
Computer Science Technical Reports Computer Science

11-23-1994

Foundations of Object-Oriented Languages
Giuseppe Castagna
Liens-DMI

Gary T. Leavens
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Programming Languages and Compilers Commons, and the Systems Architecture
Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Castagna, Giuseppe and Leavens, Gary T., "Foundations of Object-Oriented Languages" (1994). Computer Science Technical Reports.
Paper 47.
http://lib.dr.iastate.edu/cs_techreports/47

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/47?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Foundations of Object-Oriented
Languages

TR94-22
Giuseppe Castagna and Gary T. Leavens

November 23, 1994

Iowa State University of Science and Technology
Department of Computer Science

226 Atanasoff
Ames, IA 50011

Foundations of

Object-Oriented Languages
2nd Workshop report

Giuseppe Castagna and Gary T. Leavens

TR #94-22
November 1994

Keywords: object-oriented programming, type checking, veri�cation, modules, binary method, matching,
subtyping, record update, state, semantics, covariance, contravariance, ow analysis, self, method schemas.
1994 CR Categories: D.1.5 [Programming Techniques] Object-oriented Programming; D.2.2 [Software

Engineering] Tools and Techniques | modules and interfaces; D.2.2 [Software Engineering] Program Veri�-
cation | correctness proofs; D.3.1 [Programming Languages] Formal De�nitions and Theory | semantics;
D.3.2 [Programming Languages] Language Classi�cations | object-oriented languages; D.3.3 [Programming
Languages] Language Constructs | Abstract data types, modules, packages; F.3.1 [Logics and Meanings
of Programs] Specifying and Verifying and Reasoning about Programs | logics of programs; F.3.2 [Logics
and Meanings of Programs] Semantics of Programming Languages | algebraic approaches to semantics,
denotational semantics, operational semantics; F.3.2 [Logics and Meanings of Programs] Studies of Program
Constructs | type structure.

This report is to appear in ACM SIGPLAN Notices. c Giuseppe Castagna and Gary T. Leavens, 1994.
Copies may be made for any purpose whatever, provided this copyright notice appears on the copy.

Department of Computer Science
226 Atanaso� Hall
Iowa Sate University

Ames, Iowa 50011-1040, USA

Foundations of Object-Oriented Languages
2nd Workshop report

Giuseppe Castagna� Gary T. Leavensy

November 23, 1994

Abstract

A report on the workshop Foundations of Object-
Oriented Languages, Paris, July 1994.

1 Introduction

In Paris on July 1{2 1994, researchers gathered at the
second workshop of a series of NSF and ESPRIT-
sponsored workshops to discuss the foundations of
object-oriented (OO) programming languages. This
series of workshops is organized by Kim Bruce and
Giuseppe Longo. The previous edition was held in
Stanford and has been reported in [7].
This year's workshop was held in the Conserva-

toire National des Arts et M�etiers and organized
by the Laboratoire d'Informatique de l'Ecole Nor-
male Sup�erieure; local arrangements were handled by
Roberto Bellucci and Giuseppe Castagna. Participa-
tion was by invitation only (see the appendix).
The purpose of this workshop was to exchange

ideas about the latest research in the semantics of
OO programming languages. The workshop con-
sisted of several presentations and some discussion.
A lively email discussion also developed shortly after
the workshop about binary methods.
This report is organized as follows. Section 2

summarizes the talks given at the workshop. For
each talk, one or two references to the work are
given. (The bibliography and document pointers
are available on the World-Wide Web via the URL:
http://www.cs.iastate.edu/~leavens/FOOL94.html.)
Section 3 summarizes the discussions that took place
at the workshop, and afterwards.

�LIENS (CNRS), 45 rue d'Ulm, 75005 Paris, FRANCE.
Internet: castagna@dmi.ens.fr

yDepartment of Computer Science, 226 Atanaso� Hall,
Iowa State University, Ames, Iowa 50011-1040 USA. Internet:
leavens@cs.iastate.edu.

2 Reviews of Presentations

Ten of the participants made presentations. The
following are brief summary reviews of their talks.
For each talk, we try to describe the problem being
solved, and then give an overview of the solution and
its signi�cance. The summary follows the order in
which the presentations were given.

Kim Bruce: Matching is better than constraining
for bounded polymorphism in OOLs.
Kim Bruce discussed his work on providing a ex-

ible, yet type-safe, polymorphic and imperative OO
programming language [9]. In an imperative OO lan-
guage, there are fewer subtypes than in previously-
studied theoretical OO languages that do not have
mutation. Hence bounded polymorphism in which
the bounding relationship is a subtype relationship is
not as useful as might be desired. This problem un-
derlies the problem users experience with contravari-
ance rules, and is one reason Ei�el uses an unsafe
covariant rule.
PolyTOIL, is a polymorphic, imperative OO lan-

guage that is type-safe. PolyTOIL has expressions
that denote classes, and thus a class has a type, writ-
ten ClassType(�, �). This type is distinguished
from the type of its objects, ObjectType � , because
the object type suppresses information about the in-
stance variables (�).
An important property of PolyTOIL is that meth-

ods do not have to be type-checked each time that
they are inherited. This is accomplished by giv-
ing self the type MyType, and only assuming that
MyType \matches" ObjectType � . The de�nition of
matches implies that if class C0 inherits from C,
and the corresponding object types are ObjectType

� 0 and ObjectType � , then ObjectType � 0 matches
ObjectType � . Using matching permits PolyTOIL
to have a type system that is nearly as expressive
as Ei�el (which uses unsafe covariant type-checking),
but which is provably type safe, and does not have
Ei�el's link-time global check. This expressiveness is
especially important for methods that take or return

1

an argument of type MyType.
Bruce contrasted matching with subtyping, and

noted that in PolyTOIL these orderings on types
are distinct. He noted that matching is more useful
than subtyping as the ordering in bounded polymor-
phism. For example, consider a polymorphic function
that needs a comparable type argument, T , where
comparable is a type with a binary method leq of
type MyType! Bool. This works better if the bound
is \T matches comparable" rather than requiring
that \T is a subtype of comparable."

Benjamin Pierce: Positive Subtyping.
Benjamin Pierce described joint work with Martin

Ho�man [15]. The problem he addressed is the record
update problem: how to type and reason about up-
date in a �-calculus model of an OO language without
mutation. An update function is one that returns an
object of the same type. For example, consider a type
Point. A function bump of type Point ! Point is
an update function. The famous subclass of Point,
ColoredPoint would also have a bump function, but
this one of type ColoredPoint ! ColoredPoint.
The problem is how to model bump, with a polymor-
phic function; as is well known, the usual bounded
polymorphic de�nition does not work.
Several complex solutions for this problem have

been o�ered by others. Pierce o�ered a much sim-
pler solution to a smaller problem: that is a solution
in which subtyping for function types is only applied
in positive positions, such as function result types.
With this restriction, the semantics of a subtype re-
lationship, S�T , is not just a coercion function from
S to T , but a pair of functions. The �rst element of
the pair is the coercion from S to T , while the second
function, of type S ! T ! S, is able to update the
T part of an S object.
In the second part of his talk, Pierce discussed

equational laws for reasoning about the calculus, and
an example proof. The program that is the subject
of the proof contains two class de�nitions, the sec-
ond inheriting some of its behavior from the �rst.
Although both classes involve recursive self-reference
through the pseudo-variable self, the proof is struc-
tured so that properties of the second class are es-
tablished without looking at the implementation of
the �rst class. Thus the proof is modular in the same
sense that the object-oriented program is modular.

Didier R�emy: Programming objects in ML-ART.
Didier R�emy described a solution to the problem

of supporting OO programming idioms in ML [20].
The idea is to use the OO model proposed by Pierce
and Turner [18] in a type inference framework. To

that end he enriched the ML+references language by
some features already present in the type inference
literature. More precisely ML+references is extended
by extensible records (to obtain polymorphic exten-
sion for inheritance), projective types (to describe the
type structure of �elds independently of their pres-
ence), existential types (to have state encapsulation)
and recursive types.
The di�cult problem in ML is to get the objects

to share the vector without exposing the representa-
tion to clients of the object. To add inheritance, one
must support self. The usual encoding of object
records with self is recursive, so one would have to
create objects with an unsafe �xpoint, which would
not work with the ML type system. In order to avoid
this, R�emy modi�ed the Pierce and Turner model
by passing both the with exposed state and self

to each method, rather than just the exposed state.
State encapsulation is still realized though the use of
existential types. Recursive types are now required
since sending messages create �x points. Inheritance
is then coded using wrappers.
The �nal result is the encoding of an object-

oriented style in the extended ML, which allows to
write type safe object-oriented programs in a type in-
ference framework. Yet some problems persist in this
approach: coercions are di�cult to write and must
be explicit, message sending cannot be polymorphic
(so there is no subtype polymorphism), and creation
of recursive values is too limited.

Scott Smith: State in Object-Oriented Program-
ming Languages.
Scott Smith discussed joint work with Jonathan

Eifrig, Valery Trifonov, and Amy Zwarico [14]. This
work addresses the problem of how to provide a type
system for an OO language with mutable state. This
work also shares many of the goals of Kim Bruce's,
in that it also deals with a polymorphic, imperative
OO programming language.
Smith discussed an approach to this problem in

which the semantics of the imperative OO language
are given by translation to a non-OO language. For
its static type system heavy use is made of F-bounded
polymorphism. He noted that a goal is to �nd a trans-
lation into a typed calculus such that one can refer
to self in expressions that initialize instance vari-
ables. (This allows object-overridable methods, as in
Modula-3, and circular structures.)
Smith started by discussing an untyped language,

LOOP. In LOOP one can create objects, send mes-
sages, and read and write instance variables. To allow
one to refer to self in expressions that initialize in-
stance variables, class and object constructions have

2

the following form.

c = class(self)

instance variables x = ... self ...

methods m = ... self ...

end

o = new c

These are translated into the following typed calcu-
lus, called SOOP.

c = �s. let y = fx = ref ..self().., m = ..self()..g
in �().y

o = let r = ref �().?
in r := c(�().!r()); !r

Since there are no reference types in an object, one
gets subtyping, but this construction does not catch
circular de�nitions. In discussions it was agreed that
Smith's use of F-bounded subtyping is able to do
what Kim Bruce's did with matching, but without
an explicit matching relation.
Smith gave some rules for reasoning about LOOP.

He also discussed the proof of the soundness of the
type system of SOOP, which is done by subject-
reduction.

Mart��n Abadi: An imperative object calculus.
Mart��n Abadi presented joint work with Luca

Cardelli [3] [2]. The problem he addressed is the de�-
nition of a primitive calculus to model object-oriented
programming. The necessity of such a calculus is sup-
ported by the problems met in performing typing and
subtyping. In particular, in this work, the modeling
and typing of imperative features is studied.
Abadi started by describing an untyped impera-

tive calculus formed by variables and objects with
the primitives of method invocation, method over-
ride and object cloning. He showed how these con-
structs su�ce to encode both �elds and the \imper-
ative �-calculus" (pure �-calculus plus assignment).
After having described the operational semantics,
Abadi de�ned a �rst-order typing for the calculus
and proved its soundness. Namely, he proved that,
starting from a \sound" store, well-typed programs
do not go wrong. Abadi concluded this part of his
talk by arguing that in an imperative setting some
of the di�culties that resulted in the use of sophisti-
cated functional type theories could be avoided; the
example he used is the one with movable points, i.e.,
points with a method that moves the object: while in
a functional language such a method must return a
new object with the same type as self , in the imper-
ative setting it is not necessary to specify any type,
since the method works by side-e�ects.

Starting from the previous type system, Abadi then
presented a partial correctness logic. The idea is to
write speci�cations of objects that generalize the pre-
vious types and that serve as invariants. The �nal
product is a Hoare logic on programs written in (a
modi�ed version of) the untyped imperative calcu-
lus described above. Abadi concluded his talk with
an example, showing how to use this logic to prove
that a given program computed a given value without
modifying the store.

Giuseppe Castagna: Covariance and contravari-
ance: conict without a cause.
Castagna presented work that addresses the long-

standing problem of covariance vs. contravariance
[10]. The so-called contravariant rule, used to
subtype function types, while assuring type safety,
seemed to prevent satisfactory typing of some special
cases, notably when binary methods were involved.
For this reason in some systems this rule had been
replaced by a covariant one, but type safety was lost.
Castagna argued that covariance and contravari-

ance appropriately characterize two distinct and in-
dependent mechanisms. The so-called contravariance
rule correctly captures the substitutivity , or subtyp-
ing relation (that establishes which sets of codes can
replace in every context another given set). A co-
variant relation, instead, characterizes the specializa-
tion (in OO jargon, the overriding) of code (i.e., the
de�nition of new code that replaces the old one in
some particular cases). Therefore, covariance and
contravariance are not opposing views, but distinct
concepts that each have their place in object-oriented
systems; both can (and must) be type safely in-
tegrated in an object-oriented language. He also
showed that the independence of the two mechanisms
is not characteristic of a particular model but is valid
in general, since covariant specialization is present
also in record-based models but it is hidden by the
incapability of the existing calculi to model multi-
ple dispatching. Thus he showed how it is possible
to model multiple dispatch in the record-based mod-
els and argued that this improvement naturally al-
lows one to (sub)type in a straightforward (and type
safe) way binary or more generally n-ary methods
even in these models. The example he gave was
the one of Point and ColoredPoint with an equal
method (presented also in other talks of this work-
shop). He demonstrated that if in the equal �eld of a
ColoredPoint one speci�es both the code for an ar-
gument of class Point and the code for an argument
of class ColoredPoint and if the code is dynamically
selected by multiple dispatching, it is then type safe
to have ColoredPoint<Point.

3

Gary Leavens: Modules for Multi-methods: Infor-
mation Hiding and Program Composition.
Leavens discussed joint work with Craig Chambers

[12]. The problem he addressed was one pointed out
by William Cook at previous workshops [13]: how to
achieve encapsulation and composability for systems
of multi-methods. In comparison to abstract data
type languages (such as CLU or Ada), and single dis-
patching object-oriented languages such as Smalltalk,
multi-method systems such as CLOS do not have
good encapsulation. A method may be written in
any part of the program that specializes on objects
of a certain class, and thereby that method may gain
access to the representation of such objects. When
combining independently developed systems of multi-
methods, type errors may occur, for which no part of
the program is uniquely responsible.
To solve these problems, Leavens described a mod-

ule mechanism for the language Cecil [11]. This
mechanismdirectly addresses the encapsulation prob-
lem, since one can limit access to �elds by declaring
them private. However, since Cecil has subtyping,
it becomes possible for a method to be invoked on an
object whose type is de�ned in a module that is not
explicitly imported at the point of the method call.
This problem is avoided by requiring subtypes to be
de�ned in \extension modules." The methods de�ned
in modules that extend M are implicitly available at
run-time in any module that explicitly imports M.
While the module system solves much of the com-

posability problem, there remains the problem of in-
dependent extensions of a given module. To solve this
problem, Leavens observed that the person who puts
both independently-developed extension modules in
a program should be responsible for resolving any
problems in a \most-extending module." A unique
most-extending module must exist for each module,
and this condition can be checked quickly at link-
time. This seems to provide multi-methods with the
same degree of information hiding as standard OO
languages, while retaining other advantages of multi-
methods.

Jens Palsberg: A Type System Equivalent to Flow
Analysis.
Jens Palsberg presented a joint work with Patrick

O'Keefe [17]. He addressed the problem of �nding a
type system that accept exactly the same programs
as safety analysis. Safety analysis is a ow analysis
of programs which collects type information and uses
this information to accept only safe programs (i.e.,
programs that cannot go wrong). Such analyses have
the advantage that they can be applied to untyped
languages, where the more traditional abstract inter-

pretation needs types for de�ning abstract domains.
More in detail he considered the untyped lambda

calculus with zero and successor together with the
type system de�ned by Amadio and Cardelli [6] and
composed by recursive, arrow, top, and bottom types
and Int, plus a subtyping relation with subsumption.
Palsberg de�ned the safety analysis of a term as the
resolution of a given set of constraints and showed a
cubic time algorithm that computes it. Finally, he
proved that a term is typable in Amadio-Cardelli's
type system if and only if there exists a solution to
the safety analysis. As a result he obtained a type in-
ference algorithm for the given type system, thereby
solving an open problem.

Luca Cardelli: Primitive Object Types with Self.
Luca Cardelli described joint work with Mart��n

Abadi [2], which is an improvement of the work in [1].
The problem he addressed was the de�nition of a
primitive calculus to model object-oriented program-
ming. The necessity of such a calculus is supported
by the problems met in performing typing and sub-
typing. A focus of this work is the type of self.
The starting calculus is the untyped calculus pre-

sented in [1], while the starting type theory is the
second order type theory of [4] with some improve-
ments: a new quanti�er Obj is used which, unlike the
previous quanti�er, can \move points", override self-
returning methods, and encode classes. Special an-
notations are used to identify read-write �elds (typ-
ically instance variables), read-only �elds (typically
methods), and write-only �elds. These annotations
also allow to encode arrow types enjoying the usual
contravariance/covariance properties. Cardelli also
introduced the notion of pre-method (not to be con-
fused with the CLOS concept of the same name),
which is a function that is later used to construct
a method. This de�nition is useful since class can
then be seen as collections of pre-methods and inher-
itance relation between classes as pre-method reuse.
Although very few primitives are used, the resulting
calculus is powerful enough to express object types,
class types, and method specialization, covering both
class-based and delegation-based frameworks. While
the delegation-based frameworks are essentially built-
in, Cardelli demonstrated the expressibility of class-
based frameworks by closely emulating TOOPLE [8].

Emmanuel Waller: Method Schemas.
Emmanuel Waller described joint work with Serge

Abiteboul and Paris Kanellakis [5]. He addressed
the problem of static veri�cation of consistency of
method schemas (decidability and complexity of var-
ious cases).

4

A method schema is a simple programming for-
malism for object-oriented databases with features
such as classes, methods, inheritance, name over-
loading, and late binding. An important problem
is to check whether a given method schema can
lead to an inconsistency in some interpretation (a
method called with arguments for which this method
is unde�ned). When no restrictions are enforced
on method schemas, dynamic errors are possible,
and the consistency question is undecidable in gen-
eral. (This is shown using program schemas.) De-
cidability is obtained for monadic and/or recursion-
free method schemas. In particular, consistency of
monadic method schemas is shown to be decidable in
O(nc3) time, where n is the size of the method def-
initions and c is the size of the class hierarchy; also,
it is logspace-complete in PTIME, even for monadic,
recursion-free schemas. Method signature covariance
is shown to simplify the computational complexity of
key decidable cases.
The incremental consistency checking of method

schemas is a formalization of the database schema
evolution problem. A detailed study of some decid-
able cases is given in [21].

3 Summary of Discussions

At the end of the workshop there was a general dis-
cussion. The discussion started with Luca Cardelli
o�ering his (tongue-in-cheek) list of the 10 most im-
portant ideas in OO semantics. The list is given be-
low.

1. subsumption (when one object/method can re-
place another)

2. subsumption

3. update

4. self-value (methods with self as a parameter)

5. self types (Modula-3 doesn't have this)

6. don't forget subsumption (subsumption should
still work well with self types)

7. method specialization (methods to allow over-
ride, pre-methods)

8. classes and inheritance

9. polymorphism

10. still subsumption (subsumption should still work
well with polymorphism)

In reply to this, KimBruce said he would put \match-
ing" as items 2 (and 10!) on the list. Other sug-
gestions for this list were: implementation e�ciency
(Benjamin Pierce), compilability (Carl Gunter), sep-
aration of classes and types (Scott Smith).
Some suggested adding multi-methods to the list,

and Cardelli noted that you need some sort of encap-
sulation for that (as in O2 or the work of Chambers
and Leavens). A discussion about modularity ensued,
and it was noted that the work of Pierce and Turner
[19] and Katiyar, Luckham, and Mitchell [16] allows
one to operate on two sets of objects, with represen-
tation access, using bounded existential quanti�ers.
Carl Gunter started a new line of discussion by

saying that, as a semanticist, he would like to get the
features of OO in a way orthogonal to other features
of a language. One might imagine ML with objects,
where one could use OO techniques, but still program
in other paradigms. Carl also wanted to know what
other ideas were subsumed by OO ideas.
Finally, there was a discussion of binary methods,

which reects their importance in several of the talks.
This discussion also continued after the workshop, in
email. Pierce asserted that binary methods, which
cause so many theoretical problems for modularity
and type inference, should be banished. He asked
whether there were any useful examples where bi-
nary methods were really needed. Cardelli o�ered
a \proof" that binary methods are both useless and
worse than useless. The basic idea is that binary
methods hurt subsumption, so if one de�nes what
would be binary methods as functions (outside of
classes), you win. Cardelli concluded that the only
really useful binary methods are multi-methods.
In response, Kim Bruce o�ered a program that

showed a situation in which binary methods are useful
(and can be type-checked in PolyTOIL). The exam-
ple constructed ordered lists of items, in which the
items can be compared. Although subsumption was
lost because of the binary methods, matching allowed
the program to perform a useful function. There were
various recodings of this example (by Pierce, Bruce,
R�emy and Cardelli). Codings without using match-
ing either needed a more complex type system, or
required a change in the interface used by clients of
the program.
The result of the extended email discussion was

a shared understanding of the extra usefulness of
matching and binary methods, of the extra complex-
ity needed to model them, and of speci�c techniques
for modeling them. We now understand well how
subsumption and matching can coexist. The issue of
whether to eliminate one or the other, or neither, is
still unresolved. (Several of the participants in this

5

discussion are planning an extended report on the
binary method problem.)

Acknowledgements

Thanks to Kim Bruce, Luca Cardelli, Giuseppe
Longo, Jens Palsberg, Benjamin Pierce, Didier R�emy,
Scott Smith, and Emmanuel Waller for comments
and corrections to drafts of this report.

Appendix: Participants

The participants in the workshop are listed in Table 1.

References

[1] M. Abadi and L. Cardelli. A theory of primi-
tive objects: second-order systems. In D. San-
nella, editor, Proc. of European Symposium on
Programming, volume 788 of Lecture Notes in
Computer Science, pages 1{25, New York, NY,
1994. Springer Verlag.

[2] Mart��n Abadi and Luca Cardelli. An imperative
object calculus. Draft available on the WWW
via the URL http://www.research.digital.com/

SRC/personal/Luca Cardelli/Papers.html., 1994.

[3] Mart��n Abadi and Luca Cardelli. A semantics
of object types. In Ninth Annual IEEE Sym-
posium on Logic in Computer Science, Paris,
France, pages 332{341, Los Alamitos, CA, July
1994. IEEE.

[4] Mart��n Abadi and Luca Cardelli. A theory of
primitive objects | untyped and �rst-order sys-
tems. In Masami Hagiya and John C. Mitchell,
editors, Theoretical Aspects of Computer Soft-
ware, volume 789 of Lecture Notes in Computer
Science, pages 296{320. Springer-Verlag, New
York, NY, April 1994.

[5] Serge Abiteboul, Paris C. Kanellakis, and Em-
manuel Waller. Method schemas (preliminary
report). In Principles of Data Base Systems,
Nashville, pages 16{27. ACM, 1990.

[6] Roberto M. Amadio and Luca Cardelli. Sub-
typing recursive types. ACM Transactions on
Programming Languages and Systems, 15(4),
September 1993.

[7] Andrew Black and Jens Palsberg. Founda-
tions of object-oriented languages: Workshop

report. ACM SIGPLAN Notices, 29(3):3{11,
March 1994. The bibliography was truncated
in the published version. Obtain the full re-
port by anonymous ftp from crl.dec.com in
pub/DEC/sigplan94.ps.Z.

[8] K.B. Bruce. A paradigmatic object-oriented pro-
gramming language: Design, static typing and
semantics. Journal of Functional Programming,
4(2):127{206, April 1994.

[9] Kim B. Bruce, Angela Schuett, and Robert van
Gent. A type-safe polymorphic object-oriented
language. Obtain by anonymous ftp from
cs.williams.edu in pub/kim/PolyTOIL.dvi.,
July 1994.

[10] G. Castagna. Covariance and contravariance:
conict without a cause. Technical Report
liens-94-18, LIENS, October 1994. Available
by anonymous ftp from ftp.ens.fr in �le
/pub/dmi/users/castagna/covariance.dvi.Z.

[11] Craig Chambers. Object-oriented multi-
methods in Cecil. In Ole Lehrmann Mad-
sen, editor, ECOOP '92, European Confer-
ence on Object-Oriented Programming, Utrecht,
The Netherlands, volume 615 of Lecture Notes
in Computer Science, pages 33{56. Springer-
Verlag, New York, NY, 1992.

[12] Craig Chambers and Gary T. Leavens. Type-
checking and modules for multi-methods. In
OOPSLA '94 Conference Proceedings, Portland,
Oregon., volume 29 of ACM SIGPLAN Notices,
pages 1{15. ACM, October 1994.

[13] William R. Cook. Object-oriented program-
ming versus abstract data types. In J. W.
de Bakker, W. P. de Roever, and G. Rozen-
berg, editors, Foundations of Object-Oriented
Languages, REX School/Workshop, Noordwijk-
erhout, The Netherlands, May/June 1990, vol-
ume 489 of Lecture Notes in Computer Science,
pages 151{178. Springer-Verlag, New York, NY,
1991.

[14] Jonathan Eifrig, Scott Smith, Valery Trifonov,
and Amy Zwarico. Application of oop type the-
ory: State, decidability, integration. In OOP-
SLA '94 Conference Proceedings, Portland, Ore-
gon, volume 29 of ACM SIGPLAN Notices,
pages 16{30. ACM, October 1994.

[15] Martin Hofmann and Benjamin Pierce. Posi-
tive subtyping. Technical Report ECS-LFCS-
94-303, Department of Computer Science, Uni-

6

Name Organization E-mail address
Abadi, Mart��n Digital, SRC ma@src.dec.com
Abiteboul, Serge INRIA Serge.Abiteboul@inria.fr
Bellucci, Roberto LIENS bellucci@dmi.ens.fr
Benzaken, V�eronique Universit�e de Paris I - Sorbonne Veronique.Benzaken@lri.fr
Bouladoux, Francois ENS Francois.Bouladoux@dmi.ens.fr
Bruce, Kim Williams College kim@cs.williams.edu
Cardelli, Luca Digital luca@src.dec.com
Castagna, Giuseppe LIENS castagna@dmi.ens.fr
Davies, Rowan INRIA & CMU rowan@cs.cmu.edu
Delobel, Claude LRI claude@o2tech.o2tech.fr
Dhara, Kishore Iowa State University dhara@cs.iastate.edu
Eifrig, Jonathan The Johns Hopkins University eifrig@cs.jhu.edu
Ghelli, Giorgio University of Pisa ghelli@di.unipi.it
Gunter, Carl University of Pennsylvania gunter@cis.upenn.edu
Leavens, Gary Iowa State University leavens@cs.iastate.edu
Longo, Giuseppe CNRS-LIENS longo@dmi.ens.fr
Milsted, Kathleen France Telecom CNET milsted@issy.cnet.fr
Moggi, Eugenio DISI, Univ. di Genova moggi@disi.unige.it
Palsberg, Jens Aarhus University palsberg@daimi.aau.dk
Pierce, Benjamin LFCS, Univ. of Edinburgh bcp@dcs.ed.ac.uk
R�emy, Didier INRIA-Rocquencourt Didier.Remy@inria.fr
Smith, Scott The Johns Hopkins University scott@cs.jhu.edu
Trifonov, Valery The Johns Hopkins University trifonov@cs.jhu.edu
Waller, Emmanuel U. Paris Sud Emmanuel.Waller@lri.fr

Table 1: Participants in the workshop.

versity of Edinburgh, Edinburgh, U.K., Septem-
ber 1994. An extended abstract will ap-
pear in the POPL'95 proceedings. Available by
anonymous ftp from ftp.dcs.ed.ac.uk in �le
pub/bcp/pos.ps.Z.

[16] Dinesh Katiyar, David Luckham, and John
Mitchell. A type system for prototyping lan-
guages. In Conference Record of POPL '94:
21st ACM SIGPLAN{SIGACT Symposium of
Principles of Programming Languages, Portland,
Oregon, pages 138{150. ACM, January 1994.

[17] Jens Palsberg and Patrick M. O'Keefe. A type
system equivalent to ow analysis. In Confer-
ence Record of POPL '95: 22nd Annual ACM
SIGPLAN{SIGACT Symposium on Principles
of Programming Languages, San Francisco,
Calif. ACM, January 1995. To appear. Avail-
able by anonymous ftp from ftp.daimi.aau.dk

in �le pub/palsberg/papers/popl95.ps.Z.

[18] B.C. Pierce and D.N. Turner. Simple type-
theoretic foundations for object-oriented pro-

gramming. Journal of Functional Programming,
4(2):207{248, April 1994.

[19] Benjamin C. Pierce and David N. Turner. Stat-
ically typed friendly functions via partially ab-
stract types. Technical Report ECS-LFCS-93-
256, University of Edinburgh, LFCS, April 1993.
Get by anonymous ftp from ftp.dcs.ed.ac.uk

in pub/bcp/friendly.ps.Z. Also available as
INRIA-Rocquencourt Rapport de Recherche No.
1899.

[20] Didier R�emy. Programming objects with ML-
ART: An extension to ML with abstract and
record types. In Masami Hagiya and John C.
Mitchell, editors, Theoretical Aspects of Com-
puter Software, volume 789 of Lecture Notes in
Computer Science, pages 321{346, New York,
NY, April 1994. Springer-Verlag.

[21] E. Waller. Schema updates and consistency. In
C. Delobel, M. Kifer, and Y. Masunaga, edi-
tors, Deductive and Object-Oriented Databases,
second International Conference, Munich, Ger-
many, volume 566 of Lecture Notes in Computer

7

Science, pages 167{188. Springer-Verlag, New
York, NY, December 1991.

8

IO
W

A S
TATE UNIVERSITY

O
F

 S
C

IENCE AND TECHN
O

L
O

G
Y

SCIENCE
with

PRACTICE

DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR94-22
Submission Date: November 23, 1994

	11-23-1994
	Foundations of Object-Oriented Languages
	Giuseppe Castagna
	Gary T. Leavens
	Recommended Citation

	tmp.1394130215.pdf.TQHQd

