a
type of immutable arrays cannot have any strong behavioral subtypes that
allow changing elements�

However
 when subtype objects are passed in place of supertypes
 extra
mutators in the subtypes are not visible
 because subtype objects are viewed
from supertype�s methods� If appropriate restrictions are placed on certain
forms of aliasing �discussed below� then one can allow extra mutations in the
subtype and can still expect subtype objects to behave like supertype objects
when viewed through the supertype�s methods ���� Since this notion allows
more behavioral subtypes by weakening the constraint rule
 it is called weak
behavioral subtyping�

De�nition ��� �Weak behavioral subtyping
 �w
 S �w T if S is a
pre�behavioral subtype of T with respect to �w� and the following constraint
rule is satis�ed�
Semantic

� Constraint rule� For all valid computations� c� which do not invoke ex�
tra methods of S� for all states pre and post in c such that pre precedes
post� and for all objects self � S�

CS�self�pre� self�post� � CT �cS�T �self�pre�� cS�T �self�post���

Another way of interpreting weak behavioral subtyping is to view the
supertype�s history constraint as part of the postcondition of each of its
methods� In such a case
 when weak behavioral subtypes are speci�ed
 the

		



postconditions of the extra methods in the subtypes need not include the
supertype�s history constraint�

The main drawback of weak behavioral subtyping is that a restriction
on certain kinds of aliasing is required for modular veri�cation� Since the
supertype�s constraints might not be satis�ed by the extra mutators of the
subtype
 manipulating an object simultaneously both from a supertype�s
point of view and from a subtype�s point of view will result in a unexpected
behavior� To avoid this
 one must restrict direct aliasing between variables or
objects of di�erent types� For a detailed discussion on techniques to restrict
such forms of aliasing and for a model theoretic de�nition of weak behavioral
subtyping see ���� Other forms of aliasing such as direct aliasing between
variables and objects of the same type and indirect aliasing �that is aliasing
of components� between variables and objects of di�erent types are allowed�
Whether such restrictions are too painful for OO programmers is an open
problem�

Weak behavioral subtyping captures several useful behavioral subtype re�
lationships not captured by strong behavioral subtyping
 including mutable
types that are weak behavioral subtypes of immutable types� One such ex�
ample is that a mutable array type can be a subtype of an immutable array
type
 which allows one to pass a mutable array as an argument to a function

like �nding the maximum array element
 that expects an immutable array�
Similarly
 a mutable record type can be speci�ed as a weak behavioral sub�
type of an immutable record type with fewer �elds� One can have a hierarchy
of weak behavioral subtypes with varying degrees of mutability ����

� Speci�cation Inheritance

To prove a strong or a weak behavioral subtyping relation between two types

one needs to prove that the conditions of the appropriate de�nitions are met�
In this section we show how speci�cation inheritance can be used to force
behavioral subtyping
 eliminating the need for users of a speci�cation lan�
guage to verify behavioral subtyping by hand�� This idea is due to Wills ��	�
although apparently he allows one to escape the mechanism and still specify

�If the speci�cation given in the subtype contradicts a supertypes� speci�cation then

the type may not be implementable
 so some veri�cation of implementability might still

be useful	
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�include �BankAccount�lcc�

class PlusAccount � public BankAccount �
public�
uses PlusAccountTrait�

simulates BankAccount by toBA�

�� constructor� pay�interest� deposit�

�� and credit�check are omitted�

�� specification of balance is inherited�

virtual void withdraw�long int cts
�

behavior �

let amt�Q be dollars�cts
�

requires 
 � amt � amt � self��savings�

modifies self�

ensures self��checking 	 self��checking�

�
��

Figure �� Interface Speci�cation of PlusAccount

subtypes that are not behavioral subtypes�

��� Inheritance for strong behavioral subtyping

The speci�cation of PlusAccount in Figures � and � gives an example of
speci�cation inheritance� Figure � gives the interface speci�cation� The C��

syntax �public BankAccount in the declaration of PlusAccount states that
it is a subtype of BankAccount� From the uses clause and the trait in Fig�
ure � one can see that the abstract values of PlusAccount objects are tuples
with savings
 checking and owner components� The simulates clause states
that PlusAccount is a strong behavioral subtype of BankAccount �because
it is not written weakly simulates�� It also says that the simulation func�
tion toBA is used to view PlusAccount values as BankAccount values� The
simulation function toBA is de�ned in PlusAccountTrait in Figure ��
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PlusAccountTrait� trait

includes BankAccountTrait�

NoContainedObjects�PlusAccount


PlusAccount tuple of savings�Q� checking�Q�

owner�String�char�

introduces

toBA� PlusAccount � BankAccount

asserts � q��q�� Q� o� String�char�

toBA��q�� q�� o�
 �� �q��q�� o�

Figure �� Trait for PlusAccountTrait

The speci�cation in Figure � inherits its invariant
 history constraint

and parts of method speci�cations from the speci�cation in Figure 	� For
example
 the speci�cation of withdraw is partly inherited and partly given
in Figure �� The speci�cation of withdraw in Figure � only states that when
the savings part is greater than the amount
 then the checking part does not
change� The inherited part of the speci�cation states that the amount
 if less
than the PlusAccount�s credit
 is deducted from the PlusAccount�s credit�

As an aid to explaining the semantics of speci�cation inheritance
 consider
the completed speci�cation of the withdraw method� Its precondition is
formed as a disjunction of the added precondition in the subtype with the
supertype�s precondition
 after coercing subtype values to supertype values�
That is
 the completed precondition for withdraw is�

requires �
 � dollars�cts


� dollars�cts
 � toBA�self�
�credit


� �
 � amt � amt � self��savings
�

The �rst disjunct is inherited from BankAccount
 and the second disjunct is
the added precondition in PlusAccount� The modi�es clause of the subtype�s
method lists all the objects in the supertype�s and the subtype�s modi�es
clauses� The completed modi�es clause of withdraw is�

modifies self�
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Its postcondition is formed as a conjunction of two implications� The �rst
is that the subtype�s added precondition implies the subtype�s added post�
condition� The second is that
 after coercion
 the supertype�s precondition
implies the supertype�s precondition� That is
 the completed postcondition
for withdraw is�

ensures �
 � dollars�cts


� dollars�cts
 � toBA�self�
�credit


� �toBA�self�
 	

�toBA�self�
�credit � dollars�cts
�

toBA�self�
�owner�


� �
 � dollars�cts
 � amt � self��savings


� �self��checking 	 self��checking
�

In general
 the modi�es clause of the completed speci�cation is larger
than the modi�es clause of the speci�cation being inherited� In such cases the
consequent of each implication in the completed speci�cation�s postcondition
asserts that the objects that are not in the corresponding modi�es clause are
unchanged� �See �		� for details��

The completed speci�cation�s invariant is formed as a conjunction of the
supertype�s invariant �with appropriate coercions� and subtype�s invariant�
The completed speci�cation�s history constraint is a conjunction of the su�
pertype�s constraint �with appropriate coercions� and the added constraint
on the subtype� For example
 the completed constraint for PlusAccount is�

constraint toBA�self�
�owner 	 toBA�self�
�owner�

The following de�nition generalizes these notions for multiple supertypes�
The notation used below is as follows� The set of all supertypes of a type S is
given by Sups�S� and the set of all methods of a type T is given by meths�T ��
The predicates added IS�v�
 added prem

S

 and added postm

S
are
 respectively


the added predicates for invariant of S and the pre� and postconditions of a
method m in S respectively�

De�nition ��� �Speci�cation inheritance
 Let S be speci�ed as a sub�
type of all the types in Sups�S�� Let hcX�Y � X � Y i be the speci�ed family
of simulation functions� The completed speci�cation of S is�
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Invariant IS�v� is�

added IS�v� �

�
B�

�

T�Sups�S�
IT �cS�T �v��

�
CA �

Precondition for all methods m of S� premS �self �� �x �� is�

added premS �self �� �x ��

�

�
BBBBBBB�

�

T � Sups�S��
m � meths�T �

�	�z � �V �c�V��U
��z �� � �x �

� premT �cS�T �self ��� �z ���

�
CCCCCCCA
�

Postcondition for all methods m of S� postm
S
�self �� self �� �x �� �x �� result �� is�

�added prem
S
�self �� �x �� � added postm

S
�self �� self �� �x�� �x �� result ���

�

�
BBBBBBB�

�

T � Sups�S��
m � meths�T �

���z � �V �c�V��U
��z �� � �x � � c�V��U

��z �� � �x �

� �premT �cS�T �self ��� �z ��
� �postmT �cS�T �self ��� cS�T �self ���

�z �� �z �� cUr�Vr�result
������

�
CCCCCCCA
�

Constraint for all states pre� post� CS is� for all objects self � S

added CS�self�pre� self�post�

�

�
B�

�

T�Sups�S�
CT �cS�T �self�pre�� cS�T �self�post��

�
CA �

We can simplify the precondition and the postcondition rules for C��

because additional arguments to inherited methods cannot have di�erent
types� The precondition rule for speci�cation inheritance in Larch
C�� is
given below�

	�



for all common virtual member functions m of S� prem
S
�self �� �x ��

is�

added premS �self �� �x �� �

�
BBBBBBB�

�

T � Sups�S��
m � meths�T �

premT �cS�T �self ��� �x ��

�
CCCCCCCA
�

The postcondition rule is�

for all common virtual member functions m of S� postmS �self �� self
�� �x��

�x �� result �� is�

�added prem
S
�self �� �x �� � added postm

S
�self �� self �� �x �� �x �� result ���

�

�
BBBBBBB�

�

T � Sups�S��
m � meths�T �

premT �cS�T �self ��� �x ��
� �postmT �cS�T �self ��� cS�T �self ���

�x �� �x �� cUr�Vr�result
����

�
CCCCCCCA
�

Since message passing in C������ is dynamic only for the virtual member
functions
 the semantics of speci�cation inheritance in Larch
C�� applies
the above rules only for the virtual member functions of S� As an example

the inherited speci�cation of balance in PlusAccount is as follows�

virtual long int balance�
 const�

behavior �

ensures approx�equal�dollars�results
� toBA�self�
�credit
�

�

For some methods
 such as withdraw
 the completed speci�cation ob�
tained by using speci�cation inheritance is di�cult to understand �see above��
Separating the inherited part from the added part
 we believe
 enchances the
readability of completed speci�cations and serves as an aid to understanding�
This separation can be achieved by using case�analysis ��	�� Case�analysis is
a syntactic sugar used in method speci�cations� For example
 Figure � gives
the completed speci�cation of withdraw in PlusAccount using case�analysis�

	�



virtual void withdraw�long int cts
�

behavior �

let amt�Q be dollars�cts
�

requires 
 � amt � amt � self��savings�

modifies self�

ensures self��checking 	 self��checking�

ensures 
 � dollars�cts


� dollars�cts
 � toBA�self�
�credit�

modifies self�

requires self� 	

�toBA�self�
�credit � dollars�cts
�

toBA�self�
�owner��

�

Figure �� Completed speci�cation of withdraw in PlusAccount

The body of the speci�cation contains two parts� The �rst is the added
speci�cation and the second is the inherited speci�cation� The semantics is
that an implementation must satisfy both parts� Therefore
 the meaning is
the same as before� However
 this form of speci�cation clearly shows that
behavioral subtypes must satisfy their supertypes� speci�cations� Thus
 we
believe this form of speci�cation would be useful in speci�cation browsers�

The following theorem ties speci�cation inheritance to strong behavioral
subtyping�

Theorem ��� Each type speci�ed as a subtype using speci�cation inheri�
tance is a strong behavioral subtype of its supertypes�

Proof� Suppose S is speci�ed as a subtype of T � Since the syntactic hold
because S is a subtype of T 
 we check the semantic conditions as follows�

Invariant For all v � S we calculate as follows�

	�



IS�v�
� fby speci�cation inheritance and de�nition of invariantg

added IS�v� � IT �cS�T �v��
� fby A � B � Bg

IT �cS�T �v��

Constraint For all valid computations c
 for all states pre and post in c

such that pre precedes post
 and for all objects self � S


CS�self�pre� self�post�
� fby de�nition of speci�cation inheritanceg

added CS�self�pre� self�post�
� CT �cS�T �self�pre�� cS�T �self�post��

� fby A � B � Bg
CT �cS�T �self�pre�� cS�T �self�post��

Methods The following calculation uses the precondition rule of speci�ction
inheritance to show the precondition rule of behavioral subtyping� Let
m be a common method in S and T 
 for all objects self � S
 and �y � �V 

and result � Ur�

premT �cS�T �self ��� �y ��

� fby A 
 �true �A�g
c�V��U

��y �� � c�V��U
��y �� � premT �cS�T �self ��� �y ��

� fby 	�introductiong

�	�z � �V �c�V��U
��z �� � c�V��U

��y �� � prem
T
�cS�T �self ��� �z ���

� fby B � �A � B�g
added premS �self �� c�V��U

��y ���

� �	�z � �V �c�V��U
��z �� � c�V��U

��y �� � premT �cS�T �self ��� �z ���

� fby de�nition of speci�cation inheritanceg
prem

S
�self �� c�V��U

��y��

The following calculation uses postcondition rule of speci�cation inher�
itance to complete the proof of methods rule� Let m be a common
method in S and T 
 for all objects self � S and
 �y � �V 
 and result � Ur�

premS �self �� c�V��U
��y ���

� postmS �self �� self
�� c�V��U

��y ��� c�V��U
��y ��� result ��

	�



� fby de�nition of speci�cation inheritanceg
�added prem

S
�self �� c�V��U

��y ���

� �	�z � �V �c�V��U
��z �� � c�V��U

��y �� � premT �cS�T �self ��� �z ����
� �added prem

S
�self �� c�V��U

��y ���
� added postmS �self �� self

�� c�V��U
��y ��� c�V��U

��y ��� result ���

� ���z � �V �c�V��U
��z �� � c�V��U

��y �� � c�V��U
��z �� � c�V��U

��y ��
� �premT �cS�T �self ��� �z ��

� �postmT �cS�T �self ��� cS�T �self ���
�z �� �z �� cUr�Vr �result

������

� fby A � B � Bg
�added premS �self �� c�V��U

��y ���

� �	�z � �V �c�V��U
��z �� � c�V��U

��y �� � premT �cS�T �self ��� �z ����

� ���z � �V �c�V��U
��z �� � c�V��U

��y �� � c�V��U
��z �� � c�V��U

��y ��
� �prem

T
�cS�T �self ��� �z ��

� �postm
T
�cS�T �self ��� cS�T �self ���
�z �� �z �� cUr�Vr�result

������

� fby �A � B � C�� �B � C�g

�	�z � �V �c�V��U
��z �� � c�V��U

��y �� � premT �cS�T �self ��� �z ���

� ���z � �V �c�V��U
��z �� � c�V��U

��y �� � c�V��U
��z �� � c�V��U

��y ��
� �premT �cS�T �self ��� �z ��

� �postmT �cS�T �self ��� cS�T �self ���
�z �� �z �� cUr�Vr�result

������

� fby ��A� B� � �B � C��� �A� C�
 where A is the �rst line
below
 B is the �rst line in the formula above
 and A� B by 	�Ig
�c�V��U

��y �� � c�V��U
��y �� � premT �cS�T �self ��� �y ���

� ���z � �V �c�V��U
��z �� � c�V��U

��y �� � c�V��U
��z �� � c�V��U

��y ��
� �premT �cS�T �self ��� �z ��

� �postmT �cS�T �self ��� cS�T �self ���
�z �� �z �� cUr�Vr�result

������

� fby �true �A� 
 Ag
premT �cS�T �self ��� �y ��

� ���z � �V �c�V��U
��z �� � c�V��U

��y �� � c�V��U
��z �� � c�V��U

��y ��
� �prem

T
�cS�T �self ��� �z ��

� �postm
T
�cS�T �self ��� cS�T �self ���
�z �� �z �� cUr�Vr�result

������

��



� fby instantiationg
prem

T
�cS�T �self ��� �y ��

� �c�V��U
��y �� � c�V��U

��y �� � c�V��U
��y �� � c�V��U

��y ���
� �prem

T
�cS�T �self ��� �y ��

� �postm
T
�cS�T �self ��� cS�T �self

���
�y �� �y �� cUr�Vr�result

������

� fby �true� A� 
 Ag
prem

T
�cS�T �self ��� �y ��

� �prem
T
�cS�T �self ��� �y ��

� �postmT �cS�T �self ��� cS�T �self ���
�y �� �y �� cUr�Vr�result

������

� fby A� �A� B� 
 �A� B�g
�prem

T
�cS�T �self ��� �y ��
� postmT �cS�T �self ��� cS�T �self ��� �y �� �y �� cUr�Vr �result

����

The signi�cance of this theorem is that strong behavioral subtyping is
automatic for types speci�ed using speci�cation inheritance� From this the�
orem we can conclude that PlusAccount is a strong behavioral subtype of
BankAccount�

��� Inheritance for weak behavioral subtyping

Figure � gives the speci�cation �using speci�cation inheritance� of a type
MutableAccount� The weakly simulates clause states that MutableAccount
is intended to be a weak behavioral subtype of BankAccount� If we use
the speci�cation inheritance rules discussed above we would inherit the his�
tory constraint of BankAccount
 and would apply it for all the methods of
MutableAccount� Since change owner violates this history constraint
 a dif�
ferent rule is needed for inheritance of history constraints to make weak
behavioral subtypes�

For weak behavioral subtypes the inherited history constraint is applied
only to the commonmethods� This condition allows the extra methods in the
subtype
 such as change name
 to mutate the state in a way that is not pos�
sible in the supertype� For MutableAccount the inherited constraint is given
below� �The syntax  for ����! indicates to which methods the constraint
applies��

�	



�include �BankAccount�lcc�

class MutableAccount � public BankAccount �
public�
uses BankAccountTrait�MutableAccount for BankAccount
�

weakly simulates BankAccount by toBAwithoutChange�

�� constructor omitted

�� balance and withdraw are inherited

virtual void change�name�const char 	name
�

behavior �

uses cpp�const�char�string�

requires nullTerminated�name� pre
�

modifies self�

ensures self� 	 �self��credit� uptoNull�name� pre
��

�
��

Figure �� MutableAccount as a weak behavioral subtype of BankAccount

��



constraint identity�self�
�name 	 identity�self�
�name

for virtual long int balance�
�

virtual void withdraw�long int cts
�

virtual void pay�interest�double rate
�

virtual deposit�long int cts
�

The proof of the following theorem is essentially the same as for the
previous theorem�

Theorem ��� Each type speci�ed as a weak behavioral subtype using speci�
�cation inheritance is a weak behavioral subtype of its supertypes�

	 Discussion

In this section we compare our work on behavioral subtyping and speci�cation
with other related work and also discuss issues in speci�cation inheritance�

��� Related work

The important di�erence between our work and Liskov and Wing�s work �	��
is the new de�nition of weak behavioral subtyping� However we also re�ned
their de�nition of strong behavioral subtyping� These re�nements include
changes to the exception rule
 handling additional arguments in the methods
rule
 and generalizing the post�condition rule� The change in the exception
rule is necessary to handle the case when the subtype objects are passed as
exception results� But the change in the post�condition rule allows subtype
methods to operate outside the domain of the supertype methods� For ex�
ample consider the speci�cation of a method given in both a supertype and
a subtype�

virtual int foo�int x
� ��supertype�s specification

behavior �

requires x � 
�

ensures result � 
�
�

virtual int foo�int x
� ��subtype�s specification

behavior �

��



requires x � 
�

ensures result 	 ���
�

By our semantics of speci�cation inheritance
 the completed speci�cation
has the following postcondition�

��x � 

 � �result � 



� ��x � 

 � �result 	 ��



This does not imply the supertype�s postcondition� However
 when one rea�
sons about an invocation of foo on an object whose static type is the su�
pertype
 the subtype�s foo performs adequately �without surprises�� Hence
their original rule is needlessly strong� Our de�nition of strong behavioral
subtyping permits more strong behavioral subtype relationships
 and gives
the speci�er more "exibility� Therefore although such a method speci�cation
could be used in a strong behavioral subtype according to our de�nition
 it
would not yield a strong behavioral subtype according to Liskov and Wing�s
original de�nition�

Cusack ��� de�nes specialization
 which is like behavioral subtyping� Spe�
cialization does not handle subtyping on additional arguments and does not
have any notion of history constraints� As in our work
 her de�nition uses
a simulation function and does not constrain a subtype�s method outside
the domain of the corresponding method of a supertype� Her technique for
deriving one speci�cation from another is more restrictive than ours
 in that
she requires both subtype and supertype to be speci�ed with the same Z
schema� Her technique for inheritance of speci�cations does not allow one to
add behavior incrementally�

Ei�el also attempts to force behavioral subtyping through speci�cation
inheritance �	�
 Section 	��	��� Invariants
 pre� and postconditions are inher�
ited� �Ei�el�s assertion sublanguage has no support for frame axioms like the
modi�es clause in Larch
C���� The keyword  else! is used at the start of
a precondition to indicate that the completed precondition is the disjunction
of the supertype�s precondition and the one stated� Similarly the keyword
 then! is used in the postcondition to indicate that the completed postcon�
dition is the conjunction of the supertype�s postcondition and the one stated�
This rule for inheriting postconditions is the source of the postcondition rule
in Liskov and Wing�s de�nition� As such our rule is more general� Further


��



by allowing covariant arguments to methods
 Ei�el violates the contravariant
rule for behavioral subtyping� Therefore
 although Ei�el contains the basic
idea
 it does not force behavioral subtyping� In Ei�el there is no need for sim�
ulation functions in inherited speci�cations
 as the assertion sublanguage is
polymorphic by virtue of using Ei�el subexpressions� Ei�el�s syntax provides
no support for case�analysis in method speci�cations�

The work of Wills in Fresco ��	� is most closely related to ours� Capsules
in Fresco support the idea of case�analysis # all the speci�cation capsules
for a given method must be satis�ed by that method� Wills has no way to
write his  retrieval relations! into speci�cations of subtypes
 however
 mak�
ing it di�cult to apply the speci�cation of supertypes to subtypes unless the
subtype has the same instance variables� Wills also does not force behav�
ioral subtyping
 as he allows users to escape from speci�cation inheritance if
desired�

��� Speci�cation and veri�cation

To solve the speci�cation problem for the transfer function discussed in
Section �
 one can use a technique similar to the one used in speci�cation in�
heritance� Whenever a subtype of BankAccount is passed as an argument to
transfer
 the object�s abstract value is coerced to a BankAccount abstract
value using a simulation function� The vocabulary of BankAccount is then
used to interpret the speci�cation� For example
 when PlusAccount object
is passed to transfer one would coerce its value using toBA� However
 there
remains a problem of information loss with this technique� That is
 the spec�
i�cation of transfer does not say how the amount transferred is distributed
between checking and savings�

Since PlusAccount is a strong behavioral subtype of BankAccount
 all the
properties that are true for BankAccount objects are true for PlusAccount
objects� The veri�cation of transfer �done before PlusAccount was added�
is valid even for PlusAccount objects passed to transfer� Reveri�cation is
not required�

However
 in the case of weak behavioral subtypes
 all the properties of the
supertype are satis�ed by weak behavioral subtype objects only when viewed
as a supertype object� To avoid reveri�cation
 the programming method or
veri�cation logic must prevent aliases that allow a weak behavioral subtype
object to be viewed both as a subtype and as a supertype� If that is done


��



then reveri�cation for MutableAccount arguments is not needed�
A problematic feature of OO programming is the pervasiveness of ob�

jects� One can have abstract values that contain objects� Therefore
 in
general
 simulation functions on values alone are not su�cient for an OO
setting� One needs
 at least
 to give simulation functions access to the state
functions
 which map objects to their values �and so model a computer�s
memory�� As an example
 consider re�ned speci�cations of PlusAccount
and BankAccount where one uses variables to document a design decision�
Since the variable can be mutated
 the abstract values contain objects that
model them� Such abstract values for BankAccount and PlusAccountmight
look like the following �where Obj�int	 represents an integer variable��

BankAccount tuple of dollars� Obj�int�� cents� Obj�int��

owner� String�char�

PlusAccount tuple of svgs�dlrs� Obj�int�� svgs�cents� Obj�int��

chkg�dlrs� Obj�int�� chkg�cents� Obj�int��

owner� String�char�

A simulation function from the abstract values of BankAccount to the
abstract values of PlusAccount is not enough
 because a state is required to
get the values inside objects such as svgs dlrs� Thus one needs simulation
functions to map states with subtype values to states with supertype values�
Such a function should preserve aliasing� However
 given the incremental
nature of OO software development
 specifying simulation functions from
states to states is not practical� Techniques are needed to construct such
simulation functions�

In this paper we have used simulation functions
 which are convenient in
formulas� However
 in general
 one needs relations instead of functions �	���


 Conclusions

The main contributions of this paper are a modular speci�cation technique
which forces behavioral subtyping and a new
 weaker notion of behavioral
subtyping� While the semantics of behavioral subtyping may seem somewhat
intricate
 the basic idea is that the subtype must satisfy the supertype�s
speci�cations� This is enforced by our semantics of speci�cation inheritance

and made visible by the case�analysis form of the completed speci�cation�

��
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